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1 Introduction

A systematic understanding of the duality between type IIB superstring theory on AdS3×
S3×T4 and the N = (4, 4) non-linear sigma model on the moduli space of Yang-Mills

instantons on T4 has been achieved along recent years, based on early work in [1]–[5].

The instanton moduli space is a deformation of the symmetric product of N copies of

T4, namely Sym(T4)N ≡ (T4)N/SN [6] and the worldsheet of the superstring is an N = 1

SL(2,R)× SU(2) WZNW model. In the large N limit, twisted states in Sym(T4) map

to single states of short strings [7, 8] described by discrete representations of SL(2,R)×
SU(2) and their spectral flow images [9]. Agreement between the spectrum and three-point

functions of unflowed chiral primary string states and the corresponding dual counterparts

was found in [7, 8, 10]. Conversely, the non-trivial spectral flow sectors of the string theory

have been less studied and present some unclear features, such as the apparent lack of

certain string states in the spectrum of the superconformal field theory (SCFT) [11] and

various technical difficulties in the computation of correlation functions. Some preliminary

results were obtained in [12] where, in particular, a bulk-to-boundary dictionary for 1/2

BPS states in the flowed sectors was proposed.

The aim of this paper is to study this holographic map by exploring three-point func-

tions in both sides of the duality. The computation of worldsheet correlators basically

involves three parts reflecting the fact that the theory is a direct product of free fermions
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and bosonic SU(2) and SL(2,R) WZNW models. The relevant three-point functions of the

free fermions and SU(2) bosons were obtained in [12]. Here we evaluate spectral flow con-

serving three-point functions on the sphere involving spectral flow images of chiral primary

string states in the Neveu-Schwarz (NS) and Ramond (R) sectors of the SL(2, R) WZNW

model in order to complete the construction of these amplitudes in the full string theory

and compare them with the conjectured dual correlators in the symmetric orbifold of T4

obtained in [13–15]. Our results confirm the agreement of the string amplitudes with the

corresponding counterparts in the dual theory.

The paper is organized as follows. After setting the notations in the next section, in

section 3 we present a derivation of the vertex operators creating spectral flow images of

chiral primary string states in NS and R sectors which were proposed in [12]. In section 4 we

compute the SL(2, R) part of the spectral flow conserving three-point functions involving

these chiral operators and, after adding the fermionic and SU(2) parts computed in [12],

we compare our results with the conjectured corresponding correlators in the dual SCFT.

Finally, section 5 contains the conclusions. In the appendix we compute the Clebsch-

Gordan coefficients needed to construct vertex operators in product representations of

SL(2,R).

2 Notations

In order to set the notations in this section we briefly review basic aspects of the

dual theories.

2.1 Review of type IIB superstring on AdS3× S3× T4

Type IIB superstring theory on AdS3× S3× T4 was originally studied in [2–5, 11, 16]. It

has ŜL(2) × ŜU(2) × Û(1)
4

affine worldsheet symmetry which allows to perform explicit

calculations. The ŜL(2) and ŜU(2) supercurrents ψA + θJA and χA + θKA, respectively,

satisfy the following OPE

JA(z)JB(w) ∼
k
2η

AB

(z − w)2
+
iǫAB

CJ
C(w)

z −w
, KA(z)KB(w) ∼

k
2δ

AB

(z − w)2
+
iǫAB

CK
C(w)

z − w
,

JA(z)ψB(w) ∼ iǫAB
Cψ

C(w)

z − w
, KA(z)χB(w) ∼ iǫAB

Cχ
C(w)

z − w
,

ψA(z)ψB(w) ∼
k
2η

AB

z −w
, χA(z)χB(w) ∼

k
2δ

AB

z − w
, (2.1)

with A = 0, 1, 2, ǫ012 = 1 and ηAB = (−,+,+). It is convenient to introduce new currents as

JA(z) = jA(z) + ĵA(z) , KA(z) = kA(z) + k̂A(z) , (2.2)

where jA (ĵA) and kA (k̂A) generate SL(2)k+2 (SL(2)−2) and SU(2)k−2 (SU(2)2) affine

algebras, respectively, with

ĵA(z) = − i

k
ǫABCψ

B(z)ψC(z), k̂A(z) = − i

k
ǫABCχ

B(z)χC(z). (2.3)

– 2 –
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The Û(1)
4

is realized in terms of free bosonic currents i∂Y i and free fermions λi, i =

1, 2, 3, 4.

The stress tensor and supercurrent are given by

T (z) =
ηAB

k

(
jAjB − ψA∂ψB

)
+
δAB

k

(
kAkB − χA∂χB

)
+

1

2

(
∂Y i∂Yi −

1

2
λi∂λi

)
,

G(z) =
2

k

(
ηABψ

AjB +
2i

k
ψ0ψ1ψ2

)
+

2

k

(
δABχ

AkB − 2i

k
χ0χ1χ2

)
+ λi∂Yi . (2.4)

The spectrum of the theory is built from those of the SL(2,R) and SU(2) WZNW

models. The Hilbert space of the former [9] is decomposed into unitary representations

of the SL(2,R)× SL(2,R) current algebra,1 namely the discrete lowest- and highest-weight

representations D±
h ⊗D±

h with h ∈ R, 1
2 < h < k+1

2 and m = ±h,±h±1, . . . , the continuous

representations Cα
h ⊗ Cα

h with h = 1
2 + iR, m = α + Z, α ∈ [0, 1), their current algebra

descendants and spectral flow images, D̂±,w
h ⊗ D̂±,w

h , Ĉα,w
h ⊗ Ĉα,w

h with w ∈ Z and the same

spin and amount of spectral flow on the left- and right-moving sectors. Primary operators

of spin h and worldsheet conformal dimension ∆sl(Φh) = −h(h−1)
k , satisfy

ja(z)Φh(x, x;w,w) ∼ Da
xΦh(x, x;w,w)

z − w
, a = 0,± , (2.5)

where D+
x = ∂x, D

0
x = x∂x + h and D−

x = x2∂x + 2hx. Expanding in modes as

Φh(x, x) =
∑

m,m

Φh,m,mx
−h+mx−h+m , (2.6)

one can read the action of the zero modes of the currents on Φh,m,m, namely

j00Φh,m,m = mΦh,m,m , j±0 Φh,m,m = [m∓ (h− 1)] Φh,m±1,m, (m 6= ±h) , (2.7)

and j−0 Φh,h,m = j+0 Φh,−h,m = 0.

Similarly, the primary fields of the SU(2)k−2 WZNW model with conformal dimension

∆su(Vj) = j(j+1)
k verify

ka(z)Vj(y, y;w,w) ∼
P a

y Vj(y, y;w,w)

z − w
, (2.8)

with P+
y = ∂y, P

0
y = y∂y − j, P−

y = −y2∂y + 2jy and can be expanded in modes as

Vj(y, y) =

j∑

m′,m′=−j

Vj,m′,m′yj+m′

yj+m′

. (2.9)

The spin j ∈ Z/2 is bounded by 0 ≤ j ≤ k−2
2 and k+

0 Vj,j,m′ = k−0 Vj,−j,m′ = 0,

k0
0Vj,m′,m′ = m′Vj,m′,m′ , k±0 Vj,m′,m′ = (±m′ + 1 + j)Vj,m′±1,m′ , (m′ 6= ±j) . (2.10)

1Actually, the spectrum is built on representations of the universal cover of SL(2, R), to which we refer

simply as SL(2,R) for short.
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In the fermionic sector, the fields ψa transform in the spin ĥ = −1 representation of the

global SL(2,R)−2 algebra and χa transform in the spin ĵ = 1 of the SU(2)2 global algebra.

