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Abstract—A radar-only retrieval algorithm for soil moisture
mapping is applied to L-band scatterometer measurements from
the Aquarius. The algorithm is based on a nonlinear relation
between L-band backscatter and volumetric soil moisture and
does not require ancillary information on the surface, e.g., land
classification, vegetation canopy, surface roughness, etc. It is
based on the definition of three limiting cases or end-members:
1) smooth bare soil; 2) rough bare soil; and 3) maximum veg-
etation condition. In this study, an estimation method is pro-
posed for the end-member parameters that is iterative and only
uses space-borne measurements. The major advantages of the
algorithm include an analytic formulation (direct inversion pos-
sible), and the fact that there is no requirement for ancillary
information. Ancillary data often misclassify the surface and the
parameterizations linking surface classification to model param-
eter values are often highly uncertain. The retrieval algorithm
is tested using 3 years of space-borne scatterometer observations
from the Aquarius/SAC-D. Retrieved soil moisture accuracy is
assessed in several ways: comparison of global spatial patterns
with other available soil moisture products (two reanalysis mod-
eling products and retrievals based on the Aquarius radiometer),
extended triple collocation (ETC) and time series analysis over
selected target areas. In general, low bias and standard deviation
are observed with levels comparable to independent radiometer-
based retrievals. The errors, however, increase across areas with
high vegetation density. The results are promising and applica-
ble to forthcoming L-band radar missions such as SMAP-NASA
(2015) and SAOCOM-CONAE (2016).

Index Terms—Aquarius/SAC-D, microwave remote sensing,
radar, radar roughness, radar vegetation index (RVI), scatterom-
eter, soil moisture.

I. INTRODUCTION

S OIL moisture is an essential climate variable for meteoro-
logical, ecological, agricultural, and hydrological applica-

tions. As a state variable of the terrestrial branch of the water
cycle, soil moisture information is a relevant input in all the
process models regarding these disciplines. Microwave remote
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sensing observations can provide valuable mapping informa-
tion of soil moisture (mv). Microwave emission at L-band is
sensitive to soil moisture and is not much influenced by vegeta-
tion. However, their low spatial resolution (of the order of tens
of kilometers) makes them not suitable for agricultural appli-
cations. Although radar achieve higher resolutions, the radar
signal is more influenced by surface roughness, vegetation, and
topographic effects.

Past studies provide evidence that L-band backscatter, espe-
cially in copolarized channels, is sensitive to soil moisture.
However, it is also influenced by vegetation through volume
scattering and multiple scattering. It is also sensitive to sur-
face roughness. A major challenge for retrieving soil moisture
from backscatter observations is isolating these roughness and
vegetation contributions. Land parameter retrieval from remote
sensing observations is a typical ill-posed problem mainly
because the number of unknown parameters is higher than
the number of independent satellite observations, and because
there is no obvious relation between electromagnetic response
and land parameters. Narvekar et al. [1] and Kornelsen and
Coulibaly [2] provide a summary of existing approaches to
surface soil moisture retrieval using active microwave obser-
vations. The review identifies the major types of approaches
and lists the ancillary data needed to reduce the number of
unknowns in the retrieval. Ancillary information is all the
information derived from other than the observing system (in
this work, the Aquarius scatterometer). One approach that
stands out for surface soil moisture retrieval without extensive
ancillary data needs is the time-series approach. One possible
solution for resolving the ambiguity is proposed in Kim et al.
[3]. It is based on the assumption that there is a separation of
time scales in soil roughness and soil moisture variations. This
leads to the constraint that soil roughness is constant in a rela-
tively short time window and reduces the number of unknowns
in the retrieval when multitemporal observations are available.

Other approaches that rely on inverse scattering models
require ancillary information that may not be reliable or avail-
able at global scale. Some mv retrieval algorithms rely on
complex forward models, such as numerical Maxwell model in
three dimensions (NMM3-D) [4] and Tor Vergata active/passive
model [5], that are based on rigorous scattering theory that
links surface parameters and radar observations, and takes
into consideration several dielectric and geometric properties
of the scenes to evaluate the backscatter. However, these for-
ward models cannot be analytically inverted or used for global
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real-time retrievals because they are computationally inten-
sive. Moreover, the required ancillary information cannot be
provided at a global scale. Thus, the forward model is computed
for canonical land covers to generate loop-up tables. The choice
of dominant land classification (and hence data cube choice)
is based on an ancillary land use classification. These simpli-
fications are all error sources that will decrease the retrieval
reliability.

Other retrieval algorithms include semiempirical or empir-
ical approaches. Whereas empirical models [6], [7] estimate
the backscatter and soil parameters relation statistically from
databases acquired during field campaigns, semiempirical mod-
els are partially physically based and then use simulated or
experimental datasets to simplify the model. Examples of
semiempirical models include Oh et al. [8], Dubois et al. [9],
and Shi et al. [10]. However, these models have the drawback
of having limited applicability outside the range of data and
conditions for which they were derived.

Finally, retrieval algorithms based on artificial neural net-
works can be trained exploiting the synergy between elec-
tromagnetic scattering models and experimental data obtained
during field campaigns, such as the one described in [11].

A radar-only soil moisture retrieval algorithm is derived by
Narvekar et al. [1]. It has been evaluated using radar observa-
tions gathered in several field campaigns [1]. The algorithm
is based on the definition of three end-members: 1) smooth
bare soil; 2) rough bare soil; and 3) maximum vegetation
condition. There are global parameters associated with these
end-members. The degree of roughness and vegetation vol-
ume relative to these end-members at each location and time
determines the retrieval parameters for the data granule. These
spatially and temporally variable roughness and vegetation lev-
els are estimated from combinations of copolarized backscat-
tering channels to avoid the need for ancillary information.
Information derived from other sensors and ground sampling is
considered to be a major source of error in retrieval algorithms.
For example, land use classification derived from optical data is
not only noncontemporaneous, but requires strong assumptions
linking optical properties of a plant canopy to its microwave
electromagnetic effects. Other ancillary data sources like soil
texture classification are based on limited and sporadic ground
sample and they are categorical. In this study, we aim to develop
a radar-based surface soil moisture mapping capability that
does not need such problematic ancillary data and that can
use the radar measurements themselves to distinguish between
vegetation, surface roughness, and soil dielectric constant con-
tributions to the polarimetric backscatter measurements.

