
ntina

PHYSICAL REVIEW B 1 JULY 2000-IIVOLUME 62, NUMBER 2
Mobility of Bloch walls via the collective coordinate method
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We have studied the problem of the dissipative motion of Bloch walls considering a totally anisotropic
one-dimensional spin chain in the presence of a magnetic field. Using the so-called ‘‘collective coordinate
method’’ we construct an effective Hamiltonian for the Bloch wall coupled to the magnetic excitations of the
system. It allows us to analyze the Brownian motion of the wall in terms of the reflection coefficient of the
effective potential felt by the excitations due to the existence of the wall. We find that for finite values of the
external field the wall mobility is also finite. The spectrum of the potential at large fields is investigated and the
dependence of the damping constant on temperature is evaluated. As a result we find the temperature and
magnetic-field dependence of the wall mobility.
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I. INTRODUCTION

It is a well-known fact that ultimately due to magnet
dipole interaction, different domains are formed in magne
systems.1 In many situations, the physical region separat
two different magnetic domains—the domain wall—must
treated as a physical entity because it has a characte
behavior when acted by external agents. For instance,
known that the response of a magnetic system to
frequency-dependent external magnetic field depends
whether domain walls are present.2 Domain walls can also
move dissipatively.3

A particularly interesting kind of domain wall is com
monly found in low-dimensional ferromagnetic system
These are the so-called Bloch walls.4 It is known that these
walls perform dissipative motion3 due to the presence of th
elementary excitations which can be scattered by the wa
it moves and the momentum transferred to them reduces
speed of the wall.

The primary aim of this work is to study the influence
finite temperatures in the mobility of these Bloch walls. F
this purpose we start by considering a microscopic model
a one-dimensional ferromagnet containing hard and e
axis anisotropies and subject to an external magnetic field
semiclassical picture provides us with the localized soluti
for the spin configurations which are the solitons correspo
ing to the walls.

Making use of a recently developed method for the ana
sis of the dissipative dynamics of solitons,5,6 in which the
‘‘collective coordinate method’’7 is used to transform the
original Hamiltonian into one of a particle coupled to a
infinite set of modes, we show that the Bloch wall behav
like a Brownian particle. The advantage of using this meth
is that we keep closer contact with the microscopic details
the system and the mobility is naturally calculated as a fu
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tion of the temperature. The information from the micr
scopic scattering processes between the Bloch wall and
residual modes can be obtained from the knowledge of
phase shifts of the associated spectral problem. In the cas
reflectionless potentials, as it happens for vanishing aniso
pies or external field, the motion of the wall is undamped
this is not the case, the reflection coefficient does not van
and the mobility is finite.

The outline of this paper is as follows. In Sec. II w
present the model. The dynamics of its static solution is
vestigated in Sec. III and there we also show how to obt
an effective Hamiltonian for the Bloch wall coupled to th
residual magnetic excitations. In Sec. IV the mobility of t
Bloch wall is studied in terms of the scattering phase sh
of the second variation problem. The case of large exte
fields is investigated in Sec.V where the phase shifts and
damping constant are explicitly evaluated. Finally, w
present our conclusions in Sec. VI.

II. THE MODEL AND ITS STATIC SOLUTIONS

In this work we consider a one-dimensional magnetic s
tem composed by an array of spins lying along theẑ direc-
tion. Furthermore, let us assume that there is an easy-p
anisotropy which tries to keep the spins on thex-y plane
and, on top of this, an in-plane anisotropy tending to al
them along thex̂ direction. This is a totally anisotropic
model which is described by aXYZ model of magnetic sys-
tems defined by the Hamiltonian

H52(̂
i j &

~JxSi
(x)Sj

(x)1JySi
(y)Sj

(y)1JzSi
(z)Sj

(z)!

2
m

\
B(

i
Si

(x) , ~1!
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whereJx.Jy.Jz.0, Sj
(a) is the a component (a5x,y,z)

of the i th spin of the system,m is the modulus of the mag
netic moment on each site, andB is the external magnetic
field. The ferromagneticXYZ model is actually defined fo
B50 and this is the starting point of our analysis. As we c
see from Eq.~1!, the ground state of this system is the co
figuration where all the spins are aligned in thex̂ direction.
However, there is another possible configuration which i
local minimum of the energy functional and cannot be o
tained from the previous uniform configuration by any fin
energy operation.