Vertex operators creating unflowed physical states in the NS sector were constructed

in [16]. For short, we display only the holomorphic indices. The chiral (antichiral) primaries

satisfy the condition H = J (H = −J ), H being the spacetime conformal dimension and

J the SU(2) charge, which implies h = j + 1. In the −1 picture, they are given by

Wh,m,m′ = e−ϕ(ψΦh,m)h−1,m
T
Vj,m′ , (2.11)

Yh,m,,m′ = e−ϕΦh,m(χVj,m′)h,m′
T
, (2.12)

where (ψΦh,m) and (χVj,m′) denote the product representations of Ja and Ka, respectively,

mT = h− 1, h, h + 1, . . . and m′
T = −h,−h+ 1, . . . , h.

To study the Ramond sector one needs to construct the spin fields for ψa, χa, λi [16].

It is convenient to have a bosonized form of the fermions such as

∂H1 =
2

k
iψ+ψ−, ∂H2 =

2

k
iχ+χ−, ∂H3 = −2

k
iψ3χ3, ∂H4 = λ1λ2, ∂H5 = λ3λ4 .

(2.13)

The spin fields take the form S[ǫ1,...,ǫ5] = exp i
2

∑5
i=1 ǫiHi, with ǫi = ±1. They transform

as two copies of (1
2 ,

1
2 ) under SL(2)× SU(2). GSO projection requires

∏5
i=1 ǫi = +1 and

BRST invariance demands
∏3

i=1 ǫi = −1. Following [12] we define the spin fields associated

with ψa, χa as S̃[ǫ1,ǫ2,ǫ3] = exp i
2(ǫ1H1 + ǫ2H2 + ǫ3H3).

Decomposing the product (S̃Φh,mVj,m′) into representations of the total currents

Ja,Ka, the chiral vertex operators in the −1
2 picture take the form

R±
h,m,m′ = e−

ϕ
2

(
S̃Φh,mVj,m′

)
h− 1

2
,m

T
+ 1

2
;j+ 1

2
,m′

T
+ 1

2

e±i(Ĥ4−Ĥ5) , (2.14)

where Hi are redefined as Ĥi = Hi + π
∑

j<iNj, Nj = i
∮
∂Hi.

Spectral flow. The algebras (2.1) are invariant under the following spectral

flow automorphisms

J̃0
n = J0

n − k

2
wδn,0, J̃±

n = J±
n±w, K̃0

n = K0
n +

k

2
w′δn,0, K̃±

n = K±
n±w′ .

The currents ja, ĵa, ka and k̂a transform under spectral flow as

j0n = j̃0n +
k + 2

2
wδn,0 , j±n = j̃±n∓w , k0

n = k̃0
n − k − 2

2
w′δn,0 , k±n = k̃±n∓w′ , (2.15)

ĵ0n = ˜̂j0n − wδn,0, ĵ±n = ˜̂j±n∓w , k̂0
n =

˜̂
k0

n − w′δn,0 , k̂±n =
˜̂
k±n∓w′ , (2.16)

and the modes of the Virasoro generators, Lsl
n = lsln + l̂sln , L

su
n = lsun + l̂sun , as

L̃sl
n = Lsl

n +wJ̃0
n +

k

4
w2δn,0 , L̃su

n = Lsu
n + w′K̃0

n − k

4
w′2δn,0

lsln = l̃sln −wj̃0n − k + 2

4
w2δn,0 , lsun = l̃sun − w′k̃0

n +
k − 2

4
w′2 ,

l̂sln =
˜̂
lsln −w˜̂j0n +

1

2
w2δn,0 , l̂sun =

˜̂
lsun − w′ ˜̂k0

n +
1

2
w′2δn,0 . (2.17)

– 4 –
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The closure of the SL(2,R) and SU(2) algebras requires the same amount of spectral flow w

(w′) for ja and ĵa (ka and k̂a). The spectral flow maps primaries to descendants of SU(2)

and it generates new representations in SL(2,R) [9]. For the sake of simplicity, we restrict

to w > 0 in this section.

To construct spectral flow images of chiral primaries in generic frames, we consider

the SL(2,R) sector first. A w = 0 affine primary is mapped by the spectral flow to a

lowest-weight state of the global algebra Φh,w
H,M with H = M satisfying [9]

j00Φh,w
H,M = MΦh,w

H,M =

(
m+

k + 2

2
w

)
Φh,w

H,M , (2.18)

l0Φ
h,w
H,M =

(
−h(h− 1)

k
− wm− k + 2

4
w2

)
Φh,w

H,M . (2.19)

In the fermionic SL(2,R) sector, an interesting description of the spectral flow was

presented by A. Pakman in [17]. Using (2.16) − (2.17), the fermions ψa in the spectral

flow frame obey

̂00ψ
a = (a−w)ψa, ̂−0 ψ

a = ˜̂−wψ
a = 0 , l̂0ψ

a =

(
1

2
− wa+

1

2
w2

)
ψa , (2.20)

i.e. ψa is a lowest-weight field with angular momentum ĥ = a − w. Acting with ĵ+0 , one

obtains the global representation in the w sector as ψ
|ĥ|
m̂ ∼ (̂+0 )nψa with m̂ = −ĥ, . . . , ĥ up

to a normalization.

All these ingredients allow to construct the representations of Ja. We denote the

fields of the product representation in the NS sector as (ψ
|ĥ|
m̂ Φw,h

H,M )H,M(z, z), where

|H − ĥ| ≤ H ≤ H + ĥ, M = H,H+1, . . . and their worldsheet conformal weight is given by

∆sl
[
(ψ

|ĥ|
m̂ Φh,w

H,M)H,M

]
= −h(h− 1)

k
− w(m− a) +

1

2
− k

4
w2 . (2.21)

Repeating the analysis for SU(2), one obtains the product representation

(χĵ
m̂′V

j,w′

J,M ′)J ,M′ , with |J − ̂| ≤ J ≤ J + ̂, −J ≤ M′ ≤ J , J = m′ − k−2
2 w′, ̂ = |a− w′|

and worldsheet conformal weight

∆su
[
(χĵ

m̂′V
j,w′

J,M ′)J ,M′

]
=
j(j + 1)

k
− w′(m′ − a) +

1

2
+
k

4
w′2 . (2.22)

In order to construct chiral states, we apply the spectral flow operation on the chiral

primaries (2.11) and (2.12). We notice that the physical and chiral state conditions re-

quire to simultaneously spectral flow the SL(2,R) and SU(2) product representations and

we obtain

Wh,w
H,M = e−ϕ

(
ψw+1

m̂ Φh,w
H,M

)
H,M

(
χw′

m̂′V
j,w′

J,M ′

)
J ,M′

, (2.23)

