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Stroke is a severe and frequent complication of Fabry disease (FD), affecting both males and females.
Cerebrovascular complications are the end result of multiple and complex pathophysiology mechanisms in-
volving endothelial dysfunction and activation, development of chronic inflammatory cascades leading to a

Covid-19 . prothrombotic state in addition to cardioembolic stroke due to cardiomyopathy and arrhythmias. The recent

5223’:;::}?;%}' coronavirus disease 2019 outbreak share many overlapping deleterious pathogenic mechanisms with those of FD

Cardiopathy and therefore we analyze the available information regarding the pathophysiology mechanisms of both disorders
and hypothesize that there is a markedly increased risk of ischemic and hemorrhagic cerebrovascular compli-
cations in Fabry patients suffering from concomitant SARS-CoV-2 infections.

Introduction the COVID-19 pandemic. It has been identified in 2.3% to 22% of pa-

Fabry disease (FD) (MIM 301500) is an X-linked lysosomal storage
disorder, characterized by decreased or absent activity of the lysosomal
enzyme a-galactosidase A (a-GAL A) (EC:3.2.1.22). Stroke is a severe
complication of this disease. The prevalence of cerebrovascular disease
in FD patients identified in the Fabry Outcome Survey (FOS), was 11% in
males and 15% in females, a prevalence 12 times higher than that
observed in a comparable non-Fabry population [1]. In the global Fabry
Registry, 6.9% of males and 4.3% of females with FD had an ischemic
or hemorrhagic stroke. Furthermore, 50% of males and 38% of females
suffered their stroke before the diagnosis of FD was made [2]. More-
over, FD has been identified as an under diagnosed etiology of stroke in
the young [3-5] Among patients with FD and no history of stroke or
transient ischemic attack (TIA), 44% of adults and 15.9% of adolescents
had silent brain infarcts on brain magnetic resonance imaging (MRI)
[6,71.

The recent coronavirus disease 2019 (COVID-19) is the third cor-
onavirus outbreak in the past twenty years, preceded by the Severe
Acute Respiratory Syndrome (SARS) and the Middle East Respiratory
Syndrome (MERS). The disease is caused by a member of the
Coronaviridae family, defined as Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) and is considered the worst pandemic of
modern times [8-10]. Stroke is emerging as a severe complication of

tients with COVID infections and is associated with a ~ 2.5 fold in-
creased disease severity [11]. Moreover stroke may be the first clinical
manifestation of COVID-19 infection even in young patients lacking
cardiovascular risk factors [12].

The pathophysiologic mechanisms of SARS-CoV-2 infection leading
to stroke [13,14] overlap with those of FD [15,16] and therefore we
hypothesize that there is an increased risk of stroke in patients with FD
infected with Covid-19.

Stroke SARS-CoV-2 and Fabry disease

There are 4 different pathophysiology mechanisms enhancing the
risk of stroke in COVID-19 patients that overlap with those of FD in-
cluding: renin angiotensin aldosterone imbalance, vasculopathy,
thromboinflammation and cardiac damage:

ACE2 Receptor Depletion and Renin Angiotensin Aldosterone Imbalance in
COVID-19 infection [17,18]

In the renin-angiotensin-aldosterone (RAA) system, angiotensin
(Ang) I is converted to Ang II by the angiotensin converting enzyme
(ACE). Angiotensin II induces vasoconstriction as well as proin-
flammatory and pro-oxidative effects leading to endothelial dysfunction
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and activation as defined by the endothelial expression of cell-surface
adhesion molecules, mediated by Ang II type 1 (AT1) receptor. ACE2
converts Ang II to Ang 1-7, which binds to both: Mas and MrgD re-
ceptors and induces opposite actions to the ACE/AngII/AT1 axis [19].

A dysregulated RAA system is considered an important mechanism
in the vasculopathy induced by COVID-19 [17,20].

The coronaviral genome encodes four major structural proteins: the
spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and
the envelope (E) protein. The S protein is responsible for facilitating
entry of the CoV into the target cell. The entry receptor utilized by
SARS-CoV-2 is ACE2 [13,17]. ACE2 is a membrane-associated amino-
peptidase expressed in vascular endothelia, renal and cardiovascular
tissues, and epithelia of the lung, small intestine and testes. A region of
the extracellular portion of ACE2 that includes the first a-helix interacts
with the receptor binding domain of the SARS-CoV-2 S glycoprotein.
SARS-CoV-1 and 2 viruses deplete ACE2 through receptor endocytosis
upon viral entry, leaving ACE1 unopposed with generation of angio-
tensin II [14,17,18]. Angiotensin II not only worsens lung injury but
also induces endothelial dysfunction and activation in organs like the
heart and brain [9]. Similarly to COVID-19 infection an upregulated
RAA system with enhanced AT1 activity has also been proposed as one
of the main mechanisms for endothelial dysfunction and damage in FD
leading to vasculopathy and stroke [16].