The radar-only algorithm is mathematically simple and it can
be inverted analytically, making it applicable for quick-look
and near real-time global-scale retrievals. The main drawback
of the algorithm is that it depends on global parameters that
capture limiting conditions (i.e., end-members). Narvekar et al.
tested the algorithm on field campaigns and used available
ground measurements in order to calibrate the parameter val-
ues. However, these end-member values may not apply at larger
scales, as will be shown later on in Section II-C. Therefore, in
this study, a modification of the end-member parameter estima-
tion approach is introduced in order to allow the algorithm to
be applicable at satellite sensing scales and without the use of

ancillary data. Instead of calibrating the end-members values
through ground measurements (which is not feasible at satellite
sensing scales), we introduce an iterative procedure that only
uses the radar observations. The proposed algorithm is applied
to L-band backscatter observations from the Aquarius/SAC-D
covering the globe over 3 years. The main drawback of the
Aquarius scatterometer is its coarse spatial resolution (about
100 km). The Aquarius data were used in this analysis because
it is the only spaceborne L-band radar data currently available
at three polarizations (HH, VV, and HV). This study is a proof-
of-concept for the higher resolution SMAP and the SAOCOM
L-band missions. The main scientific objective of these forth-
coming missions is soil moisture monitoring at significantly
higher resolution: SMAP from 1 to 3 km and SAOCOM bet-
ter than 1 km. Derivation of surface soil moisture information
from high resolution radars still faces the challenge to iso-
late roughness, vegetation, and soil moisture from backscatter
observations. The use of polarization information to isolate
these effects is directed toward the application of these forth-
coming missions to the surface soil moisture mapping problem.
A major shortcoming of using the coarse-resolution Aquarius
data in the proof-of-concept is that low resolution radars is
associated with a mix of scattering mechanisms within the
footprint.

The mv retrievals are evaluated using reanalysis (models
forced with micrometeorological forcing) products and a soil
moisture product based on retrieval with the Aquarius radiome-
ter, an independent estimate. Triple collocation (TC) is used to
estimate the standard deviation of errors in each of the three
surface soil moisture data sources. The retrieval algorithm also
allows the estimation of the time-varying partial contributions
of effective surface roughness, vegetation volume scattering,
and surface reflection to the total backscatter. The partitioning
information is relevant to relative index soil moisture algo-
rithms that use backscatter variations between a minimum and
maximum value to isolate surface soil moisture information in
backscatter.

The study is structured as follows. First, the radar-only algo-
rithm is briefly described in Section II-A. An overview of the
Aquarius dataset used is presented in Section II-B. Our pro-
posed modification for its initial parameter estimation is further
discussed in Section II-C. In Section III, the algorithm is eval-
uated and contrasted to available mv products considering both
spatial patterns (global temporal averaged maps) and temporal
behavior (extended triple collocation (ETC) of mv anomalies
and mv time series at selected focus regions). Finally, results
are discussed in Section IV.

II. DATA AND METHODS

A. Retrieval Algorithm

A retrieval algorithm for surface soil moisture estimation
using L-band radar observations is developed in [1]. It cap-
tures the nonlinear dependency between backscatter and mv in
a parameterized approach using the dependency

σV V ( dB) = Sensitivity ∗mλ
v + Intercept (1)

where λ is the parameter capturing the nonlinearity. The
Sensitivity and Intercept parameters depend on surface
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roughness and vegetation volume. The three parameters (λ,
Sensitivity, and Intercept) vary for each location and each
overpass depending on the local conditions related to vege-
tation and soil characteristics. In the algorithm these param-
eters are determined by scaling among three end-members:
1) smooth bare soil; 2) rough bare soil; and 3) maximum vege-
tation condition. There are global parameters associated with
these end-members. For each location and time, the locally
applicable parameters are determined by scaling between the
end-members using two radar-derived indices. The first is for
vegetation. The radar vegetation index (RVI) [12] is defined as

RVI =
8σHV

σHH + σV V + 2σHV
(2)

where σ are in linear units. RVI generally varies from 0 for bare
soil to 1, or higher, for fully vegetated areas. The RVI index is
a measure of randomness of the scatterers, hence is related to
structural components of vegetation canopies (volume scatter-
ing), which are indirectly related to vegetation water content.
The RVI index is indicative of vegetation volume scattering
only if there are no surface contributions and vegetation canopy
is composed of random infinitely long lossy dielectric cylinders
[13]. Although RVI is independent of vegetation greenness,
Yueh et al. [14] reported a high correlation (0.9) between RVI
and vegetation opacity derived using PALS radar observations.
There are some limitations of using RVI as a proxy of vege-
tation cover. First, RVI is also a function of incidence angle,
since the path length through the canopy changes with obser-
vation geometry [3]. Moreover, McColl et al. [15] reported
an overestimation of Aquarius-RVI-derived biomass over dry
regions possibly due to calibration errors on σHV . Advantages
of using RVI as a metric of vegetation cover include the follow-
ing: 1) simple index; 2) does not rely on ancillary data derived
from other observing systems; 3) temporally and spatially col-
located with the soil moisture estimate; and 4) low sensitivity
to environmental condition effects.

To avoid reliance on ancillary information of soil roughness,
Narvekar et al. introduced a new radar roughness index (RRI)
to estimate ks (with k = 2π/L, L radar wavelength, and s soil
rms height) defined as

RRI =
σHH − σs

HH

σV V − σs
V V

(3)

where σs
HH and σs

V V are Intercept for smooth bare soil.
Exploiting numerical scattering models results [16], the fol-

lowing polynomial function was fitted between RRI and ks:

RRI = 0.3034ks3 − 0.9203ks2 + 0.9989ks+ 0.3910. (4)

The polynomial fit between RRI and ks was developed using
available data library on the numerical solutions of the Maxwell
equation (see [1]). Soil surface roughness effects are only par-
tially captured with ks. The spatial correlations, e.g., also have
a strong effect. The parameter ks thus cannot capture the full
impacts of roughness on backscatter. The copolarization ratio
is not uniquely related to ks as well. RRI is a limited diagnostic
of the roughness contribution.

