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Nilsson solutions for irregular A-hypergeometric systems

Alicia Dickenstein, Federico N. Martinez and Laura F. Matusevich

Abstract. We study the solutions of irregular A-hypergeometric systems that are
constructed from Grobner degenerations with respect to generic positive weight
vectors. These are formal logarithmic Puiseux series that belong to explicitly de-
scribed Nilsson rings, and are therefore called (formal) Nilsson series. When the
weight vector is a perturbation of (1,...,1), these series converge and provide
a basis for the (multivalued) holomorphic hypergeometric functions in a specific
open subset of C™. Our results are more explicit when the parameters are generic
or when the solutions studied are logarithm-free. We also give an alternative proof
of a result of Schulze and Walther that inhomogeneous A-hypergeometric systems
have irregular singularities.

1. Introduction

The Frobenius method is a symbolic procedure for solving a linear ordinary differential
equation in a neighborhood of a regular singular point. The solutions are represented
as convergent logarithmic Puiseux series that belong to the Nilsson class. In the multi-
variate case, a direct generalization of the Frobenius method, called the canonical series
algorithm, was introduced by Saito, Sturmfels and Takayama [24, Chapter 2.5] based on
Grobner degenerations in the Weyl algebra D. When applied to a regular holonomic left
D-ideal, this procedure yields a basis of the solution space. The basis elements belong
to an explicitly described Nilsson ring, and are therefore called Nilsson series, or Nilsson
solutions. Each Nilsson ring is constructed using a weight vector; the choice of weight
vector is a way of determining the common domain of convergence of the corresponding
solutions. The canonical series procedure requires a regular holonomic input; although
one can run this algorithm on holonomic left D-ideals that have irregular singularities,
there is no guarantee that the output series converge, or even that the correct number of
basis elements will be produced.

In this article, we study the solutions of the A-hypergeometric systems introduced by
Gelfand, Graev, Kapranov and Zelevinsky [11, 13].
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Definition 1.1. Denote by D the Weyl algebra on x1,...,x, and 01, ..., 0y, where 0;
stands for the partial derivative with respect to x;. Let A = [a;;] € 794%™ whose rows
Z-span 72, and let 3 € C%. The A-hypergeometric system with parameter (3 is the left
D-ideal

Hy(B)=1a+(E1—P1,...,Eq— Ba) C D,

where E; = 370 a;jx;0;, 1 < i < d, and 14 denotes the toric ideal
Ta= (0" — 0" | A-u=A-v) CCla].

These left D-ideals are always holonomic [1, 13]. It is known that H 4 () is regular
holonomic if and only if the Q-rowspan of the matrix A contains the vector (1,...,1).
The if direction was proved by Hotta in his work on equivariant D-modules [16]; Saito,
Sturmfels and Takayama gave a partial converse in [24, Theorem 2.4.11], assuming that
the parameter (3 is generic. Their proof uses Grobner methods in D.

A different strategy to show that a D-ideal is not regular holonomic is to prove that it
has slopes. The analytic slopes of a D-module were introduced in the work [20] of Meb-
khout, while an algebraic version was given by Laurent [17]. These authors have shown
that the analytic and algebraic slopes of a D-module along a hypersurface agree [18].
From a computational perspective, Assi, Castro—Jiménez and Granger gave a Grobner
basis algorithm to find algebraic slopes [2]. There has been an effort to compute the
(algebraic) slopes of H 4(/3) along a coordinate hypersurface. In the cases d = 1 and
n — d = 1, these slopes were determined by Castro—Jiménez and Takayama [7], and
Hartillo-Hermoso [14, 15]. More generally, Schulze and Walther [25] have calculated the
slopes of H 4(8) under the assumption that the cone over the columns of A contains no
lines. Such a cone is called strongly convex. The fact that slopes of H4(3) always exist
when the vector (1, ..., 1) does not belong to the rowspan of A, implies that H 4 (3) has
irregular singularities. Thus, [25, Corollary 3.16] gives a converse for Hotta’s regularity
theorem in the strongly convex case. We give an alternative proof of this converse here,
by extending ideas of Saito, Sturmfels and Takayama. The main technical obstacle to
overcome is the potential existence of logarithmic hypergeometric series.

Further insight into the solutions of hypergeometric system comes from the analytic
approach taken up by Castro—Jiménez and Fernandez—Ferndndez [6, 10], who studied
the Gevrey filtration on the irregularity complex of an A-hypergeometric system. Since
formal series solutions of irregular systems need not converge, a study of the Gevrey
filtration provides information on how far such series are from convergence.

Even though the regularity of H 4(/3) is independent of /3, in practice, assuming that
the parameters are generic makes a difference. In this case, Ohara and Takayama [22]
show that the method of canonical series for a weight vector which is a perturbation of
(1,...,1) produces a basis for the solution space of H 4(/3) consisting of (convergent)
Nilsson series that contain no logarithms. In that work (and many others, such as [1, 19,
24]) an important role is played by a related hypergeometric system that does have regular
singularities, called the homogenized system. One of our main goals is to precisely explain
the relationship between the solutions of H 4(/3) and those of its homogenization.

In order to produce a basis of solutions of H 4(/3) when [ is not generic, logarithmic
series cannot be avoided, even in the regular case. Dealing with logarithmic solutions
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of H4(f3) poses technical challenges that we resolve here, allowing us to lift the gener-
icity hypotheses from the results of Ohara and Takayama: running the canonical series
algorithm on H 4 (/) with weight vector (a perturbation of) (1,...,1) always produces
a basis of (convergent) Nilsson solutions of H4(f3), if the cone spanned by the columns
of A is strongly convex. On the other hand, formal solutions of irregular hypergeometric
systems that are not Nilsson series need to be considered, even in one variable (see, for
instance, [9]).

This article is organized as follows. In Section 2 we introduce the formal basic Nilsson
solutions of H 4 () in the direction of a weight vector w (Definition 2.6), whose linear
span is denoted by 4, (H 4(3)). Section 3 explains the relationship between Ay, (H 4(5))
and the solution space of an associated regular holonomic hypergeometric system. A
linear map p between these spaces is constructed in Definition 3.16 and Proposition 3.17.
The main result in Section 3 is Theorem 3.18, which states that p is injective, and describes
its image.

In Section 4 we restrict our attention to generic parameter vectors 3, and give a com-
binatorial formula for the dimension of .A4,,(H 4()) (Theorem 4.9). This formula is
reminiscent of the multiplicities of the L-characteristic cycles of the A-hypergeometric
D-module D/H 4(3) computed in [25], but note that these authors use different weights
in the Weyl algebra than we do: while we focus on weight vectors of the form (—w,w),
Schulze and Walther work with (u, v) such that u 4 v is a positive multiple of (1,...,1).