Yh,w
H,M = e−ϕ

(
ψw

m̂Φh,w
H,M

)
H,M

(
χw′+1

m̂′ V j,w′

J,M ′

)
J ,M′

, (2.24)

where ϕ is the bosonization of the β, γ ghosts, M = H and M′ = −J . For generic level

k, the physical state condition (L0 − 1)W = 0 implies h = j + 1, w = w′ and m′
T = −mT

– 5 –
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(see (2.11), (2.12)), and similarly for Y. Analogously, GrW = (G̃r − wψ̃0
r − wχ̃0

r)W = 0

(GrY = 0) for r > 0 requires mT = h−1 (mT = h) [12]. Finally, chirality (or antichirality)

demands, for both operators W and Y,

H = mT +
k

2
w = ±J . (2.25)

To obtain the spectral flowed 1
2 BPS operators in the Ramond sector we need the prod-

uct representation (S ĵ
m̂,m̂′Φ

h,w
H,MV

j,w′

J,M ′). The discussion about the fermions applies analo-

gously to the spin fields, i.e. from the lowest-weight component of the ĥ = −ĵ = −|w ± 1
2 |

spin representation, given by

S
w+ 1

2

−w− 1
2
,w+ 1

2

≡ e−i(w+ 1
2
)(Ĥ1+Ĥ2)− i

2
Ĥ3 , (2.26)

one constructs the global representation acting with ĵ+0 , k̂
+
0 .

The chiral fields in the w sector are [12]

R±,h,w
H,M = e−

ϕ

2

(
S

w+ 1
2

m̂,m̂′Φ
h,w
H,MV

j,w
J,M ′

)

H,M,J ,M′

e±
i
2
(Ĥ4−Ĥ5) , (2.27)

where S
w+ 1

2
m̂,m̂′ has conformal weight 3

8 +w2 +w, ĥ = −w− 1
2 = −ĵ and H = h− 1

2 + k
2w = J .

2.2 Sigma model on the symmetric product orbifold of T4

Type IIB superstring theory on AdS3× S3× T4 with RR background is conjectured to be

dual to the infrared fixed point theory living on a D1-D5 system compactified on T4. It

is convenient to use the S-dual description [18] in terms of N1 fundamental strings and

N5 NS5-branes. The target space of the SCFT is identified with the singular orbifold

(T4)N1N5/S(N1N5), where S(N1N5) denotes the permutation group of N1N5 elements. It

was argued in [19] that the symmetric orbifold corresponds to the point N5=1, N1=N.

The chiral spectrum of the sigma model is built from that of a single copy of T4 plus

operators in the twisted sectors. Each twisted sector corresponds to one conjugacy class of

S(N), labeled by positive integer partitions of N, namely

N∑

l=1

lkl = N , (2.28)

corresponding to permutations with kl cycles of length l. Chiral operators describing single

particle states in the string theory side correspond to single cycle twist operators [18, 20].

There is one twist field for each conjugacy class of the permutation group, and chiral

operators corresponding to chiral states in the dual string theory can be constructed as a

sum over the group orbit, namely

Oǫn,ǫn
n = [n(N − n)!N!]−1/2

∑

hǫS(N)

σǫn,ǫn

h(1···n)h−1 , (2.29)

where ǫn = ±1, a and σ1n

(1···n) is a twist field corresponding to just one single element of

S(N). The global part of the N = (4, 4) superconformal algebra forms the supergroup

– 6 –
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SU(1,1|2)L× SU(1,1|2)R and contains the R-symmetry group SU(2)L× SU(2)R, under

which the operator Oǫn,ǫn
n (x, x) is a chiral state in a unitary representation with angu-

lar momentum

Hn =
n+ ǫn

2
, 0 ≤ Hn ≤ N + ǫn

2
, ǫn = ±1, (2.30)

Hn =
n

2
, 0 ≤ Hn ≤ N

2
, ǫn = a , (2.31)

and similarly for ǫn. Two- and three-point functions on the sphere for ǫn, ǫn = ±1, are

given by [14, 15]2

〈
Oǫn,ǫn

n (x1, x1)O−ǫn,−ǫn

−n (x2, x2)
〉

= |x12|−4Hn , (2.32)

〈
Oǫn1 ,ǫn1

n1 Oǫn2ǫn2
n2 Oǫn3ǫn3

†
n3

〉
=

√
n1n2n3

N
δ2

(
3∑

i=1

Mni

)
Cn1n2n3

∏

i<j

|xij|−2Hninj , (2.33)

where Hn1n2 = Hn1 + Hn2 −Hn3, etc., −Hn ≤ Mn ≤ Hn and the coefficients Cn1n2n3 are

defined in terms of the SU(2) 3j symbols as

Cn1n2n3 =
|ǫn1n1 + ǫn2n2 + ǫn3n3 + 1|2

4n1n2n3

×
∣∣∣∣∣

(
Hn1 Hn2 Hn3

Mn1 Mn2 Mn3

)∣∣∣∣∣

2 ∣∣∣∣∣
Hn1n2 !Hn2n3 !Hn3n1 !(

∑3
i=1 Hni

+ 1)!

(2Hn1)!(2Hn2)!(2Hn3)!

∣∣∣∣∣ .

Using (2.30) and Mni
= ±Hni

, the delta function in (2.33) implies Hninj
= 0 for certain

i, j. Specifying n3 = n1 + n2 − 1, the non-vanishing three-point functions are those with

(ǫn1 , ǫn2 , ǫn3) = (−,−,−) and (+,−,+) and similarly for ǫni
. In this case, the product in

the second line reduces to one.

Two other correlators that will be important below have been evaluated in the partic-

ular case n3 = n1 + n2 − 1 [13], namely (we omit the obvious coordinate dependence)

〈
Oa,a

n1
O−,−

n2
Oa′,a′†

n3

〉
=

1√
N

(
n1n3

n2

)1/2

δa,a′

δa,a′

, (2.34)

〈
Oa,a

n1
Oa′,a′

n2
O+,+†

n3

〉
=

1√
N

(
n1n2

n3

)1/2

ξa,a′

ξa,a′

, ξa,a′

= ξa,a′

=

(
0 1

1 0

)
. (2.35)

3 Vertex operators of chiral states

In this section we present a derivation of the vertex operators creating spectral flow images

of chiral primary states. These operators were proposed in [12].

2 Contributions from surfaces with higher genus are suppressed in the large N limit.
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3.1 NS sector

The Clebsch-Gordan coefficients expanding the product representation (ψΦ) in (2.23)

and (2.24) are computed in the appendix. We find

(
ψ
|ĥ|
m̂ Φh,w

H,M

)
H,M

=

ĥ∑

m̂=−ĥ

CM,m̂,M

H,ĥ,H
ψ
|ĥ|
m̂ Φh,w

H,M , (3.1)

where only the holomorphic part has been written and3

CM,m̂,M

H,ĥ,H
=

(M + H)!

(m̂+ |ĥ|)!(M− m̂+H)!

m̂+|ĥ|∑

s=0

(−1)s−|ĥ|

(
m̂+ |ĥ|

s

)
(M− s+ |ĥ| +H)!

