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ABSTRACT: In this article we explore how structural parameters of
composites filled with one-dimensional, electrically conducting elements
(such as sticks, needles, chains, or rods) affect the percolation properties
of the system. To this end, we perform Monte Carlo simulations of
asymmetric two-dimensional stick systems with anisotropic alignments.
We compute the percolation probability functions in the direction of
preferential orientation of the percolating objects and in the orthogonal
direction, as functions of the experimental structural parameters. Among
these, we considered the average length of the sticks, the standard
deviation of the length distribution, and the standard deviation of the
angular distribution. We developed a computer algorithm capable of
reproducing and verifying known theoretical results for isotropic

Stick density

networks and which allows us to go beyond and study anisotropic

systems of experimental interest. Our research shows that the total electrical anisotropy, considered as a direct consequence of
the percolation anisotropy, depends mainly on the standard deviation of the angular distribution and on the average length of the
sticks. A conclusion of practical interest is that we find that there is a wide and well-defined range of values for the mentioned
parameters for which it is possible to obtain reliable anisotropic percolation under relatively accessible experimental conditions
when considering composites formed by dispersions of sticks, oriented in elastomeric matrices.

1. INTRODUCTION AND EXPERIMENTAL
MOTIVATION

Recently, vigorous interest has arisen in percolating networks
built out of nano- and microdimensional objects (percolating
objects), such as nanotubes and nanowires for various
applications such as thin film transistors,"” flexible micro-
electronics,” microelectromechanical systems (MEMS),*¢
chemical sensors,” and construction of transparent electrodes
for optoelectronic and photovoltaic devices.*” In particular, if
these objects are used as fillers dispersed in an elastomeric
polymer and then oriented inside the organic matrix, there is an
anisotropic internal structure to the material.'®"' This
anisotropic structure can be obtained in practice following
different methods, like, for example, orienting the filler particles
by means of an external field (electric or magnetic),
mechanically squeezing a composite material, etc. A particular
case is given by magnetorheological materials, whose
mechanical properties can be modified by externally applied
magnetic fields. An important example of magnetorheological
materials are composites formed by dispersing magnetic filler
particles into an elastomer polymeric matrix and then orienting
the particles. These materials are referred to as magneto-
rheological elastomers (MREs). If, additionally, the filler
particles are electrically conducting, the MRE may also be a
conductor depending on the properties of the filler and matrix
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materials and on the conditions of synthesis. A simple
procedure to obtain MREs (in film or bulk form) consists of
curing the filler—elastomer composite in the presence of a
uniform magnetic field, which induces agglomerations of the
filler particles into chainlike structures (needles) aligned in the
direction of the magnetic field.*®"*~"*

A desirable property in an electrically conducting MRE is its
electrical anisotropy, i.e., its ability to conduct an electrical
current preferentially in a special direction. Although we will
not tackle here the full problem of the relation between
percolation and electrical conductivity, for our current purposes
it will suffice to use the fact that there will be total electrical
anisotropy (TEA) in the MRE, i.e., conduction in only a chosen
direction, if there are percolating paths formed only in that
chosen direction. This direction is given by the preferred
orientation of the needles, which coincides with the direction of
magnetic field applied during the curing of the material. For
example, TEA is a crucial property in devices like extended
pressure mapping sensors,”'> Zebra-like connectors for parallel
flip-chip connections,* and others. If the experimental variables
are not properly set during the fabrication of the MRE, a
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material devoid of anisotropy (or with very low anisotropy)
might be obtained,*'>'S which would be unsuitable for these
types of applications.

The microscopic structure of an MRE film filled with
randomly distributed magnetic sticks can be characterized by
three parameters: the average length of the sticks, (I), the
standard deviation of the length distribution, ¢}, and the
standard deviation of the angular distribution, oy (around a
chosen direction). As will be seen later, in the experimental
samples these parameters correspond to a Gaussian distribution
for the angle @ and a log-normal distribution for the length L
These parameters can be set experimentally by changing the
intensity of the magnetic field during the curing, the exposure
time to the magnetic field before starting the thermal curing,
the viscosity of the matrix, the amount of filler, the magnetic
properties of the filler, etc. Two of us have performed several
experimental studies of these systems,*>'>'* and now we wish
to understand how their structural parameters affect the
probability of obtaining systems with TEA. Nevertheless, it
can be expected that the results of our modeling will also apply
to other composite materials with similar internal structure.

