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We analyze the results of the most general measurement on two copies of a quantum state. We show that

by using two copies of a quantum state it is possible to achieve an exponential improvement with respect

to known methods for quantum state tomography. We demonstrate that � can label a set of outcomes of a

measurement on two copies if and only if there is a family of maps C� such that the probability Probð�Þ is
the fidelity of each map, i.e., Probð�Þ ¼ Tr½�C�ð�Þ�. Here, the map C� must be completely positive after

being composed with the transposition (these are called completely copositive, or CCP, maps) and must

add up to the fully depolarizing map. This implies that a positive operator valued measure on two copies

induces a measure on the set of CCP maps (i.e., a CCP map valued measure).
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One of the postulates of quantum theory tells us how to
compute probabilities for the outcomes of measurements:
If the system was prepared in the state �, for every outcome
� of a measurement there is a projector P� such that the

probability of occurrence of � is the expectation value of
the projector P� in the state �, i.e., Probð�Þ ¼ Trð�P�Þ.
To represent mutually exclusive outcomes the projectors
must be orthogonal and they must add up to the identity to
ensure that the total probability is unity (i.e., P�P� ¼
���P�,

P
�P� ¼ I). This postulate, originally formalized

by von Neumann [1], was extended in the 1970s [2] when
the notion of generalized measurement was introduced. In
such measurement a positive operator A� (not necessarily a

projector) is associated with every outcome � and the
probability of occurrence of � is Probð�Þ ¼ Trð�A�Þ.
The operators A� add up to the identity and define a so-

called positive operator valued measure (POVM).
Neumark’s theorem [3] establishes that POVM measure-
ments are equivalent to projective measurements for an
extended system: Any POVM can be implemented via a
projective measurement on the original system supple-
mented with an appropriately chosen ancillary system.

In this Letter we analyze the predictions of quantum
theory concerning the results of measurements performed
when two identically prepared quantum systems are simul-
taneously available. More precisely, we assume that a

source produces the state �ðA;BÞ ¼ � � � (A and B label
two systems prepared in the same state �). Our goal is
twofold: (a) to determine the possible distributions for the
measurement outcomes and (b) to present a solution to the
problem of efficient universal state tomography using cop-
ies. We divide the presentation in two parts. First we prove
the following theorem [completely copositive map valued
measure (CCPMVM)]: Given two systems prepared in the
same state �, � can label a set of possible outcomes of a

measurement on �ðA;BÞ ¼ � � � if and only if there is a

family of completely copositive (CCP) maps C� such that

the probability of occurrence Probð�Þ is the fidelity of the
mapC�, i.e., Probð�Þ ¼ Tr½�C�ð�Þ�. The maps satisfy the

condition
P

�C� ¼ E, where E is the map for which

Eð�Þ ¼ I for any state �. Moreover C� must be CCP which

means that the composition of C� with the transposition

must be completely positive. The theorem establishes a
connection between families of CCP maps and measure-
ments with copies: A measurement on two copies defines a
CCPMVM and vice versa. In the second part of this Letter
we establish the tomographic power of this type of mea-
surement: We show that availability of two copies gives an
exponential advantage in solving the problem of quantum
state tomography enabling us to construct a universal
quantum state detector to efficiently estimate partial puri-
ties and other interesting quantities.
Let us prove the CCPMVM theorem. For this, we take

advantage of the existence of a one-to-one correspondence
between linear operators on the space H � H and linear
superoperators on the space H (a superoperator on H is a
map on the space of operators overH). This is the so-called
Jamiołkowski isomorphism [4] which establishes that for

every superoperator ~C on H there is an operator Ĉ on
H � H and vice versa. The correspondence is realized by

the following identity: Ĉ ¼ ð ~C � IÞðjIihI jÞ where jIi is
the unnormalized maximally entangled state jIi ¼ P

