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The dengue virus genome is a dynamic molecule that adopts different conformations in the infected cell. Here, using RNA fold-
ing predictions, chemical probing analysis, RNA binding assays, and functional studies, we identified new cis-acting elements
present in the capsid coding sequence that facilitate cyclization of the viral RNA by hybridization with a sequence involved in a
local dumbbell structure at the viral 3= untranslated region (UTR). The identified interaction differentially enhances viral repli-
cation in mosquito and mammalian cells.

Dengue virus (DENV) is a member of the Flaviviridae family
that includes other important pathogens such as yellow fever

virus (YFV), West Nile virus (WNV), Saint Louis encephalitis vi-
rus (SLEV), and Japanese encephalitis virus (JEV). The DENV
genome is a plus-stranded RNA molecule that contains a single
open reading frame flanked by highly structured 5= and 3= un-
translated regions (UTRs) (1–3). RNA elements located within
these regions are responsible for translation initiation and genome
replication (4–7). The 5= UTR is about 100 nucleotides (nt) long
and includes three different elements: (i) stem-loop A (SLA),
which is the promoter for viral polymerase binding and activation
(8–10); (ii) stem-loop B (SLB), which contains a sequence known
as 5=upstream of the AUG region (5=UAR) that is complementary
to a sequence present at the 3=UTR (3=UAR) and mediates long-
range RNA-RNA interactions between the ends of the genome
(11); and (iii) a spacer sequence between SLA and SLB rich in U’s,
which functions as an enhancer of viral replication (10). The viral
3=UTR is about 450 nucleotides long and comprises four defined
domains: domain A1, which features a variable region (VR) (12);
domains A2 and A3, which present two almost-identical dumb-
bell-like secondary structures (DB1 and DB2), which appear to
work as enhancers for viral RNA replication (13–15); and domain
A4, which contains a small hairpin (sHP) and the 3= stem-loop (3=
SL), which are essential elements for viral replication (3, 16). In
addition to RNA structures defined in the UTRs that play different
roles during infection, important RNA elements have been de-
scribed in the protein coding region. In this regard, essential se-
quences that mediate long-range RNA-RNA interactions known
as 5= cyclization sequence (5= CS) and 5= downstream of AUG
region (5= DAR) are located within the capsid coding sequence
(11, 13, 17–21). Also, a hairpin known as cHP, located between 5=
CS and 5=DAR, has been shown to be necessary for efficient RNA
replication (22). The current model for viral RNA synthesis in-
cludes the interaction of the viral polymerase NS5 with the 5=-end
SLA promoter and its transfer to the 3=-end initiation site by cy-
clization of the viral genome (9). Despite great advances in knowl-
edge of cis-acting RNA elements in the flavivirus genomes, the
molecular details and mechanisms by which many of them func-
tion during viral replication are still not well understood.

Intrigued by dual roles of RNA sequences in viral protein cod-
ing regions, we examined the complete capsid coding sequence for
the presence of new cis-acting RNA elements. First, we used rep-
resentative sequences of the six different genotypes of DENV type

2 (DENV2) to examine the conservation of the first 450 nucleo-
tides of the viral genome, including the 5= UTR and the complete
capsid coding sequence. The highest nucleotide conservation was
observed in the first 300 nucleotides of the viral genome (Fig. 1A).
To evaluate the ability of the nucleotide sequences to form RNA
secondary structures, we performed an evolutionary conservation
analysis using RNAz and RNAalifold software (23–25). Interest-
ingly, the base pairing probability plot drastically dropped around
nucleotide 310 (region indicated as C3 in Fig. 1B), showing high
double-strand probability for 5= SLA, SLB, and cHP structures
(black boxes) as expected but also highlighting two additional
structured regions indicated as C1 and C2 (gray boxes). To con-
firm the RNA structure predictions, a fragment of the first 450 nt
of the viral genome was probed with N-methylisotoic anhydride
(NMIA) employing SHAPE (selective 2=-hydroxyl acylation ana-
lyzed by primer extension) technology (26, 27). This chemical
preferentially reacts with unpaired nucleotides and poorly with
those that are constrained in base pairs. The samples were resolved
by capillary electrophoresis, and data were analyzed using Shape-
Finder software v1.0 (28). NMIA reactivity of each nucleotide po-
sition is color coded and shown in a summary plot in Fig. 1C. The
secondary structure prediction was obtained using RNAstructure
software v5.4 (29–31) (Fig. 1D). A notable correlation of the pair-
ing probability and the SHAPE reactivity was observed (compare
Fig. 1B and C), showing high SHAPE reactivity downstream of
nucleotide 310. Importantly, the analysis supports the presence of
RNA structures within nucleotides 150 and 310 of the genome (C1
and C2 regions). For the C1 region, two small hairpins were
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mapped. Nucleotides located in the top of the first hairpin
(GAGAA) and a downstream complementary region (UUCUC)
were unreactive for NMIA, predicting the formation of a pseudo-
knot structure (PK) (Fig. 1D), in agreement with data recently
reported using DENV4 (32). In the C2 region, two large stem-
loops were predicted, while in the C3 region, low-stability struc-
tures were observed.