In Section 5 we lift the genericity assumption from (3, but study only A-hypergeo-
metric Nilsson series that contain no logarithms, and show that they arise from logarithm-
free solutions of the associated regular holonomic hypergeometric system (Theorem 5.5).
We show in Theorem 5.4 that the logarithm-free basic Nilsson solutions of H4(/3) in the
direction of a weight vector w span the vector space of formal logarithm-free A-hyper-
geometric series in the direction of w, proving the formula in [23, Display(7)].

In Section 6 we analyze the convergence of formal Nilsson solutions of A-hypergeo-
metric systems. The main result of that section is Theorem 6.4, which provides an explicit
construction for a basis of the space of (multivalued) holomorphic solutions of H4(5)
that converge in a specific fixed open set, assuming that the cone spanned by the columns
of A is strongly convex. While this was well known in the regular case, it is a new result
in general. Finally, under the same strong convexity assumption for A, we use our study
of formal A-hypergeometric Nilsson series in Section 7 to (re)prove that A-hypergeo-
metric systems arising from inhomogeneous toric ideals have irregular singularities for all
parameters (Theorem 7.6).
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2. Initial ideals and formal Nilsson series

Throughout this article, A is a fixed d X n integer matrix whose columns Z-span the
lattice Z¢. Given 3 € CY, we consider the A-hypergeometric system H 4(/3) introduced
in Definition 1.1, and we define and study its Nilsson series solutions associated to a
weight vector w € RZ,. We use the convention that N = {0,1,2,...}.

We work in the Weyl algebra D in x1,...,2,, 01,...,0,. A left D-ideal I is said
to be holonomic if Ext's(D/I,D) = 0 for all i # n. In this case, the holonomic rank
of I, denoted by rank(I), which is by definition the dimension of the space of germs
of holomorphic solutions of I near a generic nonsingular point, is finite, by a result of
Kashiwara [24, Theorem 1.4.19].

Definition 2.1. Let w € R™. The (—w, w)-weight of 0" € D is —w - u + w - v.
This weight induces a partial order on the monomials in the Weyl algebra.

Definition 2.2. Letw € R" and f =), cupx"0" € D. The initial form in_,, ., (f)
of f # 0 with respect to (—w, w) is the subsum of f consisting of its (nonzero) terms of
maximal (—w, w)-weight. If I is a left D-ideal, its initial ideal with respect to (—w, w) is

in(—w,w) (I) = <in(—w,w)(f) | f € Iv f 7é 0> CD.

Remark 2.3. We can restrict the (—w, w)-weight to the monomials in C[9] C D. In this
case, the weight of 9" reduces to w - v. When w € RZ, the induced partial order on the
monomials in C[0] has 1 as the unique smallest monomial. If J C C[d] is an ideal, we
define the initial ideal in,,(J) as the ideal generated by the initial terms of all non zero
polynomials in J.

The following definition characterizes the weight vectors we consider in this article.

Definition 2.4. A vector w € RZ is a weight vector for H o([3) if there exists a strongly
convex open rational polyhedral cone € C RZ, with w € €, such that, for all w' € €,
we have

inw(IA) = inw/(IA) and in(—w,w)(HA(ﬂ)) = in(—w’,w/)(HA(ﬁ))'

Note that the cone ¥ is not unique and that the assumptions on w in Definition 2.4
imply that in,,(14) is a monomial ideal. It follows from the existence of the Grobner fan
(see [21] for the commutative version, and [3] for the situation in the Weyl algebra) that
weight vectors form an open dense subset of RZ,. For an introduction to the theory of
Grobner bases in the Weyl algebra, we refer to [24]; this text is also our main reference
for background on D-modules and hypergeometric differential equations.
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Remark 2.5. Define the A-grading on D via deg 4 (z"0%) = A - (v — u). A left D-ideal
is A-homogeneous if it is generated by A-homogeneous elements of D. Note that H 4 ()
is A-homogeneous.

Suppose that the cone spanned by the columns of A is strongly convex, that is, there
exists h € R? such that the vector h - A is coordinatewise positive. Let J be an A-
homogeneous left D-ideal. Then for any w € R™ there exists w’ € RZ; such that
Ny (J) = Ny wy(J). In fact, given w € R™, it is enough to choose a posi-
tive number A such that w’ = w + Ah - A is coordinatewise positive. To see this, note
that if f = " cu2¥0¥ € D is A-homogeneous, the vector A - (v — u) is independent of
(u,v) for all ¢,y # 0. As

—wutw v=—w-utw-v+A[h- A (v—u)],

using w’ instead of w simply adds a constant to the weights of the terms in f, and then
N (—y,w) (f) = in(—yw w)(f). Thus, when A is strongly convex, we can drop the positiv-
ity assumption in Definition 2.4.

An important special case in which the cone spanned by the columns of A is strongly
convex is when (1,...,1) belongs to the Q-rowspan of A. This happens if and only if
the toric ideal I, is homogeneous with respect to the usual Z-grading of the polynomial
ring C[J)] given by deg(d;) = --- = deg(d,,) = 1. We use the convention that the word
homogeneous without qualifications refers to the usual Z-grading of C[J).

If w is a weight vector for H 4 (), and € is an open cone as in Definition 2.4, the dual
cone €* consisting of elements u € R™ such that u - w’ > 0 for all w’ € ¥ is strongly
convex. Moreover, for any nonzero v € ¢* and any w’ € €, we have u - w’ > 0.

We are now ready to define the space of formal Nilsson series solutions of H4(03)
associated to a weight vector w. Note that the name Nilsson class is usually reserved for
multivalued functions that satisfy tempered growth conditions [5, Chapter 6.4]. In this
article, we work with formal Nilsson series, except when otherwise noted.

Definition 2.6. Ler w be a weight vector for the hypergeometric system H 4([3). Denote
log(z) = (log(z1), . . .,log(xy)). A formal solution ¢ of H () is called a basic Nilsson
solution of H 4 () in the direction of w if it has the form

@.1) ¢ = > &' py(log(x)),
ueC
for some vector v € C", and it satisfies
1. C is contained in €* N kery(A), where € is an open cone containing w as in

Definition 2.4,

2. The p,, are polynomials, and there exists K € 7Z such that deg(p,) < K for all
u e C,

3. Po 75 0.
The set supp(¢) = {u € C | p,, # 0} C kery(A) is called the support of .
The C-span of the basic Nilsson solutions of H 4(3) in the direction of w is called the
space of formal Nilsson series solutions of H 5(3) in the direction of w and is denoted
by A(Ha(B)).
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In what follows, we make a detailed study of .4;,(H4(5)). One of our main re-
sults, Theorem 6.4, states that, for fixed A and 3 there exists a weight vector w such that
dim (., (Ha(8))) = rank(Ha(5)).

