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Optimal control of many-body quantum dynamics: Chaos and complexity
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Achieving full control of the time-evolution of a many-body quantum system is currently a major goal in
physics. In this work we investigate the different ways in which the controllability of a quantum system can
be influenced by its complexity, or even its chaotic properties. By using optimal control theory, we are able to
derive the control fields necessary to drive various physical processes in a spin chain. Then, we study the spectral
properties of such fields and how they relate to different aspects of the system complexity. We find that the
spectral bandwidth of the fields is, quite generally, independent of the system dimension. Conversely, the spectral
complexity of such fields does increase with the number of particles. Nevertheless, we find that the regular or
chaotic nature of the system does not affect significantly its controllability.
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I. INTRODUCTION

The precise manipulation of nano and sub-nanoscale physi-
cal systems lies at the heart of the ongoing quantum revolution,
by which new communication and information technologies
are expected to emerge [1,2]. In this context, amazing progress
has been made in the study of nonequilibrium dynamics of
many-body quantum systems, both theoretically and experi-
mentally [3,4]. A wide range of different phenomena has been
closely studied in recent years, such as many-body localization
[5,6], relaxation [7–9], thermalization [10–12], and quantum
phase transitions [13,14], among others.

Understanding the dynamics of such complex quantum
systems is the first step towards the ultimate goal: the ability to
engineer its complete time evolution using a small number of
properly tailored control fields. To tackle this problem, optimal
control theory (OCT) [15,16] emerges as the natural tool. Rou-
tinely used in various branches of science [17], optimization
techniques allow one to derive the required shape for a control
field ε(t) that optimizes a particular dynamical process for
a quantum system described by a Hamiltonian, H (ε). For
example, a typical goal in quantum control is to maximize the
probability of reaching a target state, |ψf 〉, in some evolution
time, T , given that the system is initially prepared in an initial
state, |ψ0〉. In recent years, optimal control has been applied
with great success in systems of increasing complexity, with
applications including state control of many-boson dynamics
[18,19], the crossing of quantum-phase transitions [20], the
generation of many-body entangled states [21,22], and the
optimization of quantum thermodynamic cycles [23]. A lot of
attention has also been devoted to investigate the fundamental
limitations of OCT, most of all in connection with the study of
the so-called quantum speed limit [24–28]. In a recent work,
OCT has even been used in a citizen-science scenario allowing
the investigation of the power of gamification techniques in
solving quantum control problems [29].

In this work, we investigate the connection between the
complexity of a quantum system and its controllability. To
this end, we study optimal control protocols on a spin-1/2
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chain with short-range interactions, in both the few-body
and the many-body regimes. By using this model, we are
able to tune the physical complexity of the system in two
different ways: (a) by adding excitations to the chain, we
can increase the system space dimension; and (b) by tuning
the interparticle coupling, we can drive the system through a
transition from a regular energy spectrum to a chaotic one.
We perform an unconstrained optimization in order to obtain
the control fields needed to drive various physical processes
and define two figures of merit based on the frequency
spectrum of the fields: the spectral bandwidth, associated
with the maximum frequency present in the field, and the
spectral inverse participation ratio (sIPR), related to the signal
complexity. We find that the spectral bandwidth is strongly
connected to the structure of the control Hamiltonian. In the
common scenario where the control is applied locally on any
site of the chain, we find that the bandwidth is independent of
the state space dimension, for various processes. On the other
hand, the complexity of the signal grows with the dimension,
due to the increase of energy levels. Inspired by this, we assess
the role of quantum chaos in the control of quantum many-body
dynamics. We find that the transition from a regular energy
spectrum to a chaotic energy spectrum does not affect the
complexity of the control problem in a significant way.

We point out that previous works have studied the re-
lationship between optimal control and the integrable or
nonintegrable nature of the quantum system under analysis
[30,31]. In those works, a suitable measure for the control
field complexity was defined, related with the number of
frequencies in the field, as allowed by the optimization
procedure. Then, it was shown that the complexity required to
achieve control scaled polynomially with the dimension of the
manifold supporting the dynamics. Here, we focus on studying
the complexity of the control fields regardless of the details
of the optimization method itself. We do this by deliberately
allowing many frequency components in the control fields and
then analyzing which of those components are required to
effectively drive the system.