In order to study the functional significance of these RNA ele-

ments, a DENV2 system previously described (33), carrying a lu-
ciferase gene, was modified to generate a new construct that al-
lowed manipulation of the complete coding sequence of capsid
but retained the ability to produce infectious particles. This con-
struct allowed uncoupling cis-acting signals from coding se-
quences of capsid. The new reporter virus (named FullCapDV-
Luc) contained the viral 5= UTR, the complete capsid coding
region followed by the Renilla luciferase gene, which was flanked

FIG 1 Conserved RNA structures in the DENV capsid coding sequence. (A) Nucleotide conservation of the first 450 nucleotides of the viral genome using
representative sequences of the six different DENV2 genotypes. Window size � 10. (B) Double-stranded probability of the first 450 nucleotides of the viral
genome. Three regions were defined: high double-strand probability for 5= SLA, SLB, and cHP (black boxes); C1 and C2 structures (gray boxes); and unstructured
C3 region (white boxes). (C) Plot showing SHAPE reactivity at each nucleotide position of DENV2 RNA. (D) Viral RNA structures based on conservation,
predictions, and SHAPE reactivity. Red notations correspond to unpaired nucleotides, and black indicates double-stranded regions, whereas residues of
intermediate reactivity are noted in orange. Abbreviations: UTR, untranslated region; SLA, stem-loop A; SLB, stem-loop B; cHP, capsid hairpin; 5= CS, 5=
cyclization sequence; PK, pseudoknot; C1, C2, and C3, RNA structures identified in the capsid coding sequence. Data shown are averages of three experiments.
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by two foot-and-mouth disease virus 2A (FMDV2A) protease
coding sequences (QLLNFDLLKLAGDVESNPGP), and the rest
of the viral genome, including a second copy of the capsid protein
coding sequence followed by the rest of the open reading frame
and the 3= UTR (Fig. 2A). Two FMDV2As were introduced to
ensure the release of the luciferase and avoid changes in its enzy-
matic activity due to fusion of additional amino acids of the capsid
coding sequence. In order to evaluate the ability of this virus to
replicate, the in vitro-transcribed RNA was transfected into mos-
quito (C6/36) and mammalian (BHK) cells, and luciferase activity
was measured as a function of time (Fig. 2B). A replication-im-
paired control (mutations in the polymerase NS5) was also con-
structed in the described backbone (MutNS5). The results indi-

cate that the reporter FullCapDVLuc is fully active for translation
and replication in both cell types.

To examine the requirement of the predicted RNA structures
in the capsid coding sequence, we constructed a set of mutants
with a deletion of each structure (Mut�C1, Mut�C2.1, Mut�C2.2,
Mut�C3, and Mut�C123) in the context of the FullCapDVLuc.
The mutants Mut�C2.1 and Mut�C2.2 correspond to deletions
of each of the two hairpins of structure C2 (Fig. 2A). RNAs corre-
sponding to the mutants were transfected into C6/36 and BHK
cells and monitored by luciferase activity as a function of time.
The mutant with simultaneous deletion of all three regions,
Mut�C123, showed delayed and reduced replication in both cell
lines. A reduction of about 100-fold with respect to wild-type