Let w be a weight vector for H4(3). If ¢ = ", cap®log(x)? is a non zero element
of A, (Ha(3)) then, by [24, Proposition 2.5.2], the set of real parts {Re(a - w) | cqp #
0 for some b} achieves a (finite) minimum, denoted by 1i(¢), and the subseries of ¢ whose
terms are cq,z log(z)® such ¢,y # 0 and Re(a - w) = p(¢) is finite. We call this finite
sum the initial series of ¢ with respect to w and we denote it by in,,(¢). The reason for
including the third condition in Definition 2.6 is to ensure that in,, (¢) = 2Vpo(log(z)).
Non-basic Nilsson solutions of H 4(/3) will play a role in Section 5.

Remark 2.7. Given a weight vector w, we may replace the first requirement in Defini-
tion 2.6 by either of the following equivalent conditions:

i) C C kerz(A) and there exists an open neighborhood U of w such that, for all w’ € U
and all uw € C ~\ {0}, we have w’ - u > 0.

ii) There exist R-linearly independent ~y1,...,y, € Q" with w - y; > 0 for all i =
1,...,n,such that C' C (Rzo’ﬂ + -+ Rzo'yn) Nkerz(A).

To see that (i) is equivalent to the first condition in Definition 2.6, note first that,
if the latter is true, we may use U = %. The proof that (i) and (ii) are equivalent is
straightforward. If (ii) holds, we may take ¢ equal to the interior of the cone R>ovy: +
o+ Rxovm.

The following lemma allows us to manipulate formal Nilsson solutions of H 4 () in
the direction of a weight vector.

Lemma 2.8. Let ¢1,..., ¢, € Np(Ha(B)).

1. If the initial series in,(¢1),...,in, (¢r) are C-linearly independent, then so are the
series ¢1, ..., Q.
2. If ¢1,. .., ¢ are C-linearly independent, there exists a k x k complex matrix (X\;;) such

that the initial series of 1V; = Zle Xij@j fori=1,..., kare C-linearly independent.

Proof. Combine Theorem 2.5.5, Lemma 2.5.6(2) and Proposition 2.5.7 from [24], which
hold for formal Nilsson series. O

Definition 2.9. A vector v € C is an exponent of H ([3) with respect to a weight vector
w if ¥ is a solution of in(_y, ) (HA(B)).

Note that if w is a weight vector for H4(3) and ¥ is a strongly convex open cone
as in Definition 2.4, then for any w’ € %, the exponents of H 4(3) with respect to w
and w’ coincide, because in(_, ) (HA(3)) = in(_y ) (Ha(B)). Moreover, the basic
Nilsson solutions of H4 () in the direction of w and w’ are the same, and therefore
Nw(Ha(B)) = N (Ha(B)).

Let w be a weight vector for H4(/3). Since H4(f3) is a holonomic ideal for all 3 [1,
Theorem 3.9], the ideal in(_,, ., (H (/3)) is holonomic as well, and its holonomic rank is
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at most rank (H 4 (3)) [24, Theorem 2.1]. This implies that the set of exponents of H 4 (/3)
with respect to w is finite, since the monomials corresponding to different exponents are
linearly independent.

Lemma 2.10. If ¢ is a basic Nilsson solution of H 5(3) in the direction of w as in (2.1),
then v is an exponent of H 5(3) with respect to w.

Proof. Since w is a weight vector, w - u > 0 for all nonzero u € €*. As pg # 0, we have
in,(¢) = 2"po(log(x)), and therefore xVpy(log(x)) is a solution of in(_,, ) (HA(3))
by [24, Theorem 2.5.5]. But then z¥ is a solution of in(_,, .,)(H4(53)) by [24, Theo-
rems 2.3.3(2) and 2.3.11]. O

We compare the dimension of the space of formal Nilsson solutions of H 4(/3) in the
direction of w with the holonomic rank of the associated initial ideal.

Proposition 2.11. Let w be a weight vector for H o(3). Then
2.2) dime (A2 (Ha(B))) < rank(in(—y,w) (Ha(5)))-

Proof. Choose 1, ..., linearly independent elements of A;,(H 4(3)). The second
part of Lemma 2.8 allows us to assume that in,, (1), ..., in, (¢ ) are linearly indepen-
dent solutions of the initial system in(_,, .,)(H(3)). These initial series have a non
empty common open domain of convergence since they have a finite number of terms.
Therefore dimc (47, (H 4(/3))) cannot exceed the holonomic rank of in(_, .,)(HA(3)).

g

We show in Corollary 4.12 that this inequality is, in fact, an equality for generic S.
If 14 is a homogeneous ideal, then [24, Theorems 2.4.9, 2.5.1, and 2.5.16] imply that
dime A% (HA(B)), rank(in_q, ) (H4(3))), and rank(H 4 (/3)) are the same. However,
if 14 is not homogeneous, rank(in(_,, ., (Ha(/3))) does not always equal rank(H 4(/3))
(see Corollary 4.13).

3. Homogenization of formal Nilsson solutions of H 4(3)

The goal of this section is to obtain the solutions of the system H 4 (/) by solving a related
hypergeometric system that is regular holonomic. For generic parameters, this idea was
used in other works, such as [22]; here, we require no genericity hypotheses on 3. The
key concept is that of homogenization.

Notation 3.1. Throughout this article, the letter p is used to indicate the homogenization
of various objects: polynomials, ideals, and later on, Nilsson series.

If f € Clo1,...,0,] is a polynomial, we denote by p(f) € C[dy, 1, ...,0] its
homogenization, that is,

F=3 cd" = p(f)= > cdy® Do Jul = ug+ -+

u€eN"™ ueN”
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IfI C C[b,...,0,] is an ideal, then p(I) C C[0y, 01, - .., 0n] denotes the ideal gener-
ated by the homogenizations p(f) forall f € I.

If A = [aij] is a d x n integer matrix, then p(A) € Z@HVX(+D) s obtained by
attaching a column of zeros to the left of A, and then attaching a row of ones to the
resulting matrix, namely

11 ... 1

0 all o Qip
p(A) =

0 aqr ... Qqgn

Note that p(14) = I,(a).

Let w be a weight vector for H4(/3) and let € be a cone as in Definition 2.4. In
particular w € R%,. For fixed 8y € C, consider the (regular holonomic) hypergeometric
system associated to the matrix p(A) from Notation 3.1 and the vector (g, 3) € C"**1,
which is denoted by H ,( 4 (5o, 3).

