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We have studied the problem of the dissipative motion of Bloch walls considering a totally anisotropic
one-dimensional spin chain in the presence of a magnetic field. Using the so-called “collective coordinate
method” we construct an effective Hamiltonian for the Bloch wall coupled to the magnetic excitations of the
system. It allows us to analyze the Brownian motion of the wall in terms of the reflection coefficient of the
effective potential felt by the excitations due to the existence of the wall. We find that for finite values of the
external field the wall mobility is also finite. The spectrum of the potential at large fields is investigated and the
dependence of the damping constant on temperature is evaluated. As a result we find the temperature and
magnetic-field dependence of the wall mobility.

[. INTRODUCTION tion of the temperature. The information from the micro-
scopic scattering processes between the Bloch wall and the

It is a well-known fact that ultimately due to magnetic residual modes can be obtained from the knowledge of the
dipole interaction, different domains are formed in magneticohase shifts of the associated spectral problem. In the case of
systems. In many situations, the physical region separatingreflectionless potentials, as it happens for vanishing anisotro-
two different magnetic domains—the domain wall—must bePies or external field, the motion of the wall is undamped. If
treated as a physical entity because it has a characterisfiis iS not the case, the reflection coefficient does not vanish
behavior when acted by external agents. For instance, it i@nd the mobility is finite. _
known that the response of a magnetic system to a |he outline of this paper is as follows. In Sec. Il we
frequency-dependent external magnetic field depends opfésent the model. The dynamics of its static solution is in-

whether domain walls are presénDomain walls can also vestigated in Sec. Ill and there we also show how to obtain
move dissipatively. an effective Hamiltonian for the Bloch wall coupled to the

A particularly interesting kind of domain wall is com- residual ma_lgnetic_exqitations. In Sec. IV the_ mobility of the
monly found in low-dimensional ferromagnetic systems.BlOCh wall is stud|_eo_l in terms of the scattering phase shifts
These are the so-called Bloch walli is known that these ©f the second variation problem. The case of large external
walls perform dissipative motidrdue to the presence of the fields _is investigated in Sec.V.V\{here the phase shifts and the
elementary excitations which can be scattered by the wall 84amping constant are explicitly evaluated. Finally, we
it moves and the momentum transferred to them reduces tH¥€Sent our conclusions in Sec. VI.
speed of the wall.

The primary aim of this work is to study the influence of [l. THE MODEL AND ITS STATIC SOLUTIONS
finite temperatures in the mobility of these Bloch walls. For In this work we consider a one-dimensional magnetic sys-
this purpose we start by considering a microscopic model for . ) AT
a one-dimensional ferromagnet containing hard and easy€™ cOmposed by an array of spins lying along zheirec-
axis anisotropies and subject to an external magnetic field. AOn- Furthermore, let us assume that there is an easy-plane
semiclassical picture provides us with the localized solution@NiSOtropy which tries to keep the spins on g plane
for the spin configurations which are the solitons correspond@"d: on top of this, an in-plane anisotropy tending to align
ing to the walls. them along thex direction. This is a totally anisotropic

Making use of a recently developed method for the analymodel which is described by Y Z model of magnetic sys-
sis of the dissipative dynamics of solitoh$jn which the — tems defined by the Hamiltonian
“collective coordinate method” is used to transform the

original Hamiltonian into one of a particle coupled to an H=—> (3,S¥sM¥+ 73,59+ J,525(2)
infinite set of modes, we show that the Bloch wall behaves ) R =T o=

like a Brownian particle. The advantage of using this method

is that we keep closer contact with the microscopic details of _ EBE Si(x) 1)
the system and the mobility is naturally calculated as a func- h 9 '
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whereJ,>J,>J,>0, S is the @ component ¢=x,y,z) ds@ “

of theith spin of the systemy is the modulus of the mag- TR A ()
netic moment on each site, amlis the external magnetic

field. The ferromagnetiXY Z model is actually defined for Substituting Eq(1) in Eq. (3) we get