FIG 2 Functional significance of RNA structures in the capsid coding sequence. (A) Schematic representation of the DENV reporter FullCapDVLuc. FullCap
and MCAE stand for full capsid coding sequence and minimal cis-acting elements, respectively. (B) Replication of new DENV reporter construct. Plots show
Renilla luciferase activity as a function of time post-RNA transfection in BHK and C6/36 cells. The luciferase values are means � standard deviations (n � 4). (C
and D) Translation and replication of DENV reporter RNAs containing the indicated deletions in BHK cells (C) and C6/36 cells (D). Luciferase activity was
measured as a function of time and is represented as arbitrary units (a.u.). The luciferase values are means � standard deviations (n � 4).
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(WT) control was observed at 48 h in BHK cells, while the reduc-
tion was more than 1,000-fold in C6/36 cells at 72 h (Fig. 2C and
D, black arrows). Mutants �C2.1, �C2.2, and �C3 showed lucif-
erase levels that were similar to those of the WT FullCapDVLuc in
both cell lines, indicating that these structures do not play an
important role in translation or RNA synthesis. On the other
hand, the reporter Mut�C1 presented a delay and a 10-fold reduc-
tion in viral replication in mosquito cells, and a 6-fold reduction
in mammalian cells, at 72 and 48 h, respectively (Fig. 2C and D).
Although deletion of C1 showed a clear effect on viral replication,
deleting each structure individually was not as drastic as the dele-
tion of the 3 elements at the same time, suggesting an additive
effect when these RNA structures are deleted collectively. For all
the transfected viral RNAs, similar levels of luciferase activity were
observed at 4 h, indicating that the deletions tested did not alter
translation of the input RNA. The results suggest that the RNA
structures present in the capsid coding sequence are important for
efficient DENV amplification, with a more pronounced require-
ment when the virus replicates in mosquito cells than when it
replicates in mammalian cells (compare Fig. 2C and D). It is im-
portant to mention that the deleted RNA structures are duplicated
downstream (in the coding region of the capsid protein); thus, we
cannot rule out a possible underestimation of the effect observed
by RNA structure deletions due to complementation via the du-
plicated structures.

It has been suggested in a recent report that RNA elements
present in the capsid coding sequence of DENV4, DCS-PK, ho-
mologous to C1, could modulate the conformation of RNA ele-
ments at the 5= end (5= UAR, 5= DAR, cHP, and/or 5= CS) during
RNA cyclization (32); however, no evidence of how this RNA
structure would participate during this viral process was provided.
Based on the finding that the C1 region enhances viral RNA syn-
thesis, we examined a possible direct contribution of its sequence
in long-range RNA-RNA interactions. First, we evaluated con-
served patterns of possible RNA-RNA interaction based on se-
quence alignments of the capsid coding regions and 3=UTRs from
different DENV2 genotypes. To this end, the RNAaliduplex soft-
ware was used for the analysis (25), and the R-CHIE package was
used to plot the data (34). The program takes two RNA sequence
alignments, predicts optimal and suboptimal interactions and hy-
bridization energies, and provides information about conserved
interactions. The alignments and details of specific sequences used
for this study are described in Fig. S1 in the supplemental material.
Interestingly, this analysis resulted in a model that predicted a
novel conserved interaction between a C1 sequence and a se-
quence contained in the conserved DB1 structure of the 3= UTR
(Fig. 3A and B). The predicted model is complex because it in-
volves the interaction between sequences contained in C1 and
DB1 structures, which also form local PK interactions. The PK
formed between the conserved nucleotides at the loop of DB1
(GCUGU) and downstream sequence (CGACG) has been well
characterized in previous studies (14, 35, 36). The proposed long-
range RNA-RNA hybridization competes and disrupts not only
the stem-loops in C1 and DB1 but also the two PKs. Thus, the
C1-DB1 long-range hybridization and the C1-DB1 local struc-
tures represent mutually exclusive forms of the DENV genome,
which may exist in equilibrium in the infected cell. We have pre-
viously described that alternative conformations of the DENV ge-
nome, linear and circular, are necessary for viral RNA replication
and that a balance between these forms of the genome is crucial for

DENV infectivity (37). To confirm the formation of the new pre-
dicted structures, SHAPE studies using 5= UTR-capsid and 3=
UTR RNAs were performed. Although most of the nucleotides
involved in the long-range RNA-RNA interaction are also in-
volved in local base pairings, we detected nucleotides (151-GAG
AGAAA-158) at the loop of the first hairpin of C1 (TL1) that
significantly change the reactivity to NMIA in the presence or
absence of the 3=UTR (Fig. 3C, red dashed box). This observation
shows that upon C1-DB1 interaction, the TL1 nucleotides (which
are involved in the C1-PK) become more reactive (Fig. 3C), while
the nucleotides of C1-PK do not change the reactivity, since they
mostly interact with nucleotides of DB1 (Fig. 3C, circular form).