This article is organized as follows. In Sec. II we present
the model of a spin-1/2 chain and discuss its symmetries.
Also, we propose a few control protocols and put forward the
main elements of quantum optimal control theory. In Sec. III
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we define two measures of complexity for the control fields
and present a systematic study on how they vary with both
the system state dimension and chaos parameter. In. Sec. III C
we analyze in detail the reasons why the chaotic regime does
not affect the controllability of the system. Finally, Sec. IV
contains some concluding remarks.

II. MODEL AND METHODS

A. Spin chain model

Let us consider a one-dimensional system of L spin-1/2
particles that interact through nearest-neighbor (NN) and next-
to-nearest-neighbor (NNN) homogeneous couplings with open
boundary conditions. The Hamiltonian for this models reads

H01 = H0 + �H1, (1)

H0 = J

2

L−1∑
i=1

σx
i σ x

i+1 + σ
y

i σ
y

i+1 + αzσ
z
i σ z

i+1, (2)

H1 = J

2

L−2∑
i=1

σx
i σ x

i+2 + σ
y

i σ
y

i+2 + αzσ
z
i σ z

i+2, (3)

where σ
x,y,z

i are the Pauli matrices for the ith particle and we
have taken � = 1. The Hamiltonian H0, which has only NN
couplings, is the usual XXZ Heisenberg model, which can
be exactly solved via the Bethe ansatz [32]. The parameter
� measures the ratio between the NNN exchange and the
NN couplings. This model has been extensively studied
in the literature in many contexts [33,34], in particular,
when investigating quantum chaos [9,35], i.e., the study
of the quantum mechanical properties of systems in which
classical analogs display a chaotic behavior. Albeit lacking a
semiclassical counterpart, this spin model displays a transition
in its level spacing distribution as � changes. For � � 0.5,
the energy spectrum is regular, and its level spacings follow
a Poisson distribution, while for � � 0.5, the distribution
follows Wigner-Dyson statistics, and the spectrum is deemed
“chaotic” [36,37] (see the Appendix for more details).

While the full Hilbert spaceH of this model has a dimension
of 2L, we can identify two constants of motion such that
H is decomposed into smaller subspaces. First, the total
magnetization in the z direction, σz = ∑L

i=1 σ z
i , is conserved,

which defines L + 1 subspaces with fixed σz. Each subspace
can then be characterized by this quantum number, which can
be interpreted as the number of sites with spins pointing “up”
or “excitations” in the chain. The dimension of the subspace
with K excitations is given by

DK = L!

K!(L − K)!
. (4)

We consider also conservation of parity. The parity operator
� acts as a permutation between mirrored sites of the chain
and commutes with the Hamiltonian H01 for all values of J and
�. As a consequence, each of the abovementioned subspaces
break up into two (positive and negative) parity subspaces,
each of which is of dimension DK,� � DK/2 [35]. Last, we
avoid conservation of σ 2

z by choosing αz = 0.5, and we choose
an odd value of the chain length L = 15.

B. Control protocols

We now describe a scenario to perform control operations
on the spin chain. First, we define the control Hamiltonian by
means of which we intend to steer the “free” chain Hamiltonian
H01. Several different proposals have been studied in the
literature. For example, in Ref. [38], the author proposed using
a global parabolic magnetic potential to control the transfer of
excitations from one end of the chain to the other. Later, the
same configuration was used to study the optimal evolution
time for such processes [24,25]. Other control configurations
have also been proposed in scenarios where only one [39] or
two [40–42] sites are locally addressed by external fields. Here,
we consider time-dependent magnetic fields in the z direction
which are locally applied at each site of the chain. In order to
comply with the system symmetries, we consider the situation
where the first and the last spin of the chain are affected by the
same field ε(t), whereas all the other spins do not interact with
any external field. Consequently, the full Hamiltonian can be
written as

H (t) = H01 + ε(t)Hc, where Hc = J

2

(
σ z

1 + σ z
L

)
. (5)

We point out that H (t) preserves the same symmetries as
H01 for any choice of ε(t). In addition to this, we checked
that for any fixed value of the field, H still shows a transition
between a regular and a chaotic spectrum for � � 0.5. For
more details about this issue, see the Appendix.