In magnetorheological elastomers, micro- or nanoscopic
objects (called alternatively chains, needles, or sticks) are
formed by magneto-piezo-electric manipulation under appro-
priate e;ipselrzi%ental conditions at various stages of the synthesis
process.”” "> These sticks formed by the filler material can be
considered as quasi-one-dimensional objects, so that the
nanostructured MRE as a whole can be analyzed in terms of
networks of percolating sticks. Percolation can be studied either
in bulk (3D) or planar (2D) geometry. For our purposes (i.e.,
studying the TEA) both situations provide useful models, and
we will therefore consider the latter, which allows us to explore
numerically larger systems. In rectangular or square MRE films,
by definition there is a spanning cluster if there is at least one
connecting path between two opposing electrical contacts
(located on opposite edges of the film) formed by intersecting
sticks. In order to relate electrical conduction to percolation
concepts, here we adopt the criterion that there is TEA if and only
if there is a spanning cluster in one direction and not in the other.
Thus, we adopt here the well-known two-dimensional model of
percolating sticks, which is an example of a continuous
percolation model'®* in order to study the dependence of
the TEA on the structural parameters oy, (I}, and 6. We follow
the approach of studying the percolation probability functions
in the direction of application of the curing magnetic field and
in the orthogonal direction, as functions of the experimental
parameters oy, 0, and (I). For this, we have developed a
computer algorithm that is able to reproduce and verify known
theoretical results for isotropic networks and which allows us to
go beyond and study anisotropic systems of experimental
interest.

Most related studies in the literature deal with square
systems, with uniform stick length and isotropic angular
distributions,'®** but the issue of anisotropy has also attracted
a great deal of attention in recent years. Du, Fischer, and
Winey'® studied the effect of the alignment of carbon
nanotubes on the percolation in their polymer/nanotube
composites. Their experiments and simulations introduce the
interesting point that angular dispersion also can produce
(besides stick density) a percolation transition with critical
behavior. Our work is different from or goes beyond theirs in a
number of ways. Importantly, we concentrate on TEA,
monitored via the percolation probability in only one direction

in rectangular systems. Furthermore, we gave the sticks realistic
log-normal distributions for their lengths and Gaussian
distributions for their azimuthal angles, and we considered
rectangular samples. These conditions were dictated by our
own experimental MRE samples. Instead, Du et al.' considered
in their simulations monodispersed (fixed length) sticks, their
angular dispersion is uniform within an angle interval (a
“wedge”), and they focused on square systems. More recently,
Zheng et al*® reported on numerical simulations of three-
dimensional percolation of cylindrical rods with both isotropic
and anisotropic angular distributions. They study the effect of
the aspect ratio of the percolating objects and consider
monodisperse (identical) rods. For anisotropic systems they
consider a particular type of angular distribution produced by
the interaction with a flow. White et al.>® consider the issue of
alignment in percolation of soft-core cylindrical particles,
employing a continuous angular distribution, as a function of
which they study the percolation transition in 3D square
systems. Besides the 3D nature of the system and the different
choice of angular distribution, a major difference with our
present study is again the fact that they do not focus on TEA
but rather on general percolation, like it is done also in ref 25.
The horizontal-only percolation transition that we focus on
here has recently been considered, for percolation of sticks,
among other objects, by Mertens and Moore”” (see also ref
28). However, their main goal is to introduce a new simulation
technique for continuum percolation models, and for the case
of stick percolation they only compute the wrapping
percolation threshold for square systems with isotropically
distributed sticks. In turn, in the present work we study stick
percolation in rectangular systems with log-normal length
distributions and Gaussian angular distributions and explore the
full range of parameters of those two distributions in search of
TEA. As a result of our simulations, we are able to specify the
special “safety zones” of parameter space where that goal is
achieved.

2. ALGORITHM OF STICK-PERCOLATION
SIMULATIONS

We study two-dimensional stick percolation by means of
computer simulations. The percolation probabilities are
obtained by repeating a large number of times a percolation
experiment (a “realization”). Each experiment consists of,
starting with an empty rectangular (sides L,, L,, aspect ratio r =
Lx/Ly) or square (side L = L, = Ly) box, adding a desired
number N of sticks of length I (either a fixed length or
statistically distributed values), and determining whether a
spanning cluster exists between the vertical and/or horizontal
faces of the box. The orientation of a stick is given by an angle 6
with respect to a horizontal axis, also generated randomly, with
in general —7 < @ < 7. Depending on the characteristics of the
physical system that one wishes to simulate, different statistical
distributions for the lengths I and the angles 8 can be adopted.
For example, the simplest and most usually studied model is the
one with a uniform length for all sticks and isotropic angular
distribution. Once the sticks of a given realization (our
“percolating objects”) have been generated, we need to first
determine which sticks intersect. Let A; and B, for i = 1, .., N,
denote the end points of the sticks. For algorithmic purposes,

—_
the sticks can be seen as vectors, A;B,. Consider a subsystem

consisting of only two sticks, AB, and A,B,. It can be

dx.doi.org/10.1021/jp504197w | J. Phys. Chem. C 2014, 118, 20594—20604



The Journal of Physical Chemistry C

demonstrated that they intersect if the following conditions are
simultaneously satisfied*”

(AB, X AA,)-(AB, X AA,) <0,

(A,B, X A,B,)-(A,B, X A,B;) <0 €))

The intersection pattern of the N sticks is explored pairwise
with these conditions, and an N X N intersection matrix J is
formed such that J; = 1 if the sticks i and j intersect, and J;; = 0
if they do not. The matrix J is then used as the matrix associated
with an intersection graph, and a Deep First Search algorithm®
is implemented to evaluate the presence of spanning clusters
connecting the opposite edges of the system. If out of n
realizations of the system k of them possess at least one
spanning cluster, then k/n is an unbiased estimator of the
percolation probability (probability that a system has at least
one cluster, referred here as P), i.e., k/n — P with n — c0. X =
k/n is a binomially distributed random variable with mean E[X]
= P and variance Var[X] = [P X (1 — P)]/n>>" Then, for
acceptable accuracy (estimator error lower than 2%), at least
10 Monte Carlo realizations were performed, yielding
comparable or even better statistics than those found in recent
studies.””* We implemented our algorithm in a computer
program written in SAGE.