(M− s+ H)!

× (|ĥ| −H + M− s− 1)!

(M− s−H− 1)!(H + |ĥ| −H)!
. (3.2)

This can be rewritten using the generalized hypergeometric function

3F2(a, b, c; e, f |1) as

CM,m̂,M

H,ĥ,H
=

(−1)m̂−|ĥ|Γ(−H + |ĥ| + M)Γ(H + |ĥ| + M + 1)

Γ(H−H + |ĥ| + 1)Γ(M−H)Γ(H + M− m̂+ 1)Γ(|ĥ| + m̂+ 1)
×

3F2(−H−M,H −M + 1,−|ĥ| − m̂;−H − |ĥ| −M,H − |ĥ| −M + 1; 1) ,

with the advantage that it can be represented in terms of the Pochhammer double-loop

contour integral, possessing a unique analytic continuation in the complex plane for all its

indices [21, 22]. Recall that the analogous coefficients for SU(2) are related to these ones

through analytic continuation.

For our purposes, it is convenient to write the vertex operators in the x−basis, where

the isospin can be identified with the coordinates on the boundary. This can be done

using [3]:

e−xJ−

0 O(z)exJ−

0 ≡ O(x, z). (3.3)

Performing this operation on the fermion fields, one gets in the unflowed frame

e−xJ−

0 ψ+(z)exJ−

0 = ψ+(x, z) ≡ ψ(x, z) (3.4)

= −2xψ0(z) + ψ+(z) + x2ψ−(z), (3.5)

and in a generic w frame

e−xJ−

0 ψ
|ĥ|

m̂=ĥ
(z)exJ−

0 ≡ ψ|ĥ|(x, z) =
ĥ∑

m̂=−ĥ

(−1)m̂+ĥ Γ(2|ĥ| + 1)

Γ(m̂+ |ĥ| + 1)Γ(|ĥ| − m̂+ 1)
ψ
|ĥ|
m̂ x−ĥ+m̂ . (3.6)

Inserting H = m+ k+2
2 w and ĥ = −w − 1 in (3.2) we get

CM,m̂,M

H,ĥ,H
= (−1)m̂+w+1 Γ(2w + 3)

Γ(m̂+ w + 2)Γ(w − m̂+ 2)
, (3.7)

3 We found convenient to denote the coefficients C
M,m̂,M

H,ĥ,H
as 〈H,M ; ĥ, m̂|H, ĥ;H,M〉 in the appendix.
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which coincide with the coefficients in (3.6). Therefore, the SL(2,R) part of the chiral

vertex (2.23) may be written as

(
ψw+1

m̂ Φh,w
H,M

)
H,M

=

w+1∑

m̂=−w−1

(−1)m̂+w+1 Γ(2w + 3)

Γ(m̂+ w + 2)Γ(w − m̂+ 2)
ψw+1

m̂ Φh,w
H,M . (3.8)

Expanding in modes, it is easy to see that they may be expressed in the following factor-

ized form

(ψΦ)h,w
H (x) ≡

∑

M

(
ψw+1

m̂ Φh,w
H,M

)
H,M

x−H+M = ψw+1(x)Φh,w
H (x) . (3.9)

This factorization always occurs in (2.23) when H and ĥ combine to produce a chiral state.

So far, we have restricted to the holomorphic SL(2,R) sector, but the same analysis

applies to SU(2) [22] and to their antiholomorphic parts. Putting all together, we get the

following vertex operators creating spectral flow images of chiral primary states in arbitrary

spectral flow frames

Wh,w

HH
(x, y, x, y) = e−ϕ Φh,w

HH
(x, x)ψw+1(x)ψ

w+1
(x)V h−1,w

JJ
(y, y)χw(y)χw(y), (3.10)

Yh,w

HH
(x, y, x, y) = e−ϕΦh,w

HH
(x, x)ψw(x)ψ

w
(x)χw+1(y)χw+1(y)V h−1,w

J,J
(y, y) , (3.11)

with J = H − 2w, J = H − 2w, H = −J − 1,H = −J − 1.

3.2 Ramond sector

The product representation needed to construct the vertex operators (2.27) in the Ramond

sector can be expanded as

(
S ĵ

m̂,m̂′Φ
h,w
H,MV

j,w
J,M ′

)
H,M,J ,M′

=

ĥ∑

m̂,m̂′=−ĥ

(
S ĵ

m̂,m̂′Φ
h,w
H,MV

j,w
J,M ′

)
C

(M,m̂,M),(M ′,m̂′,M′)

(H,ĥ,H),(J,ĥ,J )
(3.12)

≡
ĥ∑

m̂=−ĥ

(
S ĵ

m̂Φh,w
H,M

)
CM,m̂,M

H,ĥ,H
⊗

ĥ∑

m̂′=−ĥ

(
S ĵ

m̂′V
j,w
J,M ′

)
CM ′,m̂′,M′

J,ĥ,J
,

i.e. the SL(2) and SU(2) parts factorize. The Clebsch-Gordan coefficients CM,m̂,M

H,ĥ,H
can be

computed from (3.2) taking H = m+ k+2
2 w and ĥ = −w− 1

2 . Using (3.3), it is easy to see

that the triple product factorizes in the x−basis as

(SΦV )h,w
H,J (x, y) ≡

∑

M,M′

(
S

w+ 1
2

m̂,m̂′Φ
h,w
H,MV

j,w
J ;M ′

)

H,M,J ,M′

x−H+MyJ+M′

= Sw+ 1
2 (x, y)Φh,w

H (x)V j,w
J (y) , (3.13)

where4

Sw+ 1
2 (x, y)≡

w+ 1
2∑

m̂,m̂′=−(w+ 1
2
)

[
(−1)m̂+w+ 1

2 Γ(2w + 2)

Γ
(
m̂+ w + 3

2

)
Γ
(
w − m̂+ 3

2

) (−1)m̂
′+w+ 1

2 Γ(2w + 2)

Γ
(
m̂′ + w + 3

2

)
Γ
(
w − m̂′ + 3

2

)
]

× S
w+ 1

2
m̂,m̂′ x

m̂+w+ 1
2 ym̂′+w+ 1

2 . (3.14)

4These spin fields are denoted S−
w (x, y) in [12]
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Taking into account the antiholomorphic part, the vertex operators creating spectral flow

images of chiral primary states in the Ramond sector are given by

R±,h,w

HH
(x, x, y, y) = e−

ϕ

2 Sw+ 1
2 (x, y)S

w+ 1
2 (x, y)Φh,w

H,H
(x, x)V j,w

J,J
(y, y)e±

i
2
(Ĥ4−Ĥ5)e±

i
2
(Ĥ4−Ĥ5) .

(3.15)

The expressions (3.10), (3.11) and (3.15) that we deduced here appeared previously

in [12].

4 Three-point functions of chiral states

In this section we compute w−conserving three-point functions involving spectral flow

images of chiral primary states. We restrict to the so called extremal correlators, satisfying

jn = jm + jl.