Remark 3.2. Since (1,...,1) belongs to the rational rowspan of p(A), weight vectors
for H,(4)(fo, 3) are not required to have positive coordinates (see Remark 2.5). We wish
to use (0,w) as a weight vector for H,(4)(0o,3), but this vector may not satisfy the
definition. This can be remedied by perturbing w as follows. The set of weight vectors
for H,(4)(fo, 3) is an open dense subset of R"*1. Therefore, given w (and %) as before,
there exists o = (ap, ..., a,) € R" 1 and ey > 0 such that (0, w)+ea is a weight vector
for H,(4)(Bo, ) for all 0 < € < €o. But then the argument in Remark 2.5 shows that
(0,w) +ea —eap(1,...,1) is also a weight vector for H,(4)(f5o, 3). If € is sufficiently
small, then w’ = w + e((a1,...,a,) — ag(l,...,1)) belongs to an open cone % as in
Definition 2.4. This means that we can use w’ instead of w as weight vector for H 4 (),
with the same open cone, initial ideals, and basic Nilsson solutions as w, and guarantee
that (0, w’) is a weight vector for H ,(4)(f0, 3). The previous argument justifies assuming,
as we do from now on, that any time we choose a weight vector w for H 4(0), the vector
(0,w) is a weight vector for H,(4) (50, 3).

We choose a weight vector w, and we wish to use the regular system H ,4) (Bo, B)
to study the solutions of H 4 (). The matrix p(A) is fixed, but we have freedom in the
choice of the parameter 3y € C, and it is convenient to assume that 3y is generic. The
correct notion of genericity for 3y can be found in Definition 3.10. Under that hypothesis,
our objective is to construct an injective linear map

3.1 P L/Vw(HA(ﬂ)) — ‘/V(O,'w)(Hp(A)(ﬂ(bﬁ)%

whose image is described in Theorem 3.18. Since by definition .4, (H 4(/3)) has a basis
consisting of basic Nilsson solutions of H 4 () in the direction of w, it is enough to define
our map on those series, and check that their images are linearly independent. For some
weight vectors, p is guaranteed to be surjective (Proposition 7.1). However, if the cone
over the columns of A is strongly convex and I 4 is not homogeneous, there always exist
weights for which surjectivity fails (Proposition 7.4).
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Letp = cc " py(log(x)) be a basic Nilsson solution of H 4(3) in the direction
of w as in (2.1). Since ¢ is annihilated by the Euler operators Fy; — f31,...,Eq — (4,
the polynomials p,, appearing in ¢ belong to the symmetric algebra of the lattice kerz(A)
by [23, Proposition 5.2].

If v is a vector, denote by |v| the sum of its coordinates. Then, for any v € kerz(A),
(=|vl,7y) € kerz(p(A)). This inclusion kerz(A) < kerz(p(A4)) induces an injection
(denoted by ~) between the corresponding symmetric algebras of the lattices of kerz(A)
and kerz(p(A)). In concrete terms, let {y1,...,¥m—a} C Z" be a Z-basis of kerz(A).
We can write an element p of the symmetric algebra of kerz(A) as follows:

(tla--- = Z CaH tlv"'a ))Oéj7

aENn— d
and then we have
n—d
B2 Pt ta) = Y caH —|vil to 75 - (F1y e tn))
aENn— d

Note that p(log(xo), .. ., log(x,)) specializes to p(log(x)) when xy = 1, or equivalently,
when log(zg) = 0.
The formal definition of the homogenization of a basic Nilsson solution

¢ =Y a""p,(log(z))

uelC

of H4 () in the direction of w is:

(3.3) Z@lul Bo=lvl gt w(log(zo), ..., log(zy)).
ueC

If |u| > 0 for all u € C, the above formula makes sense, and it easily checked that p(¢) is
a basic Nilsson solution of H,(4)(fo, 3) in the direction of (0, w). The bulk of the work
in this section concerns the definition and properties of the operator 9§ when k € Z .

We point out that there is one case when the elements of the supports of all basic
Nilsson solutions of H4(3) in the direction of w are guaranteed to have non negative
coordinate sum, namely when the weight vector w is close to (1,...,1). We make this
notion precise in the following definition.

Definition 3.3. Let w be weight vector for H4([3). We say that w is a perturbation of
wo € RY if there exists an open cone € as in Definition 2.4 with w € €, such that wg
lies in the closure of €.

Suppose that ¢ = 2V ) _~ x"py(log(z)) is a basic Nilsson solution of H 4((3) in the
direction of a weight vector w which is a perturbation of (1,...,1). Since u € C implies
u € e = (?)*, we have u - w > 0 for all w € C. But then, as w is a perturbation of
(1,...,1), it follows that |u| = w- (1,...,1) > Oforall uw € C. Also, C' C Z"™ implies
|u| € Z for u € C. Therefore, the operator 8|Ou| is defined, and so is (3.3).
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As we mentioned before, in order to work with other weight vectors, we must define
the operator 9§ when k is negative. We need to introduce key combinatorial objects
from [27], the standard pairs of a monomial ideal I, which correspond to to the associated
primes of I (see [27]).

Definition 3.4. Let I C C[0y,. .., 0] be a monomial ideal. Consider the variety

Zariski

YV ={ueNrCCr|zvglI}

whose irreducible components are integer translates of coordinate spaces. For o C
{1,...,n}, denote C° = {(t1,...,tn) | t; = 0 for i & o}. A pair (0%,0), where
a € N"and o C {1,...,n}, is called a standard pair of I if « + C? is an irreducible
component of ¥ and « is the coordinatewise minimal element of (o + C?) N N™.

Note that, if (0%, 0) is a standard pair of a monomial ideal I C C[9)], then o; = 0
for all i ¢ o. A standard pair is top-dimensional if the corresponding associated prime is
minimal, and it is embedded otherwise. We denote by 7 (I) the set of top-dimensional
standard pairs of I, and define top(I) to be the intersection

top(l)= [} (@ ]id o).

(0~,0)eT (1)

Definition 3.5. A vector v € C" is a fake exponent of H () with respect to w if the
function xV is a solution of the left D-ideal in,,(14) + (E — (3).

Note that, as in,, (14) + (E — 3) C in(_y, ) (Ha(3)), all exponents of H 4(/3) with
respect to w (Definition 2.9) are also fake exponents. In general, this containment is
strict, but fake exponents are easier to study combinatorially than (true) exponents. This
is illustrated by the following result, a consequence of [24, Lemma 4.1.3], which links
fake exponents and standard pairs.

Lemma 3.6. Let w be a weight vector for H () and let (0%, 0) be a standard pair of
ing (ILa). If there exists v € C™ such that A -v = 3 and v; = «; foralli & o, thenv is a
fake exponent of H o([3) with respect to w. All fake exponents arise this way.

We also need to consider standard pairs of initial ideals of I, 4). Recall that the initial
ideal in(q . (Z,(4)) is a monomial ideal, as (0,w) is a weight vector for H,(4) (80, ).