ijiii.
The isomorphism relates positive Hermitian operators on
H � H with completely positive Hermitian superoperators
on H. In particular, the identity operator is associated with
the completely depolarizing superoperator E for which the
image of every trace one operator is the identity. Using this
isomorphism the CCPMVM theorem can be proved as
follows: An outcome � of a generalized measurement on

two copies prepared on the state �ðA;BÞ ¼ � � � is charac-

terized by a positive operator Ĉ�. The probability of such

outcome is Probð�Þ ¼ Trð� � �Ĉ�Þ. Jamiołkowski iso-

PRL 103, 040404 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JULY 2009

0031-9007=09=103(4)=040404(4) 040404-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.040404


morphism ensures that for every positive operator Ĉ� there

is a completely positive superoperator ~C� such that

Probð�Þ ¼ Tr½� � �ð ~C� � IÞðjIihI jÞ�. By replacing the

explicit form of the state jIi, the trace over the second
copy can be computed and the probability Probð�Þ can be

rewritten as Probð�Þ ¼ Tr½� ~C�ð�TÞ�, where �T denotes

the usual transposition of �. Therefore, the probability of
every outcome of a generalized measurement is Probð�Þ ¼
Tr½�C�ð�Þ� where C� ¼ ~C� �T , with T denoting the

transposition as a map. Jamiołkowski isomorphism ensures

that ~C� is completely positive, which implies that C� is

completely copositive. Moreover, as the POVM operators

Ĉ� add up to the identity, the corresponding superoperators
~C� must add up to the completely depolarizing map. The

relation E �T ¼ T � E ¼ E completes the proof of the
CCPMVM theorem. This theorem shows that the fidelity of
certain families of positive superoperators has a direct
physical meaning as it can be realized as the probability
of a generalized measurement.

The following example is particularly significant.
Consider two copies of the state � of an n-qubit system:

�ðA;BÞ ¼ � � � and perform a Bell measurement on all
pairs formed by the jth qubit of each copy as shown in
Fig. 1. In what follows we will find the CCPMVM asso-
ciated with this simple measurement. We use the following
notation: We expand � in terms of generalized Pauli op-
erators as � ¼ P

q;pcq;pTðq; pÞ=N, where N ¼ 2n. Here

q ¼ ðq1; . . . ; qnÞ and p ¼ ðp1; . . . ; pnÞ are binary n-tuples
and Tðq; pÞ are n-fold tensor products of the identity
and the Pauli operators on each qubit: Tðq; pÞ ¼
Xq1Zp1 � � � � � XqnZpnðiÞqp (here qp ¼ P

kqkpk). Real
coefficients cq;p are such that cq;p ¼ Tr½�Tðq; pÞ�.

The outcomes of all Bell measurements can be collected
in two binary n-tuples (a; b) where (ak; bk) identify the
state j�ak;bki detected at site k ¼ 1; . . . ; n (Bell state

j�ak;bki is an eigenstate of Xk � Xk and Zk � Zk with

eigenvalue ð�1Þak and ð�1Þbk , respectively). The probabil-
ity of occurrence for every possible outcome Probða; bÞ
turns out to be Probða; bÞ ¼ P

q;pð�1Þaqþbpþqpc2q;p=N
2.

These probabilities are, as the CCPMVM theorem ensures,
the fidelities of CCP maps. Indeed, one can show that
Probða; bÞ ¼ Tr½�Ca;bð�Þ�, where the corresponding map

is Ca;bð�Þ ¼ Tðb; aÞ�TTðb; aÞ=N. The CCP character of

these maps is evident since they are obtained as the com-
position of the transposition with a completely positive
superoperator. For the simplest case of a single qubit,
where the coefficients c1;0, c1;1, and c0;1 are the three

Cartesian components of the Bloch vector ~p parametrizing
the state as a linear combination of the three Pauli opera-
tors: � ¼ ðI þ ~p � ~�Þ=2. Then, the maps Ca;b are such that