Let us imagine that we describe our spins classically
vectors

Si5S~sinu i cosw i , sinu i sinw i , cosu i !, ~2!

whereu i andw i are the polar angles of thei th spin. In this
representation the above-mentioned configuration consis
all u i ’s equal top/2 andw i ’s equal to zero orp. However,
there are other configurations in whichu i5p/2,w i50 if i
→2` and w i5p if i→` which are approximately~only
becauseu i ’s may slightly vary8! local minima of the energy
functional of the system. So,Si winds around theẑ direction
starting at (u,w)5(p/2,0) and ending at (u,w)5(p/2,p).
The so-calledp-Bloch wall9 is one example of these con
figurations wherew i varies from 0 top without making a
complete turn around theẑ axis. Later on we will see the
specific form of this configuration when we consider the s
tem in the continuum limit. It will then be shown that Bloc
walls are related to solitonlike solutions of the nonline
equations which control the spin dynamics in the semic
sical approximation.

If we now turn the external fieldB on it happens that the
degeneracy betweenw50 andw5p is broken. ForB.0 it
is clear from Eq.~1! that w50 has lower energy thanw
5p which is now a metastable configuration of the syste
In this circumstance the system still presents a local m
mum of the energy functional. The only difference is th
whereasu i is still approximatelyp/2, w i starts and ends a
zero as2`, i ,`. The 2p-Bloch wall is now the configu-
ration wherew i winds only once aroundẑ.

In the case of thep-Bloch wall mentioned above, there
no way we could spend a finite energy to transform the w
into an uniform configuration. We would need to turn
infinite number of spins over an anisotropy energy barr
However the 2p-Bloch case is different, it is known tha
above a certain critical field the spin configuration becom
unstable favoring the totally polarized state.10,11

Another important point is that Eq.~1! is translation in-
variant and this is reflected by the translation invariance
the Bloch wall. This means that the region about which
spins wind up can be centered anywhere on theẑ axis. In
reality they can even move with constant speed along
direction.

These structures can be obtained by mapping the orig
Hamiltonian ~1! into a (111)-field-theoretical model such
as thew4, sine-Gordon or any other appropriate model. T
can be done starting from the equation of motion for the s
components
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dS(a)

dt
5

1

i\
@S(a),H#. ~3!

Substituting Eq.~1! in Eq. ~3! we get

Ṡx~z,t !5a2~JzS
z9Sy2JyS

y9Sz!12~JzS
zSy2JyS

ySz!,
~4!

Ṡy~z,t !5a2~JxS
x9Sz2JzS

z9Sx!12~JxS
xSz2JzS

zSx!

1
mB

\
Sz, ~5!

Ṡz~z,t !5a2~JyS
y9Sx2JxS

x9Sy!12~JyS
ySx2JxS

xSy!

2
mB

\
Sy, ~6!

which are a generalization of the Landau-Lifshitz equat
for the totally anisotropic case. Now, proceeding a bit furth
with the semiclassical description for the spin, we write t
equations of motion~4!–~6! in terms ofu i(t) andw i(t) in-
troduced in Eq.~2!.

After having done that we take the continuum limitu i
→u(z,t), w i(t)→w(z,t) and write

u~z,t !'
p

2
1a~z,t !, ~7!

wherea(z,t)!1. Assuming that the variations ofw and a
from site to site of the spin chain are small and linearizi
the equations of motion with respect toa one obtains

ẇ5a2S~Jx cos2w1Jy sin2w2Jz!, ~8!

ȧ5a2S~Jx sin2w1Jy cos2w!
]2w

]z2

2sinwFmB

\
12S~Jx2Jy!cosw G , ~9!

where a is the lattice spacing. Then, eliminatinga from
these equations, we get an effective equation of motion
w(z,t) of the form

1

c2

]2w

]t2
2

]2w

]z2
52A1 sinw2A2 sin 2w, ~10!

where

c2>2a2S2JxJyS 12
Jz

Jy
D , ~11!