Definition 3.7. A standard pair of in(g ) (I, a)) is said to pass through zero if 0 € o.

Remark 3.8. If a fake exponent v of H 4(/3) exists for a standard pair (0%, o) of in,, (14),
it is unique by [24, Corollary 3.2.9]; this justifies using the notation v = $(9”9).

Definition 3.9. We say that a basic Nilsson solution of H o(3) as in (2.1) is associated to
the standard pair (0%, 0) if v is the (fake) exponent corresponding to this standard pair.

The following definition gives the correct notion of genericity for 3y € C so that we
can study the solutions of H 4(/3) using those of H,(4 (80, 3).
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Definition 3.10. Ler w be a weight vector for H4(3). We say that 3y € C is a homoge-
nizing value for A, 8, and w if By ¢ Z and for any fake exponent v of H 4(3) with respect
to w, the quantity vg defined by

n
v 1= fo — E vj
=1

is not an integer number.

Given a weight vector w for H 4(/3), we fix a homogenizing value G, for A, 3, and
w. Let ¢ as in (2.1) be a basic Nilsson solution of H 4(3) with respect to w. We want
to construct a basic Nilsson solution p(¢) of H,(4)(/o, 3) in the direction of (0, w). The
following lemma tells us how to differentiate logarithmic terms.

Lemma 3.11. [23, Lemma 5.3] Let h be a polynomial in n variables, v € N™ and s € C™.
Then

0"z h(log(z)) =" | > Ay [8"‘”/h}(log(x)) ,

o0<v’'<v

where the sum is over nonnegative integer vectors ' that are coordinatewise smaller than
v, and the )\, are certain complex numbers. O

The following result allows us to define 9§ when k is a negative integer.

Lemma 3.12. Let p be a polynomial in n + 1 variables, and s € C™. If s € C and
S0 # —1, there exists a unique polynomial § with deg(§) = deg(p) such that

3.4 Ao [z 2% q(log(z0), - . ., Jog(zn))] = z{°x*p(log(zo), . . ., log(xy)).

Proof. Writing

k

p(log(x)) = Zpi (log(z1), ... ,log(zy)) log(zg)"
i=0

and
k .
d(log(x)) =Y qi(log(1), ..., log(wn)) log(o)’,
i=0
we can equate coefficients in (3.4) to obtain
pe=(o+Dag; pi=(0o+1g+(+1)gy 0<i<k-—1

Therefore

k—i L . .
[L= i+ )
=S (e T 0< i<k,
q ;( ) (80+1)g Pite > E>

where the empty product is defined to be 1. O
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Definition 3.13. With the notation of Lemma 3.12, define
60_1 |: goxsﬁ(log(ajo), s alog(xn))} = $80+1$SQ(IOg($O)a s 710g(xn))

Note that if sy # —2, ..., —k, the construction ofao_1 can be iterated (k — 1) times. We
denote by dy " [25°z*p(log(z0), . . . ,1og(xy,))] the outcome of this procedure.

Lemma 3.14. Use the same notation and hypotheses as in Lemma 3.12, and assume fur-
thermore that x{° °p(log(x)) is a solution of (Eg— o, E—f3). Then 95 * [z’ x*p(log(z))]
is a solution of (Ey — (8o + 1), E — B). If so # —2,..., —k, then 9; *[x5° 2°p(log(x))]
is a solution of the system (Eo — (8o + k), E — 3).

Proof. 1ti > 0, 80(Ei — ﬁz) = (Ei — ﬁi)ao, so that

B3:)00(0y 'z x®p(log(x)))

Oo(E; — Bi) (95 'wg a*p(log(x))) = (B; —
= (E; — Bi)zg’z°p(log(x))
=0.

This means that (E; — (3;)(9; ‘20 2°p(log(z))) is constant with respect to zo. On the
other hand, so + 1 # 0 and (E; — 3;)(9; '2§°2°p(log(z))) is a multiple of x*0+!. Thus,
in order to be constant with respect to xo, (E; — 3;)(95 "z *p(log())) has to vanish.
For i = 0, the argument is similar since 9y(Fo — (8o + 1)) = (Eo — B0)0. The last
assertion follows by induction on k. a

Lemma 3.15. Let v € N", k € Z, and assume that so ¢ 7. Then
o [8(’)“ [o:f)oxsﬁ(log(xo), . ,log(xn))]] = 8§ [8” [xgoxsﬁ(log(:co), . ,log(xn))]].

Proof. This is clear if £ > 0. For k < 0, the result follows by induction from the unique-
ness part of Lemma 3.12. O

We are now ready to define the homogenization of a basic Nilsson solution of H 4((3).

Definition 3.16. Let ¢ = x" ) .~ x"py(log(x)) be a basic Nilsson solution of H([3)
in the direction of a weight vector w, and let 3y € C a homogenizing value for A, (3 and
w, so that vg = By — 2?21 v; is not an integer. We define

p(d) =Y Oy [aoa By (log(xo). log(x1). .. . log(n))] ,
ueC

where Dy, is obtained from p,, as in (3.2).

Note that if ¢; and ¢ are basic Nilsson solutions of H4(3) and A € C is such that
$1 + Ao is also basic, then p(¢1 + Apa) = p(p1) + Ap(2), as I is linear. We now
verify that the homogenization of a basic Nilsson solution of H 4(/3) is a basic Nilsson
solution of H ,(4)(5o, 3).
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Proposition 3.17. Let w be a weight vector with respect to H 4(3) and 3y a fixed homog-
enizing value for A, B and w. For any basic Nilsson solution ¢ = x¥ Y z%p, (log(z))
of Ha(B) in the direction of w, the (formal) series p(¢p) from Definition 3.16 is a basic
Nilsson solution of H,(4)(B0, 3) with respect to (0,w). We extend p linearly to obtain a
map

p: No(Ha(B)) = How) (Hpa) (Bo, B))-

Proof. Recall our assumption that, if w is a weight vector for H4(3), (0, w) is a weight
vector of H,(4y(Bo, 3)-

We first show that the series p(¢) has the shape required in Definition 2.6. Conditions 2
and 3 are clearly satisfied by the construction of the polynomials p,, and Lemma 3.11.
Thus, it is enough to verify that p(¢) satisfies condition (i) from Remark 2.7. The support
of ¢ is in bijection with the support of p(¢) via u +— (—|u|,u), which sends kery(A)
into kerz(p(A)). We can assume that C' is the intersection of kerz(A) with the dual
€™ of an open cone % such that its closure % is a strongly convex rational polyhedral
cone of maximal dimension. Let {v1,...,7m,} be a Hilbert basis of €* N kerz(A) =
(€)* Nkerz(A). Then w’ -~; > Oforallw’ € € andalli = 1,...,m. Let§ > 0
such that, for all ¢ € R”}' whose Euclidean distance to the origin is ||e|| < 4, and all
i =1,...,m, we have [(0,w) + €| - (—|;|,7:) > 0. It follows that for any non zero
u € C and any @ in the ball centered at (0, w) with radius §, we have @ - (—|ul,u) > 0,
which proves our claim.