Figure 1 shows three examples of random stick systems in a
square two-dimensional box of side L = § with isotropic angular
distribution and fixed stick length I = 1 (lengths expressed in
the same arbitrary units), for different stick densities, ® = N/L?,
especially chosen in order to display the percolation behavior,
well below, slightly above, and well above the percolation
critical density. For the low density there are no spanning
clusters. For the described system, for the intermediate density
there is one spanning cluster which contains about 60% of the
sticks, and for the high density most of the sticks participate in
the spanning cluster.

3. FINITE-SIZE SCALING FOR SQUARE ISOTROPIC
SYSTEMS

In order to validate our computer-simulation techniques, we
first reproduce some key scaling results available in the
literature on stick percolation for square systems. Let us
consider square systems (aspect ratio r = 1) of side L with N
sticks of fixed length I. The stick density is thus ® = N/L% The
percolation probability P; (®) (i.e., the probability that there is
at least one spanning cluster in the horizontal direction
regardless of what happens in the vertical direction, to be called
PE, later on) is shown in Figure 2a as a function of ® for
different values of L and I. The percolation probability is
estimated for each density by running # > 1000 realizations.
For finite systems, we wish to obtain the critical density
(@), which, according to the Renormalization Group (RG)

theory for square systems (r = 1), scales with the system size L
25171920273

—-1/v-98
(@) =Dy + al Y ()

The universal scaling exponent is v = 4/3 for all two-
dimensional percolation systems including lattice and con-
tinuum percolation (in particular, 2D random sticks systems).
Recently, it has been found that in random stick-percolation
square systems (r = 1) the nonanalytical correction given by the
exponent 9 takes the value 0.83 + 0.02," consistent with
previously published results of 72/91,>> 0.85,>* and 0.90 +

d=7.6

Figure 1. Examples of random stick systems in a square two-
dimensional box of side L = S with isotropic angular distribution and
stick length I = 1 (all lengths are expressed in the same arbitrary units),
for different stick densities. The green (color online) sticks belong to a
horizontal spanning cluster and the blue ones do not.

0.02,* while in rectangular systems (r # 1) 9 = 0."” The
probability distribution function

oP, (@)

oD ©)
is usually assumed to be Gaussian.”*® Therefore, from curves
like the ones shown in Figure 2a one can extract the size-
dependent critical percolation density (®);; and the standard

deviation of the distribution function A;; by fitting the
simulated values of Py ; to an error-function erf(x) according to

1 D - <®>Ll
B =11+ {_]]
- 2[ A (4)

where erf(x) = (2/ \/ ) f 9(§e_tzdt. The data shown in Figure 2a
are known not to be given exactly by error functions in their
tails, but rather by stretched exponentials.”® However, as can be

FL,I((I)) =
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Figure 2. Percolation probability P; ; for square systems of percolating
sticks with isotropic angular distribution. (a) Stick length I = 1; the
continuous lines are fits to error functions, eq 4. (b) Various values of
L and 1, displaying the collapse of data when the percolation

probability is plotted against ®I*.

seen in the figure, we obtain excellent fits (R* > 0.9992),
validating for all practical purposes the assumption of Gaussian
distribution that leads to the error functions displayed as solid
lines in Figure 2a.

A quick and rough estimate of the asymptotic critical
percolation density ®;_.; (or @) can be obtained by
simulating a system with large L and employing Py ,((®),;) =
1/2. Indeed, the curve with L = 13 and I = 1 in Figure 2a shows
a fairly sharp transition at the critical stick density (®);_;3.1,
which is in fairly good agreement with the accepted value of
@, = 5.6372858(6).

As expected, in Figure 2a the percolation transition becomes
less sharp for diminishing system size L (according to the RG
theory the standard deviation scales as A ; o L™/* for isotropic
square systems), and at the same time the critical density (®);
shifts toward higher values (eq 2). Our simulations accurately
reproduce the expected scaling laws for the critical density and
the standard deviation, as seen in Figure 3 for stick length I = 1.
From these curves we obtain & = 0.83 + 0.04 and v = 1:33 +
0.03 in agreement with previously reported values.'”>*~%°

The dependence of the percolation probability on the stick
length, I, can be understood thanks to the RG theory, which
suggests that there is a relationship between ®,; and I given by
the effective area associated with each percolating element.
Associating an effective self-area P to each stick, one obtains the

. 17,27
relationship™”

A ln(AL, é=1)
_2 4 O ln (<(I)>|_,[:1-q)oo,é=1)

05 10 15 20 25
InL

Figure 3. Critical percolation density (®);; and standard deviation
Ay versus system size L for square systems with stick length I = 1
(measured in the same units as L).