The retrieval algorithm depicted in (1) uses VV polarization.
Sensitivity and Intercept are based on the definition of three
limiting cases or end-members.

Sensitivity is the ratio between σ (dB) and mv variations,
and it varies with vegetation density and soil roughness.
Observations of σV V over bare soil are expected to have the
highest sensitivity to mv; Sensitivity decreases with higher
vegetation density because of signal attenuation due to the
vegetation layer [17]. Thus, it is expected that Sensitivity val-
ues will drop with RVI. Similarly, Sensitivity increases with
increasing soil roughness [18]. Some rough surface scattering
models such as the small perturbation method and the Oh model
[19] predict a decoupling between roughness and dielectric con-
stant terms, thus resulting in radar sensitivity to mv independent
on soil roughness. However, observations presented in Wang
et al. [20] and Ulaby and Batlivala [21] show that roughness
increases Sensitivity. In the latter work, it was observed that
roughness changes Sensitivity in moderate vegetation. A con-
ceptual figure of Sensitivity versus RVI and rough-to-smooth
soil transition may be drawn and it takes a shape defined by
three vertices (end-points) such as the one shown in the inset
of Fig. 1(a). The shape end-points are the Sensitivity values of
the three end-members. Bare soil end-members are at the low-
est vegetation level (RVI tends to zero). Smooth bare surfaces
(first end-member) correspond to the lowest Sensitivity end-
point on the bare soil edge of the shape. As the roughness of
the surface increases, so does the Sensitivity. Hence, the second
end-member is located in the opposite end of the bare soil edge.
Finally, over maximum vegetation regions (third end-member),
Sensitivity drops to its minimum value, thus closing the shape
at the high RVI end point.

Intercept is the backscatter expected over dry soils. Similar
to Sensitivity, Intercept σ (dB) relates to vegetation density and
soil roughness. However, unlike Sensitivity, Intercept increases
with vegetation due to backscatter contribution of the vegeta-
tion cover [17]. In the same way, soil roughness contributes to
increase σV V , and hence Intercept value. Therefore, Intercept
versus RVI should also resemble a shape defined by three ver-
tices similar to the Sensitivity shape but flipped upside down
[see inset in Fig. 1(b)].

Narvekar et al. [1] use RVI to scale the Sensitivity and
Intercept parameters between the end-members for every obser-
vation in space and time. Furthermore, they apply the estimated
roughness ks based on RRI (4) to correct for surface roughness
contributions. The resulting single-equation algorithm is

σV V = {RVIγ + (1− RVI)[1 + log(1 + ks)]Ss}mλ
v

+ RVIσvf
V V + (1− RVI)[σs

V V + C log(1 + ks)] (5)

where Ss and γ are the Sensitivities for smooth bare soil
and maximum vegetation end-members, σvf

V V and σs
V V are

their corresponding Intercepts and C is a constant value (fixed
to 13.6). Narvekar et al. [1] provide details of the algo-
rithm development. It is noteworthy that this retrieval algo-
rithm (5) is invertible and does not require any ancillary
information.
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Fig. 1. (a) Sensitivity and (b) Intercept parameters versus RVI. Sensitivity (Intercept) decreases (increases) with increasing vegetation level. Color levels represent
RRI values. Black bars indicate Sensitivity range obtained from field experiments for three end-members. 1) Smooth bare soil. 2) Rough bare soil. 3) Maximum
vegetated areas. Red dots indicate the end-points estimated using the Aquarius data. Inset figures are conceptual shapes defined by three vertices, expected from
theory.

Consequently, using (2) and (5), together with end-member
parametrization, it is possible to estimate mv and ks using
solely σHH , σHV , and σV V .

In order to test if the conceptual shapes are found in obser-
vations, the Aquarius scatterometer measurements are used.
These measurements are used for illustrative purposes only

here and will be discussed in Section II-B. Sensitivity is com-
puted at each pixel as an approximation of ΔσV V (dB)/Δmv.
At each pixel, Δmv is obtained using mv retrieved applying the
methodology explained in Section II-C.

Sensitivity varies with vegetation and soil roughness,
thus it changes over time at each pixel. The Sensitivity
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ΔσV V (dB)/Δmv is computed for each pixel and plotted
against the temporally averaged RVI for 3 years of the Aquarius
data and for all global land pixels (excluding frozen sur-
faces). These data shown in Fig. 1(a) are also color-coded with
the corresponding RRI or index of roughness. End-members
obtained by Narvekar et al. using field experiment measure-
ments are indicated in the figure as black bars that span the
range of Sensitivity optimized for each of the five campaigns.
Moreover, red large dots indicate the end-points estimated
using the Aquarius data and our proposed iterative algorithm
(see Section II-C for further details). The Aquarius data are
concentrated in a shape that resembles the conceptual inset
figure. Sensitivity approaches zero for dense canopy cover (high
RVI), as expected. For surfaces with low vegetation cover, the
more rough surfaces have greater Sensitivity magnitudes. It
is also evident that vegetation also induces increases in the
roughness parameter. Therefore, the roughness index must be
interpreted as an effective roughness that is due to both soil sur-
face and vegetation canopy volume (more discussion below in
Section III-A).

Intercept is computed at each pixel as the temporal minimum
of the Aquarius measurements of σV V (dB). Intercept is plot-
ted against mean RVI at each pixel and results are shown in
Fig. 1(b). Recall that the Intercept is the σV V (dB) expected
over dry soils, thus finding the minimum σV V (dB) at each
pixel may not be a good approximation of Intercept values for
pixels that are not dry. Moist pixels contribute to overestimate
Intercept values. Thus, pixels with minimum temporal mv val-
ues higher than 0.05 cm3/cm3 should be filtered out if there is
some previous knowledge of mv values. As will be shown in the
iterative algorithm described in Section II-C, at every iteration,
a new mv retrieval is performed and it is used in the subsequent
iteration for filtering pixels considered to be in dry state.