B=0 and this is the starting point of our analysis. As we can ,

see from Eq(1), the ground state of this system is the con-  SX(z,t)=a?(J,S Sy—JySy"SZ)+2(JZSZSV—JySySZ),
figuration where all the spins are aligned in thelirection. 4
However, there is another possible configuration which isa , ,

local minimum of the energy functional and cannot be ob- ~ §(z,t)=a?(J,S" "~ J,5* ) +2(J,S'S*~ J,5°S")
tained from the previous uniform configuration by any finite

energy operation. + Esz, (5)
Let us imagine that we describe our spins classically by h
vectors

S(z,t)=a%3,9'$—3,89)+2(3,95- 1, S'Y)

S =S(sin g, cosg;, sing, sing; , cosh,), (2 B %BSV ®

where 0, and ¢; are the polar angles of th¢h spin. In this
representation the above-mentioned configuration consists
all ;’s equal towr/2 and¢;’s equal to zero orr. However,
there are other configurations in whigh= 7/2,0;=0 if i
——oo and ¢;=7 if i—c which are approximatelyonly
becaused;’s may slightly vary) local minima of the energy

functional of the system. S& winds around the direction
starting at @,¢)=(7/2,0) and ending atd,¢)=(=/2,7).
The so-calledr-Bloch walP is one example of these con- o
figurations wherep; varies from 0 tom without making a 0(z,t)~ E+a(z,t), 7

complete turn around the axis. Later on we will see the

specific form of this configuration when we consider the syswhere a(z,t)<1. Assuming that the variations @f and «
tem in the continuum limit. It will then be shown that Bloch from site to site of the spin chain are small and linearizing
walls are related to solitonlike solutions of the nonlinearthe equations of motion with respect doone obtains
equations which control the spin dynamics in the semiclas-

hich are a generalization of the Landau-Lifshitz equation
or the totally anisotropic case. Now, proceeding a bit further
with the semiclassical description for the spin, we write the
equations of motior{4)—(6) in terms of §;(t) and ¢;(t) in-
troduced in Eq(2).

After having done that we take the continuum lingit
—0(z,1), ¢i(t)— ¢(z,t) and write

sical approximation. ¢=a23(J, code+J, sife—1J,), (8)
If we now turn the external fiel® on it happens that the
degeneracy betweep=0 and¢= 7 is broken. FoB>0 it ) e
is clear from Eq.(1) that ¢=0 has lower energy thap a=a?S(J, Sin2g0+Jy CO§(p)F
z

=7 which is now a metastable configuration of the system.

In this circumstance the system still presents a local mini- M

mum of the energy functional. The only difference is that —sing| —— +2S(J—Jy)cose |, (9)
whereas#, is still approximatelyw/2, ¢; starts and ends at h

zero as—=<\i<. The 2r-Bloch wall is now the configu- \yhere a is the lattice spacing. Then, eliminating from
ration wheregp; winds only once around. these equations, we get an effective equation of motion for
In the case of ther-Bloch wall mentioned above, there is ¢(z,t) of the form
no way we could spend a finite energy to transform the wall
into an uniform configuration. We would need to turn an 1 Pe o . .
infinite number of spins over an anisotropy energy barrier. o 5= Aising—A;sin2o, (10
However the Zr-Bloch case is different, it is known that
above a certain critical field the spin configuration becomesgyhere
unstable favoring the totally polarized state?
Another important point is that Ed1) is translation in-
. . L . 29,22 _z
variant and this is reflected by the translation invariance of c°=2a°S ‘]x‘]y< 1 3 ) (11
the Bloch wall. This means that the region about which the Y

spins wind up can be centered anywhere on zhexis. In uB
reality they can even move with constant speed along that A= ,
direction. a?Sdf
These structures can be obtained by mapping the origin%{nd
Hamiltonian (1) into a (1+ 1)-field-theoretical model such
as thee?, sine-Gordon or any other appropriate model. This
can be done starting from the equation of motion for the spin A,=—
components a