A15
mB

a2SJx\
, ~12!

and

A25
1

a2 S 12
Jy

Jx
D . ~13!
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Actually Eq. ~10! is not the complete story. In order to b
more rigorous we would need to keep terms of fourth or
in the position derivatives ofw if we want to recover the
correct dispersion relation for ferromagnetic magnons w
k→0; namely,

v25~K11K2k2!2. ~14!

In its present form, Eq.~10! will provide us with a dispersion
relation of the form

v25A1Bk2, ~15!

which clearly reminds us of that of an antiferromagnetic s
wave. Therefore, if we~only due to mathematical conve
nience! keep on employing Eq.~10! as the correct dynamica
equation forw, one should bear in mind that our future e
pression forv(k) will only be valid up to terms of the orde
of k2.

Notice that if Jx5Jy one hasA250 whereas ifB50 it
turns out thatA150. So, as we can derive the right-han
side ~rhs! of Eq. ~10! from a potential energy densityU(w)
given by

U~w!5A1~12cosw!1
A2

2
~12cos 2w!, ~16!

we see thatA1 controls the potential energy barrier due to t
presence ofBÞ0 andA2 controls the anisotropy energy ba
rier.

The static solutions (]w/]t50) of Eq. ~10! are obtained
using that7

z2z05E
w(z0)

w(z) dw8

A2U~w8!
~17!

are the solitons of the system. In particular, the example
Bloch walls we gave above are the solitons

w~z!52 tan21@expA2A2~z2z0!# if A150, ~18!

w~z!54 tan21@expAA1~z2z0!# if A250. ~19!

Notice that the solitonic solution~18!, which corresponds to
the case of zero magnetic field, reproduces thep-Bloch
walls properties:w(2`)50 andw(1`)5p, while the sec-
ond solution~19! corresponding to the zero anisotropy ca
describes the 2p-Bloch walls@w(2`)50,w(1`)52p# in
agreement with the symmetry breaking due to the magn
field.

In the general case of finite anisotropy and magnetic fie
the localized solution is the 2p-Bloch wall, as was men-
tioned earlier, and has the form

w~z!52 tan21F coshr

sinh~z/l!G , ~20!

where we defined

l51/AA112A2, ~21!

coshr5A11
2A2

A1
. ~22!
r

n

n

of

,

ic

,

The soliton~20! can be expressed as a superposition
two twisted p-Bloch walls11 with argumentsl21(z2z0)
6r. We mention here there is another static solution of E
~10!, the so-callednucleus12 which corresponds to a supe
position of two untwistedp-Bloch walls.11 This solution is
topologically distinct from the previous one.

So, until now, the continuous model introduced for t
one-dimensional totally anisotropic ferromagnet allowed
to describe, from the topological point of view, the presen
of the p- and 2p-Bloch walls depending on the presence
the magnetic field.

III. DYNAMICS OF BLOCH WALLS

The quantum dynamics of our spin system can be a
lyzed by studying the quantum mechanics of the field the
described by the action

S@w#5JS2E
2`

1`E
0

t

dzdtH 1

2c2 S ]w

]t D 2

2
1

2 S ]w

]z D 2

2U~w!J .

~23!

The next step is to quantize the system described by
~23!. The standard way to carry this program forward is
evaluate7

G~ t !5trE Dw exp
i

\
S@w#, ~24!

where the functional integral has the same initial and fi
configurations and tr means to evaluate it over all such c
figurations.

As the functional integral in Eq.~24! is impossible to be
evaluated for a potential energy density as in Eq.~16! we
must choose an approximation to do it. Since we are alre
considering large spins (S@\/2), and consequently in the
semiclassical limit, let us take this approximation as the
propriate one for our case.

The semiclassical limit (\→0) turns out to be very easily
tractable within the functional integral formulation of qua
tum mechanics.7 It is simply the stationary phase metho
applied to Eq.~24!. Moreover, since we are only interested
static solutions, the functional derivative ofS happens to be
the equation of motion~10! when ]w/]t50. Its solutions
can be either constant~uniform magnetization! or the soli-
tons~Bloch walls! we mentioned in Eqs.~18!–~20!. Since we
are interested in studying the magnetic system in the p
ence of walls it is obvious that we must pick up one of tho
localized solutions as the stationary ‘‘point’’ in the config
ration space and the second functional derivative of Eq.~23!
should be evaluated at this configuration.

