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Abstract Recognition of predation risk from cues

released from injured heterospecific could be beneficial

when prey belongs to the same prey guild. Here, we per-

formed three experiments. Experiment 1 showed that P.

thaul tadpoles reduced their activity levels when exposed

to conspecific injury cues, but not when exposed to

amphipod injury cues. Experiment 2 tested whether P.

thaul tadpoles can learn to recognize predation risk from

chemical cues released from injured heterospecifics from

the same prey guild (amphipod, Hyalella patagonica). A

group of tadpoles were conditioned by exposing them to a

specific concentration of amphipod injury cues paired with

conspecific injury cues. Two days later, we evaluated

changes in the activity of tadpoles when they were exposed

to amphipod cues. As a control of learning, we used an

unpaired group. Additionally, we used more control groups

to fully investigate the learning mechanism. Our results

showed that tadpoles can learn to recognize predation risk

from injured amphipods and that the mechanism underly-

ing the observed learned response could be associative.

Experiment 3 replicated Experiment 2 and also showed that

a low concentration of amphipod cues did not sustain that

learning.

Keywords Associative learning � Anuran tadpoles �
Amphipods � Predation risk

Introduction

Early detection of predation risk has a key role in the ability

of prey to avoid predation. Prey uses a variety of cues and

sensory modalities to warn them of predation risk (Ryan

et al. 2012; Hermann and Thaler 2014; Jayne et al. 2015).

Some animals can recognize risk cues innately, but others

need prior experience to recognize some cues as risky or to

modify their innate antipredator response (Turner et al.

2006; Gregory 2013; Nelson et al. 2013; Martin et al. 2015).

Diverse tactics, mostly behavioral, can be used to avoid risk

(Lima and Dill 1990; Ferrari et al. 2010a). In aquatic sys-

tems, chemical cues are an essential source of predation risk

information used by all taxa (Chivers and Smith 1998). Most

aquatic animals appear to have an innate ability to recognize

risk from conspecific injury cues (e.g., amphipods: Wisen-

den et al. 1999; flatworms: Wisenden and Millard 2001; fish:

Pollock et al. 2003; and anuran tadpoles: Mirza et al. 2006).

While some aquatic species are able to recognize the odor of

potential predators without any prior experience, others must

learn to recognize predator scents through exposure paired

with known predation cues (Ferrari et al. 2010a). Further-

more, several species of animals exhibit antipredator

responses to cues from injured heterospecifics, either on

their first detection, or as a result of learning (Wisenden

et al. 1999; Mirza and Chivers 2001; Crane et al. 2013;

Batabyal et al. 2014). Being able to recognize predation risk

from injured heterospecific species can be beneficial for prey

when heterospecifics are sympatric species and members of

the same prey guild because it indicates risk for all members

(Avargues-Weber et al. 2013).
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The ability to learn in the context of predation allows

prey to respond to novel threats by adjusting their behavior

based on specific information acquired from their current

environment (Dukas 2013). The learned recognition of

native or alien predator odors has been documented in

numerous predator–prey systems (Wisenden and Millard

2001; Gonzalo et al. 2010; Nelson et al. 2013; Polo-Cavia

and Gomez-Mestre 2014). Typically, experiments to eval-

uate learned predator recognition teach animals to recog-

nize the scent of previously unknown predators by pairing

injury-released chemical cues from conspecifics (innately

recognized as risky) with the novel predator cue during a

conditioning phase. In some cases, learning is also

achieved using innately recognized injury-released chem-

ical cues from heterospecifics instead of from conspecifics

(Wisenden et al. 1997).