B. Aquarius/SAC-D

The Aquarius scatterometer provides backscattering observa-
tions at HH, HV, VV, and VH polarization with three different
beams arranged in a pushbroom configuration at different inci-
dence angles (28.8◦, 37.9◦, and 45.5◦). The radar-only soil
moisture retrieval algorithm is of particular interest for the
SMAP mission; therefore, the Aquarius middle beam (37.9◦)
was selected in this study given its proximity to SMAP’s
incidence angle (40◦). For this analysis, the Aquarius L2 ver-
sion 2.0 of radar backscatter σHH , σHV , and σV V was used
from August 25, 2011 to May 1, 2014. Observations were
screened out using quality flags provided with the data. Given
the Aquarius’s 7-day revisit period, all data were gridded at the
footprint scale using the first 7 days of footprints to define the
grid. Gridding was carried out by nearest neighbor interpola-
tion and observations with distance higher than 0.05◦ from the
grid-cell centroid were excluded. Further details on the grid are
described in [15].

C. Iterative End-Members Estimation

Using L-band backscatter observations and mv acquired dur-
ing several field campaigns (SGP99, SMEX02, CLASIC07,

Fig. 2. Conceptual flow diagram of the iterative process parameter estimation
(Intercept and Sensitivity). Note that no use of ancillary data is required.

SMAPVEX08, and SMAPVEX12), Narvekar et al. [1] cali-
brated the proposed retrieval algorithm by finding, for each field
campaign, the optimum end-member Sensitivity and Intercept
parameters that minimized the retrieved mv root-mean-square
error (RMSE). However, applying nominal end-members pro-
posed by Narvekar et al. [1] to the Aquarius dataset would
not necessarily yield consistent retrievals. The spatial resolution
and diversity of surface types are not the same between global
observations of the Aquarius and the five field campaigns.

Global calibration of the algorithm as done in Narvekar et al.
at the Aquarius footprint resolution is not feasible because
ground soil moisture data are not available at such coarse
scale. In this study, the estimation of the Aquarius end-member
parameters is performed through an iterative procedure. The
procedure again does not require ancillary information and
uses only the radar measurements. This method is applica-
ble to other radar mission data such as the SMAP and the
SAOCOM missions. The general idea behind the optimization
of the parameter values is to find the three end-points that will
place most of the data points inside the shape traced with the
prior iteration end-points (see Fig. 1). However, note that the
Sensitivity shape depends on the intra-pixel range of retrieved
mv and, consequently, on the three end-points found in the
previous iteration.

The iteration flowchart is shown in Fig. 2. The iteration pro-
cess consists of the following steps: A preliminary retrieval
of mv and ks is performed using an initial guess of the end-
members parameters and (2)–(5). Using just the pixels that are
considered dry, i.e., mv below 0.05 cm3/cm3, the temporal
minimum σV V is obtained at each pixel (σmin

V V ). The Intercept
parameters and ks are estimated by minimizing the difference
between σmin

V V at each pixel and modeled σV V considering (3)–
(5), limiting the range of ks between 0.14 and 1.5, and using the
initial guess of the Sensitivity parameters, σmin

V V , mv retrieved
and σHH measured when σV V =σmin

V V . At the final stage, Ss

and γ are estimated using (5), Intercept values estimated in
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Fig. 3. Parameter values (dB) versus iteration using random initialization of
the end-member parameters showing rate of convergence and stability when
converged. It also shows compensation between correlated parameters.

the previous step, and retrieved values of ks and mv . Given
these new Sensitivity and Intercept values, the iterative process
continues until parameters progressively converge.

The iterative nature of the methodology developed is related
to the fact that the nonlinear cost function that is minimized
depends on several free parameters, some of them are globally
constant (end-members parameters) and others change from
pixel to pixel and with time (mv and ks). However, the set of
measurements is monodimensional (σV V ). In order to examine
the robustness of the procedure, a set of random initial guess
values was tested for convergence. The range considered for
each end-member initial guess intends to extend the range of
expected end-member values from theory and field campaigns
[1]. Fig. 3 shows the iteration results for each initial guess.
Overall, the iteration converges to a stable set of global param-
eters. The final set of parameters of the thicker line plot are
used to retrieve mv and ks using the 3 years of global mea-
surements of the Aquarius. The robustness of the converged
end-member parameters to the initial guess values is further
analyzed in Section III-D.

This methodology is intended to estimate end-member
parameter values from the statistics of the backscatter data, with
the goal of retrieving mv and ks using σHH , σHV , and σV V .
The proposed iterative approach starts from a random initial
guess of the end-members and converges to the optimum end-
member values given the statistics of the dataset [red dots in
Fig. 1(a) and 1(b)]. It is evident from the results that the iteration
procedure tunes the end-member values to better accommodate
the data points inside the delineated three vertices shapes. Note
that the algorithm does not require ancillary data and is readily
applicable to other missions and airborne data.

III. RESULTS

Evaluation and validation of the retrieval algorithm pre-
sented in this study require ground-based measurements at the

Aquarius footprint scale. However, there are no ground-based
networks available that will cover such a coarse scale. As a
result, we follow alternative evaluation methods that are appro-
priate and applicable in the given conditions. Evaluation of the
performance of the radar-only algorithm is carried out by com-
paring retrieved mv (mv radar) with two soil moisture products:
1) the Aquarius L2 swath single orbit retrieval soil moisture
version 2 retrieved using the single channel algorithm and hor-
izontal brightness temperature observations (mv radiometer)
[22]; and 2) NASA global modeling and assimilation office
(GMAO) reanalysis soil moisture (referred to hereafter as mv

GMAO). The latter is the mv product derived from the SMAP
Nature Run version 3 [23], which is a variant of the MERRA-
Land (Modern-Era Retrospective Analysis for Research and
Applications) reanalysis for the satellite era [24]–[26].

The Aquarius scatterometer and radiometer observations are
simultaneously collocated, thus footprint to footprint compari-
son is straightforward. However, GMAO mv had to be gridded
to the Aquarius coarse resolution grid in order to carry out the
comparison.