@, 1P =D, 1, = 5.6372858(6) (s)

Plotting the percolation probability for different values of I as a
function of ®F (instead of doing it simply as a function of @)
shows that the most relevant quantity is the ratio L/l rather
than L and I independently. In simple terms, this indicates that
what matters in the definition of the density of sticks is the
system size measured in units of the typical size of the
percolating objects. In Figure 2b we plot the percolation
probability for three values of I = 1, 10, 100 and corresponding
values of the system size L such that L/l = 2, 4, 8. The excellent
collapse of curves with equal ratio L/I ratifies the validity of the
RG analysis leading to eq S.

In section S we will study anisotropic systems which require,
to be described from the point of view of percolation theory,
the introduction of additional percolation probabilities. We
introduce their definitions here, in order to use them in a last
check of known results for square systems. Let us denote the
probabilities of having different types of spanning clusters as
follows: horizontally P, vertically PY, only horizontally X
only vertically P'*, on either direction PY, and on both
directions PV, These probabilities are not independent of each
other, as they satisfy PV = P* + PY — PV and PY = P™* + p¥¥
+ PV 2728 1 Figure 4 we show the probabilities P, PV, P,
and PV at the critical percolation density @,,; = 5.637 285 8
versus the system size L for square systems with uniform stick
length (I = 1) and isotropic stick distribution. The asymptotic
regime (L — o0) is clearly seen since it is reached at L ~ 30,
and we show results up to L = 100. We verify that our
asymptotic values (which we take to be the ones for L = 100)
agree very well with those found in the literature. For P" we
obtain 0.51 + 0.03 while the exact value is 0.5."”%"~*" For PV
we get 0.33 + 0.03 while the also exact value is 0.322 120
45.3%7* For PY we have 0.69 + 0.03 while 0.677 879 55 is the
expected value from the formula PV = P* + PV — PV (note
that for square and isotropic systems P = PV). Finally, for P"™*
we obtain 0.18 + 0.02 while 0.177 879 55 is obtained with P"*
= (PY — P™)/2. To the best of our knowledge, this is the first
numerical validation in stick percolation of the existing
theoretical predictions for the different probabilities P**, P,
and PY in the limit of large system size at the critical percolation

density.
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Figure 4. System-size dependence of the different percolation
probabilities at the critical percolation density, @, ;. The asymptotic
(L — o) behavior is clearly seen. The results are for square systems
with uniform stick length (I = 1) and isotropic stick distribution.

4. SYNTHESIS AND EXPERIMENTAL
MORPHOLOGICAL CHARACTERIZATION OF MRES

The elastomeric material that we studied is comprised of a
poly(dimethylsiloxane) (PDMS) polymer matrix and of
percolating chains consisting of hybrid magnetite—silver
microparticles. These microparticles have an internal structure
consisting of clusters of magnetite nanoparticles covered with
metallic silver. Using the hybrid filler material described above
allows us to obtain a current—conducting magnetorheological
material in superparamagnetic state (because magnetite nano-
particles, due to their small diameter, are in a super-
paramagnetic state at temperatures higher than their blocking
temperature, T = 179 K). The electrical conductivity is not
affected by oxidation, given by the chemical fastness of silver
metal. Finally, the use of PDMS as polymer matrix increases the
chemical resistance of the composite against various chemical
agents such as aromatic solvents, halogenated aliphatic solvents,
aliphatic alcohols, and concentrated salt solutions. ™"

The preparation method used to obtain the structured MRE
composite with magnetic Fe;O, silver-covered microparticles in
PDMS (referred to as PDMS—Fe;0,@Ag) was described in
detail in previous works®'> and is briefly described here. First,
Fe;O, superparamagnetic nanoparticles (NPs) were synthe-
sized by the chemical coprecipitation method where a solution
mixture (2:1) of FeCly-6 H,0 and FeCl,-4H,0 in chlorhydric
acid was added drop-by-drop to a solution of NaOH (60 °C,
pH = 14), under nitrogen atmosphere and high-speed stirring.
The obtained nanocrystals were separated by repeated
centrifugation and washing cycles and then dried in a vacuum
oven at 40 °C during 24 h. The obtained dark brown NPs show
a size distribution (determined by TEM images) with
maximum at 13 nm in the log-normal distribution of diameters,
which is in excellent agreement with the size of the crystallite
domains calculated using the Debye—Scherrer relation from
X—ray difractograms (XRD), (14 + 2) nm."1>4243

In a second step, the Fe;O, NPs were covered with silver in
order to obtain electrically conductive and superparamagnetic
particles. For that, aqueous dispersions of Ag(NH;)j and Fe;O,
NPs in a 10:1 molar ratio were sonicated for 30 min at room
temperature. Then the system was heated in a water bath at 40
°C for 20 min with slow stirring. In the following step, 0.4 M
glucose monohydrate solution was added drop-by-drop to the
Fe;0,—Ag" suspension. Stirring was continued for 1 h. This

synthesis protocol promotes the reduction of Ag(I) ions
adsorbed onto Fe;O, particles. The magnetite—silver particles
were separated out from the solution by magnetization and
then by centrifugation. After the particles were separated, the
decanted supernatant liquid was fully transparent. The obtained
system (referred to here as Fe;O,@Ag) is actually formed by
microparticles whose internal structure consists of several
Fe;0, nanoparticles clusters covered by metallic silver grouped
together. For the Fe;O,@Ag microparticles (MPs) the
maximum of the diameter distribution is at 1.3 ym (determined
by SEM and TEM images). For comparison purposes, silver
particles (reddish orange) were produced in a separate batch
using the same experimental conditions for each set.