The next step is to define the control processes we aim
to perform. We consider two different protocols (A and
B) in order to obtain general results about the systems
controllability. In both cases, we define initial and target states
which we denote |ψα

0 〉 and |ψα
f 〉, where α = A,B. These states

are deliberately defined to allow the system to evolve within a
particular subspace with fixed (positive) parity and number of
excitations K of the complete Hilbert space, as discussed in the
previous section. First, process A involves the system initially
prepared in a state with all excitations in the middle sites of
the chain (in this scheme, the central site has no excitations if
K is even). We then intend to drive this configuration into a
coherent superposition as defined by

∣∣ψA
0

〉 = |↓ · · · ↓↑↑↑↓ · · · ↓〉, (6)

∣∣ψA
f

〉 = 1√
2

(|↑↑↑↓ · · · ↓〉 + |↓ · · · ↓↑↑↑〉). (7)

Process A then represents an ordered control process in
which entanglement is generated between both ends of the
chain. On the other hand, we define a disordered process B,
where the system starts from the ground state of H0 and is
steered into a random superposition of excited states (with
positive parity):

∣∣ψB
0

〉 = |g.s.0〉, (8)

∣∣ψB
f

〉 =
DK,+−1∑

n=1

an|n0〉, (9)

where {|n0〉}, n = 0, . . . ,DK,+ are the positive eigenvectors of
H0 in the subspace of K excitations and |g.s.0〉 ≡ |00〉. The
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coefficients {an} are a set of random complex numbers so that∑
i |an|2 = 1.

C. Optimal control methods

In order to obtain the control fields ε(t) which drive the system
for both processes, we use optimal control theory. Here we
briefly sketch the Krotov optimization algorithm, as described
in many previous works (see, for example, Refs. [17,43–46]).
This procedure takes as an input a fixed evolution time, T , an
initial guess for the control field, ε(0)(t), and both the initial
and final states |ψα

0 〉 and |ψα
f 〉, where α = A and B. The

optimization scheme is then carried out in order to maximize
the following functional:

J [|ψ(t)〉,ε(t)] = ∣∣〈ψ(T )|ψα
f

〉∣∣2 −
∫ T

0
λ(t)ε2(t)dt, (10)

where the first term can be interpreted as the final fidelity
F and λ(t) is a weight function. Note that maximization
of this functional leads to an optimized final fidelity while
preventing the total energy of the field from diverging.
The procedure starts by evolving |ψα

0 〉 according to the
Hamiltonian H (ε(0)(t)), from t = 0 to t = T . The final state
|ψ(T )〉 is then projected to |ψα

f 〉 in order to obtain an auxiliary
state, |χ (T )〉 = 〈ψα

f |ψ(T )〉|ψα
f 〉. This state is finally evolved

backwards with the same Hamiltonian, from t = T to t = 0.
The process is then repeated, but the control field is updated
following the recipe

ε(k+1)(t) → ε(k)(t) + 1

λ(t)
Im

{
〈χ (t)|∂H

∂ε
|ψ(t)〉

}
, (11)

Note that, for the model considered here, the operator ∂H/∂ε

is fully defined by Eq. (5) and is equal simply to Hc. The
iterative procedure stops when a certain target fidelity, F , has
been achieved, and the resulting field ε(t) is referred to as the
optimal control field.

As we intend to compare the control fields obtained by
this optimization procedure, we fix the input parameters of
the optimization as follows. For the total evolution time T

we set T = 15TL, where TL = (L − 1)π
J

can be regarded as
the typical evolution time required for transferring a single
excitation from one end of the chain to the other [25]. We have
checked that using this value we are operating well beyond
the quantum speed limit [24], and so fidelities up to 0.99
or greater can be achieved, for both control processes and
every value of the number of excitations K and the NNN
coupling � considered. Also, we used a constant initial guess
of ε(0)(t) = 0.1 in all cases. We have checked that the results
we present in the next section hold for other choices of this
function and also for larger values of the evolution time T .