(12

(13
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Actually Eqg. (10) is not the complete story. In order to be  The soliton(20) can be expressed as a superposition of
more rigorous we would need to keep terms of fourth ordetwo twisted 7-Bloch walls with arguments\ ~1(z—z,)
in the position derivatives of if we want to recover the =p. We mention here there is another static solution of Eq.
correct dispersion relation for ferromagnetic magnons whetri10), the so-callechucleus? which corresponds to a super-
k—0; namely, position of two untwistedr-Bloch walls!* This solution is
5 - topologically distinct from the previous one.

w®=(K+Kzk?)?. (19 So, until now, the continuous model introduced for the
one-dimensional totally anisotropic ferromagnet allowed us
to describe, from the topological point of view, the presence
of the 7- and 2r-Bloch walls depending on the presence of
w?=A+BK?, (15) the magnetic field.

In its present form, Eq10) will provide us with a dispersion
relation of the form

which clearly reminds us of that of an antiferromagnetic spin
wave. Therefore, if wglonly due to mathematical conve-
nience keep on employing Eq10) as the correct dynamical The quantum dynamics of our spin system can be ana-
equation fore, one should bear in mind that our future ex- lyzed by studying the quantum mechanics of the field theory
preszsion forw (k) will only be valid up to terms of the order described by the action

of k<.

Notice that if J,=J, one hasA,=0 whereas ifB=0 it ° acp 1({d¢\?
Je]=JS dZdt —=|=] —U(e).

Ill. DYNAMICS OF BLOCH WALLS

turns out thatA;=0. So as we can derive the right-hand ot 2\ 9z
side (rhs) of Eq. (10) from a potential energy density () (23)
given by
A The next step is to quantize the system described by Eq.
U(g)=A(1—cose) + 72(1—005 %), (16) éZ\/?;I.u;?ée standard way to carry this program forward is to
we see thaf\; controls the potential energy barrier due to the i
presence oB+0 andA, controls the anisotropy energy bar- G(1) =tff Dy expy-Slel, (24)
rier.
The static solutionsde/dt=0) of Eq. (10) are obtained where the functional integral has the same initial and final
using that configurations and tr means to evaluate it over all such con-
figurations.
o2 de’ As the functional integral in Eq24) is impossible to be
z— _f T (17 evaluated for a potential energy density as in Edp we
#z0)V2U(¢") must choose an approximation to do it. Since we are already
are the solitons of the system. In particular, the examples ogonsidering large spinsSg-#/2), and consequently in the
Bloch walls we gave above are the solitons semiclassical limit, let us take this approximation as the ap-
propriate one for our case.
o(z)=2tan Yexpy2A,(z—zy,)] if A;=0, (18 The semiclassical limitf{— 0) turns out to be very easily

tractable within the functional integral formulation of quan-
o(z)=4tan 1[exp\/—(z z)] if A,=0. (19 tum mechanic$. It is simply the stationary phase method

applied to Eq(24). Moreover, since we are only interested in
Notice that the solitonic solutio(iL8), which corresponds to  static solutions, the functional derivative Sthappens to be
the case of zero magnetic field, reproduces th@loch  the equation of motio(10) when d¢/dt=0. Its solutions
walls propertiesip(—) =0 ande(+) =, while the sec-  can be either constartiniform magnetizationor the soli-
ond solution(19) corresponding to the zero anisotropy case tons(Bloch wall§ we mentioned in Eq$18)—(20). Since we
describes the 2-Bloch walls[¢(—©)=0,p(+>)=27] in are interested in studying the magnetic system in the pres-
agreement with the symmetry breaking due to the magnetignce of walls it is obvious that we must pick up one of those
field. localized solutions as the stationary “point” in the configu-

In the general case of finite anisotropy and magnetic fieldyation space and the second functional derivative of(E8).
the localized solution is the 22-Bloch wall, as was men- should be evaluated at this configuration.