When this is done we are left with an eigenvalue probl
that reads

H 2
d2

dz2
1U9~ws!J cn~z2z0!5kn

2cn~z2z0!, ~25!

wherews is denoting the solitonlike solution about which w
are expandingw(z,t).

Now one can easily show thatdws /dz is a solution of Eq.
~25! with kn50. The existence of this mode is related to t
translation invariance of the Lagrangian in Eq.~23! and this
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makes the functional integral in Eq.~24! blow up in the
semiclassical limit~Gaussian approximation!.

The way out of this problem is the so-called collecti
coordinate method which was developed by field theorist
the 1970s~see Ref. 7 and references therein!. It consists of
keeping the expansion of the field configurations aboutws(z)
as

w~z,t !5ws@z2z0~ t !#1 (
n51

`

cncn@z2z0~ t !# ~26!

but regarding thec numberz0 as a position operator. Equa
tion ~11! is then substituted in the Hamiltonian

H5JS2aE dxH c2P2

2
1

1

2 S dw

dzD 2

1U~w!J , ~27!

whereP5(1/c)(]w/]t), which can be transformed into13

H5
1

2Ms
S P2(

mn
\gmnbn

1bmD 2

1( \Vnbn
1bn ,

~28!

whereVn[ckn .
In the Hamiltonian~28!, P stands for the momentum ca

nonically conjugated toz0,

Ms5
2JS2a

c2 E
2`

1`

dzU„ws~z!… ~29!

is the soliton mass7 and the coupling constantsgmn are given
by

gmn5
1

2i F S Vm

Vn
D 1/2

1S Vn

Vm
D 1/2G E dzcm~z!

dcn~z!

dz
.

~30!

The operatorsb1 andb are, respectively, the creation an
annihilation operators for the excitations of the magnetic s
tem ~magnons! in the presence of the wall. In fact, the ter

(
mn

\gmnbn
1bm , ~31!

can be interpreted as the total linear momentum of the m
nons of the system and therefore we are left with a prob
in which the momentum associated to the Bloch wall is n
coupled to the magnons’ momenta. This effective model s
gests that, as the population of magnons is a tempera
dependent quantity, the mobility of the Bloch wall will b
strongly related to the temperature of the system and its
namics@determined by Eq.~28!# will be nontrivial.

It should also be stressed that Eq.~28! is not an exact
result. It is only valid in the limit\→0 or, to be more pre-
cise, wheng2\→0 whereg2[1/JS2a is the coupling con-
stant that originally appears inU(g,w). It must also be em-
phasized that we have neglected inelastic terms such
b1b1 or bb because these are only important if the w
moves at high speed (v.c) originating Cherenkov-like ra-
diation of the elementary excitations of the medium. T
approximation also means that the number of excitation
the medium is conserved.
in
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IV. MOBILITY OF THE BLOCH WALL

At this point we are ready to start to study properties su
as the mobility of the wall because we have been able to m
that problem into the Hamiltonian~28! which on its turn has
been recently used to study the mobility of polarons, hea
particles, and solitons in general. We shall not discuss
specific problem in this paper and urge those interested in
details of this calculation to follow them in Refs. 5,13–16

The result that can be obtained reads15

g~ t !5
\

2ME
0

`E
0

`

dvdv8S~v,v8!~v2v8!

3@n~v!2n~v8!#cos~v2v8!t, ~32!

whereg(t) is the damping function~the inverse of the mo-
bility !,

n~v!5
1

eb\v21
~33!

is the Bose function and

S~v,v8!5(
mn

ugmnu2d~v2Vn!d~v82Vm! ~34!

is the so-called scattering function.
In the long-time limitg(t) can, to a good approximation

be written as

g~ t !>ḡ~T!d~ t ! ~35!

and ḡ(T) is given by15

ḡ~T!5
1

2pMs
E

0

`

dER~E!
bEebE

~ebE21!2
, ~36!