4.1 NS-NS-NS three-point functions

Let us start by evaluating the following amplitudes

A3 = g−2
s

〈
Wh1,w1

H1,H1
(x1, y1, x1, y1)Wh2,w2

H2,H2
(x2, y2, x2, y2)Wh3,w3

H3,H3
(x3, y3, x3, y3)

〉
S2
,(4.1)

A′
3 = g−2

s

〈
Yh1,w1

H1,H1
(x1, y1, x1, y1)Wh2,w2

H2H2
(x2, y2, x2, y2)Yh3,w3

H3,H3
(x3, y3, x3, y3)

〉
S2
. (4.2)

The vertices Wh,w

H,H
, Yh,w

H,H
were defined in the −1 ghost picture. To have total ghost

number −2, as required on the sphere, we change the picture of an unflowed operator for

simplicity, i.e. [7, 8]

W(0)
h (x, y, x, y) =

[(
(1 − h)̂(x) + j(x) +

2

k
ψ(x)χa(y)P

a
y

)
× c.c.

]
Φh(x, x)Vh−1(y, y) ,

(4.3)

Y(0)
h (x, y, x, y) =

[(
hk̂(y) + k(y) +

2

k
χ(y)ψa(x)D

a
x

)
× c.c.

]
Φh(x, x)Vh−1(y, y) . (4.4)

As discussed in detail below, this restriction is not strictly necessary to evaluate (4.2), but

further knowledge on spectral flowed affine representations than is currently available is

needed to compute (4.1) in a more general situation. In any case, we shall see that including

an unflowed operator does not imply any loss of generality for correlators involving spectral

flow images of chiral primary states in the SL(2, R) sector.

Replacing (4.3) in (4.1), A3 explicitly reads

A3 = g−2
s

〈
e−ϕ(z1,z̄1)e−ϕ(z2,z̄2)

〉〈
V h1−1,w

J1,J1
(y1, y1)V

h2−1,w

J2,J2
(y2, y2)Vh3−1(y3, y3)

〉

×〈χw(y1)χ
w(y2)〉 〈χw(y1)χ

w(y2)〉
〈
Φh1,w

H1,H1
(x1, x1)ψ

w+1(x1)ψ
w+1

(x1)Φ
h2,w

H2,H2
(x2, x2)

× ψw+1(x2)ψ
w+1

(x2) {(1 − h3)̂(x3) + j(x3)} {(1 − h3)̂(x3) + j(x3)}Φh3(x3, x3)
〉
,
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and inserting (4.4) into (4.2) and using ψa(x)D
a
x = 1

2(ψ(x)∂x + h∂xψ(x)) we get

A′
3 = g−2

s

〈
e−ϕ(z1,z̄1)e−ϕ(z2,z̄2)

〉〈
V h1−1,w

J1,J1
(y1, y1)V

h2−1,w

J2,J2
(y2, y2)Vh3−1(y3, y3)

〉

×
{[〈

ψw(x1)ψ
w+1(x2)ψ(x3)

〉
∂x3

〈
Φw

H1,H1
(x1, x1)Φ

w
H2,H2

(x2, x2)Φh3(x3, x3)
〉

+

h3

〈
ψw(x1)ψ

w+1(x2)∂x3ψ(x3)
〉 〈

Φw
H1,H1

(x1, x1)Φ
w
H2,H2

(x2, x2)Φh3(x3, x3)
〉]

×
〈
χw+1(y1)χ

w(y2)χ(y3)
〉
× c.c.

}
, (4.5)

where w = w1 = w2.

The SU(2) and fermionic expectation values were discussed in [12]. We now compute

the SL(2,R) correlators, applying the technique developed in [23].

From the integral transform

Φh,w

H,M,H,M
=

∫
d2xxH−M−1xH−M−1Φh,w

H,H
(x, x) , (4.6)

a generic three-point function in the x−basis, e.g. (we omit the z dependence for short)

〈
Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)

〉
= D(Hi,H i)

(
x−H12

12 x−H23
23 x−H13

13 × c.c.
)
,

(4.7)

(c.c. stands for the antiholomorphic dependence), can be transformed to the m−basis as

〈
3∏

i=1

Φ
hi,w

′
i

Hi,Mi,Hi,Mi

〉
= (2π)2D(Hi,H i)W (Hi,Mi,H i,M i)δ

2(M1 +M2 +M3), (4.8)

where

W
(
Hi,Mi,H i,M i

)
=

∫
d2x1d

2x2x
H1−M1−1
1 xH2−M2−1

2 xH1−M1−1
1 xH2−M2−1

2 |x12|−2H12

× |1 − x1|−2H13 |1 − x2|−2H23 . (4.9)

Recall that the spectral flow with w > 0 (w < 0) turns primary states of the current

algebra into lowest- (highest-) weight states of a global representation with H = M =

m+ k+2
2 w, H = M = m+ k+2

2 w (H = −M = −m+ k+2
2 |w|, H = −M = −m+ k+2

2 |w|).5
Therefore, we are interested in the residue of the poles at say, H1 = M1,H1 = M1 and

H2 = −M2,H2 = −M2. This is obtained by taking the x1, x1 → 0 and x2, x2 → ∞ limits

in the integrand of W (Hi,H i,Mi,M i), which simply gives

〈
3∏

i=1

Φ
hi,w′

i

Hi,Mi,Hi,M i

〉
= (2π)2V 2

confδ
2(M1 +M2 +M3)D(Hi,H i), (4.10)

where Vconf =
∫
dx2/|x|2.

5The spectral flow labels w and w′ for highest/lowest weight states of global representations in the x−

and m−basis, respectively, may be related as w′ = M
H

w.
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On the other hand, it is well known that spectral flow preserving n−point functions

in the m−basis are related to correlators involving only unflowed operators as

〈
n∏

i=1

Φhi,wi

Hi,Mi,Hi,M i
(zi, zi)

〉

P

i wi=0

=
∏

j<i

(zij)
−wjmi−wimj−

k+2
2

wiwj × c.c.

×
〈

n∏

i=1

Φwi=0
hi,mi,mi

(zi, zi)

〉
, (4.11)

and three-point functions of w = 0 primary states have the following form [24, 25]:

〈
3∏

i=1

Φwi=0
hi,mi,mi

(zi, zi)

〉
=(2π)2δ2

(∑

i

mi

)
W (hi,mi,mi)C(hi)|z12|−2∆12 |z13|−2∆13 |z23|−2∆23 ,

(4.12)

with

C(h1, h2, h3) = − G(1 − h1 − h2 − h3)G(−h12)G(−h13)G(−h23)

2π2νh1+h2+h3−1γ
(

k+1
k

)
G(−1)G(1 − 2h1)G(1 − 2h2)G(1 − 2h3)

,(4.13)

where G(h) = k
j(k+1−h)

2k Γ2(−h|1, k)Γ2(k + 1 + h|1, k), Γ2 being the Barnes double gamma

function and ∆12 = ∆1 + ∆2 − ∆3, h12 = h1 + h2 − h3, etc.