We perform three-way comparisons between the products
using standard and basic approaches like scatterplots (in the
form of boxplots for ease of visualization). But because the
three data sources on the same variable (soil moisture) are
derived from nonshared sources, namely the radar instrument,
the radiometer instrument, and MERRA atmospheric forcing,
their individual random errors are independent. As a result,
TC can be used to estimate the standard deviation [27] and
correlation coefficient [28] of the radar- and radiometer-based
retrievals with respect to the unknown truth.

Fig. 4 shows direct comparison of the three mv products
in the form of boxplots. Boxplot intervals were selected so
that the majority of the boxes would have the same num-
ber of paired mv observations (approximately 200 000 data
points each). Radar mv shows a nonlinear bias toward lower
mv values as GMAO mv increases beyond 0.25 cm3/cm3,
whereas dry GMAO pixels display slightly lower values than
radar. Radiometer mv exhibits an overall negative bias when
compared to GMAO mv. Finally, when both Aquarius mv

products are compared, radiometer mv values are lower than
radar ones for mv < 0.2 cm3/cm3, and the opposite was found
for pixels with mv > 0.2 cm3/cm3. The boxplots also show
the 25 th and 75 th percentiles as well as minimum and max-
imum values in each bin. Although the medians in different
bins between all three data source pairs compare well and fol-
low monotonically (positive) relations when compared to each
other, the percentiles and extrema show that there are consider-
able errors (both noise and bias) that may depend on surface
characteristics. In order to examine the dependence on sur-
face characteristics, temporal averages of the data products are
mapped (Section III-A). TC is used to examine the standard
deviation of the random errors, and the correlation coefficient
of each product with respect to the unknown true soil moisture.

A. Temporally Averaged Results

Global spatial patterns of mv products were obtained by
temporally averaging the almost 3-years-period gridded mv
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Fig. 4. Boxplots of (a) radar versus GMAO, (b) radiometer versus GMAO, and (c) radar versus radiometer. Solid line is the 1:1 line.

observations (grid defined in Section II-B). Soil moisture mv

products analyzed include: GMAO, the Aquarius radar and
radiometer, and National Centers for Environmental Prediction
(NCEP). NCEP on the global forecast system (GFS) from the
global data assimilation system (GDAS) operational data prod-
uct at one-degree resolution is provided together with Aquarius
L2 soil moisture product collocated to the Aquarius footprints.
NCEP is an alternative to GMAO and it is introduced here to
consider the errors in the reanalysis data sources. The data are
filtered to remove suspected frozen ground conditions during
the local cold season.

Global maps of mean mv are shown in Fig. 5. NCEP exhibits
an overall low variability of (mv ∼ 0.2 to 0.35 cm3/cm3), with
a general wet bias. The wettest area according to NCEP mv

product is Amazon (mv ∼ 0.4 cm3/cm3), whereas Sahara and
Middle East are among the driest regions (mv ∼ 0.1 cm3/cm3).

For the radar algorithm, the driest regions include south-
ern Africa (Kalahari desert), central and western Australia
(Australian desert), central east region in South America,
Sahara (specially the southern area), central United States,
Patagonian desert, the Arabian peninsula, and Asian deserts

(Turkestan, Thar, and Gobi deserts). Areas such as the Amazon
and Congo are among the most moist regions in the world; how-
ever, the soil wetness condition is clearly underestimated over
these regions. This high bias is most likely related to low sensi-
tivity to mv due to signal attenuation by vegetation cover, thus
we expect the radar mv to have lower retrieval accuracy over
densely vegetated regions. Among the wettest regions are rain-
forest areas in the western coast in Canada and south Alaska,
southern Asia rainforest, Japan, northern islands in Canada,
Norway, and Siberia.

Compared to GMAO, radar mv has similar patterns and abso-
lute values over most of: North America, Europe, Asia, and
Australia. Nevertheless, a dry bias is observed at northwest
Asia, as well as a wet bias at south Asia. The highest discrepan-
cies between both mv products are observed at high vegetation
density areas such as Amazon, Congo, Indonesia, and at freez-
ing soil regions in northern Russia, where a negative bias in RVI
was reported in [15].

When considering the radiometer and radar mv spatial pat-
terns, significant discrepancies are evident in regions such as
Amazon, Congo, Alaska, north and southwest areas in Asia,
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Fig. 5. Spatial patterns (time-averaged) of radar, GMAO, radiometer, and NCEP mv (cm3/cm3) fields.

Fig. 6. Spatial patterns (time-averaged) of (a) RVI and (b) retrieved ks.

Europe, and islands in Oceania. On the whole, the global
radiometer mv map shows an apparently excessive dry pat-
tern, except in Amazon, Congo, and northwest Russia, where
maximum mv values are found.

Fig. 6 shows a global map of temporally averaged RVI
generated with backscatter observations from the Aquarius.
As previously mentioned, areas of dense vegetation (Amazon,
Congo, and Indonesia) where RVI was found to have the high-
est values were regions where radar presents a dryer mv pattern
than GMAO. The opposite was also observed: mv derived from
radar observations exhibit higher values than GMAO mv prod-
uct in areas where mean temporal RVI was lower than 0.4. It
is important to point out that in areas where RVI values are
inaccurate, these inaccuracies will translate to errors on the mv

retrieved by the algorithm developed here. This is the case for
central Sahara where RVI is nonzero due to surface roughness,
resulting in an overestimation of mv values (see Fig. 5).

A global map of temporal mean ks can also be retrieved from
the radar-only algorithm as shown in Fig. 6. The spatial patterns
appear coherent with what might be expected. Low ks values
over smooth bare soil such as desert regions (Sahara, Middle
East, western Australia, and Chile) and higher ks values over
forest regions (boreal forest at Alaska, Canada, and Russia; and
tropical rain forest at Amazon, Congo, and New Guinea). From
the ks pattern, it seems that areas with high ks correlate with
areas that have the highest GMAO and radar mv discrepan-
cies. This is not surprising since ks and mv retrievals are not
independent in the radar-only algorithm.