III. ANALYSIS OF THE OPTIMAL CONTROL FIELDS

In Fig. 1(a) we show a typical example of the control
field ε(t) obtained by the optimization procedure outlined in
the previous section, together with its Fourier spectrum in
Fig. 1(b). The time signal shown can be seen to be complex
and have many spectral components up to a certain frequency
threshold. In order to characterize quantitatively this features,
we define two measures of complexity for the control fields:

(c)

(b)(a)

FIG. 1. (a) A typical optimized control field ε(t) obtained for
process A and � = 1 and (b) its normalized Fourier transform. (c)
Spectral bandwidth of the optimized control fields (in units of J ) as a
function of the adimensional NNN coupling �, for various values of K

(the number of excitations in the spin chain). Data shown are for both
control processes A and B (see text for details). State space dimension
ranges from 15 (K = 1) to 1365 (K = 4). The dashed curves show
the energy spread (in units of J ) of the free Hamiltonian H01 (1)
for different values of K . The dash-dotted vertical line indicates
the critical value of � = 0.5 for which the regular-chaotic transition
occurs in the energy spectrum of H01. Inset: Same as in the main
figure, but plotted as a function of the NN coupling J , for a fixed
value of � = 1.

the frequency bandwidth and the sIPR. In this section we
investigate these quantities.

A. Frequency bandwidth

Given the time-varying signal ε(t) and its Fourier transform
ε̂(ω), we first define its frequency bandwidth as the value ωbw

such that ∫ ωbw

0
dω |ε̂(ω)|2 = 1 − β, (12)

where 0 < β < 1 and the frequency distribution is normalized
such that

∫ ∞
0 dω |ε̂(ω)|2 = 1. By this definition, the frequency

interval [0,ωbw] concentrates the [(1 − β)100]% of the power
spectrum (here, we use β = 10−2). In other words, ωbw is a
measure of the maximum frequency present in ε(t).
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In Fig. 1 (c) we show the frequency bandwidth ωbw as
a function of the NNN or chaos parameter �, for different
number of excitations K in the chain. Results obtained for both
processes A and B are shown in the same plot. Remarkably,
we find that all data roughly coincide in the same curve.
This result indicates that the bandwidth is independent not
only of the control processes considered but also of the state
space dimension. Note that, in each case, ωbw is approximately
constant for � < 0.5 and then increases steadily for � > 0.5.
Although this behavior correlates with the onset of chaos in
the system (as discussed in Sec. I), we must first consider that
increasing the interparticle coupling � necessarily increases
the energy of the chain. As previously discussed in the
context of quantum optimal control [47,48], we expect that
the frequency distribution of the control fields presents peaks
located at the resonances of the free Hamiltonian H01.
Following this criterion, the maximum frequency is bounded
by the energy spread �E of H01, defined as

�E = Emax − E0, (13)

where Emax and E0 are the maximum and minimum (ground
state) energies of the Hamiltonian. Note that �E is a function
of the interparticle interaction parameters J and � and of
the number of excitations K . We show such functions as
dashed lines in Fig. 1(c). It is clear that the dependence of
the bandwidth with � closely resembles the energy spread
with K = 1. The same observation can be drawn by studying
both quantities as a function the NN coupling J (for fixed �).
There, the behavior is obviously linear, as shown in the inset
of Fig. 1(c).

Note, however, that the striking independence of the
bandwidth with the state dimension cannot be explained by its
relation with the energy spread of the free Hamiltonian, since
ωbw is in every case significantly smaller than �E for K > 1.
In order to gain a deeper insight about this result, we investigate
the role of the control Hamiltonian Hc, defined in Eq. (5).
We first study the structure of the matrix Hc written in the
basis of (positive) eigenvectors of the free chain Hamiltonian
H01. In Figs. 2(a) and 2(b) we plot the absolute value of such
matrix elements for fixed values of � and K . From these
plots we can see that Hc does not connect eigenstates with
distant energies: for example, the ground state is not connected
with excited states beyond the middle of the spectrum. This
explains the absence of such high transition frequencies in the
spectrum of the control fields. In order to provide numerical
proof about this feature, we studied the implementation of one
of the control processes with a different choice of the control
operator H ′

c which presents a higher connectivity [35] between
distant states in the spectrum. Such a Hamiltonian matrix is
shown in Figs. 2(c) and 2(d). Results for the new optimized
fields are shown in Fig. 2(e), where we show the frequency
bandwidth as a function of � for this case. It can be seen that
ωbw is greater for K = 2 than for K = 1, for all values of �

considered. We point out that, by looking at the representation
of H ′

c in the computational basis, Fig. 2(c), we can see that this
alternative control procedure would involve tuning a complex
combination of multispin interactions, in clear contrast with
the simple structure of Hc.