Now we prove that p(¢) is a formal solution of H,(4)(fo, ). Since p,, belongs to the
symmetric algebra of kery(p(A)), and

p(A) - (vo,v +u) = (Bo = |v] + v + [ul, A - (v +u)) = (Bo + |ul, B),

the term x(°z""*p, (log(xo),log(z1), ... ,log(z,)) is a solution of the system of Euler

operators (Eo — (Bo + |u|]), By — B1,...,Eq — Bq). By Lemma 3.14 with (sg,s) =
(vo,v + u) and k = —|ul, each term of p(¢) is therefore a solution of (E — (8o + |u| —
lul), E1 — B1, ..., Eq — Ba).

To verify that the elements of 7,4y annihilate p(¢), first note that Lemma 3.11 implies
that, for any p € kerz(A),

or+zvp, (log(r)) = 8‘L*x”+”_”pu,u(log(3§)),

because ¢ is a solution of H4(3).
We claim that

I aa p (log(x) = O 2yt (log ().

To see this, use Lemma 3.11 and the fact that, if ¢ > 0 and p is an element of the symmetric

algebra of kery(A), then 9;p is also in the symmetric algebra of kery(A), and 9;p = @
Now, using Lemma 3.15 with (s, s) = (vo,v + u) and k = |u|, and the fact that
= o — |v| ¢ Z, we obtain from

8\u|8u+xvo vtuge(log(z)) = 8‘”‘8'“' el g o Vo Uiy _M(log(x)),
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that

HH+ [a\ulxvo vt~ ~(log(z ))} za(l)ulauf [8|u\ [ zl gVt g H(log( ))}
Assuming |u| > 0, we conclude

a( [l pe)+ [8'”‘%”0 v+upu(10g( ))]
a( “L“L |:6|u‘ W‘ UO v+u Mpu /L(log( )):|

d

The next result shows that p is one to one. Therefore, the inverse map p~! allows

us to obtain Nilsson solutions of H 4 (/) from Nilsson solutions of the regular holonomic
system H,(4)(5o, ).

Theorem 3.18. Let w be a weight vector for H o(3) and By a homogenizing value for A,
B and w. The linear map

P No(Ha(B)) — Aow) (Hpa)(Bo, B))

is injective and its image is spanned by basic Nilsson solutions of H, 4)(Bo, 3) with re-
spect to (0, w) associated to standard pairs of in(g,.,)(1,(4)) that pass through zero.

Proof. If ¢ = 3", . 2" py(log(z)) is a basic Nilsson solution of H 4 (/3) in the direc-
tion of w, then we have inq ., (p(¢)) = z¢°x"po(log(zo), . . ., log(z,)). Choose a basis
of A, (H () consisting of basic Nilsson series whose initial terms are linearly indepen-
dent (use the second part of Lemma 2.8). Then the initial series of their images are also
linearly independent, as (1, log(x)) = p(log(z)). Now apply the first part of Lemma 2.8
to complete the proof that p is injective.

Observe that, by construction, p(.4;,(H(8))) is contained in the span of the basic
Nilsson solutions of H ,(4)(f0, 3) corresponding to standard pairs that pass through zero,
because the powers of xo appearing in p(¢) are non integer for any basic Nilsson solution
(;5 of HA (ﬂ)

To show the other inclusion, let ¢ be a basic Nilsson solution of H,(4)(5o, 3) with
respect to (0, w) corresponding to a standard pair that passes through zero, with starting
exponent (8y — |v|,v). We wish to prove that ¢) can be dehomogenized. We can write

e=ag e 3T gt (log(@)),
(—|u|,u)€Ekerz(p(A))

where 3y — |v] is not an integer because 3, is a homogenizing value for A, 3 and w. Then
we can perform

3 (o) = o ot

and use this to define ¢ = > ¥ T%p, (log(z)) (with the same relation between p and p as
in (3.2)). We claim that ¢ is a basic Nilsson solution of H4(/3) and ¢ = p(¢). The proof
of this claim is a reversal of the arguments in Proposition 3.17. O
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Definition 3.19. For a series 1) € N ) (H,(a)(Bo, B)) with ¢ € Ny (Ha(B)) such that
p(d) = ¥, we call ¢ a dehomogenized Nilsson series, or say that ¢ is the dehomogeniza-

tion of 1.

4. hypergeometric Nilsson series for generic parameters

When the parameter vector (3 is sufficiently generic (see Convention 4.2), the Nilsson
solutions of H 4 () are completely determined by the combinatorics of the initial ideals
of I 4. The goal of this section is to study this case in detail.

In order to precisely describe the genericity condition used in this section, we need to
understand the initial ideal in(_,, ,,)(H (/) for generic parameter vectors.

Lemma 4.1. For (3 generic,

in(_w,w)(HA(ﬂ)) = inw(IA) + <E - ﬂ>

Therefore, all the fake exponents of H () with respect to w are true exponents. More-
over, under suitable genericity conditions for (3, a better description of in(_y, ., (H4(3))
is available, namely

in(fw,w) (HA(ﬁ)) = top(inw(IA)) + <E - B>

Proof. This is a version of [24, Theorem 3.1.3 and Theorem 3.2.11] for non homogeneous
toric ideals, which holds with the same proof, since I 4 is always A-graded. O

Convention 4.2. In this section, we assume that [3 is generic enough that the second
displayed formula in Lemma 4.1 is satisfied, so that all exponents of H 4(3) with respect
to w come from top-dimensional standard pairs of in,, (14).

We also require that the only integer coordinates of these exponents are the ones im-
posed by the corresponding standard pairs. In particular, the exponents of H(83) with
respect to w have no negative integer coordinates.

Finally, we ask that no two exponents differ by an integer vector. Note that these
integrality conditions force us to avoid an infinite (but locally finite) collection of affine
spaces.

The following result holds without homogeneity assumptions on the matrix A.

Proposition 4.3. For any v € (C N\ Z )™ such that A - v = (3, the formal series

(4.1) bo= USRS

u€kerz(A) [u + U]u+

where

—Uu; Us

4.2) whe =[] [Ti—=i+1; [+, = [ T +4)

u; <0 j=1 u;>0j=1
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is well defined and is annihilated by the hypergeometric D-ideal H 4((3).