The ks values shown in Fig. 6 are considerably higher than
those measured in the field at the point-scale (as root-mean
square of microtopography). At L-band, ks is expected to be
about 0.25 for agricultural soil and up to three to four times
this value for extremely rough soils [29]. In particular, the
retrieved ks dynamic range is associated with the C param-
eter in (5). The C value was derived for bare soil based on
the results of numerical solutions of Maxwell’s equations [16]
and is considered fixed to 13.6. Therefore, ks should be con-
sidered as an “effective roughness,” since in the derivation of
C, no subsurface effects were considered. For instance, it was
observed by Jackson et al. [30] that subsurface rock fragments
can cause overestimation on ks values because of the multi-
ple bounce effect. Moreover, in vegetated areas, the distribution
of dielectric elements in the canopy manifests themselves as
“roughness” in the signal. Thus the roughness shown in Fig. 6
should be regarded as an effective roughness.

B. Extended Triple Collocation

To further evaluate the performance of the radar-only mv

retrieval algorithm, ETC [28] is implemented using mv anoma-
lies. ETC is an extension of the TC technique used for estimat-
ing unknown RMSE of three mutually independent error-prone
datasets in the absence of the “true” (noise-free) data source
[27]. ETC introduces an equation to TC in order to additionally
estimate the correlation coefficient of the measurement system
with respect to the unknown target dataset.
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Fig. 7. Spatial patterns of (a) radar and (b) radiometer ETC RMSE (cm3/cm3) of mv anomalies.

Fig. 8. Spatial patterns of (a) radar and (b) radiometer ETC correlation of mv anomalies.

In this study, ETC is implemented using the Aquarius radar,
radiometer, and GMAO mv anomalies. Anomalies were com-
puted by removing the multiyear seasonal climatology from the
mv time series. The climatology was computed as the moving
average of the multiyear 31-day period surrounding each day
of the year for the whole period of study [31]. Since ETC was
computed with mv anomalies, performance metrics derived
from this analysis do not consider errors in the mean seasonal
cycle.

Fig. 7 shows global maps of RMSE estimate for radar and
radiometer mv anomalies derived from ETC. Overall, very low
RMSE (<0.05 cm3/cm3) is found in both radiometer- and
radar-based retrieval datasets. As expected, regions of highest
RMSE values for radar mv correspond to areas with high RVI
(see Fig. 6), whereas areas with little to no vegetation show
considerably lower RMSE. In addition, regions such as central
United States, Brazil, Sahara, eastern Europe, and southeastern
coastal area of Asia are among the areas where radar retrievals
have a higher RMSE than radiometer. Canada, Argentina, the
southern Sahara, Australia, India, and northern Asia exhibit
the opposite behavior. It is important to highlight that these
results are quite promising since the radar’s performance is
overall similar to that of the radiometer, despite the fact that
radiometer observations are expected to be less noisy than
those of the radar, and therefore to retrieve more accurate mv

estimations. Moreover, the radiometer retrieval algorithm uses
ancillary parameters that constrain and improve mv estimation,
whereas the radar-only algorithm described in this study uses
no extra information, but only backscatter measurements.

Correlation coefficients calculated through ETC are shown
in Fig. 8. Radar mv shows higher correlation over areas includ-
ing north Asia, Canada, Alaska, most of Australia, and Central
Africa. On the other hand, regions with lowest correlation are
characterized by having extreme RVI values (bare soil: Sahara

and Middle East deserts, and maximum vegetation: Amazon).
In the case of the radiometer-based retrievals, correlation coeffi-
cients are higher than those of radar-based retrievals over south
Asia, southeast North and South America and south Africa.
Similar to the radar, radiometer correlations are lowest in areas
such as the Amazon, Sahara, and permafrost areas (Alaska and
northeast Russia).

Estimation of the precision of ETC performance metrics is
calculated through bootstrapping, a statistical significance test
that computes the sampling distribution of an estimator by
sampling with replacement from the original sample. In this
analysis, 1000 bootstrap replicates were drawn to compute ETC
metrics. The standard deviation of the ETC estimates derived
from the 1000 bootstrap samples was found to be lower than
0.01 cm3/cm3 for RMSE and 0.25 for correlation coefficient
in areas such as the Amazon, central Africa, and northeast
Asia, whereas the lowest standard deviation were observed in
Australia, Sahara, North America, and southern South America.
Given these estimation errors, the ETC metric values can be
considered highly reliable.

Global ETC performance metrics are stratified by dominant
RVI and shown in Fig. 9. Both the radar-based and radiometer-
based retrievals have comparable RMSE and correlation at
different levels of vegetation cover.

The correlation coefficient of radiometer mv anomalies
remains close to 0.8 and drops significantly for densely veg-
etated areas reaching 0.4. The correlation coefficient of radar
anomalies varies more with RVI. The differences between the
radar and radiometer correlation coefficients observed for low
RVI values but not for the equivalent RMSEs highlight the
importance of validating with multiple metrics. Since the radar
and radiometer RMSEs are similar for low RVI values, the dif-
ferences in correlation coefficients are likely due to differences
in sensitivity to soil moisture between the radar and radiometer
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Fig. 9. Statistics [correlation and RMSE (cm3/cm3)] derived from ETC stratified by vegetation level (RVI) (upper panel) and number of pixels in each
stratification (lower panel).

Fig. 10. Focus regions location map.

under low vegetation conditions (see (10) of [27]). The quali-
tative similarity between the RVI-sample size curve [Fig. 9(b)]
and the RVI-rho radar curve [Fig. 9(a)] suggests part of the dif-
ference between radar and radiometer correlation coefficients
at low RVI values may, therefore, be due to underestimation
of the radar product’s Sensitivity parameter. It can be seen
from the figure that radar and radiometer RMSE exhibit simi-
lar behavior. RMSE increases with increasing RVI, from 0.015
cm3/cm3 to 0.03 and 0.04 cm3/cm3, for radar and radiometer,
respectively.

C. Focus Regions Time Series

In addition to the global spatial analysis of mv products, a
diverse number of target regions around the world are selected
for closer evaluation of the temporal behavior of mv at the sites.
The locations of the eight selected sites are shown in Fig. 10.

Target sites include both sparse and dense vegetation areas,
and soils in dry and wet conditions. In each focus region,
radar, radiometer, and GMAO mv were weekly averaged.
Results are shown in Fig. 11 (lower panels). Average MERRA
daily rainfall is also included as vertical bars (black) on the
time-axis.