The results shown so far allow us to assert that the control
bandwidth, which measures the range of frequencies present in

(e)

(a) (b)

(c) (d)

FIG. 2. (a)–(d) Absolute values of the matrix elements for the
control Hamiltonian (in units of J ) in the computational basis (left
panels) and in the energy eigenbasis with positive parity (right panels).
Top panels: Local control with Hc as in Eq. (5). Bottom panels: Long-
range control with H ′

c described in text. (e) Frequency bandwidth
of the optimized control fields (in units of J ) as a function of the
adimensional NNN coupling �, for K = 1 and 2 (the number of
excitations in the spin chain). Data shown are for process A (see text
for details), using the long-range control Hamiltonian H ′

c.

the fields is determined exclusively by the energy spread of the
free Hamiltonian and the structure of the control Hamiltonian.
This gives us a measure of the physical complexity of the
control field which turns out to be independent of the number
of particles in the system. We point out here that we are not
interested in analyzing the complexity of the optimization
itself, as has been done in previous works which have obtained
interesting results [30,31]. We work our way around this issue
by fixing the time step of our numerical implementation to very
small values, J�t = 10−2. This determines that the maximum
allowed frequency in the fields is in every case at least on order
of magnitude higher than the actual physical frequencies found
by Fourier analysis in the control fields.

B. Spectral localization

We now turn our attention to another measure of the control
field complexity. In this case, we study how the number of
frequencies which appear in the signal spectrum varies as the
system complexity is increased. For this purpose, we define
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the following quantity,

ξ =
(∫ ∞

0
dω |ε̂(ω)|4

)−1

, (14)

which we call the “spectral inverse participation ratio” as it
is inspired by the commonly known IPR [9,12,49]. The sIPR
quantifies the localization in the Fourier transform of a time
signal and thus allows us to asses how complex the control field
is inside its bandwidth. Note that localized frequency spectra
give ξ → 0, and complex signals with delocalized spectra tend
to higher sIPR. As an example, take a completely random
signal with frequency components up to ωbw. We expect
such a signal to have a flat Fourier transform, ε̂(ω) = 1/ωbw

for 0 < ω < ωbw and ε̂(ω) = 0 for ω > ωbw. Calculating the
sIPR in that case is straightforward and gives ωbw. We point
out that here we intend to quantify the optimal control field
complexity regardless of the frequency distribution width. For
this purpose, we evaluate the normalized sIPR:

ξn = ξ

ωbw

. (15)

Following the discussion in the previous paragraph, we
expect sIPRn to range between 0 and 1, and we can interpret
it as a measure of resemblance between the signal under study
and a completely random time field.

In Fig. 3 we plot the normalized spectral IPR as a function
of the NNN exchange � for different values of the number of
excitations K in the spin chain and for both control processes A

and B. We show also some examples of the frequency spectra
we obtained, and it can be corroborated that sIPRn effectively
measures how localized the spectrum is in Fourier space. More
generally, it can be seen from the figure that sIPRn takes small
values for K = 1 and then grows with K and thus with the
state space dimension of the system. This is in sharp contrast
with the behavior of the frequency bandwidth ωbw, which was
found to be independent of K . We point out that this behavior is
common to both control processes. It is interesting to note that
the high-dimensional cases (K = 3 and 4) roughly converge
to the same value of sIPRn, indicating that there maybe an
upper bound for this measure which is below its maximal
theoretical ξn = 1, which is achieved when the frequency
spectrum is flat. Physically, the existence of an upper bound
<1 means that optimal control fields can always be distin-
guished from completely random, white-noise-type fields. We
leave this issue for future investigation.

Despite the dependence of normalized spectral IPR with
the space dimension, it can be seen also that this indicator
does not exhibit any clear trend with the NNN parameter �.
We observe that, for small values of K , this parameter shows
large fluctuations which tend to attenuate for larger space
dimensions. We recall that, for K � 3, the system exhibits
a clear transition from a regular energy spectrum to a more
complex (chaotic) one at � = 0.5. As can be seen from Fig. 3,
there is no evidence of such a leap in complexity in our
numerical study. In this way, we can assert that the optimal
fields required to control the dynamics of regular or chaotic
Hamiltonians display a similar spectral complexity.