tioned earlier, and has the form When this is done we are left with an eigenvalue problem
that reads
B _,| coshp o0
D=2t Gz | (20 o ,
_ ——+tU"(ps) [ ¥n(z2—20) =Kihn(2—20), (29
where we defined dz?
P e ores whereg is denoting the solitonlike solution about which we
A=1NALT2A,, @D are expandingp(z,t).
Now one can easily show thdtp;/dz is a solution of Eq.
coshp= [1+ & (22 (25) with k,=0. The existence of this mode is related to the
A1 translation invariance of the Lagrangian in EB3) and this
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makes the functional integral in Eq424) blow up in the V. MOBILITY OF THE BLOCH WALL
semiclassical limi{Gaussian approximation

The way out of this problem is the so-called collective
coordinate method which was developed by field theorists i
the 1970s(see Ref. 7 and references thejeilh consists of
keeping the expansion of the field configurations atmyr)

At this point we are ready to start to study properties such
2as the mobility of the wall because we have been able to map
that problem into the Hamiltonia{28) which on its turn has
been recently used to study the mobility of polarons, heavy
particles, and solitons in general. We shall not discuss this

as specific problem in this paper and urge those interested in the
% details of this calculation to follow them in Refs. 5,13-16.
e(z,)=@dz—2o() ]+ > Crth[z—2o(1)]  (26) The result that can be obtained relds
n=1
but regarding the numberz, as a position operator. Equa- y(t)= ifwfxdwdw’S(w,w’)(w—w’)
tion (11) is then substituted in the Hamiltonian 2M Jo Jo
2 1(de)? X[n(w)—n(w')]cofw—w')t, (32
H=J32af dx +=|==] +U(¢e);, (27 _ _ : :
2 2\dz where y(t) is the damping functiorithe inverse of the mo-

wherell=(1/c)(d¢/t), which can be transformed irtb bility ),
1 2 N _ 1
H= ZMS( P— 2, #iGmeby bm| + 2 A20by by, (@)= o] (33
(28) is the Bose function and
whereQ ,=ck,.
In the Hamiltonian(28), P stands for the momentum ca- N ) ,
nonically conjugated ta,, S(w,w )—% |Gmnl 00— Q) 80— Q) (34
2JS%a [+ is the so-called scattering function.
SR J_m dzU(¢s(2)) (29 In the long-time limity(t) can, to a good approximation,
be written as
is the soliton massand the coupling constangs,, are given .
by y()=y(T)a(t) (35
C1[{Qm\ Y (04|77 f q difn(2) and y(T) is given by®
Imn=>57 o, + Q. Zym(2) —5,
(30 _(T)—L xdER(E)LeBE (36)
Y _27TMS 0 (eBE_l)Z’

The operatord® andb are, respectively, the creation and

annihilation operators for the excitations of the magnetic sysyhere R(E) is the reflection coefficient of the “potential”
tem (magnongin the presence of the wall. In fact, the term (4, ) in the Schrdinger-like equation(25). Notice that
Eq. (36) is only valid if the states involved in Eq34) are
2 79D by, (31) scatteri_ng statesee Sec. VA belovy for deta)lsQne impor-
mn tant point that should be emphasized here is that there are

be int ted as the total li ¢ fth arameters of the nonlinear field equations for which the
can be interpréted as he total inear momentum o th€ Mags 5,64 solutions renddd”(¢.) a reflectionless potential.

nons .Of the system and therefc_)re we are left with a p_rObIerF\'hese are genuine solitons and for these the mobility is infi-
in which the momentum,assomated to_the Blo<_:h wall is NOWite. One may realize this is what happens for the Bloch
coupled o e magnons momerla. hi efecive moce! il Eqs.(19 and 19 In thse Gases, th “potentar
dependent quantity, the mobility of the Bloch wall will be ppearing in Eq(25) can be written as
stror_lgly related_ to the temperatqre of the sy§tem and its dy- U"(z)=n3(1—2 sechz2), (37)
namics[determined by Eq(28)] will be nontrivial.