whereR(E) is the reflection coefficient of the ‘‘potential’
U9(ws) in the Schro¨dinger-like equation~25!. Notice that
Eq. ~36! is only valid if the states involved in Eq.~34! are
scattering states~see Sec. V A below for details!. One impor-
tant point that should be emphasized here is that there
parameters of the nonlinear field equations for which
localized solutions renderU9(ws) a reflectionless potential
These are genuine solitons and for these the mobility is i
nite. One may realize this is what happens for the Blo
walls Eqs.~18! and ~ 19!. In these cases, the ‘‘potential’
appearing in Eq.~25! can be written as

U9~z!5h2~122 sech2hz!, ~37!

where h25A1 for vanishing anisotropy andh252A2 for
vanishing external field. The spectrum of Eq.~37! contains a
bound state with zero energy

c05Ah

2
sech~hz!, k0

250, ~38!

which constitutes the translation mode of the domain w
~Goldstone mode!, and a continuum of quasiparticles mod
~magnons! given17 by
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cn~x!5
1

AL
Fkn1 ih tanh~hz!

kn1 ih Geiknz k>h, ~39!

where

kn5
2np

L
2

d~kn!

L
, d~k!5arctanF 2hk

k22h2G . ~40!

It is known that the reflection coefficientR for a general
symmetric potential can be expressed in terms of the co
sponding phase shifts as15

R~k!5sin2
„de~k!2do~k!…, ~41!

wherede anddo are the even and odd scattering phase sh
respectively. Then, reexpressing Eq.~39! in terms of even
and odd defined parity states, it is easy to prove that
potential belongs to the class of reflectionless because
phase shifts are given by

de,o~k!5arctan~h/k!, ~42!

that do not distinguish between odd and even parities.
Nevertheless, when both the anisotropy and external fi

are finite, the reflection coefficient is nonvanishing and c
sequently the 2p-Bloch wall ~20! has a finite mobility. In
this case, the spectral problem~25! can be rewritten as

H 2
d2

dz2
1V~z!J cn~z!5kn

2cn~z!, ~43!

where the potentialV(z) is expressed as~a similar expres-
sion was first reported in Ref. 11!

V~z!5
1

l2 F122 sech2S z

l
1r D22 sech2S z

l
2r D

12 sechS z

l
1r D sechS z

l
2r D G . ~44!

The second and the third terms on the rhs of Eq.~44! are the
potentials~37! of the noninteractingp-Bloch walls located at
z/l56r whereas, the last term describes the interaction
the twop-Bloch walls atz/l56r, respectively.

Now, for all finite values ofl and r, the translational
invariance of the system persists and as a consequenc
potential~44! has a zero-energy state that is given by

c0}sechS z

l
1r D1sechS z

l
2r D , ~45!

which is nothing but the Goldstone mode of the Bloch w
for finite anisotropy and external field.

In order to obtain an expression for the damping cons
~36! we need an expression for the odd and even phase s
of Eq. ~44!. Unfortunately, their analytical evaluation is ve
complicated for all finite values ofl andr, and we study the
situation of large fields in what follows.

V. 2p-BLOCH WALLS FOR LARGE FIELDS

In this section we evaluate the scattering phase shift
the situation of large external fields and provide an expl
e-
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it

expression for the damping constant. As it was mention
before there is a critical magnetic field above which t
2p-Bloch wall becomes unstable. The instabilities of th
kind of configuration were investigated in details by Magy
et al.10 and independently by Braun.11

Following the same approach presented in Ref. 10 i
possible to estimate the critical value of the external m
netic field, as a function of the coupling constantsJx , Jy ,
andJz , which render the 2p-Bloch wall unstable. The rela
tion can be explicitly deduced from the Hamiltonian~see
Ref. 10 for details!

H5(
i

S 2
1

2
JSi•Si 111D~Si

z!22A~Si
x!22gmBBSi

xD
~46!

as

bc5
1

2 S 11
a

5D for a!1, ~47!

bc5
1

2 S 12
1

2aD for a@1, ~48!

where

a5
A

D
, b5

gmBB

2DS
. ~49!

Mapping our Hamiltonian~1! into the model~46!, these con-
stants read

b5
mB

2\~Jy2Jz!S
, a5

Jx2Jy

Jy2Jz
. ~50!