In addition to the ability to learn the scent of novel

predators, some studies have shown the ability of animals

to learn to recognize risk from previously unknown

chemical cues from injured heterospecifics. For example,

some studies have shown evidences that cross-species

responses to chemical alarm cues of fish can be learned

(Chivers et al. 1995, 2002; Mirza and Chivers 2001, 2003;

Pollock et al. 2003; Pollock and Chivers 2004). In these

studies, learning was generated by the pre-exposure of

fathead minnows to known predators feeding on unknown

heterospecific fish, or to unknown predators feeding on

unknown heterospecific fish and conspecifics. None of

these studies were able to show whether the learned

response is due to effects of association between stimuli, or

to a mere pre-exposure effect such as sensitization or

neophobia (Domjan 2003; Mirza and Chivers 2003).

In anurans, a wide range of evidence has shown the

ability of tadpole prey to recognize native or alien predator

odors through learning, and has revealed the sophistication

of the learned responses (Ferrari et al. 2009; Gonzalo et al.

2010; Polo-Cavia and Gomez-Mestre 2014). For example,

in Rana sylvatica tadpoles, the generalization of predator

recognition is dependent on the concentration of con-

specific injury cues (risk level) paired with predator odor

during a conditioning phase; this evidences the threat-

sensitive learning of predator odor recognition (Ferrari

et al. 2009). To our knowledge, no studies have assessed

the ability of anuran tadpoles to learn to recognize cues

from injured heterospecifics.

Pleurodema thaul (Anura: Leptodactylidae) is one of the

most common anuran species in northwestern Patagonia of

Argentina. This species breeds primarily in temporary

ponds devoid of fish. In these ponds, top predation is

exerted by insects, such as odonates, aquatic beetles and

water bugs (Jara and Perotti 2010; Jara et al. 2013). These

predatory insects feed on the same food resources: zoo-

plankton, herbivorous and omnivorous macroinvertebrates

and anuran tadpoles (Jara et al. 2013; Jara 2014). Predator-

naı̈ve P. thaul tadpoles appear to exhibit short-term indu-

cible defenses when they undergo predation risk chemical

cues. For example, we have previously observed that P.

thaul tadpoles decrease their activity (any movement)

when exposed to cues from injured conspecifics (Pueta

et al. 2016).

In the present study, we performed a series of three

experiments to test whether P. thaul tadpoles recognize

injury cues from members of the same prey guild (am-

phipods). In Experiment 1, we tested the innate response of

P. thaul tadpoles to cues from injured conspecifics and

injured heterospecifics (Hyalella patagonica, Amphipoda:

Hyalellydae). This first experiment was intended to help us

choose the unconditional stimuli (US) and conditional

stimuli (CS) used to assess learning in the next experiment.

In Experiment 2, we evaluated whether P. thaul tadpoles

can learn to recognize predation risk from chemical cues

from injured H. patagonica. Considering that tadpoles of

this species show no aggregation behavior, their ability to

learn from heterospecific cues may have a major role. The

opportunity to learn in nature results because in Patagonian

temporary ponds P. thaul is usually associated with

amphipods in the benthic zone, and experimental studies

have shown that their top predators may prey on both

tadpoles and amphipods (Jara 2014). We performed this

second experiment using an associative learning protocol.

Finally, Experiment 3a was aimed to replicate the results of

Experiment 2, whereas Experiment 3b was performed to

evaluate whether the concentration of cues from injured

amphipods can modulate the learning acquisition. This last

experiment was performed because it is known that the

salience of the CS is an important determinant in the

generation of associative learning (Domjan 2003) and

because some studies have demonstrated the modulation of

learned responses in anuran tadpoles by the risk level

imposed by conspecific cues (Ferrari et al. 2009, 2010b;

Gonzalo et al. 2010), but have not assessed the conse-

quences of manipulating the concentration of the novel

stimulus during conditioning.

Experiment 1

Materials and methods

Animals and preparation of alarm cues

This section applies to all three experiments. For each

experiment, we collected three or four clutches of P. thaul

(stages 11–13; Gosner 1960) from Laguna Fantasma wet-

land (41�0503300S, 71�2700000W, 794 m above sea level), a

temporary pond situated 14 km SW from downtown San
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Carlos de Bariloche, Rio Negro Province, Argentina, and

reared them until we started the experiments. Two extra

clutches of P. thaul were collected and maintained out-

doors to use them to prepare the alarm cue. We also col-

lected adults of H. patagonica (Amphipoda) from the same

wetland to prepare chemical cues from injured

heterospecifics.