Finally poly(dimethylsiloxane) (PDMS) base and curing
agent, referred to as PDMS from now on (Sylgard 184, Dow
Corning), were mixed in proportions of 10:1 (w/w) at room
temperature and then loaded with the magnetic Fe;O, silver-
covered microparticles. The amounts of PDMS and fillers were
weighed during mixing on an analytical balance, homogenized,
and placed at room temperature in a vacuum oven for about 2 h
until the complete absence of any air bubble is achieved.
Specifically, composite material with 5% w/w of Fe;O,@Ag
was prepared. The still fluid samples were incorporated into a
specially designed cylindrical mold (1 cm diameter by 1.5 cm
thickness) and placed in between the magnetic poles of a
Varian Low Impedance Electromagnet (model V3703), which
provides highly homogeneous steady magnetic fields. The mold
was rotated at 30 rpm to preclude sedimentation and heated at
(75 = 5) °C in the presence of a uniform magnetic field
(chring = 0.35 T) over 3 h to obtain the cured material. The
polymeric matrix is formed by a tridimensional cross-linked
siloxane oligomers network with Si—CH,—CH,-Si link-
ages.*™* Slices of the cured composites were held in an ad-
hoc sample—holder and cut using a sharp scalpel, which were
used for the morphological (SEM and optical microscopy
analysis) and electrical characterization of material.

All fabricated composites obtained following the procedure
described above displayed total electrical anisotropy, showing
significant electrical conductivity only in the direction of
application of the magnetic field during curing (which coincides
with the direction of Fe;O,@Ag chains). For these MRE
materials, electrical resistivity values of py =4 Q X cm and p, =
60 MQ X cm were obtained, where || and L indicate parallel
and perpendicular directions with respect to the filler needles,
respectively.

Then, we proceeded to the morphological characterization,
evaluating the angular, length, and diameter distributions of the
conductive chains. This analysis was performed by computing
the angle, length, and diameter of the Fe;O,@Ag chains in
SEM images to several zooms (5S0—6000X) and images
obtained by optical microscopy using the image processing
software Image] v1.47. For SEM images, voltage (EHT) S kV
and extensions of 100X (3300 pixels-cm™) and 300x (9800
pixels-cm™") were typical conditions to compute the average
chain length, while to compute chain diameters 3 kV voltages
and 4000X (40 pixels-um™) were used.

Figure Sa shows the histogram obtained for the angular
distribution of the chains. The histogram is adjusted by a
Gaussian distribution function (solid line) centered on the
direction of application of the magnetic field during curing
Hying (60 = 0) with standard deviation 6, = (4.65 + 0.02)°
(count performed on 389 chains).

dx.doi.org/10.1021/jp504197w | J. Phys. Chem. C 2014, 118, 20594—20604
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Figure S. (a) Histogram for the angular distribution of chains in the
MRE PDMS—Fe,O,@Ag 5% w/w. The histogram is adjusted by a
Gaussian distribution function (solid line). (b) Histogram associated
with the distribution of chain lengths, built by measuring the length of
364 chains. The histogram is adjusted by a log-normal distribution
function (solid line). Inset: SEM image of a chain.

Figure Sb shows the histogram associated with the
distribution of chain lengths in the MRE PDMS—Fe;O0,@Ag
5% w/w, built by computing 364 chain lengths. It has an
excellent degree of adjustment (R* = 0.9965) with the log-
normal distribution function

£, = pls (3, ) = — (—Unﬂ—an]

N 207

(6)
with A = I and fitted parameters (I) = (1.35 + 0.01) mm and 6,
= (0.26 + 0.01) mm. The average stick density observed is
11.84 needles/mm? Note that here, as we start to study
concrete physical systems, we begin to use regular units of
length, such as millimeters.

The histogram of values of diameters (not shown) was built
from 311 counts and also adjusted by a log-normal distribution
(eq 6 with A = d) with an excellent degree of adjustment, R* =
0.9977, and parameters (d) = (10.40 + 0.02) um and o, =
(0.30 + 0.01) um. Note that, under the used experimental
conditions, the length of the chain is much greater than its
diameter, so that the approximation of one-dimensional
percolating elements is justified.

5. SIMULATION OF ANISOTROPIC SYSTEMS

From the point of view of possible technological applications of
MRE, it is important to characterize the degree of anisotropy of
the electrical conductivity of a given device. Anisotropy can be
introduced essentially in two ways: through an aspect ratio r #

1 which makes the system asymmetric (relevant when the
characteristic length of the percolating objects is not much
smaller than the size of the system, as in our study) and
through an anisotropic angular distribution of the sticks. These
two aspects can be controlled experimentally in systems like the
ones discussed in the previous section, and we will now
incorporate them in our simulation studies.