Overall, the three mv products capture well the precipitation
peaks in all focus regions. Furthermore, time series in most of
the regions correlate strongly with each other. However, some
discrepancies are observed. For instance, although the radar
mv’s dynamic range in the Amazon follows the seasonality of
rain events, it exhibits a dry bias with respect to the remain-
ing two datasets. Note that over densely vegetated regions, it is
expected for radar retrieval to have poor performance, since the
backscatter signal may not penetrate the dense canopy to the
ground at L-band and volume scattering is dominant (further
discussion below, after the introduction of the upper panels in
Fig. 11).

The upper panels in Fig. 11 partition the total VV polariza-
tion signal measured by the Aquarius scatterometer into the
constitutive components as predicted by the retrieval algorithm.
The black line is weekly mean σV V (dB) observations from the
Aquarius, brown, and green shading represent roughness and
vegetation effect on contributions to σV V , and red to blue col-
ors indicate soil moisture contribution to σV V , from 0.02 to 0.5
cm3/cm3, respectively. Contributions were isolated by using

(5) and assumptions on RVI and mv . The roughness effect is
computed when mv = 0.02 cm3/cm3 and RVI = 0. Hence, the
roughness contribution is

σks
V V = [1 + log(1 + ks)]Ss ∗ 0.020.3 + σs

V V + C log(1+ks).
(6)
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Fig. 11. Focus regions time-series of σV V (upper panels) and mv (lower panels). Upper panels: color shading represents roughness (brown), vegetation (green)
and soil moisture (blue to red) contributions to σV V . The black line is σV V observations from the Aquarius. Lower panels: radar (red), radiometer (green) and
GMAO (blue) mv time series, and average daily rainfall (black bars) obtained from GMAO.
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The vegetation effect added to the roughness contribution was
obtained by considering mv = 0.02 cm3/cm3, thus

σRVI+ks
V V = {RVIγ + (1− RVI)[1+ log(1+ks)]Ss} ∗ 0.02λ

+ RVIσvf
V V + (1−RVI)[σs

V V + C log(1+ks)].
(7)

Finally, the soil moisture contribution is accounted for by rang-
ing mv values from 0.02 to 0.5 cm3/cm3 in (5). The ability
to isolate the time-varying contributions of volume scattering
and effective surface roughness to the total backscatter signal
shown in Fig. 11 can also be used to define the normalizing
ranges of index algorithms used to estimate relative soil satu-
ration [32]. Exploiting the multiangular characteristic of ERS
system, Wagner et al. [32] perform a sensitivity analysis of
σ to vegetation at different incidence angles. They developed
an mv retrieval algorithm for ERS based on a relative mois-
ture content index, and it was adopted afterward in the ASCAT
operational mv retrieval. Similar to the mv retrieval algorithm
developed here, it relies on the existence of limiting cases (bare
and vegetated soils in dry and wet conditions) during a calibra-
tion period, and the mv retrieved is relative to these extreme
cases. However, there are several assumptions in [32] that are
significantly different from the hypotheses of the methodology
developed here, including: 1) a linear relation is considered
between σ(40◦) (dB) and mv; 2) soil roughness and land cover
are temporally invariant; and 3) vegetation phenology influ-
ences σ identically from year to year, and is represented by a
single harmonic of annual cycle.

Returning to the Amazon focus-region, it is evident that
volume scattering by the dense vegetation is by far the domi-
nant signal and dominant contributor to the backscatter cross-
section. The effect of surface reflectivity and soil moisture is
close to the noise level of the instrument. As a result, the
retrieval algorithm performance under dense vegetation cover
is suspect.

The sharp discontinuities in the Central Asia and
SMAPVEX12 time-series correspond to freeze/thaw events.
The pixels with suspected frozen conditions must be filtered or
else they become a major source of error and inconsistency.

A different situation was found in the Pampas region, where
radiometer mv displayed the highest dynamic range, whereas
GMAO and radar time series are more similarly related.

In areas such as east Africa, Nordeste, SMAPEx, and central
Asia, GMAO mv behaves as an upper limit envelope with the
lowest variability, while the remaining mv time series are in
good agreement with each other.

Note that of all the sites, SMAPVEX12 was the one that
displayed the highest degree of discrepancy between the three
products: whereas GMAO mv exhibits low to almost no
dynamic range, radiometer mv has the highest sensitivity to
rain peaks and radar mv appears to have an overestimated sen-
sitivity to low rain events at the beginning of the period under
study. The SMAPVEX12 focus region is an agricultural area
with strict management of the vegetation with planting and har-
vest events. The GMAO land surface model does not take into
account such rapidly changing vegetation conditions. Fig. 11
shows that during the crop growth season (mid-summer) both

the radar- and radiometer-based retrievals follow each other
closely and show a marked drydown as growing crops take
up soil moisture. The GMAO estimates of the SMAPVEX12
soil moisture time-series, however, exhibit a much slower dry-
down during the summer months most likely because the
rapidly changing vegetation is not included in the landsurface
modeling.

In the West Africa time series, it is evident that rain events
precede vegetation growth. Backscatter is affected by both
the growing vegetation and the soil moisture. Therefore, dur-
ing the decaying phase of σV V when vegetation contribution
starts to increase, soil moisture contribution is distorted approx-
imately following vegetation contribution. This behavior tends
to alter the vegetation effect on the signal, making the retrieved
mv decrease more rapidly than σV V . Over the West Africa
region, the radar mv signal time-series matches the one of the
radiometer mv .

Furthermore, as expected, vegetation contribution to σV V is
of most importance in the Amazon, Nordeste, and East Africa,
in that order.

In addition, the vegetation contribution captures crop
seasonality in agricultural areas such as Pampas and
SMAPVEX12 (phase-shifted because of the North/South hemi-
sphere difference).