Comparing with (4.10), one finds that the three-point functions involving spectral

flow images of primary operators in arbitrary w−sectors in the x−basis corresponding to

w−preserving amplitudes in the m−basis are given by6

〈
Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)

〉

=
1

V 2
conf

W (hi,mi,mi)C(hi)x
−H12
12 x−H13

13 x−H23
23 x−H12

12 x−H13
13 x−H23

23 . (4.14)

Recall that this result holds for operators satisfying m1 +m2 +m3 = 0.

As discussed above, for highest/lowest weight states the function W (hi,mi,mi) devel-

ops poles which cancel the factor V −2
conf . Taking, for instance, a chiral field at x1, x1 and

an antichiral one at x2, x2, i.e. m1 = m1 = h1,m2 = m2 = −h2, the residue of the double

pole is just one, and we obtain7

A1
3 ≡ 〈Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)Φ

h3,w3

H3,H3
(x3, x3)〉

= C(hi)x
−H12
12 x−H13

13 x−H23
23 x−H12

12 x−H13
13 x−H23

23 .

6This correlation function was directly computed in the x−basis in [26] in the particular case w1 = w2 =

1, w3 = 0 using the definition of w = 1 vertex operators given in [23]. Here we have used a different technique

which is useful to evaluate correlators involving fields in arbitrary w sectors and, specially, expectation values

including currents.
7Normalizing the two-point functions of these operators to the identity, this result agrees with the

prediction formulated in [12] when the correlator involves one unflowed state. Three flowed chiral primary

operators obeying m1 +m2+m3 = 0 cannot meet the condition h3 = h1 +h2−1 under which the prediction

of [12] holds.
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The following expectation value is also needed to evaluate A3:

A2
3 ≡

〈
Φh1,w1

H1,H1
(x1, x1)Φ

h2,w2

H2,H2
(x2, x2)j(x3)Φh3(x3, x3)

〉
.

The OPE j(x)Φh,w

H,H
(x′, x′) is only known so far for w = 1 fields [23], namely

j(x′, z′)Φh,w=1

H,H
(x, x; z, z) = (m− h+ 1)

(x − x′)2

(z − z′)2
Φh,w=1

H+1,H
(x, x; z, z)

+
1

z′ − z

[
2H(x− x′) + (x− x′)2∂x

]
Φh,w=1

H,H
(x, x; z, z) . (4.15)

Therefore, we restrict to this case. Inserting (4.15) into A2
3, one gets

A2
3 = (1 − h1 +m1)

(x1 − x3)
2

(z1 − z3)2
< Φh1,w=1

H1+1,H1
(x1, x̄1)Φ

h2,w=1

H2,H2
(x2, x̄2)Φh3(x3, x̄3) >

+ (1 − h2 −m2)
(x2 − x3)

2

(z2 − z3)2
< Φh1,w=1

H1,H1
(x1, x̄1)Φ

w=1,h2

H2+1,H2
(x2, x̄2)Φh3(x3, x̄3) >

+
1

z3 − z1

[
2H1(x1 − x3) + (x1 − x3)

2∂x1

]
A1

3

+
1

z3 − z2

[
2H2(x2 − x3) + (x2 − x3)

2∂x2

]
A1

3 .

The first two terms are easily evaluated using the procedure discussed above and we get

〈
Φh1,w=1

H1+1,H1
(x1, x̄1)Φ

h2,w=1

H2,H2
(x2, x̄2)Φh3(x3, x̄3)

〉
=

W (hi,m1 = h1 + 1,m2 = −h2,m3)

× V −2
conf C(hi) x

−H12−1
12 x−H13−1

13 x−H23+1
23 x−H12

12 x−H13
13 x−H23

23 , (4.16)

where

W (hi,m1 = h1 + 1,m2 = −h2,m3) = V 2
conf

h13

m1 − h1 + 1
, (4.17)

and similarly,

〈
Φh1,w=1

H1,H1
(x1, x1)Φ

h2,w=1

H2+1,H2
(x2, x2)Φh3(x3, x3)

〉
=

C(hi)
h23

1 − h2 −m2

× x−H12−1
12 x−H13+1

13 x−H23−1
23 x−H12

12 x−H13
13 x−H23

23 . (4.18)

Putting all together, we obtain

A2
3 = (3h3 −H1 −H2)C(hi) x

−H12−1
12 x−H13+1

13 x−H23+1
23 x−H12

12 x−H13
13 x−H23

23

× z−∆12+1
12 z−∆13−1

13 z−∆23−1
23 z−∆12

12 z−∆13
13 z−∆23

23 , (4.19)

and analogously for the term containing the antiholomorphic current j(x) in A3.
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To write down the final result, let us recall the fermionic and SU(2) correlators (see [12]

for details).

< ψw+1(x1)ψ
w+1(x2) > =

k

2

x
2(w+1)
12

z
(w+1)2

12

, (4.20)

< ψw+1(x1)ψ
w+1(x2)̂(x3) > =

2∑

i=1

1

z3i

[
2(w + 1)x3i + (x3i)

2∂xi

]
< ψw+1(x1)ψ

w+1(x2) >

= k(w + 1)
x13x23

x12

z12
z13z23

x
2(w+1)
12

z
(w+1)2

12

, (4.21)

< ψw(x1)ψ
w+1(x2)ψ(x3) > = k

x2w
12 x

2
23z

w
13

zw2+w
12 zw+1

23

. (4.22)

Similar expressions are obtained for χw.

In the SU(2) WZNW model, normalizing the two−point functions as

〈Vj1(y1, y1; z1, z1)Vj2(y2, y2; z2, z2) = δj1j2

|y12|2j1

|z12|4∆j1
, (4.23)

the three−point functions are given by [27]

〈Vj1(y1, ȳ1; z1, z̄1)Vj2(y2, ȳ2; z2, z̄2)Vj3(y3, ȳ3; z3, z̄3)〉 = C ′(j1, j2, j3)
∏

i<j

|yij|2jij

|zij |2∆ij
, (4.24)

for jn ≤ jm + jl, where

C ′(j1, j2, j3) =

√
γ( 1

k )

γ(2j1+1
k )γ(2j2+1

k )γ(2j3+1
k )

P (j1 + j2 + j3 + 1)P (j12)P (j23)P (j31)

P (2j1)P (2j2)P (2j3)

with P (j) =
∏j

m=1 γ(
m
k ), P (0) = 1.

As argued in [12], the structure constants for spectral flowed chiral fields in SU(2)

are also given by C ′(ji) for jn = jm + jl. Therefore, collecting all the contributions and

suppressing the x− and z−dependence for short, we get

A3 = g−2
s

k2

4
|H1 + H2 + H3 + 1|2 C ′(ji)C(hi) , (4.25)

A′
3 = g−2

s

k2

4
|H1 −H2 + H3 − 1|2 C ′(ji)C(hi) . (4.26)

As shown in [7, 8],

C ′(ji)C(hi) =
√
B(h1)B(h2)B(h3), B(hi) =

k

4π3

ν1−2hi

γ
(

2hi−1
k

) , ν = π
Γ
(
1 − 1

k

)

Γ
(
1 + 1

k

) ,

(4.27)

with γ(x) = Γ(x)
Γ(1−x) .
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In order to compare these results with the conjectured dual counterparts, the two-point

functions must be normalized to the identity. Taking into account that in the SL(2,R) sector

they are given by [23]

〈Φh,w

H,H
(x1, x1)Φ

h,w

H,H
(x2, x2)〉 = g−2

s (2h − 1 + kw)B(h)x−2H
12 x−2H

12 , (4.28)

the normalized chiral operators are defined as:

W
h,w

H,H
(x, x̄) ≡

4gsWh,w

H,H
(x, x̄)

k2
√
B(h)(2h − 1 + kw)

, Y
h,w

HH
(x, x̄) ≡

4gsYh,w

HH
(x, x̄)

k2
√
B(h)(2h − 1 + kw)

.