Vasculopathy: Endothelial dysfunction, activation and endothelitis

Endothelial dysfunction: Nitric oxide and reactive oxygen species (ROS)

Endothelial dysfunction is characterized by impaired endothelium-
dependent vasodilation due to decreased nitric oxide (NO) bioavail-
ability. Endothelial inflammation and oxidative stress are well estab-
lished mechanisms leading to endothelial dysfunction [21,22].

ANG 1II through AT1 receptor stimulate the catalytic subunit of the
nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, pro-
ducing superoxide, H202 and loss of NO bioavailability. NO exerts a
host of beneficial effects on the endothelium including regulation of cell
survival and apoptosis, regulation of vascular tone and activation of
antithrombogenic and anti-inflammatory pathways. NO can be rapidly
sequestered by superoxide and converted into a long-lived, toxic re-
active compound: peroxynitrite [17,18]. These mechanisms seem to be
common to both Covid-19 infection and FD.

In FD there is evidence of increased ROS and deposition of 3-ni-
trotyrosine staining in dermal and cerebral blood vessels; a process that
can be reverted by enzyme replacement [23]. Moreover, cortex
homogenates exposed to GB3 showed an increase in the formation of
reactive species [24]. Excess amounts of ROS may explain the increased
resting regional cerebral blood flow identified in FD [25,26]. In addi-
tion mitochondrial dysfunction, further increasing ROS generation,
occur in both: Covid-19 infected patients [19] and in FD [27].

Endothelial cell activation and endothelitis

Endothelial cell activation as defined by the endothelial expression
of cell-surface adhesion molecules, including VCAM-1, ICAM-1, and E-
selectin is induced by proinflammatory cytokines as seen in both:
Covid-19 infected patients and FD (see below) and stimulates the re-
cruitment and attachment of circulating leukocytes to the vessel wall
[21]. Cell activation induces eNOS uncoupling, reduces NO synthesis
and increases ROS production further enhancing endothelial activation.
Moreover, NO benefits, that are lost, include inhibition of platelet re-
activity and prevention of smooth muscle cell proliferation [21,28].

Expression of adhesion molecules in FD was analyzed both in en-
dothelial cells and in leukocytes. A Fabry vascular endothelial cell line
exposed to Gb3 overexpressed ICAM-1, VCAM-1 and E-selectin [29].
Moreover, an increased level of surface expression of CD11b and CD18
on monocytes [30] as well as CD31 in T cells, monocytes and granu-
locytes was observed [31] inducing leucocyte adhesion to the vessel
wall and inflammatory infiltration of leucocytes into tissues [31-33].
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Moreover in Covid-19 infected patients: postmortem studies confirmed
viral endothelial inclusions and endothelial inflammation with evi-
dence of endothelial and inflammatory cell death [34]. This damage is
of particular relevance for patients with preexisting endothelial dys-
function including those with cardiovascular disease and risk factors
including Fabry patients.

Inflammation and thrombosis

The activation of inflammation and a hypercoagulable state are
common mechanisms in COVID-19 infected patients and FD. It has been
postulated that SARS-CoV-2 inhibits type I IFN production facilitating
viral replication and direct tissue damage. This stage is followed by the
hallmark of COVID-19 infected patients: increased plasma concentra-
tions of proinflammatory cytokines, including interleukin IL-6, IL-8, IL-
10, IL-17, IL-18, IF gamma, TNF-a, monocyte chemoattractant protein
1 (MCP1) and macrophage inflammatory protein (MIP)la [13,35-37].

The excessive and acute activated immune response seems to be due
to pathogenic granulocyte-macrophage colony-stimulating factor (GM-
CSF) + Thl cells and inflammatory CD14 + CD16 + monocytes [37].
These activated cells are critical in neuro inflammation [38] and am-
plify the recruitment of immune mediators leading to hyperinflamma-
tion and a “cytokine storm“ [35-37]. Moreover, the lymphopenia, af-
fecting patients with COVID-19, markedly reduces the immune
modulating effect over the inflammatory process [35-38].

Accumulated glycolipids in FD, Gb3 and LysoGb3, are recognized as
damage signals by toll like receptor 4 leading to overproduction of
proinflammatory cytokines. Mononuclear cells, especially macrophages
and dendritic cells from Fabry patients constitutively produce and se-
crete IL1bP and TNFa and leukocytes infiltrate the tissues leading to
fibrosis [39,40].

It is likely that the inflammatory mechanisms induced by the acute
immune activation resulting from COVID-19 infection, might enhance
and aggravate that of FD and vice versa damaging not only the lungs
but also the heart, kidney and brain, the 3 most severely damaged or-
gans in FD.