Ca;bð�Þ ¼ ðI þ ~pa;b � ~�Þ=4. These operators are propor-

tional to states with polarization vectors ~pa;b ¼
ð�1Þapxx̂þ ð�1Þaþbþ1pyŷþ ð�1Þbpzẑ. Therefore, the

map C1;1, corresponding to the singlet j�1;1i, realizes a

full inversion on the Bloch sphere. The other Bell states
have maps corresponding to reflections about the three
Cartesian planes (where one Cartesian component of ~p
changes sign [5]). Adding these four maps we obtain
the fully depolarizing one. Probabilities for the four Bell
measurements are quadratic in the components of ~p:
Probða; bÞ ¼ ð1þ ~p � ~pa;bÞ=4.
We can now show an important result of this Letter: The

measurement described in Fig. 1 can be used to devise an
efficient strategy for quantum state tomography (QST)
[6,7]. The goal of QST is to extract information about the
state � ¼ P

q;pcq;pTðq; pÞ=N. As there are N2 unknown

coefficients, full QST is always a hard task. Moreover, a
naive approach (like measuring all Pauli operators on each
qubit) would require the use of N2 different experimental
setups. In addition, some tomographic methods would
require us to repeat the experiments an exponentially large
number of times in order to estimate any coefficient cq;p
with fixed precision. Here, we will show that if two copies
are available at each time the complexity of QST is dras-
tically reduced. Thus, we will extend previous results [8–
13] showing that with two copies of a quantum state we
could use just a single experimental setup for QST (a so-
called ‘‘universal state detector’’). More importantly, we
will show that in order to gather the information to estimate
every coefficient c2� with fixed precision we need to repeat
the experiment a number of times that is independent of the
number of qubits and is only fixed by the required preci-
sion. For this purpose we can proceed as follows: After
performing the Bell measurements described in Fig. 1 we
can multiply the detected values of the suitable operators
Xj � Xj and Zj � Zj to obtain the value of any Pauli

operator of the form Tðq; pÞ � Tðq; pÞ. In this way we
can estimate jcq;pj by evaluating the expectation value of

the above operator and using the fact that

hTðq; pÞ � Tðq; pÞi��� ¼ c2q;p: (1)

Moreover, the number of experimental runsME required to
estimate any jcq;pj with fixed precision is independent of

the number of qubits and is only fixed by the precision.
This can be seen as follows: First, we notice that every
measurement yields binary values for Tðq; pÞ � Tðq; pÞ.
The central limit theorem implies that after ~ME repetitions,FIG. 1. Proposed scheme for full state tomography.
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the average ~c2q;p has a standard deviation �q;p satisfying

�q;p � 1=
ffiffiffiffiffiffiffiffi
~ME

q
. Thus, there is a number k such that c2q;p 2

½~c2q;p � k�q;p; ~c
2
q;p þ k�q;p� with probability p. Therefore,

with the same probability p, jcq;pj will be found in an

interval centered at j~cq;pj with a width
k�q;p

2j~cq;pj . On the other

hand, if one wants to estimate each jcq;pj larger than a fixed
� with an uncertainty �, and obtain a correct value with
probability p, the number of required repetitions is ~ME �
k2=4�2�2 where k is chosen to satisfy p ¼ erfð kffiffi

2
p Þ. Thus,

the number of repetitions does not depend on n but only on
the precision �, the minimum measurable value � and the
probability of success p. This implies that the method is
‘‘quantum efficient’’ as the number of quantum resources
(i.e., copies of the state, measurements, etc.) is constant
given a required precision. However, classical resources to
determine every cq;p are still exponential in n due to the

fact that there are N2 such coefficients. This strategy
determines cq;p up to a sign. Once the coefficients satisfy-

ing jcq;pj � � are known, it is possible to directly deter-

mine each sign using ordinary tomographic methods (of
course, it is not possible to do that efficiently if the co-
efficients are exponentially small or the number of such
coefficients is exponentially large).