The signature of the presence of total anisotropy in the
percolation regime will be given by the existence of a
percolating cluster in the horizontal direction only, which
corresponds to (using the notation introduced in section 3)
P taking values very close to 1. Experimentally, a set of
parameters that ensure that condition will constitute what we
can call a “safety zone” of total anisotropic percolation and,
therefore, of TEA. The main goal of the present work is to
establish a methodology and, with it, to arrive at the
specification of such a set of parameter values, as an aid to
obtaining TEA in devices that demand it (pressure mapping
sensors, bidimensional Zebra-like connectors, etc.).

It is important to first determine whether the asymmetry of
the box or the anisotropy of the angular distribution contribute
equally or not to the global anisotropy of the percolation
behavior. In Figure 6 we show the percolation probabilities
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Figure 6. Various percolation probabilities (P, PV, P*X, pY, p)
versus density of sticks (chains/mm?®) for a rectangular system of
aspect ratio r = Lx/Ly = 3/4, L, = 3 mm, and isotropic stick
distribution with (I) = 1.35 mm and ¢; = 0.26 mm, for a log-normal
distribution of stick lengths. Note that PYX is not shown since it is

always negligible.

PEPY PPX pU PV for a rectangular isotropic (the stick angular
distribution is uniform, with —7 < @ < 7) system with aspect
ratio r = 3/4, L, = 3 mm, and log-normal length distribution
parameters (I) = 1.35 mm and 6; = 0.26 mm (notice that P** is
negligible and does not need to be considered in the analysis).
We remark that these parameters are taken from an
experimental sample, as discussed above (Figure S). The
different percolation probabilities verify the expected inequal-
ities PY > PH > pV > PHV, given the chosen asymmetry of the
box. The values of P seen in this figure, never close to unity,
indicate that the mere asymmetry of the box (r # 1) is not
enough to produce a safety zone of totally anisotropic
conduction. Therefore, we conclude that in order to achieve
effective TEA in bulk or films sample geometries it is required
to introduce an internal anisotropy, that is, in the stick angular
distribution. This conclusion is consistent with experimental
observations.*'>
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We need to introduce a magnitude to characterize in a
generic and quantitative way the degree of internal anisotropy
of the system of random sticks. Let us denote it macroscopic
anisotropy, and it will be given by

N
_ ijllilcos ol
- N .

ijl ll-lsm 6}| )

In the limit of infinite percolating objects we have A = 1 for
isotropic systems, while A — c0(0) for completely anisotropic
systems favoring the horizontal (vertical) direction.

5.1. Influence of 6. Figure 7 shows examples of random
stick systems in a two-dimensional box of sides L, = 3 mm and

=1.00

(e)

=1.65

(o)

=3.00

(0)

©=500 ®=13.33

®=500 ®=13.33

Figure 7. Examples of random stick systems in a two-dimensional box
of sides L, = 3 mm and L, = 4 mm with anisotropic angular
distributions and nonuniform stick length for two different stick
densities: ® = 5.00 chains/mm? and ® = 13.33 chains/mm? The
green (color online) sticks belong to a horizontal spanning cluster, and
the blue ones do not. The angle distribution is Gaussian centered in
zero, and the length distribution is log-normal (as found
experimentally). (a) {I) = 1.35 mm, 6; = 0.26 mm, (b) (I) = 1.35
mm, o, = 7.5° (c) 6y = 7.5°, 6, = 0.26 mm.

L, = 4 mm (corresponding to the characteristic dimensions of
the experimental samples) with anisotropic angular distribu-
tions and nonuniform stick length. In all cases the green sticks
belong to a horizontal spanning cluster and the blue ones do
not. In particular, Figure 7a shows systems for three different
values of the standard deviation of the Gaussian angular
distribution, 65 and two values of the stick density @, with
parameters of a log-normal distribution (I) = 1.35 mm and ¢, =
0.26 mm. As expected, for a given value of oy, the more sticks
participating in the spanning cluster the higher the density of
sticks. We also note that, for a fixed value of the density ®, the
fraction of sticks that belong to the spanning cluster also
increases with oy,

To evaluate the effect of 6, (1), and 6; on the TEA (i.e., on
the formation of a spanning cluster only in the horizontal
direction), numerical simulations of rectangular systems with L,
=3 mm and L, = 4 mm (r = 3/4) were made, taking the
horizontal direction (6 = 0°) as the direction of application of
the magnetic field during curing (chring). In particular, to
evaluate the effect of oy a log-normal distribution for the
lengths with parameters (I) = 1.35 mm and 6; = 0.26 mm
(empirical parameters for the MRE PDMS—Fe;O,@Ag 5% w/
w), and a Gaussian angular distribution with parameters (9) =
0° and different values of standard deviation, oy, were used in
our simulations. Figure 8a shows histograms of macroscopic

a
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Figure 8. (a) Histograms of the macroscopic anisotropy A obtained
for three different values of 6, and N = 1000 for a rectangular system
of aspect ratio r = L,/ L,= 3/4 and anisotropic stick distribution, with
parameters of a log-normal distribution (I) = 1.35 mm and ¢; = 0.26
mm. (b) Mean macroscopic anisotropy and its standard deviation
versus 0y For small 6,y we obtain a scaling behavior with exponent
approximately equal to —1 for both quantities.