There is an association between systemic infection and stroke even
in the absence of cardiovascular risk factors [41]. Bacterial or viral
infections may increase the risk of cerebrovascular disease facilitating
both: cardiac and arterio-arterial embolism [41,42].

A large number of viruses are associated with thrombotic compli-
cations in humans [43] SARS-COV-1 and SARS-COV-2 had also been
associated with thrombotic events [13,44,45]. The stimulation of an
inflammatory response is thought to be the predominant mechanism
linking ischemic stroke with infection [46-48]. Inflammatory cascades
promote plaque rupture, and thrombosis, leading to ischemic stroke.
The enhanced inflammatory profile induces also a prothrombotic state
mediated by attraction of macrophages, and white blood cells, activa-
tion of platelets and coagulation factors inhibition of fibrinolysis and
complement deposition. The interaction between all these elements
induces cloth formation in a process known as thromboinflammation or
sepsis induced coagulopathy [14,17]. There is also a recognized asso-
ciation between viral infections and antiphospholipid antibodies pro-
duction [49]. Antiphospholipid antibodies were reported both in
COVID-19 [50] and FD patients [51] associated with both arterial and
venous thrombotic events.

Hypercoagulability in COVID infected patients may even precede
severe respiratory illness [52]. Autopsy findings have indicated
thrombotic microangiopathy in multiple organs and mild thrombocy-
topenia high D-dimer and increased fibrinogen levels are associated
with a more severe disease or death [53-58].

The end result of the infection induced systemic inflammatory re-
sponse combined with endothelial dysfunction and microthrombosis is
diffuse intravascular coagulation (DIC) [57,58]. In a recent study in-
cluding 183 patients with COVID-19, 71% of COVID-19 patients who
died fulfilled diagnostic criteria for DIC, compared with only 0.6%
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among survivors [59].

Similarly patients with FD have a high risk of clinically relevant
thromboembolic events including stroke, central retinal occlusion and
recurrent thrombophlebitis [1,2,60-63].

There is a procoagulant and proinflammatory status in patients with
FD manifested by endothelial cell activation, increased release of mi-
croparticles, activation of plasminogen, and, in some patients, elevation
of D-dimer-products of fibrinogen breakdown [15,64,65]. In addition
there is evidence of dysfunctional platelets favouring thrombosis and
higher secretion of von Willebrand factor by endothelial cells in FD
models [66].

Cardiac damage

Severe cardiac involvement is a relevant feature common to both
disorders: Covid-19 infected patients and FD, predisposing to cardi-
oembolic stroke or sudden death. The pathophysiology of cardiac injury
due to SARS-COV-2 combines increased cardiac stress due to re-
spiratory failure and hypoxemia, direct viral myocardial infections, the
previously described systemic inflammatory response and a combina-
tion of all these mechanisms [67].

Cardiac involvement manifested by biomarkers elevations, is not
only a frequent finding but also a feature associated with worse prog-
nosis in COVID infected patients. ICU admission and mortality correlate
with increased levels of troponin I and brain type natriuretic peptide
[68-70]. Up to 17% of hospitalized COVID-19 patients suffered an
acute myocardial injury manifested as acute myocarditis or damage
secondary to hypoxemia [71]. Myocarditis is due to a combination of
direct viral infection [72] and inflammatory cell infiltration [73] that
leads to cardiac failure and sudden death [68,74].

Arrhythmia associated to SARS-CoV-2 including atrial fibrillation,
conduction block, ventricular tachycardia, and ventricular fibrillation
was observed in 7% of patients who did not require ICU admission and
in 44% of patients who were admitted to ICU [75].

Cardiac involvement in FD is the main cause of death [76]. Hy-
pertrophic cardiomyopathy is a hallmark of FD and evolves into a
myocardial replacement fibrosis [77]. Lysosomal dysfunction triggers a
cascade of events, including cellular death, inflammation, small vessel
injury, oxidative stress, and tissue ischemia responsible for the cardiac
damage [78-80].

The end diastolic volume of the left ventricle decreases with pro-
gression of the disease, diastolic filling is impaired, resulting in a re-
duction of stroke volume and cardiac output [78,80]. The conduction
system is severely affected and implantable loop recordings identified
asystole, bradycardia, intermittent atrial fibrillation and episodes of
ventricular tachycardia; all of which markedly increase the risk of
sudden death and cardioembolic stroke [81].

In summary based on the described pathophysiology mechanisms
we hypothesize that the combined effects of increased Ang II, vascu-
lopathy, thrombo inflammation and cardiac damage in Covid-19 in-
fected patients which overlap with similar mechanisms in FD markedly
increase the later patients risk of stroke even in the absence of re-
spiratory symptoms.
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