It is important to notice that the setup of Fig. 1 is a
universal quantum state detector that, as opposed to pre-
viously proposed ones, is efficient. Indeed, the detector is
universal and efficient since it is a single experimental
apparatus that can be used to estimate any set of coefficient
cmn with fixed precision investing resources that scale as a
polynomial of n. Universal state detectors that use ancil-
lary systems prepared in a given state �0 (which is not
related with the state �) were introduced before [14].
However, as we will show now, these detectors are in-
efficient. The way such detectors work is as follows: We

prepare the ancillary system in the state �0 ¼P
q;pc

ð0Þ
q;pTðq; pÞ=N and perform joint Bell measurements

on every pair of qubits (as in Fig. 1). As the system-ancilla
ensemble is in state � � �0, we have

cq;pc
ð0Þ
q;p ¼ hTðq; pÞ � Tðq; pÞi���0

: (2)

Therefore, knowing cð0Þq;p and measuring the expectation
value appearing in (2) we can determine cq;p. Clearly, the

method is such that we can determine cq;p only if the

corresponding cð0Þq;p is nonvanishing. Moreover, the smaller

the value of cð0Þq;p, the higher the precision required in the
estimation of hTðq; pÞ � Tðq; pÞi���0

. Thus, a truly univer-

sal detector would require all coefficients to be nonvanish-
ing, but in such a case they would all be very small. This is
the origin of the inefficiency. More precisely, consider first

a state for which jcð0Þq;pj are maximal. This is the case for the
so-called stabilizer states [defined as common eigenstates
of a commuting set of N Pauli operators Tðq; pÞ’s]. For

such a state there are N nonvanishing coefficients cð0Þq;p’s
taking values equal to �1. For such �0 the detector can
only be used to estimate N cq;p’s providing no information

about the N2 � N remaining ones, denying its universality.
On the other hand, all the coefficients could be estimated

using a state �0 with nonvanishing c
ð0Þ
q;p for all ðq; pÞ’s. The

problem for such unbiased �0 is that all cð0Þq;p’s are expo-

nentially small. The reason for this is that
P

q;pc
ð0Þ2
q;p =N �

1. Therefore, each coefficient cð0Þq;p isOð1= ffiffiffiffi
N

p Þ. Then, if we
use (2) to estimate them with fixed precision, we need
exponentially high precision in the estimation of the ex-
pectation value hTðq; pÞ � Tðq; pÞi. For this reason the
method is inefficient (the universal detector would have
to be used an exponentially large number of times to
achieve a fixed precision). Clearly, the use of a copy
instead of an ancilla provides a simple way out of this
problem.
Full quantum state tomography is always exponentially

hard as the number of unknown parameters scales as 4n.
Therefore, it is crucial to conceive efficient methods for
partial characterization of quantum states. Remarkably, the
strategy described above is also a solution for this problem.
To see this we consider ‘‘coarse-grained’’ Bell measure-
ments: For any Bell state j�m;ni we can estimate the

probability to detect an even (odd) number of them in the
measurement of all pairs. Then, we can compute
�Probm;n ¼ Probðeven #j�m;niÞ � Probðodd #j�m;niÞ. It

is simple to show that �Probm;n ¼ Tr½Om;nð�Þ�� where

the (not necessarily positive) map Om;n is such that

�Probm;n ¼ 1

N

X
q;p

sq;pc
2
q;p: (3)

Here, the N2 components of the vector sq;p are sq;p ¼
ð�1Þðmþ1Þð�xþ�yÞð�1Þðnþ1Þð�zþ�yÞ, where �x (respectively,
�y, �z) denotes the number of qubits for which the Pauli

operator Tðq; pÞ contains an X (respectively, Y, Z) opera-
tor. For example, for the singlet j�11i, sq;p ¼ 1 for every�.