Injury cues were prepared by crushing animals

(Wisenden et al. 1999; Ferrari et al. 2006). To minimize

suffering, tadpoles were first anesthetized by exposure to

low temperature (-8 �C) and immediately killed by

decapitation with a single and rapid head cut. Finally, the

resulting tadpole tissue mass (1.75 g in total) was crushed

using mortar and pestle and then suspended in 25 ml dis-

tilled water (conspecific injury cue concentration: 0.07 g/

ml). The solution was filtered through filter floss (45 lm
nitex) to remove particles. Injury cues from amphipods

were prepared similarly to tadpole cues but by crushing H.

patagonica (6.5 g) and then suspending in 50 ml distilled

water (amphipod injury cue concentration: 0.13 g/ml). In

all cases, the cue solution was aliquoted into 1-ml doses

and frozen at -20 �C until they were used, no more than

2 days later.

Procedure

To evaluate the effect of cues from injured conspecifics and

injured amphipods on the behavioral response of P. thaul

tadpoles, we performed a one-factor experiment design

with cue tested as treatment. Two days before the test, 16

tadpoles (Gosner stages 32–38) were transferred to an

indoor experimental room with controlled photoperiod

(12:12 L:D) provided by two fluorescent lamps (Philips

daylight, TLT 40 W/54RS) at an average room temperature

of 17 ± 0.5 �C. Tadpoles were individually placed in

plastic cups (10 cm in diameter) with 300 ml of freshwater.

On day 1, tadpoles were fed a mix of algae culture (Sce-

nedesmus sp. and Chlamydomonas sp.) and freshwater fish

food (VitaFish�). On day 2, the cups were gently cleaned

with a bottom cleaner and refilled with freshwater. The day

of the behavioral test (day 3), tadpoles were fed during the

morning to standardize the nourishing conditions during

evaluation. We used eight individual P. thaul tadpoles for

each of our treatments (N = 8).

Experimental trials were conducted in 10-cm-diameter

plastic cups (similar to the cups used for indoor mainte-

nance) containing 300 ml of distilled water. The experi-

mental assays took place from 12:00 to 16:00 h. We used a

digital video camera (JVC GZ-E300BU: 30 frames s-1)

placed 0.70 m above the cups to film tadpoles from 5 min

before (pre-stimulus period) to 5 min after (post-stimulus

period) the addition of the stimulus. Individual tadpoles

were randomly assigned to one of the two stimuli:

conspecific cue [0.07 g/ml] or amphipod cue [0.13 g/ml].

After the pre-stimulus period, 1 ml of one of the stimuli

was slowly added on the side opposite to that of the tadpole

position to minimize disturbance. The addition was made

by moving a 1-ml bulk pipette around for 10 s. To keep

tadpoles undisturbed during the test, the observer was

present inside the room only when the stimulus was added

and to turn on/off the video camera via remote control.

Then, the video recordings were analyzed by an observer

blinded to the treatments, who measured the total duration

(in seconds) of the overall activity (any movement) for each

tadpole during the pre- and the post-stimulus periods. We

used a real-time computer-based ad hoc program (FoxPro

2.0, Fox Holdings) that allows the behavior to be analyzed

using the computer keyboard. Assessing behavior during

both the pre- and post-stimulus periods is a method fre-

quently used in behavioral studies where tadpoles are

exposed to chemical cues that indicate predation risk (e.g.,

Mirza et al. 2006; Mathis et al. 2008). A typical antipredator

response of larval amphibians, including P. thaul tadpoles, is

to decrease overall activity after the detection of risk cues.