anisotropy, A, obtained for three different values of o, (15°,
10°, and 7.5°), each one obtained by performing 10 500
repetitions, with N = 1000. For all values of 6, the distribution
is approximately Gaussian, with an excellent degree of fitting, R*
> 0.99926 (continuous line in Figure 8a). For these
distributions, the average macroscopic anisotropy, (A), and
its standard deviation, o, follow a monotonously decreasing
behavior with o, as illustrated in Figure 8b. It is noteworthy
that for small values of 6, (6, < 55°) there exists a linear
relationship between In(A) and In 6}, as well as between In o4
and In 6, (solid lines in Figure 8b, with R* = 0.9998, slope =
—1.02(7), and intercept = 4.32(1) for In{A), and R* = 0.998
97, slope = —0.97(6), and intercept = 0.48(3) for In o).

As described above, a strategy to study the influence of 6 on
the TEA of the composite material is to evaluate curves of
PX(®) for different values of o, Values of ® for which
P™X(®) = 1 (if they exist) constitutes safety zones in terms of
TEA: for fixed values of (I), 6}, 0y, and densities of percolating
objects @ in this safety zone, systems are most likely to have
TEA, i.e,, electrical conductivity only in the horizontal direction
by formation of a spanning cluster only in that direction.

Figure 9(a—c) shows the curves of PY PV, and P™X for three
values of 6y (40°, 15°, and 4.65°) for systems with log-normal
distribution for the stick lengths with parameters (I) = 1.35 mm
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Figure 9. Various percolation probabilities (P, PV, P™®) versus density of sticks for a rectangular system of aspect ratio r = L, = L,=3/4and
anisotropic stick distribution, with parameters of a log-normal distribution (I) = 1.35 mm and o; = 0.26 mm. (a)—(c) Three different values of the
standard deviation 6, of the angular Gaussian distribution. Red solid line: P¥, green filled circles: P, blue open circles: P, (d) Probability P"™* as a
contour plot versus the stick density ® and oy, showing the full dependence on 6y not seen in the other panels.

and 6, = 0.26 mm. There are values of ® for which P™¥(®) =1
only when ¢, < 15°. Such behavior of PP*(®) is detailed in
Figure 9d, which shows the probability P"*(®) as a contour
plot of density versus @ and oy. It can be seen that the range of
values of @ for which P*™*(®) = 1 strongly increases with

Figure 10 shows histograms of macroscopic anisotropy A
obtained for two different values of ¢; (0.30 and 5.00 mm), each
one obtained by performing 10 500 repetitions, with N = 1000.

decreasing o, and, also, with lower values of the parameter o
higher stick density @ is required to reach the safety zone.

As described in section 4, all the PDMS—Fe;O0,@Ag 5%w/w
systems synthesized have ® = 11.84 chains/mm” and electrical
anisotropy (measurable electrical conductivity only in the
direction of the magnetic field applied during the curing of the
material). Panel ¢ of Figure 9 shows that, for this value of ®
and the parameters o,y = 4.65° (I) = 1.35 mm, and 6; = 0.26
mm (experimental parameters for PDMS—Fe;O,@Ag S%w/
w), we have a very high only horizontally percolation
probability, which shows a very good correlation between our
performed simulations and the experimental results obtained.

5.2. Influence of o;. Following a similar procedure to the
one described in the previous section, in order to evaluate the
effect of 6}, a Gaussian angular distribution with parameters (6)
= 0° and 6 = 7.5° and a log-normal distribution for the lengths
with parameters (I) = 1.35 mm and different values of o; were
used in our simulations. Figure 7b shows systems for three
different values of the standard deviation of the log-normal
length distribution, 6}, and two values of the stick density ®,
with structural parameters (I) = 1.35 mm and o, = 7.5°.

20601
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Figure 10. (ab) Histograms of the macroscopic anisotropy
Aobtained for two different values of 6, and N = 1000 for a
rectangular system of aspect ratio r = L,/L, = 3/4 and parameters (I) =
1.35 mm and 6 = 7.5°. (c, d) Macroscopic anisotropy and its standard
deviation versus o;.
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For all the values of o, the distribution is approximately log-
normal, with an excellent degree of adjustment, R* > 0.995 11
(continuous line in Figure 10a—b). At low values of o; the
distribution is approximately Gaussian. For these distributions,
the average macroscopic anisotropy, A, and its standard
deviation, 0, follow a monotonous increasing behavior with o,
as illustrated in Figure 10c—d. Again, the strategy that we use to
study the influence of o; on the electrical anisotropy of the
composite material is to evaluate curves of PP*(®) for different
values of o, Figure 11b shows the probability P™*(®) as a
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Figure 11. Probability P*™* as a contour plot versus the stick density ®
and (a) (I) with 6, = 7.5° and 6, = 0.26 mm and (b) ¢; with (I) = 1.35
mm and o, = 7.5°.