As we are interested in the stable 2p-Bloch wall for r
!1 (B@Jx2Jy), the magnetic field cannot exceed the cri
cal value given by the expression~47!. Explicitly,

Bc5
\S

5m
~Jx14Jy25Jz!, ~51!

where we have used the definitions~50!.
So, keeping in mind the limit~51! for the magnetic field,

we can carry on the study of the 2p-Bloch wall for the case
r!1.

A. Scattering phase shifts

In the case of large fields (r!1) the Schro¨dinger-like
equation~43! can be written as

H 2
d2

dz2
1V~z!J cn~z!5kn

2cn~z!, kn
25kn

22
1

l2
2

r2

l2
,

~52!

where the potential~44! is now reduced to the sum of th
reflectionless contribution and a perturbation coming fro
the presence of the large field. Explicitly,

V~z!5V0~z!1S r

l D 2

V1~z!, ~53!

where
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V0~z!522 sech2S z

l D ~54!

and

V1~z!528 tanh2S z

l D sech2S z

l D . ~55!

In order to obtain the even and odd scattering phase s
De,o corresponding to a particle in a one-dimensional~1D!
symmetric potential like Eq.~53!, we will use of a 1D ver-
sion of the Fredholm theory,18 which states that

pAe,o~E!cot~De,o!511PE
0

`

dE
Ae,o~E8!

E2E8
, ~56!

whereDe,o are the phase shifts originated by both contrib
tions, the first coming from the reflectionless potentialV0,
and the other associated to the high-field perturbationV1. On
the other hand, the even and odd spectral functions,Ae,o(E),
can be calculated from the series expansion~see Ref. 18 for
details!

A~E!52^EuV~z!uE&

1PE
0

` dE1

E2E1
U ^EuV~z!uE& ^EuV~z!uE1&

^E1uV~z!uE& ^E1uV~z!uE1&U1•••,

~57!

whereP stands for the Cauchy principal value. Clearly, e
pression~57! cannot be analytically evaluated to all orde
On the other hand, making use of Eq.~42! and considering
thatr is small enough, the expression for the the phase sh
~56! can be written up to first order inr2 as

tanDe,o5
1

lk
1S r

l D 2 pA1
e,o

112B0
e,o

, ~58!

where

A152^EuV1~z!uE&, ~59!

and

B0
e,o5PE

2`

` A0
e,o~k8!k8dk8

k22k82
, A052^EuV0~z!uE&.

~60!

Using a convenient basis set, the three expressions g
by Eqs.~59! and ~60! can be analytically evaluated~see the
Appendix! yielding

A0
e,o~k!5

2M

\2 F 1

pkl
6

1

sinh~pkl!G , ~61!

A1
e,o~k!5

8r2M

3\2 F 1

pkl
7~2k22l22!

l2

sinh~pkl!G , ~62!

Be,o56
4M

\2 (
n51

`

~21!n11
n

@~kl!21n2#
. ~63!
fts

-

-
.

ts

en

Now we can finally write down an expression for the pha
shifts De,o by substituting Eqs.~62! and ~63! in Eq. ~58!. In
so doing one gets

tanDe,o~k!5
1

kl
1

8pM\22r2

168M\22(
n51

`

~21!n11
n

~kl!21n2

3F 1

3kpl
7

2k2l221

3 sinh~kpl!G . ~64!

Looking at Eq.~64! we realize that, whereasDe(k) re-
mains almost unchanged as a function ofk for rÞ0 ~see Fig.
1!, Do(k) presents a completely different structure. In fa
the behavior ofDo(k), within this approximation, does no
reproduce the correct values of the phase shifts for low
ergies. As was demonstrated by Kivsharet al.20 in the study
of the small-amplitude modes or fluctuations around the
calized solution of the double sine-Gordon equation, ther
always an odd bound state for this kind of systems. The
fore, using the 1D version of the Levinson’s theorem19 for
one-dimensional symmetric potentials, which establishes

De~k50!5pS ne2
1

2D ,

Do~k50!5pno, ~65!

where ne and no are the number of even and odd pari
bound states, we expect thatDe(k50)5p/2, as it was
shown above for any finite value ofr, andDo(k50)5p.