Statistical analysis

This section applies to all three experiments. We first

verified that pre-stimulus activity values did not differ

between treatments (P[ 0.05) and then calculated activity

change (overall activity) between the post- and the pre-

stimulus periods (post–pre). This was used as dependent

variable. Although a single observer encoding behavioral

activity of all the videos, we verified the observer relia-

bility with a second coder watched a sample of videos

(N = 28) from different animals and treatments. The inter-

observer reliability according to Pearson’s correlation

coefficient was 0.98; P\ 0.0001. Data from each experi-

ment met assumptions of normality and homoscedasticity.

Hence, we ran parametric one-way ANOVA to investigate

the effect of the treatment on the overall activity of P. thaul

tadpoles. When applicable, analysis was followed by LSD

Fisher post hoc test (Fisher’s least mean significant dif-

ferences with a type I error set at 0.05). A rejection crite-

rion of P\ 0.05 was adopted for all analyses.

Results

Figure 1 shows that tadpoles exposed to the conspecific

injury cue reduced their activity and tadpoles exposed to

the amphipod injury cue increased their activity during the

post-stimulus period. The change in the overall activity of

tadpoles during the test as a function of the cue exposure

was significantly different between tadpoles exposed to

amphipod or conspecific cues [F(1,14) = 13.06,

P\ 0.0028] (Fig. 1).
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Experiment 2

Materials and methods

Procedure

Based on the results obtained in Experiment 1, we designed

Experiment 2 to evaluatewhetherP. thaul tadpoles can learn to

recognize the predation risk of chemical cues from injured

amphipods. The experiment followed a one-factor design with

five experimental groups (paired, unpaired, CS-only, US-only

and water). In the morning of the conditioning day (day 1),

individual tadpoles (Gosner stages 26–29) were randomly

assigned to plastic cups (10 cm in diameter) with 300 ml of

well water placed in an indoor experimental room (conditions

similar to those of Experiment 1). Then, tadpoleswere assigned

to one of the five experimental groups. The possibility of

learning was assessed using a classical conditioning

schemewhere a group of tadpoles (paired group)were exposed

to chemical cues from injured amphipods (previously unknown

cues, CS) paired with chemical cues from injured conspecifics

(unlearned biologically relevant cues, US). A learning control

group was achieved by presenting tadpoles the same cues as

those presented to the paired group but in reverse order and

separated in time (unpaired group). Tadpoles in the paired

group were exposed to 1 ml of amphipod injury cues imme-

diately followed (10 s) by 1 ml of conspecific injury cues. In

the unpaired group, tadpoleswere exposed to 1 ml of cues from

injured conspecifics followed (4 h) by 1 ml of cues from

injured amphipods.Wealso included threemore groups to fully

assess themechanism involved in learning. InCS-only andUS-

only, tadpoles were exposed to 1 ml of cues from injured

amphipods or 1 ml of cues from injured conspecifics, respec-

tively. In the water group, tadpoles were exposed to 1 ml of

water (we used previously frozen distilledwater). Both the cues

in the paired group and the single cues in the CS-only, US-only

and water groups were presented at 13:00 h. In the unpaired

group, the cues from injured conspecifics were presented at

12:00 h and the amphipod cuewas presented4 h later; 1 h after

the last cue was added, the cups were gently cleaned with a

bottom cleaner and refilled with freshwater and tadpoles were

fed a mix of algae culture (Scenedesmus sp. and Chlamy-

domonas sp.) and freshwater fish food (VitaFish�). On day 2,

tadpoles were left undisturbed.

We decided to evaluate learning after 48 h of conditioning

to allow the animals to feed ad libitum without disturbances

for 24 h, since the results of Experiment 1 showed that after

3 days in the indoor experimental room animals were in good

condition. The cups used for the testwere similar to those used

during conditioning. The day of testing (day 3), tadpoles were

fed in the morning and the test took place from 12:00 to

16:00 h in the experimental room. During the test, we first

recorded tadpoles for 5 min (pre-stimulus period), and then

tadpoles were tested as follows: tadpoles in the paired,

unpaired and CS-only groups were exposed to 1 ml of cues

from injured amphipods (CS), the tadpoles in the US-only

group received 1 ml of cues from injured conspecifics (US),

and the tadpoles in the water group received 1 ml of water.