It should also be stressed that E@8) is not an exact where »>=A, for vanishing anisotropy and)’>=2A, for
result. It is only valid in the limiti—0 or, to be more pre- vanishing external field. The spectrum of E§7) contains a
cise, wheng?s —0 whereg?=1/JSa is the coupling con-  bound state with zero energy
stant that originally appears ld(g,¢). It must also be em-
phasized that we have neglected inelastic terms such as \/; 5
b*b" or bb because these are only important if the wall $o=\ ysectinz), kp=0,
moves at high speed&c) originating Cherenkov-like ra-
diation of the elementary excitations of the medium. Thiswhich constitutes the translation mode of the domain wall
approximation also means that the number of excitations ifiGoldstone modg and a continuum of quasiparticles modes
the medium is conserved. (magnong given'’ by

(38
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expression for the damping constant. As it was mentioned

1 [kat+igtant(72)] | " the dai ant .

Po(X)= —=| —————|e'*n? k=4, (39) before there is a critical magnetic field above which the

VL Kn+i 2m-Bloch wall becomes unstable. The instabilities of this

where kind of configuration were investigated in details by Magyari
et al1® and independently by Brau.

2nw  5(K,) 2 0k Following the same approach presented in Ref. 10 it is

T Ja d(k)=arcta | (400  possible to estimate the critical value of the external mag-

netic field, as a function of the coupling constadis J,
andJ,, which render the Z-Bloch wall unstable. The rela-
tion can be explicitly deduced from the Hamiltonigsee
eRef. 10 for details

It is known that the reflection coefficie® for a general
symmetric potential can be expressed in terms of the corr
sponding phase shifts &s

R(k) =sir?(8%(k) — 8°(k)), (41

wheres® and 6° are the even and odd scattering phase shifts,

1
H=2 (—EJS~S+1+D(S«Z)2—A(SX)2—9MBBSX

46
respectively. Then, reexpressing E89) in terms of even (48
and odd defined parity states, it is easy to prove that thigS
potential belongs to the class of reflectionless because its 1 a
phase shifts are given by bczi( 1+ E) for a<1, (47)
6%°(k) = arctari 5/k), (42
that do not distinguish between odd and even parities. bczl( 1— i for a>1, (48)
Nevertheless, when both the anisotropy and external field 2 2a
are finite, the reflection coefficient is nonvanishing and conyhere
sequently the z-Bloch wall (20) has a finite mobility. In
this case, the spectral problgi@5) can be rewritten as A gugB
a=—, b= . (49
5 D 2DS
| T4 +V(2) | ¥n(2) =K2t(2), (43)  Mapping our Hamiltoniari1) into the model46), these con-
d stants read
where the potential/(z) is expressed a& similar expres- B J-3
sion was first reported in Ref. 11 b= s a= > Y (50)
2h(J,—J,)S’ Jy—J;

As we are interested in the stabler:Bloch wall for p
<1 (B>J,—J,), the magnetic field cannot exceed the criti-
cal value given by the expressio47). Explicitly,

1
V(Z)Z F

z

1-2 H(Z+ 2 sech z
sec N sec N
il ==p

et

The second and the third terms on the rhs of @4) are the
potentials(37) of the noninteractingr-Bloch walls located at  \\here we have used the definitiofg0).
z/\=*p whereas, the last term describes the interaction of g4 keeping in mind the limit51) for the magnetic field,

the two 7-Bloch walls atz/A= * p, respectively. _ we can carry on the study of them2Bloch wall for the case
Now, for all finite values ofA and p, the translational 4
invariance of the system persists and as a consequence the

potential(44) has a zero-energy state that is given by

+2 secl% +p (44)

hS
BC=5(JX+4Jy—5JZ), (51

A. Scattering phase shifts

z z In the case of large fieldsp&1) the Schrdinger-like
tho=sech = +p | +sech==p|, (49 equation(43) can be written as
which is nothing but the Goldstone mode of the Bloch wall g2 p?
for finite anisotropy and external field. ——=HtV@) (D =kin(2),  Ki=ki— ===,
In order to obtain an expression for the damping constant AT A 52

(36) we need an expression for the odd and even phase shifts
of Eq. (44). Unfortunately, their analytical evaluation is very where the potentiai44) is now reduced to the sum of the

complicated for all finite values of andp, and we study the
situation of large fields in what follows.