If v is a fake exponent of H 4(3) corresponding to a standard pair (0%, o) of iny, (I4),
then ¢, is a basic Nilsson solution of H o(3). If moreover (3 is a generic parameter vector,
the support of ¢, is the set

supp(¢y) = {u € kerz(A4) |u; +v; >0 Vi ¢ o}.
Thus,

(4.3) o = Z 7[0]1“ 24T,

{uckerz(A)|u;+v; >0 Vido} [’LL + ’U]u+

Proof. This statement is essentially Proposition 3.4.1, Theorem 3.4.2 and Lemma 3.4.6
in [24], which do not need homogeneity for I4. It only remains to be checked that ¢, is
a basic Nilsson solution of H 4(3) with respect to w. To see this, note that u € supp(¢,)
implies v - w > 0 as is shown in the proof of [24, Theorem 3.4.2]. Since v is a fake
exponent of H 4 () with respect to any w’ in an open neighborhood of w, we have in
fact that v - w > 0 for any nonzero u in the support of ¢,,. This argument shows that ¢,
satisfies the first requirement from Definition 2.6. The remaining conditions are readily
verified. a

4.1. A summary of known results for homogeneous I 4 and generic 3

In this brief subsection we recall combinatorial features and convergence results for A-
hypergeometric functions under the assumption that the toric ideal I4 is homogeneous,
which implies that H 4 () is regular holonomic. This material comes from [24].

For the purposes of this subsection only, we assume that the vector (1,...,1) is con-
tained in the rational rowspan of A, or equivalently, that the toric ideal I 4 is homogeneous
with respect to the usual Z-grading in C[0]. We keep our weight vector w, and we assume
the genericity on ( required in Convention 4.2. Later we apply what follows to p(A),
(6o, ), and (0, w).

If v = B39 ¢ C" is the exponent of H 4 () associated to a (top dimensional)
standard pair (0%, o) of in,, (1), the series ¢, = ¢ 0.0 converges in an open set %y, ¢
of the form (6.1) for some € € R’;Bd by [24, Theorem 2.5.16].

Let conv(A) be the convex hull of the columns ay,...,a, of A. Since the ratio-
nal rowspan of A contains (1,..., 1), there is a hyperplane H off the origin such that
conv(A) C H, and as A has full rank, conv(A) has dimension d — 1. The normalized
volume vol(A) is the Euclidean volume (in H) of conv(A) normalized so that the unit
simplex in the lattice ZA N H has volume one. As we have assumed that ZA = 7.2, the
normalization is achieved by multiplying the Euclidean volume of conv(A) by (d — 1)!.
We think of A, not just as a matrix, but as the point configuration {ay,...,a,} C Z%.
A vector w € RZ, induces a subdivision A,, of the configuration A, by projecting the
lower hull of conv({(w;,a;) | ¢ = 1,...,n}) onto conv(A) (see [26, Chapter 8] for
details). If w is generic, A,, is a triangulation of A. Such triangulations are usually
called regular, but we use the alternative term coherent. By [26, Theorem 8.3], the radical
ideal 4/in,, (14) is the Stanley—Reisner ideal of the triangulation A,,, whose facet set is
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{o ]| (0% 0) € T (in,(14)) for some a}. We always write triangulations of A as sim-
plicial complexes on {1,...,n}, but think of them geometrically: a simplex o in such a
triangulation corresponds to the geometric simplex conv({a; | ¢ € o}).

The set

(4.4) {¢p0e.0) [ (0%,0) € T (inw(1a))}

consists of rank(in _q, .\ (HA(B3))) = #7 (inw(la)) = deg(l4) = vol(A) linearly
independent series solutions of H () (linear independence follows from Lemma 2.8)
which have a common domain of convergence. In addition, the fact that 4 is homo-
geneous implies that H 4 () is regular holonomic [16], and therefore by Theorem 2.5.1
in [24], we have that rank(in(_,, ., (Ha(8))) = rank(H4(3)). Thus (4.4) is, in fact,
a basis for the (multivalued) holomorphic solutions of H 4(/3) in an open set of the form
U, ¢ defined in (6.1) below. Note that, in order to construct this basis, the only informa-
tion we needed came from (the facets of) the triangulation A, of A.

4.2. The general case

We now drop the homogeneity assumption on [ 4, but keep the genericity assumption for
(. In this subsection, we describe the space .4;,(H 4(3)) using the homogenization map p
defined in Section 3. An explicit basis for 4, (H 4(3)) is constructed using the exponents
of the ideal H 4(3). Our first step is to relate the exponents of H 4 (/3) with respect to w to
the exponents of H,(4)(o, 3) with respect to (0, w).

The following is a well known result, whose proof we include for the sake of com-
pleteness.

Lemma 4.4. Let I C C[0y,...,0,] be an ideal and let p(I) C C[0y, D1, ..., 0] be its
homogenization. Let w € RY sufficiently generic so that in,, (1) and ingg . (p(1)) are
both monomial ideals. Suppose that

in(o,w) (p(1)) = ﬂ Qi

is a primary decomposition of the monomial ideal in g .,y (p(I)). Then

ing(I)= () (f(1,01,...,0n) | f € Q:)
8¢\ Qi

is a primary decomposition of the monomial ideal in,, (I).

Proof. Let f € I such that in,,(f) is a monomial. Then in . (p(f)) = O in,(f) for
some h € N, with h = 0 if f is homogeneous. Therefore in,, (/) is obtained by setting
do + 1 in the generators of inq ., (p(1)). Now the result follows by observing that if )
is primary monomial ideal one of whose generators is divisible by dg, then ( must contain
a power of Jp as a minimal generator. O

Notation 4.5. Given 3y € C and v € C™, we set

n

pao(v) = (Bo = D _vi,v) = (Bo — [v],v).

i=1
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In particular, pg = p maps kery(A) to kerz(p(A)).

Lemma 4.6. Let 5y, 3 generic and w a weight vector for H (). Then the map v —
P, (V) is a bijection between the exponents of H ([3) with respect to w and the exponents
of H,(4)(Bo, B) with respect to (0, w) associated to standard pairs that pass through zero.

Proof. By Lemma 4.4, v is the exponent of H 4(/3) with respect to w corresponding to a
standard pair (0, o), if and only if pg, (v) is the exponent of H,(4) (5o, 3) with respect
to (0, w) corresponding to the standard pair (0%, {0} U o). O

The following result is immediate.

Lemma 4.7. Let (3 generic, w a weight vector for H o(3) and By a homogenizing value
for A, B and w. Let v be an exponent of H 5(3) with respect to w and consider the map p
from Proposition 3.17. Then

P(D0) = D(pg (v)0)
where ¢, qb(pﬁo (v),v) are as in Proposition 4.3. |

We now come to the main result in this section.
Theorem 4.8. Let 3 generic and w a weight vector for H 5 (). Then
{¢o | v is an exponent of H 5(3) with respect to w}
is a basis for Ny, (HA(B)).