Then, we recorded the activity (any movement) for 5 more

minutes (post-stimulus period). We used the unpaired group

as a learning control because it allowed us to expose the ani-

mals to both cues while avoiding any association between

them. The additional groups allowed us to test cue pre-expo-

sure effects,manipulation effects and the responsemagnitude.

Specifically, the test responses in the paired and US-only

groups informed us about the conditioned and unconditioned

responses when tadpoles had one US exposure before (during

acquisition). The concentration of the cues from injured

conspecifics and injured amphipodswas similar to that used in

Experiment 1. The final number of tadpoles analyzed per

group was 14 (N = 14 per group).

To record and analyze behavior, we used conditions and

procedures similar to those used in Experiment 1.

Results

Figure 2 shows that tadpoles in the paired and US-only

groups reduced their activity from the pre-stimulus period

when exposed to the CS and US, respectively

(-8.86 ± 9.41 and -55.00 ± 9.70, respectively), but in

the US-only group the magnitude of response was signifi-

cantly higher. Tadpoles in the unpaired, CS-only and water

groups increased their activity during the post-stimulus

period and did not differ significantly between them. The

change in the overall activity of tadpoles during the test as

a function of the treatment (paired, unpaired, CS-only, US-

only and water) was significant [F(4,65) = 34.57,

P\ 0.0000] (Fig. 2). The post hoc test revealed that the
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Fig. 1 Mean ± SE change in overall activity (in seconds) for

tadpoles experiencing amphipod or conspecific injury cues. *denotes

significant differences
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activity of tadpoles in the paired and US-only groups was

significantly different from that of the four remaining

groups and that these groups also differed from each other.

Experiment 3

Materials and methods

Procedure

This experiment consisted of two parts. Experiment 3a

aimed to replicate the results from Experiment 2 but

using only two experimental groups (paired and

unpaired). Experiment 3b was performed to evaluate

whether a low concentration (half of that used in the

previous experiments) of amphipod cues can support the

acquisition of the recognition of injured amphipods as a

cue of predation risk. Procedures for Experiments 3a and

b were similar to those for Experiment 2, except that in

Experiment 3b we used half the concentration of the

amphipod cue during conditioning and testing (0.05 g/

ml). In Experiment 3a, one tadpole was not considered in

the analysis because it remained motionless during the

pre-stimulus period. The final number of tadpoles ana-

lyzed per group was as follows: Experiment 3a, paired

(N = 10), unpaired (N = 9); Experiment 3b, paired

(N = 10), unpaired (N = 10).

Results

Figure 3a shows that only paired tadpoles displayed a

decreased overall activity during the test. The change in the

overall activity of tadpoles during the test as a function of

the conditioning treatment (paired and unpaired) was sig-

nificant [F(1, 17) = 6.04, P\ 0.025] (Exp. 3a). Figure 3b

shows that the change in activity of tadpoles in paired and

unpaired groups was similar. The change in the overall

activity of tadpoles during the test as a function of the

conditioning treatment was not significant

[F(1,18) = 0.05, P = 0.822] (Exp. 3b). It is interesting to

note that the values of change in the overall activity of

tadpoles in the unpaired group in Experiment 3a and the

paired and unpaired groups in Experiment 3b were similar

(14.01 ± 10.67, 11.15 ± 14.10 and 14.97 ± 9.06 s,

respectively). This suggests that the concentration of cues

from injured amphipods would not affect tadpole basal

(unlearned) response.
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Discussion

Our results show that anuran tadpoles can learn to recog-

nize predation risk from injured amphipods that are

members of the same prey guild. In Experiment 1, we

observed that the response of tadpoles to cues from injured

conspecifics is to reduce their activity, which is consistent

with previous results observed in P. thaul and other tadpole

species as an antipredator response (Mirza et al. 2006;

Gonzalo et al. 2010; Pueta et al. 2016). We also noted that

cues from injured amphipods did not generate the

antipredator response. Our learning experiments allow us

to infer that the learned response observed is a consequence

of an associative mechanism during acquisition. The

unpaired group allowed us to interpret the response to

amphipod cues as not being due to potential US pre-ex-

posure effects such as neophobia, which have been previ-

ously reported in anuran tadpoles (Brown et al. 2013).