V. 27-BLOCH WALLS FOR LARGE FIELDS

In this section we evaluate the scattering phase shifts

reflectionless contribution and a perturbation coming from
the presence of the large field. Explicitly,

p

2
X Vai(2),

V(z)=Vy(2)+ (53

in

the situation of large external fields and provide an explicitwhere
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Vo(2) (54)

:

z z
X) secﬁ(x .

-2 secﬁ(

and

V,(z)=—8 tanit

(55

In order to obtain the even and odd scattering phase shifts

A®° corresponding to a particle in a one-dimensio(idD)
symmetric potential like Eq(53), we will use of a 1D ver-
sion of the Fredholm theory, which states that

e Ae,o E/
wAe'o(E)cot(Aevo)zlJrPJ' dE———~ )
0 ’

(56)

whereA®° are the phase shifts originated by both contribu-

tions, the first coming from the reflectionless potenia|
and the other associated to the high-field perturba#igpnOn
the other hand, the even and odd spectral functidfS(E),
can be calculated from the series expangsee Ref. 18 for
detail9

A(E)=—(E|V(2)[E)
= dE, (EIV(2)[E)  (E[V(2)|Ey)
P o E—E,|(EdlVDIE) (E4|V(2)|Ey) e
(57)

where P stands for the Cauchy principal value. Clearly, ex-
pression(57) cannot be analytically evaluated to all orders.

On the other hand, making use of E¢2) and considering

thatp is small enough, the expression for the the phase shifts tanA&o(k) =

(56) can be written up to first order ip? as

tanAe,o:i+ B ZL%O (58)
Ak N 142BE0
where
and
co = Ag°(k")k'dK’
Bo =P e Ao=—(E[Vo(2)[E).
(60)

Using a convenient basis set, the three expressions giv
by Egs.(59) and(60) can be analytically evaluatgdee the
Appendi¥ yielding

o 2M[ 1 1
Ao (k)_? kN~ sinh(7k\) |’ 61
o, BPPM[ 1L \?
A= i+ PN gy | 62
e0_ 4 __ _ n+1
B nz’l( [(k\)2+n?] 63
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FIG. 1. The even phase shift as a function of the momentum for
three different situations. The continuous line correspond$ to
=0.14, the dotted line tp=0.31, and the dashed line tp
=0.50.

Now we can finally write down an expression for the phase
shifts A®° by substituting Egs(62) and(63) in Eq. (58). In
so doing one gets

8mM# ~?p?

oo

1+8M#A 2>, (—1)"*!
n=1

',
K\

(kN)%+n?
" 1 2kA\?%-1
3k 3 sini(kan)|’

(64)

Looking at Eg.(64) we realize that, wherea&®(k) re-
mains almost unchanged as a functiork®r p# 0 (see Fig.
1), A°(k) presents a completely different structure. In fact,
the behavior ofA°(k), within this approximation, does not
reproduce the correct values of the phase shifts for low en-
ergies. As was demonstrated by Kivslearal?° in the study
of the small-amplitude modes or fluctuations around the lo-
calized solution of the double sine-Gordon equation, there is
always an odd bound state for this kind of systems. There-

S0re, using the 1D version of the Levinson's theof&ror

one-dimensional symmetric potentials, which establishes that

e 1)
n _E ,
A°(k=0)=7n°, (65)

where n® and n® are the number of even and odd parity
bound states, we expect that®(k=0)=x/2, as it was
shown above for any finite value of andA°(k=0)= .