G, (mm)

contour plot versus ®@ and o;. It can be seen that the range of
values of @ for which P*™(®) ~ 1 varies very little with the
studied parameter. Only a small increase with increasing o; from
0 to 1 mm is observed. Above those values (not shown)
practically no variation with o; is observed, and therefore the
location and size of the safety zone becomes quite insensitive to
o}

5.3. Influence of (/). In this case, a Gaussian angular
distribution with parameters (#) = 0° and 6 = 7.5° and a log-
normal distribution for the lengths with parameters o; = 0.26
mm and different values of (I) were assumed. Figure 11a shows
the probability P"*(®) as a contour plot versus @ and (). It
can be seen that the range of values of @ for which P*™(®) ~ 1
varies very little with the studied parameter, but the value of ®
required to reach the safety zone strongly increases with
decreasing (I). Figure 12 shows a typical macroscopic
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Figure 12. Typical histogram of the macroscopic anisotropy A
obtained for a rectangular system of aspect ratio r = Lx/Ly =3/4 N=
1000, and parameters oy = 7.5° and 6; = 0.26 mm.

anisotropy histogram obtained for (I) = 1.22 mm by performing
10 500 repetitions, with N = 1000. For all the values of (I}, the
distribution is approximately Gaussian, with an excellent degree
of adjustment, R* > 0.999 77 (continuous line in Figure 12).
Contrary to what was observed for the other two structural
parameters, in this case the histograms do not change
appreciably for different values of (I). For all values of (1),
the distribution of macroscopic anisotropy is approximately
Gaussian with mean values of macroscopic anisotropy (A) =
9.55 and standard deviation of macroscopic anisotropy o4 ~
0.23.

6. DISCUSSION AND CONCLUSIONS

Motivated by experimental work on structured magneto-
rheologial elastomers, we present a comprehensive study of
stick percolation in two-dimensional networks. In order to
extract realistic parameters for our simulations, we first carry
out a statistical characterization of the distribution of metallic
sticks in our previously studied MRE samples. We found that
the population of sticks has a log-normal distribution of stick
lengths (centered around 1.35 mm) and a Gaussian angular
distribution. The latter is centered around a preferential axis
that is given by the curing magnetic field applied during the
sample preparation and has a typical standard deviation of
approximately 5°.

In order to simulate the experimental systems, we adopted
the model of two-dimensional stick percolation and developed
a Monte Carlo numerical algorithm and a computer program
implemented in the computer language SAGE. We thoroughly
tested our program by reproducing key theoretical results of the
known scaling behavior of the percolation probability in square,
isotropically distributed systems. Furthermore, we validated
numerically for the first time for stick percolation existing
theoretical predictions for the different probabilities P™X, P",
and PV in the limit of large system size at the critical percolation
density.

We then proceeded to perform extensive numerical
simulations of asymmetric (rectangular), anisotropic (in the
orientation of the sticks) systems, modeled after the examined
experimental samples. A first conclusion is that adopting a
rectangular shape with a moderate aspect ratio is by itself not
enough to achieve effective TEA. Therefore, it becomes
necessary to introduce internal anisotropy, that is, a non-
isotropic stick angular distribution, in accordance with
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experimental observations. Consequently, the main objective of
the study is then to analyze the effect of key structural
parameters of the material, which characterize the angular and
length distribution of the sticks (the average length of the sticks
(1), the standard deviation of the length distribution 6, and the
standard deviation of the angular distribution oy) on the
observation of total electrical anisotropy (TEA). From a
practical point of view, TEA is a crucial aspect in the design of
nano- or microscale devices like in Zebra-like connectors for
parallel flip-chip connections, anisotropic conductive adhesives
(ACA), extended pressure-mapping sensors, anisotropic
conductive films (ACF), anisotropic conductive paste (ACP),
touch screen panels (TSP), and electronic skin (robotic and
biomedical applications).

We studied the TEA by computing various probabilities,
especially the only horizontal probability percolation function,
P"™X and analyzing the macroscopic anisotropy, which
quantifies the macroscopic average degree of orientation of
the stick population. We find prescriptions to achieve “safe”
structural conditions of total electrical anisotropy and thus
hope to guide the experimentalist and technologist to choose
the experimental conditions needed to make a device with the
desired degree of electrical anisotropy. Among other things, we
show that there exists a strong dependence of the TEA on the
standard deviation of the angular distribution (cy) and on the
average length of the sticks, while the standard deviation of the
length distribution has little effect. Figure 9 shows clearly this
strong dependence on 6y and presents an interesting re-entrant
behavior for a given value of 6,'® which may merit a more
exhaustive exploration in the future, in particular for 3D
systems. In closing, we remark that the criteria found for TEA
explain semiquantitatively the empirical observations made on a
fairly large set of samples that we studied experimentally in
recent years. This provides a first confirmation of the adequacy
of the 2D stick percolation model to describe structured film-
type magnetorheological elastomers and geometrically analo-
gous systems.
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