For any other Bell state half of the components of sq;p are

equal to þ1 and the other half are equal to �1. For the
singlet the above formula reduces to

�Prob1;1 ¼ 1

N

X
q;p

c2q;p ¼ Trð�2Þ: (4)

Thus, this measurement reveals the purity of the state.
Partial purities can be detected in the same way:
Consider the state �J, obtained after tracing out the qubits
for which the binary n-tuple J is zero. Purity of such state is
the sum of c2q;p for the coefficients associated with Pauli

operators containing the identity in the qubits for which the
corresponding component of J is zero. To obtain it we must
use (4) counting singlets only in the qubits where the
corresponding bit of J is equal to unity. The above method
for estimating purity is equivalent to the one proposed by
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Ekert et al. who used the fact that purity is equal to the

expectation value of the swap operator in the state �ðAÞ �
�ðBÞ [15]. But our results also show that, by making more
general coarse-grained Bell measurements, we are not only
able to efficiently detect partial purities. In fact, with the
same effort we reveal other quantities that partially char-
acterize the quantum state and have the form �PS ¼
ðPðq;pÞ2Sc

2
q;p �

P
ðq;pÞ2 �Sc

2
q;pÞ=N, where fS; �Sg is a partition

of the N2 coefficients cq;p in two halves. It is possible to

generalize this even further by grouping Bell states in each
pair of qubits (in this case one can attain linear combina-
tions with vectors sq;p that have a different number of �1

components). Other weighted sums of squares of c� over
certain sets of ðq; pÞ’s can also be obtained in this way.

It is interesting to consider another related coarse-
grained Bell measurement: we can estimate the probability

pðallÞ
m;n to find all pairs of qubits in the subspace orthogonal to

j�m;ni. For the case of the singlet this is related to the

multipartite concurrence that for a pure n-qubit state is [12]

C ð�Þ ¼ 21�n=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n � 2Þ �X

l

Trð�2
l Þ

s
: (5)

Here the n-tuple l labels every nontrivial subset of the n
qubits. As noticed in [13], this can be rewritten as

C ð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pðallÞ

1;1

q
; (6)

therefore, concurrence of a pure state can be es-
timated efficiently using the type of coarse-grained
Bell measurements we described above. The probability

pðallÞ
1;1 is also a quadratic form of the coefficients cq;p:

pðallÞ
1;1 ¼ P

q;pc
2
q;p3

�0=N2, where �0 is the number of

qubits for which Tðq; pÞ contains a factor equal to the

identity. More generally, if we measure pðallÞ
m;n , we ob-

tain a quantity that is not a concurrence but pro-
vides different tomographic information. It can be ex-

pressed as pðallÞ
m;n ¼ P

q;pc
2
q;pfq;p=N

2, where fq;p ¼
3�0ð�1Þðmþ1Þð�xþ�yÞþðnþ1Þð�zþ�yÞ.

As we mentioned, for an efficient partial QST it is
necessary to estimate differences between probabilities
such as in (3). Such probabilities, as the CCPMVM theo-
rem states, are fidelities of CCP maps. Thus, the right-hand
side of Eq. (3) can be expressed as the fidelity of a map
which is the difference between two CCP maps: �Pm;n ¼
Tr½�Om;nð�Þ� (Om;n is not CCP). One of such maps is the

identity, which is not CCP since it is not completely
positive after being composed with the transposition. For
that case, one finds�P1;1 ¼ Trð�2Þ. Thus, purity can never
be evaluated as the probability of a generalized measure-
ment but only as the difference between them. In turn,
fidelities of positive maps that are not CCP can be related
via the Jamiołkowski isomorphism with expectation values
of Hermitian operators (not necessarily positive). Such

Hermitian operator can be written as the difference be-
tween two positive operators. For the above example,
where the positive map is the identity, it turns out that
the nonpositive operator is the one implementing the swap
between the two copies as the well-known identity
�P1;1 ¼ Trð�2Þ ¼ TrðSWAP� � �Þ shows.
Summarizing, we showed that by performing general

measurements on two copies of a quantum state one always
detects probabilities that are fidelities of completely co-
positive maps. Interestingly, this tells us that certain quan-
tities (like purity) can never be directly obtained as the
probability of a given outcome of such measurements
whereas other quantities could. Moreover, we showed
that the use of two copies of a quantum state gives an
exponential advantage for quantum state tomography by
enabling the construction of a universal state detector.
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