The existence of the even parity bound state is in com-
plete agreement with the translational invariance of the sys-
tem and corresponds to a Goldstone mode. However, the odd

Ae(k=0)=7r(
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3.0 F

Odd Phase Shift
Phase Shift

0.0 1.0

2.0 3.0 4.0 0.0
Momentum

2.0 4.0 6.0 8.0
Momentum

FIG. 2. The odd phase shift as a function of the momentum. The FIG. 3. The even and odd phase shifts wipen0.14. As can be

continuous line corresponds tp=0.14, the dotted line top seen they approach each other as the rati6A, increases. This

=0.31, and the dashed line to=0.50. means that, in the limip—0, the only difference between them
comes from the singular poink&0) in the odd phase shift contri-

phase shift calculated up to second ordepiEq. (64) goes  bution.

to 37/2 for k— 0 in contradiction with Levinson’s statement.

Clearly this wrong result is due to the impossibility of going because in evaluating the scattering mat8#), only elastic
further in analytically computingA°(k). To get the correct

terms are taken into accou(Refs. 5,6,14 and 15

behavior of the odd phase shift, numerical calculations were Having done that, one can immediately integrate this
performed in which we solved explicitly the Schlinger like  function in expressior(36) which finally allows us to de-
equation(52). As it can be seen in Fig. 2, the results are nowscribe the damping as a function of the temperature as shown
in agreement with the presence of an odd parity bound stat@ Fig. 5. As it can be seen, the damping constant is linear for
as predicted in Ref. 20. On the other hand, for large fieldhigh temperatures. This result can be obtained directly from

(small values op) the odd parity phase shift approaches theEq. (36). In fact, forT high enough the damping constant can
even parity values, as can be seen in Fig. 3, in agreemehe approximated by
with the reflectionless behavior of the nonperturbed poten-

tial. 10

Therefore, the spectrum of E3) is composed byi) the
o solution(45) corresponding to the translation mode of the ‘
wall (Goldstone modg (i) an internal mode which appears
when the system is perturbed, afiid) the ¢ solutions i

which constitute the continuum modes and correspond to L
magnons.

B. The damping coefficient

In order to find the damping coefficient we must compute
R(K). This can be done by inserting the numerical results of
the even and odd phase shifts into the general expression

\
1
L}
1
1}
)
1
1y
1
\
]
o5 i
L}
1}
1}
\
1}
1
A]
A}
A

Reflection Coefficient

R(Kk)=sir[A%(k)—A°(k)]. (66) }
In Fig. 4, we have plotted(k) for different values of the
perturbation parametgr defined by Eq.(22) for the whole
range ofk. As it can be seen the major contribution for the
reflection coefficient comes from the low-energy states, in
agreement with the well behaved potentigigl) and (55).

.

1.0 2.0 3.0
Momentum

FIG. 4. The reflection coefficient as a function of the momen-
[Notice that we have not considered the second bound statem. The continuous line fos=0.14, the dotted line fop=0.31,
of the potential(53) in computing the damping coefficient and the dashed line fgr=0.50.



926

M. A. DESPCBITO et al. PRB 62

08

14
=
T

Damping Coefficient

0.2

0.0

systematic way to calculate the mobility, basically the in-

verse of the damping parameter, of the Bloch wall as a func-
tion of temperature and magnetic field. Although we have
considered the limit of high magnetic fields, there is no rea-
son why one should not apply the same methods to the low-
field case. The only difference is that the scattering problem
with which one has to deal is more straightforward in the

high-field case.

It would be desirable to compare our results to experi-
mentally measured values of the mobility of Bloch walls in
anisotropic chainlike ferromagnets in order to shed light on
the discussion of the relevance of the spin-wave scattering to
the motion of these objects.
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which is linear onT, independently of the explicit form of