The existence of the even parity bound state is in co
plete agreement with the translational invariance of the s
tem and corresponds to a Goldstone mode. However, the

FIG. 1. The even phase shift as a function of the momentum
three different situations. The continuous line corresponds tor
50.14, the dotted line tor50.31, and the dashed line tor
50.50.
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phase shift calculated up to second order inr Eq. ~64! goes
to 3p/2 for k→0 in contradiction with Levinson’s statemen
Clearly this wrong result is due to the impossibility of goin
further in analytically computingDo(k). To get the correct
behavior of the odd phase shift, numerical calculations w
performed in which we solved explicitly the Schro¨dinger like
equation~52!. As it can be seen in Fig. 2, the results are n
in agreement with the presence of an odd parity bound s
as predicted in Ref. 20. On the other hand, for large fie
~small values ofr) the odd parity phase shift approaches t
even parity values, as can be seen in Fig. 3, in agreem
with the reflectionless behavior of the nonperturbed pot
tial.

Therefore, the spectrum of Eq.~53! is composed by~i! the
c0 solution~45! corresponding to the translation mode of t
wall ~Goldstone mode!, ~ii ! an internal mode which appea
when the system is perturbed, and~iii ! the ck solutions
which constitute the continuum modes and correspond
magnons.

B. The damping coefficient

In order to find the damping coefficient we must compu
R(k). This can be done by inserting the numerical results
the even and odd phase shifts into the general expressio

R~k!5sin2@De~k!2Do~k!#. ~66!

In Fig. 4, we have plottedR(k) for different values of the
perturbation parameterr defined by Eq.~22! for the whole
range ofk. As it can be seen the major contribution for th
reflection coefficient comes from the low-energy states,
agreement with the well behaved potentials~54! and ~55!.
@Notice that we have not considered the second bound s
of the potential~53! in computing the damping coefficien

FIG. 2. The odd phase shift as a function of the momentum.
continuous line corresponds tor50.14, the dotted line tor
50.31, and the dashed line tor50.50.
re

te
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nt
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because in evaluating the scattering matrix~34!, only elastic
terms are taken into account~Refs. 5,6,14 and 15!.#

Having done that, one can immediately integrate t
function in expression~36! which finally allows us to de-
scribe the damping as a function of the temperature as sh
in Fig. 5. As it can be seen, the damping constant is linear
high temperatures. This result can be obtained directly fr
Eq. ~36!. In fact, forT high enough the damping constant c
be approximated by

e FIG. 3. The even and odd phase shifts whenr50.14. As can be
seen they approach each other as the ratioA1 /A2 increases. This
means that, in the limitr→0, the only difference between them
comes from the singular point (k50) in the odd phase shift contri
bution.

FIG. 4. The reflection coefficient as a function of the mome
tum. The continuous line forr50.14, the dotted line forr50.31,
and the dashed line forr50.50.
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ḡ~T!.
1

2pMsb
E

0

`

dE
R~E!

E
}T, ~67!

which is linear onT, independently of the explicit form o
R(E). In the low-temperature regime we can write

ḡ~T!.
1

2pMs
E

0

`

dER~E!bEe2bE, ~68!

whereE always presents a gap determined by the presenc
the magnetic field and/or the anisotropy. Here we shall
attempt to write an approximate expression for Eq.~68! be-
cause the correct behavior of the reflection coefficient w
only numerically determined. As it is shown in Fig. 5, fo
low enough temperatures, the damping coefficient drops
ponentially to zero due to the existence of the gap. As
temperature increases the damping coefficient rises foll
ing a power-law behavior until it becomes linear for hig
enough temperatures. On the other hand, when the
anisotropy-magnetic field (r) goes to zero, we recover th
case of the reflectionless potential (A250) in which the mo-
bility of the Bloch wall goes to infinity.

VI. CONCLUSIONS

In the foregoing sections we have shown that the c
tinuum approximation to treat the totally anisotropic on
dimensional ferromagnet allows us to describe the Blo
wall as the localized solution of an effective field theory. T
advantage of this procedure is the fact that employing
collective coordinates method to quantize the system we
formulated the problem in such a way that the new Ham
tonian takes into account the Bloch wall-magnons collisio
However, one should keep in mind that for realistic syste
our limit of large external field should never reach valu
that would render the localized solutions unstable.