D. Robustness of the Iteration Procedure to Initial Guess
Values

All results shown so far were obtained for mv retrieved
using the converged end-member parameters considering as ini-
tial guess values the end-members derived from SMAPVEX08
datasets [1]. However, in Section II-C, it was shown that dif-
ferences among the initial guess parameters of the iteration
procedure leads to different converged end-member values.
Although in Fig. 3 the convergence of the Sensitivity end-
members (γ and Ss) may not seem robust, converged Intercept
end-member values are fairly stable. This feature is impor-
tant because ks is estimated using σs

HH and σs
V V . Thus, ks

estimation proves to be robust to changes in initial guess values.
Given that the relative dynamic of observed σV V is related to

ks and mv, and not to global end-member parameters, having
different Ss and γ values will mostly impact mv as a scale fac-
tor. To examine the bias between retrieved mv using different
initial parameters, the standard deviation across the ensemble
of temporal mean mv is shown in Fig. 12. In particular, differ-
ences are larger at areas with higher RVI, where differences in
γ have higher impact on retrieved mv , and where mv retrieval
is expected to have larger RMSE. Thus, the impact of γ on the
mv retrieval is larger than Ss, even if Ss convergence may seem
less robust (see Fig. 3).

To further examine the robustness of mv dynamics to
converged end-members, we analyzed the standard deviation
across the ensemble of the mv anomalies. Standard deviation
across the ensemble of mv anomalies captures the uncertainty
introduced into the mv retrievals by uncertainties in the exact
values of the end-member converged parameter sets. The inset
figure in Fig. 13 shows a histogram of the ensemble stan-
dard deviation across all pixels and all times. The differences
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Fig. 12. Standard deviation across ensemble of temporal mean mv . Ensemble
of retrieved mv is obtained by using different converged end-member values
when initializing the iteration procedure with different random guess values.

Fig. 13. Histogram of the standard deviation across ensemble of mv anoma-
lies (inset figure) and map of its temporal mean at each pixel. Ensemble of
retrieved mv is obtained by using different converged end-member values when
initializing the iteration procedure with different random guess values.

between mv anomalies obtained with the set of end-members
are significantly small, much smaller than the ETC RMSE
values shown in Section III-B. These results imply that the
retrieved mv anomalies are robust to initialization of the iter-
ation procedure. Moreover, a map of the temporally averaged
standard deviation across the mv ensemble at each pixel is
shown in Fig. 13. Areas characterized by larger impact of ini-
tial end-members on mv anomalies are also areas with high
ETC RMSE. However, the magnitude of ETC RMSE is signif-
icantly higher than the ensemble standard deviation. Therefore,
uncertainty of the end-member converged parameter values is a
minor contributor to the total ETC RMSE.

IV. CONCLUSION

An implementation of the L-band radar-only soil moisture
retrieval algorithm developed by Narvekar et al. [1] with 3
years of global scatterometer measurements from the Aquarius
is presented and evaluated using two independent datasets. The
algorithm has a simple architecture and derivation. It is based
on the definition of three limiting cases, i.e., end-members:
1) smooth bare soil; 2) rough bare soil; and 3) maximum vegeta-
tion. Parameters for these end-members are global and specific
to the L-band radar (owing to resolution, view-angle, etc.). Two
radar-derived indices, namely the RVI and the RRI, are used to
modulate the parameters for each location at each overpass time

among the global end-members. Since the RRI, the RVI and the
retrieval algorithm require only radar data, the algorithm is free
of the need for ancillary information. Ancillary information,
such as land classification and the vegetation and roughness
parameters derived from it, is highly uncertain and a major
source of error. The classifications are mostly based on opti-
cal measurements and not indicative of microwave effects of
surface conditions. The proposed algorithm is simple to apply,
it can be analytically inverted and most importantly, it does not
require any ancillary source of information.

In this paper, an estimation procedure for the end-member
parameters is developed in order to apply the algorithm to
global space-borne backscatter observations. It performs an
iterative search for the optimum parameters that minimize the
difference between the observed and estimated σV V values.
Graphically, the methodology attempts to find the three end-
points that would best fit all data points in a shape defined by
three vertices in the Sensitivity and Intercept versus RVI plots
(see Fig. 1).

Evaluation of the algorithm is carried out using 3
years of global L-band scatterometer observations from the
Aquarius/SAC-D. The iterative procedure converges to sta-
ble global parameters values (five in number) to retrieve mv .
Several approaches to the evaluation of the mv retrievals are
followed: 1) mean temporal mv maps are computed for spatial
pattern evaluations and comparison with available mv prod-
ucts (NCEP, GMAO, and the Aquarius radiometer); 2) ETC is
implemented to derive performance metrics (RMSE and cor-
relation coefficient); and 3) mv time series are analyzed over
selected focus regions.

Overall, the radar- and radiometer-based mv RMSE are com-
parable (<0.05 cm3/cm3). There is a tendency for radar-based
retrieval RMSE to increase with RVI. Correlation coefficients
are higher for radar-based retrievals at moderate vegetation
areas. The radar mv correlation values are lower than those for
the radiometer, over light to moderate vegetated areas. Possible
sources of the performance shortfall include the following,
which could be the focus of follow-on studies. The two bare
soil end-members are not so clearly defined as the maximum
vegetation end-member. There are not many points with RVI
close to 0 at the Aquarius footprint scale and at different rough-
ness conditions. Moreover, data points at this edge of the shape
are rather sparse. Second, low vegetation regions (where σHV

is very low) are prone to have strong positive biases in RVI due
to its high sensitivity to additive cross-polarized calibration bias
[15].

When RVI increases, σV V sensitivity to mv decreases.
Therefore, densely vegetated areas are expected to have larger
errors of mv retrieval. This is the case for the Amazon rain-
forest where a strong dry bias is observed, probably related to
low accuracy in the estimated Intercept. Given the observed
compensation between the parameter values during the itera-
tive calibration process, errors of the estimated Sensitivity might
lead to errors in the Intercept.

As a final comment, the radar-only retrieval algorithm accu-
racy is comparable to the radiometer-based one. This is quite
promising because the advantage of radar in the context of
forthcoming missions (SMAP and SAOCOM) is higher spatial
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resolution. Furthermore, the algorithm does not require ancil-
lary information, which may be unavailable or error-prone. In
contrast, the radiometer retrieval uses ancillary information, in
particular, MODIS normalized difference vegetation index, a
land cover map and NCEP GFS soil surface temperature.
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