To further examine whether the predicted RNA-RNA comple-
mentarity between C1 and DB1 contributes in stabilizing a com-
plex between the ends of the viral genome, electrophoretic mobil-
ity shift assays were performed with different RNA molecules (Fig.
3D). The affinity between RNA molecules containing the se-
quence of the 3=UTR and the 5= end of the genome including the
C1 sequence or not was evaluated. A uniformly 32P-labeled RNA
probe corresponding to the entire DENV2 3= UTR was in vitro
transcribed and purified in a polyacrylamide gel. The radiolabeled
3= UTR RNA was incubated with increasing concentrations of
unlabeled RNAs corresponding to the 5= UTR-FullCap (full
length capsid), 5= UTR-FullCap�C1 (with a deletion of the C1
structure), or 5= UTR-MCAE (minimal cis-acting elements). The
complexes were analyzed in native 4% polyacrylamide gels as pre-
viously described (11). Total radioactivity for each lane was deter-
mined by quantifying the bands corresponding to the RNA-RNA
complex and the free probe. For each case, the apparent dissocia-
tion constant (Kd) was estimated by nonlinear regression analysis.
RNA titrations indicate a significantly higher affinity between the
5= UTR-FullCap and the 3= UTR (Kd � 16 � 5 nM) than the
affinities of the 5=UTR-FullCap�C1 (Kd � 87 � 6 nM) and the 5=
UTR-MCAE (Kd � 200 � 14 nM) with the 3= UTR (Fig. 3D).
These results confirm that new sequences in the capsid coding
region contribute in stabilizing the RNA-RNA complex formed
between the ends of the DENV genome and highlight the rele-
vance of the C1 region.

Next, we evaluated the functional significance of a possible
C1-DB1 hybridization during DENV replication. To this end, we
constructed recombinant viruses with nucleotide changes dis-
rupting or restoring the predicted interactions. The design of these
viruses was very complex because five different structures had to
be taken into account simultaneously: C1 structure and local PK,
DB1 structure and local PK, and the long-range RNA-RNA inter-
action (see linear and circular forms of the RNA in Fig. 4A). Mu-
tations were incorporated along with compensations to maintain
local structures. Mutant O (MutO) includes substitutions only in
the 5= end of the genome that are predicted to disrupt C1-DB1
interaction but maintain the C1 secondary structure. Mutant R
(MutR) includes substitutions only in the 3= end that are predicted
to debilitate C1-DB1 interaction but maintain the local DB1 and
TL1-PK2 pseudoknot structures by compensatory mutations. Fi-
nally, a reconstitution mutant (MutO�R) predicted to restore the
long-range C1-DB1 interaction contained the substitutions of
both MutO and MutR. For clarity, the location of the mutations is
indicated in the two alternative structures (linear and circular
forms, Fig. 4A). RNAs corresponding to the three mutants
(MutO, MutR, and MutO�R) and the RNA of the parental virus
(WT) were transfected into C6/36 and BHK cells, and replication
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was monitored by luciferase activity. The levels of luciferase at 4 h
posttransfection were comparable for all the viruses in the two cell
lines, indicating efficient translation of the input genomes. The
reporter MutO showed delayed RNA replication with an 8-fold

reduction of luciferase activity at 48 h in BHK cells, while in mos-
quito cells, replication was reduced about 50-fold (Fig. 4B). The
MutR replicated slightly less than the WT virus in both cell lines.
However, when the C1-DB1 interaction was reconstituted

FIG 3 Sequence in the capsid protein coding region facilitates long-range RNA-RNA interactions between the ends of the viral genome. (A) Schematic representation
of the conserved patterns of long-range interactions based on alignments of genomes of different DENV2 genotypes. Details of nucleotide sequences, alignments, and
predictions are described in Fig. S1 in the supplemental material. (B) Representation of the circular conformation of the DENV genome indicating the known and new
complementary elements. The predicted RNA-RNA interaction between C1 (red) and DB1 (green) is indicated. (C) Analysis of 5=-end RNA secondary structure in the
absence and presence of the 3=UTR RNA (ratio of 1:5). NMIA probing profiles of an RNA corresponding to the 5= end of the genome (5=RNA) and the probing of the
same RNA in the presence of a second RNA containing the viral 3=UTR sequence (5=� 3=RNA) are shown on the left. The y axis contains the sequence and nucleotide
numbers; the x axis depicts chemical reactivity. On the right, secondary structures and NMIA reactivity are indicated for the predicted 5= end alone and the 5=-3=
hybridized form. Red dashed frames highlight a region with different probing profiles. (D) Mobility shift assays indicate that C1-DB1 hybridization stabilizes the
RNA-RNA complex. The 3=UTR RNA probe was incubated with increasing concentrations of unlabeled RNAs corresponding to molecules with viral 5=-end sequences
as indicated. Mobilities of the 3=UTR RNA probe and RNA-RNA complex as well as the apparent dissociation constants (Kd � standard error) are indicated. On the right,
the percentage of RNA probe bound was plotted as a function of unlabeled RNA concentration for the three molecules used.
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(MutO�R), the impaired replication of MutO was partially re-
stored in both cell lines (Fig. 4B). The restitution of viral RNA
replication of MutO by compensatory mutations supports the rel-
evance of the identified long-range interaction. In addition, the
data highlight a different requirement of the identified RNA ele-
ments for efficient viral replication in mosquito and mammalian
cells.