R(E). In the low-temperature regime we can write
APPENDIX

In this appendix we show how to obtain the expressions
of the even and odd spectral functio(@®) and (59). Sup-
_ pose we have a particle in a one-dimensional symmetricpo-
whereE alwgys_ presents a gap dgtermmed by the presence @fniial of the formV=V,+gV, confined to a region€L,
the magnetic field and/or the anisotropy. Here we shall not,_ L) with L much larger than the range of the potentél

attempt to write an approximate expression for E§) be- e asymptotic form of the wave, then functions fo# 0
cause the correct behavior of the reflection coefficient was, e given by

only numerically determined. As it is shown in Fig. 5, for
low enough temperatures, the damping coefficient drops ex-
ponentially to zero due to the existence of the gap. As the
temperature increases the damping coefficient rises follow-
ing a power-law behavior until it becomes linear for high
enough temperatures. On the other hand, when the ratio
anisotropy-magnetic fieldp) goes to zero, we recover the
case of the reflectionless potentidl,=0) in which the mo-
bility of the Bloch wall goes to infinity.

_ 1 3
y(T):TMS . dER(E)BEe FE, (68)

1
2)°= \[Ecos[klz|+Ae<k>],

1
|2)°= \[Esgr(z)sir{k|z|+A°<k)], (A1)

for |z|—oe. If V=0 the wave functions have the same struc-
ture as in Eq.A1) with A*°=0. Because the wave func-
VI. CONCLUSIONS tions must vanish at=*=L one realizes that

In the foregoing sections we have shown that the con- 0B, 1
tinuum approximation to treat the totally anisotropic one- A_En_ P
dimensional ferromagnet allows us to describe the Bloch
wall as the localized solution of an effective field theory. Thewhere AE,=E°,,—EJ and SE,=E,—E°. Following
advantage of this procedure is the fact that employing thelosely the prescriptions given'fhfor the 1D case, the spec-
collective coordinates method to quantize the system we reral functions(60) and (59) are given by
formulated the problem in such a way that the new Hamil-

tonian takes into account the Bloch wall-magnons collisions. o +oo .
However, one should keep in mind that for realistic systems A" (E)=— . dzM(2){(Z|E)e,o(El2)eo., =011,
our limit of large external field should never reach values (A2)

that would render the localized solutions unstable.
Finally, the formulation presented in this paper provides avhere the stateéE|z), , can be obtained by taking
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|z)
Z|E)e o= lim . A3
< | >e,0 L*}OO\/A_En ( )
Explicitly,
1 [cogkx), foreven parity
(2E)= J2mk | sin(kx),  for odd parity.
Inserting Eqs(A4) and(55) in Eq. (A2) we have
8Mp? [+ z z
e 0o__ — —
AS+A= Wﬁzkj—w seck X tant? )\)dz, (A5)

which can be easily evaluated with the substitutign
=tanhz/\, yielding

16p°M
AS+A0=——— A6
1 1 Wﬁz)\k ( )
On the other hand, we have
AS A°—8MPZJM Bl 2| tant| 2| cog 2kn)d
1A __ sech| -Jtanit| cog2kn)dz,
(A7)
that can be written as
e O—SMPZIW gl 2 #l 2] | cos2kn)d
Ao ) secft| +-| —secft| - cog 2kA)dz,
(A8)
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which can be analytically evaluatgdyielding
16p°M {1 2k2>\2}

AT—-Al= 5= A9

U R2sinhrka) 13 3 (A9)

Therefore, combining Eq9A6) and (A9) we have Eq.
(62). In the same fashion it can be shown that

4M
Aj+A=——— and Ag—Aj=———,
h 2K\ #2 sinh(rk\)
(A10)
which immediately gives Eq61). Now we can evaluate the
Cauchy principal value in Eq60) which reads

+ o

2M
€,0__

1 1
*
7k'N  sinh(mk'\)

k'dk’
k2_ k12'

(Al1)
The first term on the right-hand side of E@\11) is clearly

zero. Therefore, using the product expansion of the sig)h(
functiorf! its second term becomes

— o0

2M +oo

Bg=*—
0
wh?

where q=k/\. Going to the complex plane, the previous
expression can be analytically evaluated as

dg . n?
e k2?1 N2+ 2

(A12)

AM & (—1)"n
N

Be,0: e
0 #2 i1 (kn)2+n2

(A13)
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