The best way of comparing the magnitude of the con-

ditioned and unconditioned response in our experiments

was to compare the test response of the paired group to

cues from injured amphipods and that of the US-only to

cues from injured conspecifics (Exp. 2). Both groups had

previous exposure to the US. We observed that the con-

ditioned response was smaller in magnitude than the

unconditioned response (Fig. 2). We do not rule out the

possibility that the US-only group might be showing an

effect of sensitization; however, if so, this effect seems not

to generalize to the scent of amphipods, as shown by the

unpaired group.

The acquisition of predator recognition using cues from

injured conspecifics has been demonstrated in a wide

variety of aquatic species (e.g., anurans: Mirza et al. 2006;

fish: Mirza and Chivers 2000; gastropods: Rochette et al.

1998; insects: Wisenden et al. 1997; and flatworms:

Wisenden and Millard 2001). This cognitive ability may

contribute to reducing the vulnerability of prey to native

and alien predators (Mirza and Chivers 2000; Polo-Cavia

and Gomez-Mestre 2014). Studies in anurans have shown

that tadpoles can learn to identify new predator odors based

on a one-time pairing of cues from injured conspecifics and

the scent of a novel predator (e.g., Ferrari et al. 2010b;

Gonzalo et al. 2010). The present results show a new type

of stimulus that tadpoles could learn to use to warn them of

the risk of predation, injury-released cues from

heterospecifics.

Injury-released chemical cues are released only in the

context of a predation event and thus reliably indicate the

presence of an actively foraging predator (Wisenden and

Chivers 2006). The fact that P. thaul tadpoles appear not to

acquire an association when the heterospecific cue is in low

concentration (Experiment 3b) could be due to the fact that

the salience of the stimulus is not strong enough to make

tadpoles pay attention to a novel odor in the current context

of predation, unlike that indicated by cues from injured

conspecifics (Dukas 2002). On the other hand, we cannot

reject the possibility that some learning occurred in

Experiment 3b, but at a lower magnitude than in Experi-

ments 2 and 3a, and that memory for it lasted less than

48 h (the testing delay we used). The acquisition of an

association depending on the concentration of the cue from

injured heterospecifics may help tadpoles not to invest

energy in acquiring (or retaining) new information con-

cerning heterospecifics for which the predator seems to

have little appetite and therefore less relevant. An impor-

tant fact is that although learning seems to be dependent on

the heterospecific cue concentration, tadpoles appear not to

have an innate behavioral response to high amphipod cue

concentration. This notion arises from the results of the

activity change, which was similar when comparing

unpaired groups in both experiments.

In summary, this study documents for the first time that

anuran tadpoles can learn risk from cues from injured

heterospecifics. In fish, learned response to heterospecific

fish cues had been previously demonstrated, but the evi-

dence does not allow a conclusion what kind of learning

mechanism was involved (Chivers et al. 1995, 2002; Mirza

and Chivers 2001, 2003; Pollock et al. 2003; Pollock and

Chivers 2004). Our work indicates that the mechanism of

learning about heterospecific cues could be associative and

that learning can involve associating injury cues from

phylogenetically distant animals (like anurans and amphi-

pods). The ability to recognize injury cues from members

of the same prey guild could be beneficial because it

indicates the presence of an active predator. Learned and

innate predation risk recognition mechanisms can coexist

and allow animals to use several sources of public infor-

mation to evaluate risk and act accordingly.
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