(4.29)

Omitting the standard dependence on the coordinates, we thus get

〈
W

h1,w

H1H1
W

h2,w

H2H2
W

(0)
h3

〉
=

4gs

k2

|H1 + H2 + H3 + 1|2√
(2h1 − 1 + kw)(2h2 − 1 + kw)(2h3 − 1)

, (4.30)

〈
Y

h1,w

H1H1
W

h2,w

H2H2
Y

(0)
h3

〉
=

4gs

k2

|H1 −H2 + H3 − 1|2√
(2h1 − 1 + kw)(2h2 − 1 + kw)(2h3 − 1)

. (4.31)

While (4.30) was obtained for w = 1, (4.31) holds for arbitrary w.

These three-point functions involve one unflowed operator. We restricted to this case

for simplicity. However, notice that when the three operators are spectral flow images

of chiral primaries of SL(2,R) or the unflowed operator creates a highest/lowest weight

primary state, the condition hi = ±mi together with the requirement m1 +m2 +m3 = 0

imply, for example, h2 = h1 + h3. Combined with the chirality condition ji = hi − 1, this

gives j2 = j1 + j3 + 1 which violates the triangular inequality j2 ≤ j1 + j3 of the SU(2)

WZNW model. Therefore the SU(2) factor gives a zero for the whole three-point function.

This conclusion does not apply when the unflowed operator obeys h3 6= ±m3. Therefore,

the results (4.30) and (4.31) hold for amplitudes containing two flowed and one unflowed

chiral primary operators as long as the latter does not create a highest/lowest weight state

in the SL(2, R) sector.

Let us now compare these results with the correlators in the dual theory. The level

k is identified with N5 [18] and g2
s = N5

N1
V ol(T4) [2, 3, 16], so these correlation functions

scale as N−1/2 in the large N limit. Recall that the chiral string states Wh,w

HH
, Yh,w

HH
have

been identified with the chiral operators O−−
n,n , O++

n,n of the SCFT, respectively [7, 8, 12].

Moreover, the proposed identification between the quantum numbers of W
h,w

HH
and those of

O−−
n (x, x̄) is the following [7, 8, 12]

Hn =
n− 1

2
= h− 1 +

k

2
w ⇒ n = 2h− 1 + kw , (4.32)

and for Y
h,w

HH
and O++

n (x, x̄) it is

Hn =
n+ 1

2
= h+

k

2
w ⇒ n = 2h− 1 + kw . (4.33)
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Replacing these values of n in the boundary three-point functions (2.33), one gets at lead-

ing order

〈
O−−

n1
O−−

n2
O−−†

n3

〉
=

1√
N

|H1 + H2 + H3 + 1|2√
(2h1 − 1 + kw1)(2h2 − 1 + kw2)(2h3 − 1)

, (4.34)

〈
O++

n1
O−−

n2
O++†

n3

〉
=

1√
N

|H1 −H2 + H3 − 1|2√
(2h1 − 1 + kw1)(2h2 − 1 + kw2)(2h3 − 1)

, (4.35)

in perfect agreement with (4.30) and (4.31), respectively. Furthermore, using the bulk-

to-boundary dictionary, one can verify that the boundary correlators corresponding to

three spectral flow images of chiral primary operators is zero because in both cases (4.34)

and (4.35) the relation h2 = h1 + h3 implies n2 = n1 + n3, which violates the U(1) charge

by one unit.

Two other correlators can be considered in the string theory corresponding to the

vanishing correlators (ǫn1 , ǫn2 , ǫn3) = (+,+,+) and (−,−,+) in the boundary CFT, namely

〈∏3
i=1 Y

hi,wi

Hi,Hi
〉 and 〈∏2

i=1 W
hi,wi

Hi,Hi
Yh3,w3

H3,H3
〉. It is easy to see that they violate the SU(2) charge

conservation in the case j2 = j1+j3 that we are considering, and therefore they also vanish.

4.2 R-R-NS three-point functions

The chiral states R±,h,w

H,H
were identified with the operators Oa,a

n in [8, 12]. To compare

the corresponding three-point functions in the dual theories, the two R-R-NS correlators

needed are

A3 = g−2
s

〈
R±,h3,w3

H3,H3
(x3, x3)R±,h2,w2

H2,H2
(x2, x2)Wh1,w1

H1,H1
(x1, x1)

〉
S2
, (4.36)

A′
3 = g−2

s

〈
Yh3,w3

H3,H3
(x3, x3)R±,h2,w2

H2,H2
(x2, x2)R±,h1,w1

H1,H1
(x1, x1)

〉
S2
. (4.37)

The R vertices (3.15) were obtained in the −1
2 picture, so it is not necessary to insert

a picture changing operator and we can compute this amplitude for states in arbitrary w

sectors, as long as wn = wm + wl.

The SU(2) part of the three-point functions is given by C ′(ji) for jn = jm + jl and the

fermionic contributions are the following [12]8

〈Sw3+
1
2 (x3, y3)S

w2+ 1
2 (x2, y2)ψ

w1+1(x1)χ
w1(y1)〉 =

(w1 + w2)!

w1!w2!
,

〈ψw3(x3)χ
w3+1(y3)S

w2+ 1
2 (x2, y2)S

w1+ 1
2 (x1, y1)〉 =

(w1 + w2)!

w1!w2!
. (4.38)

As shown in the previous section, the SL(2,R) contribution is simply C(hi) for two or

three flowed chiral primary states satisfying m1 + m2 + m3 = 0. If the three operators

are flowed, the SU(2) spins violate the triangular inequality and the correlator vanishes,

analogously to the NS-NS-NS case. When one operator is unflowed, the factor (w1+w2)!
w1!w2!

reduces to unity and we have

A3 = A′
3 = g−2

s

√
B(h1)B(h2)B(h3) . (4.39)

8We get the inverse of the result reported in [12].
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Normalizing the R operators as (see [12] for details)

R
±,h,w

H,H
=

√
(2h − 1 + kw)

2B(h)
gsR±,h,w

H,H
, (4.40)

we get

〈
R
±,h3,w3

H3,H3
R
±,h2,w2

H2,H2
W

h1,w1

H1,H1

〉
=
〈

R
±,h3,w3

H3,H3
R
±,h2,w2

H2,H2
Y

h1,w1

H1,H1

〉

=
2gs

k2

[
(2h3 + kw3 − 1)(2h2 + kw2 − 1)

(2h1 + kw1 − 1)

]1/2

, (4.41)

for w1 = 0 or w2 = 0, again in agreement with the boundary correlators (2.34) and (2.35).