Finally, the formulation presented in this paper provide

FIG. 5. The damping coefficient as a function of the temperat
for different values ofr. The continuous line forr50.14, the
dashed line forr50.31, and the dotted line forr50.50.
of
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systematic way to calculate the mobility, basically the
verse of the damping parameter, of the Bloch wall as a fu
tion of temperature and magnetic field. Although we ha
considered the limit of high magnetic fields, there is no re
son why one should not apply the same methods to the l
field case. The only difference is that the scattering probl
with which one has to deal is more straightforward in t
high-field case.

It would be desirable to compare our results to expe
mentally measured values of the mobility of Bloch walls
anisotropic chainlike ferromagnets in order to shed light
the discussion of the relevance of the spin-wave scatterin
the motion of these objects.
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APPENDIX

In this appendix we show how to obtain the expressio
of the even and odd spectral functions~60! and ~59!. Sup-
pose we have a particle in a one-dimensional symmetric
tential of the formV5V01gV1 confined to a region (2L,
1L) with L much larger than the range of the potentialV.
The asymptotic form of the wave, then functions forVÞ0
are given by

uz&e5A1

L
cos@kuzu1De~k!#,

uz&o5A1

L
sgn~z!sin@kuzu1Do~k!#, ~A1!

for uzu→`. If V50 the wave functions have the same stru
ture as in Eq.~A1! with De,o50. Because the wave func
tions must vanish atz56L one realizes that

dEn

DEn
52

1

p
De,o,

where DEn5En11
0 2En

0 and dEn5En2En
0 . Following

closely the prescriptions given in18 for the 1D case, the spec
tral functions~60! and ~59! are given by

Ai
e,o~E!52E

2`

1`

dzVi~z!^zuE&e,o^Euz&e,o , i 50,1,

~A2!

where the stateŝEuz&e,o can be obtained by taking

e



s
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^zuE&e,o5 lim
L→`

uz&

ADEn

. ~A3!

Explicitly,

^zuE&5
1

A2pk
H cos~kx!, for even parity

sin~kx!, for odd parity.
~A4!

Inserting Eqs.~A4! and ~55! in Eq. ~A2! we have

A1
e1A1

o5
8Mr2

p\2k
E

2`

1`

sech2S z

l D tanh2S z

l Ddz, ~A5!

which can be easily evaluated with the substitutiony
5tanhz/l, yielding

A1
e1A1

o5
16r2M

p\2lk
. ~A6!

On the other hand, we have

A1
e2A1

o5
8Mr2

p\2k
E

2`

1`

sech2S z

l D tanh2S z

l D cos~2kl!dz,

~A7!

that can be written as

A1
e2A1

o5
8Mr2

p\2k
E

2`

1`Fsech2S z

l D2sech4S z

l D Gcos~2kl!dz,

~A8!
which can be analytically evaluated21 yielding

A1
e2A1

o5
16r2M

\2 sinh~pkl!
F1

3
2

2k2l2

3 G . ~A9!

Therefore, combining Eqs.~A6! and ~A9! we have Eq.
~62!. In the same fashion it can be shown that

A0
e1A0

o5
4M

p\2kl
and A0

e2A0
o5

4M

\2 sinh~pkl!
,

~A10!

which immediately gives Eq.~61!. Now we can evaluate the
Cauchy principal value in Eq.~60! which reads

B0
e,o5

2M

\2
PE

2`

1`F 1

pk8l
6

1

sinh~pk8l!
G k8dk8

k22k82
.

~A11!

The first term on the right-hand side of Eq.~A11! is clearly
zero. Therefore, using the product expansion of the sinh(pz)
function21 its second term becomes

B0
e,o56

2M

p\2
PE

2`

1` dq

k22q2)n51

`
n2

n21q2
, ~A12!

where q5k/l. Going to the complex plane, the previou
expression can be analytically evaluated as

B0
e,o56

4M

\2 (
n51

`
~21!nn

~kl!21n2
. ~A13!
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