As a final remark, we point out that it would not be correct
to claim that the spectral properties analyzed in this section are

(a)

(b)

FIG. 3. (a) Various normalized spectral densities of the optimal
control fields found for process A. Values for the excitation number K

and the adimensional next to nearest-neighbor coupling � are shown
for each case I–IV. (b) Normalized spectral inverse participation ratio
(sIPRn), which measures the control field complexity, as a function
of �, for various values of K (the number of excitations in the spin
chain). Data shown are for processes A (left) and B (right). The
points indicated by labels I–IV correspond to the spectra shown in
panel (a). State space dimension ranges from 15 (K = 1) to 1365
(K = 4). The dash-dotted vertical line shows the critical value of �

for the regular-chaotic transition in the energy spectrum. All quantities
shown are dimensionless.

completely independent of the choice of initial and final state.
This can be easily seen by considering a process where we
intend to connect the ground state of the free Hamiltonian, H01,
and one of its excited states, |n(�)〉. If the control Hamiltonian
Hc connects both states, we expect that the bandwidth of the
control field will be given by the energy difference between
both levels, En(�) − E0(�), which can be significantly lower
than the obtained ωbw for processes A and B if |n〉 lies in
the low-energy region. Nevertheless, our results do apply to
general linear combinations of energy eigenstates, which is the
more common scenario.

C. Control fields and energy spectrum

We now look more closely at the connection between the
spectral features of the optimal control fields and the structural
properties of the system’s energy spectrum. We have already
pointed out in Sec. II that the free chain Hamiltonian H01 (1)
shows a transition in its level spacing distribution {δEn} as the
NNN coupling parameter � changes, where

δEn = En+1 − En, (16)
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FIG. 4. Distribution of energy differences δEn,m defined in
Eq. (17) for � = 0 (regular) and � = 1 (chaotic), where � is the
NNN coupling parameter. All cases are normalized such that their
mean value is 1. In the top left plot, we show the M = 1 case
corresponding to the standard level spacing distribution. Poisson and
Wigner-Dyson distributions are shown on top of the histograms. In
all cases, we consider the positive subspace with K = 4 excitations
in the chain (D4,+ � 700). All quantities shown are dimensionless.

and En is the nth ordered eigenvalue of H01. If the space
dimension is high enough (K � 3), the level spacings statistics
show a Poisson distribution for � � 0.5 and a Wigner-Dyson
distribution for � � 0.5 (see the Appendix for more details).
We have also discussed in Sec. III that we observed a
connection between the frequency components present in
the optimized control field and the resonances of the free
Hamiltonian H01. Thus, an interesting point arises: if the
energy spectrum of H01 changes its structure with �, why
is there no evidence about those changes in the frequency
distribution of the optimal control fields?

The key point here is to note that the resonances of H01,
which feed the frequency distribution of the control field, are
not formed only by the difference of two consecutive energies
δEn (16). If connected by the control Hamiltonian, every
energy difference present in the spectrum is also a suitable
candidate for appearing in the control field frequency spec-
trum. Following this discussion, we studied the distribution of
the energy differences defined as

δEn,m = En+m − En, with 0 < m � M, (17)

such that δEn,1 ≡ δEn. Note that, for every n, the value of
M indicates how many levels above En are considered and

is thus bounded by the space dimension DK,+. In Fig. 4
we show the distributions of normalized energy differences
for different values of M , using � = 0 and � = 1. There, it
can be seen that both distributions show the expected Poisson
and Wigner-Dyson shapes when M = 1 (as discussed in the
previous paragraph), but start to converge to a common form
when M grows. As an example, for K = 4, we have that
dimension of the positive subspace is D4,+ � 700, and already
taking M � D4,+/10 already gives near perfectly matching
distributions for both values of the chaos parameter �. This
analysis indicates that, while level spacing distributions are
quite different for regular and chaotic spectra, the overall
energy difference distributions converge to the same shape.
This interesting behavior determines that the frequency spectra
of the optimal fields which control both types of systems have
the same complexity.