Here, we identified sequences in the DENV genome that en-
hance viral RNA replication by stabilizing long-range RNA-RNA
interactions, in agreement with the proposed function of genome
cyclization during minus-strand RNA synthesis (9). The identi-
fied complementary sequences are located within the capsid cod-
ing region at the 5= end of the RNA and in a well-characterized
dumbbell structure at the 3= UTR, and both form PK structures,

FIG 4 Relevance of C1-DB1 interaction in DENV RNA replication. (A) Design of mutation disrupting and reconstituting long-range C1-DB1 RNA-RNA
interaction in the context of the viral genome. cis-acting elements in the 5= end and the 3= end of the genome are indicated. Nucleotide sequences of C1 and DB1
and the substitutions incorporated are shown in the two alternative conformations, linear and circular. Location, nucleotide changes, and names of mutants are
indicated. MutO (green) shows substitutions in C1, and MutR (orange) shows substitutions in DB1. MutO�R contains both substitutions, restoring the
interaction and maintaining C1 and DB1 structures. In addition, this mutant maintains the pseudoknot TL1/PK2 by compensatory mutations. (B) Replication
of the three mutant RNAs in BHK and C6/36 cells together with the WT control. Luciferase activity was measured as a function of time and represented as
arbitrary units (a.u.). The luciferase values are means � standard deviations (n � 3).
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stabilizing local RNA elements at each end of the genome. Long-
distance hybridization of these RNA sequences disassembles the
hairpin and dumbbell structures. This observation, together with
previous studies, supports the idea that conservation of alternative
(mutually exclusive) functional RNA structures is a common fea-
ture in the flavivirus genomes. For instance, in the case of the
conserved 5=-3=CS interaction, the 3=CS lies in a region that forms
a local PK with the loop sequence of the DB2 structure (located
downstream of DB1) (14, 15). In the case of the 5=-3= UAR com-
plementary sequence, the 3= UAR adopts local structures that are
essential for viral replication, including the sHP and the base of the
terminal 3= SL (16, 21, 37–39). It is possible that conservation of
competing structures in the viral genome provides a mechanism
for fine tuning RNA conformations required for different viral
processes. In this regard, the presence of regulatory RNA elements
in protein coding sequences may be relevant for controlling func-
tional RNA structures by translating ribosomes. In the infected
cell, it is likely that RNA binding proteins modulate different viral
RNA conformations. Many proteins have been previously re-
ported as binders of the DENV RNA (40). Among them, proteins
with RNA helicase and chaperone activities have been described to
interact with the UTRs of flavivirus genomes (41–43). In this re-
gard, the host helicase DDX6 was reported to bind specifically to
the DENV DB1 and DB2 structures; however, the function of
these interactions is still unknown (44). Another example is the
host protein AUF1, which was shown to bind the WNV RNA and
enhance RNA replication likely by rearranging RNA conforma-
tions (45). Moreover, the different requirements of viral RNA
structures for viral RNA replication in mosquito and mammalian
cells may also reflect distinct ways of controlling viral RNA con-
formations in different host cell environments.

A previous study has investigated the role of RNA sequences
within the capsid coding region in DENV infectious particle pro-
duction. These studies suggested a function of RNA elements dur-
ing viral assembly in mosquito cells (46). The role of C1 in enhanc-
ing viral RNA synthesis observed in our studies limited the
possibility of evaluating its function in viral assembly or encapsi-
dation, steps that take place downstream of genome amplification.
Nevertheless, we cannot rule out the possibility that C1 sequences
play dual functions in viral replication and encapsidation. This
possibility should be further investigated.

We propose that DENV conserves RNA sequences that partic-
ipate in alternative local and long-range structures as a mecha-
nism to modulate the viral RNA architecture for efficient replica-
tion. In addition, based on the impact of deletions and mutations
of the identified viral RNA structures for replication in mosquito
and mammalian cells, we propose that distinct RNA conforma-
tions may play different roles in the two host cell environments.
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