5 Conclusions

We have evaluated spectral flow conserving three-point functions containing spectral flow

images of chiral primary states in type IIB superstring theory on AdS3× S3× T4 and showed

that they agree with the corresponding correlators in the dual boundary CFT. These results

provide an additional verification of the AdS3/CFT2 correspondence, widening similar

conclusions of previous works [7, 8, 10] to the non-trivial spectral flow sectors of the theory.

The matching obtained so far reflects the cancellation of the three-point structure

constant of AdS3 against that of the S3 factor. The non-trivial fermionic contributions

reduce to unity in all the non-vanishing amplitudes that we have considered here. A defi-

nite confirmation of this duality would require extending the bulk-to-boundary dictionary

to descendant states. The evaluation of three-point functions involving affine descendants

and their spectral flow images is an interesting subject in its own right. Actually, the

spectral flow operation maps primaries into descendants both in SU(2) and SL(2, R) and

it generates new representations of the universal cover of SL(2, R). Understanding these

new representations is crucial to solve the AdS3 WZNW model and elucidate the physical

mechanism determining the truncation of the fusion rules imposed by the spectral flow

symmetry [28]. In the context of the AdS3/CFT2 correspondence, a better comprehen-

sion of the structure of the spectral flow sectors would contribute to achieve a systematic

comprehension of the hypothesis advanced in the literature.
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A Clebsch-Gordan coefficients

In this appendix we compute the Clebsch-Gordan coefficients (CG) expanding the product

representation (H ⊗ ĥ) of the SL(2,R) algebra. We consider the case H ∈ D+,w
H , ĥ ∈

Dĥ, where

D+
H : {|H,M〉 ; H ∈ R, M = H + n, n = 1, 2, 3 . . . . . .} , (A.1)

is an infinite discrete representation and

D+

ĥ
: {|ĥ, m̂〉 ; −ĥ ≤ m̂ ≤ ĥ , m̂ ∈ Z} , (A.2)

is a finite representation of the SL(2,R)−2 algebra. We use the following normalization

j±|H,M >= (M ∓H)|H,M ± 1 > (A.3)

and similarly for |ĥ, m̂ >. A state living in the product representation may be expanded as

|H ⊗ ĥ〉 ≡ |H, ĥ;H,M〉 =
∑

M,m̂

|H,M ; ĥ, m̂〉〈H,M ; ĥ, m̂|H, ĥ;H,M〉δM,M+m̂ . (A.4)

Applying the raising operator H+ = j+
1

+j+
2

and equating the coefficients on both sides

of (A.4), the following recursion relation is obtained

(M−H)〈M + 1 − m̂, m̂|H,M + 1〉 =(M− m̂−H)〈M− m̂, m̂|H,M〉
+ (m̂− 1 − ĥ)〈M− m̂+ 1, m̂− 1|H,M〉 ,

(A.5)

where the indicesH, ĥ have been dropped for short. A similar recursion relation is obtained

applying the lowering operator H− = j−
1

+ j−
2
, namely

(M + H)〈M− 1 − m̂, m̂|H,M− 1〉 =

(M− m̂+H)〈M− m̂, m̂|H,M〉 + (m̂+ ĥ+ 1)〈M − m̂− 1, m̂+ 1|H,M〉 .
(A.6)

The last term in (A.5) vanishes for m̂ = −ĥ, i.e.

〈M + ĥ+ 1,−ĥ|H,M + 1〉 =
M + ĥ−H

M−H 〈M + ĥ,−ĥ|H,M〉 , (A.7)

and for M = H + 1, this reads

〈H + ĥ+ 2,−ĥ|H,H + 2〉 = (H + 1 + ĥ−H)〈M ′,−ĥ|H,H + 1〉 . (A.8)

Then, taking successively M = H + 2, . . . ,H + n, one finds

〈M,−ĥ|H,M〉 =
(ĥ−H + M− 1)!

(M−H− 1)!(H + ĥ−H)!
〈M ′

1,−ĥ|H,H + 1〉. (A.9)
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Defining q(m̂,M) ≡ (−1)m̂(m̂+ĥ)!(M−m̂+H)!
(M+H)! , (A.6) may be recast as

q(m̂+ 1,M)〈M − (m̂+ 1), m̂ + 1|H,M〉 = q(m̂,M)〈M − m̂, m̂|H,M〉
−q(m̂,M− 1)〈M − 1 − m̂, m̂|H,M− 1〉

≡ ∆M[q(m̂,M)〈M ′, m̂|H,M〉] . (A.10)

Applying this successively for m̂− 1, . . . , m̂− n and using

∆n
x[f ](x) =

∑n
s=0(−1)s

(
n

s

)
f(x− s), we get

〈M−m̂, m̂|H,M〉=
1

q(m̂,M)
∆m̂+ĥ

M [q(−ĥ,M)〈M ′,−ĥ|H,M〉]

=
1

q(m̂,M)

m̂+ĥ∑

s=0

(−1)s

(
m̂+ ĥ

s

)
q(−ĥ,M−s)〈M−s+ ĥ,−ĥ|H,M−s〉 .

Substituting q(m̂,M) and 〈M− s+ ĥ,−ĥ|H,M− s〉 in this equation, we obtain

〈M− m̂, m̂|H,M〉 =
(M + H)!

(m̂+ ĥ)!(M− m̂+H)!

m̂+ĥ∑

s=0

(−1)s−ĥ

(
m̂+ ĥ

s

)
(M− s+ ĥ+H)!

(M− s+ H)!

× (ĥ−H + M− s− 1)!

(M− s−H− 1)!(H + ĥ−H)!
〈H + 1 + ĥ,−ĥ|H,H + 1〉 .

Therefore, all the CG coefficients in the expansion (A.4) are expressed in terms of

just one coefficient, which can be set to one.9 As a consistency check, we compute some

known cases.

In the unflowed sector, we need to decompose the product representation with ĥ = 1. In

this case, there are three possible combinations of H, according to the angular momentum

selection rules, namely H = H + 1, H = H, H = H − 1. In the first case, one gets

(ψΦ)ω=0
H+1,M =

∑

M,m̂

(Φω=0
H,Mψ

m̂)〈M − m̂, m̂|H + 1,M〉

=
1

2
(H −M)(1 +H −M)Φω=0

H,M+1ψ
− + (H + 1 −M)(1 +H +M)Φω=0

H,Mψ
3

+
1

2
(H +M)(1 +H +M)Φω=0

H,M−1ψ
+ . (A.11)

For H = H, the following field expansion is obtained

(ψΦ)ω=0
H,M = (M −H)Φω=0

H,M+1ψ
− − 2MΦω=0

H,Mψ
3 + (H +M)Φω=0

H,M−1ψ
+ . (A.12)

And finally, for H = H−1, which satisfies the chirality condition in the unflowed sector,

(ψΦ)ω=0
H−1,M = Φω=0

H,M+1ψ
− − 2Φω=0

H,Mψ
3 + Φω=0

H,M−1ψ
+ , (A.13)

in accord with the decomposition given in [2], up to the global phase factor men-

tioned above.
9 Recall that the CG are determined up to a global phase factor (which is a global multiplicative factor

for all remaining CG).
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