IV. CONCLUSION

In this work we studied control processes in a chain of
spin-1/2 particles and investigated how the complexity of the
physical system relates to the complexity of the control field.
We studied a Heisenberg chain model, which allowed us to
consider separately different space dimensions (ranging from
∼10 to ∼700 states) by adding excitations to the system. By
allowing next-to-nearest neighbor interactions, we were also
able to parametrically tune the system from regular to chaotic.
We found the time-dependent control fields required to drive
different processes using optimal control theory and defined
two measures of complexity based on the Fourier spectra of
those fields. By doing so, we could identify which aspects of
the system complexity affect the control fields. For instance,
we found that the spectral bandwidth, which measures the
maximum frequency present in the field, is quite generally
independent of the system space dimension. However, we
showed that exceptions to this rule occur if we choose
highly nonlocal control fields. Also, we investigated how
many frequencies were present inside the signal bandwidth by
defining a measure of localization: the sIPR. We found that this
measure of field complexity does increase when excitations are
added to the system. Finally, we assessed the role of quantum
chaos in the control of the system by studying the fields as
a function of the chaos parameter �. We found no evidence
of the regular-chaotic transition in the field spectral measures,
allowing us to assert that the fields required to control chaotic
and integrable systems display the same complexity.

We believe that the results presented here shed light on
the relation between quantum control and complexity in
many-body systems. We point out that the model we studied
here is experimentally accessible in a trapped-ions setup
[50,51]. When considering a more realistic scenario, a number
of important issues are raised, such as the role of disorder in
the interparticle couplings and the bandwidth limitations of the
control source. It would be interesting to study the robustness
of our results in such scenarios. We leave this important issue
for future work.

Concerning the role of quantum chaos in the dynamics
of many-body systems, it is interesting to point out that a
previous work [9] studied relaxation processes in such systems.
Although working in a scenario opposite to coherent control,
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FIG. 5. Brody parameter β as a function of the NNN coupling
� for the full spin chain Hamiltonian (5). The four plots correspond
to various values of the number K of excitations in the chain. In
each case, curves in light colors correspond to the results obtained
by fixing the adimensional control parameter ε to values in the range
[−3,3]. The special case ε = 0 (where H = H01) is shown with thick
dashed lines. Thick solid lines denote the mean value of all curves.
The dash-dotted vertical line shows the critical value of � for the
regular-chaotic transition in the energy spectrum.

the authors there also found no trace of the chaoticity of the
system in the relaxation dynamics. In our case, we present
further evidence about the irrelevance of quantum chaos in the
coherent dynamics of many-body systems.
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APPENDIX: REGULAR TO CHAOTIC TRANSITION IN
THE SPIN CHAIN

Analyzing the level spacing distribution is the most com-
monly used method to identify whether a system shows
integrability or quantum chaos. Integrable quantum systems
can present crossings in their energy levels. Their spectra are
called regular and follow a Poisson distribution,

PP (s) = exp(−s). (A1)

In chaotic systems, on the other hand, level crossings are
avoided. It turns out that their level spacing statistics can be
fully predicted by random matrix theory [36,37], leading to a
Wigner-Dyson distribution,

PWD(s) = π

2
s exp

(
−π

4
s2

)
. (A2)

An elegant way to quantify the level of chaoticity in a
quantum system is by employing the Brody parameter β.
This number is obtained by fitting the actual level spacing
distribution P (s) with the Brody distribution [52]:

PB(s) = (β + 1)bsβexp(−bsβ+1), b =
[
�

(
β + 2

β + 1

)]β+1

.

(A3)

Note that �(x) refers here to the usual gamma function.
The function PB(s) tends to the Poisson distribution PP (s)
for β → 0, while for β → 1 it resembles the Wigner-Dyson
distribution PWD(s).

In order to analyze the chaotic properties of our spin model,
we calculated the Brody parameter for the energy spectrum of
the full system Hamiltonian H (ε) = H01 + εHc. We recall that
H01 corresponds to the free chain term (1) and Hc to the control
operator (5). Results for the parameter β as a function of the
NNN coupling � are shown in Fig. 5 for several (fixed) values
of the control parameter ε. There, it can be seen that there is
a clear crossover from integrability to quantum chaos in our
model for � � 0.5, for any value of ε. It is important to point
out that this conclusion is only valid for K � 3, where the
amount of energy levels is considerable and thus a statistical
analysis of the energy levels can be performed.
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