Proof. Fix a homogenizing value (3 for A, 8 and w, and let ¢ € A, (Ha(8)). Then,
by Theorem 3.18, Then p(v)) € A{o,u)(Hpa)(Bo,5)). Since 1,4y is homogeneous,
H ,(4)(Bo, B) is regular holonomic, and we can use Lemma 4.7 and the results from the
previous subsection to write

4.5) PW) = ch¢(pgo(v),v) = ZCUP(¢1})

where the sum is over the exponents of H ,(4)(fo, 3) with respect to (0, w) corresponding
to standard pairs that pass through zero, and the c¢,, are complex numbers. By Lemma 4.6,
the sum is over the exponents of H4(3) with respect to w. But p is injective, so (4.5)
implies ¢ = > cy¢,. Thus A, (Ha(5)) is contained in the C-span of the series ¢,
associated to the exponents of H 4 () with respect to w. Since the series ¢, are basic
Nilsson solutions of H4(0) in the direction of w (Proposition 4.3), the reverse inclusion
follows. Linear independence is proved using Lemma 2.8. O

Recall that we have assumed that, if w is a weight vector for H 4(3), then (0, w) is
a weight vector for H,(4)(fo, 3). In particular, this implies that the subdivision of p(A)
induced by (0, w) is in fact a triangulation [26, Chapter 8].

Corollary 4.9. Assume 3 € C? is generic and let w be a weight vector for H 5(3). The
dimension of the space of Nilsson solutions of H o([3) in the direction of w is

dime (A (Ha(B))) = Z vol(o).

a/};celoj'A(O w)
such that 0 € o
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Proof. By Theorem 4.8, the number dime(4;,(HAa(8))) is the number of exponents
of H,4 () with respect to w, which is the number of top-dimensional standard pairs of
in,,(14), because (3 is generic. Using the bijection from Lemma 4.6, we conclude that
dime (A% (HA(B))) is the number of top-dimensional standard pairs of inq (1))
that pass through zero. Given o C {0,1,...,n} of cardinality d + 1 such that 0 € o,
the number of top-dimensional standard pairs of in(g,.,)(1,(4)) of the form (0%, o) is the
multiplicity of (0; | i ¢ o) as an associated prime of ing ) (Z,(4)) by [27, Lemma 3.3].
This number equals the normalized volume of the simplex {0} U & by [26, Theorem 8.8],
and the result follows. |

Proposition 4.10. Suppose that 3 is generic, and let w be a weight vector for H 4 ().
Then

rank(ing_q ) (Ha(8)) = deg(iny,(1a)).

Proof. By Lemma4.1,in(_y, ) (Ha(3)) = top(in,(14))+(E—3). Since top(in., (1))
is a monomial ideal, the D-ideals in_, .,)(H4(3)) and (9" | 9" € top(iny,(14))) +
(E — [3) have the same holomorphic solutions.

We denote z;0; = 6;, and observe that C[f,...,6,] is a commutative polynomial
subring of D. Also recall that the Euler operators E; — 3; belong to C[f]. Since 20" =
I, H;:? (6; — j),Proposition 2.3.6 in [24] can be applied to conclude that the holo-
nomic rank rank(in(_,, ., (H.4(/3))) equals

. C[o]
4.6 dim .
(40 ¢ (<HZ;1 TS (05— 7) | 9" € top(inm (La)) 1 (2 m)

Considered as a system of polynomial equations in n variables (61, ..., #6,), the zero set
of the ideal (I, Hyzgl(é)l —j) | 0 € top(iny,(14))) is a subvariety of C™ consisting
of deg(in,, (1 4)) irreducible components, each of which is a translate of a d-dimensional
coordinate subspace of C™. By [24, Corollary 3.2.9], each of these components meets the
zero set of (E — [3) in exactly one point. Therefore the dimension in the right hand side
of (4.6) equals deg(in,, (14)), and the proof is complete. O

Corollary 4.11. Let 3 generic and w a weight vector for H 4(3). Then

(4.7 rank(in_,.w)(Ha(8)) = > vol(o),

o'faretofA(O w)
suchthat 0 € o

Proof. We need to show that the sum on the right hand side of (4.7) equals deg(in,, (14)).
This degree equals the number of top-dimensional standard pairs of in,(14) by [27,
Lemma 3.3], which equals the number of top-dimensional standard pairs of in ., (I,(4))
passing through zero by Lemma 4.6. As in the proof of Corollary 4.9, the number of such
standard pairs is the desired sum. O

Corollary 4.12. Suppose that (3 is generic and w is a weight vector for H (3). Then

dime( A (HA(B))) = rank(in ) (Ha(B)))-
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Proof. Immediate from Corollary 4.9 and Corollary 4.11. O

The following corollary states that, for certain weight vectors, the dimension of the
space Ay, (H a(8)) equals rank(H 4(3)). However, this fails in general, as Example 4.14
shows. This means that, as expected, formal Nilsson series are not enough to understand
the solutions of irregular hypergeometric systems.

When working with matrices A whose columns are not assumed to lie in a hyperplane
off the origin, vol(A) denotes the normalized volume of the convex hull of {0, a1, ..., an}
with respect to the lattice ZA = Z°.

Corollary 4.13. Suppose that [3 is generic, and w is a weight vector for H(3). The
equality
dimg (A (Ha(B))) = vol(A) = rank(H 4(5))

holds if and only if 0 belongs to every maximal simplex in the triangulation A ., of
p(A).

Proof. Note that vol(A) = vol(p(A)), which is the sum of the volumes of all the maximal
simplices in A g ,,). Therefore dime (47, (HA(83))) = vol(A) if and only if all maximal
simplices in A g .,y pass through zero. Now use a result of Adolphson [1] that, for generic
B, rank(H 4(3)) = vol(A). O

Example 4.14. Let
1 0 1
A:[O 1 1} , sothat T4 = (03 — 0102) .

Then vol(p(A)) = vol(A) = 2 is the generic rank of H () and of H,(4)(fo, 3).
If w is a perturbation of (1,1, 1), we have in,,(/4) = (0102) and the corresponding
triangulation is A (g, .,y = {{0, 1,3}, {0,2,3}}. In this case

dime (A (Ha(B))) = vol({0, 1, 3}) + vol ({0, 2,3}) = 2 = rank(H 4 (5)).

On the other hand, if w is a perturbation of (1,1, 3), then we have in,,(I4) = (J3) and
the corresponding triangulation is A .,y = {{0, 1,2}, {1,2,3}}. In this case

< dime (A (Ha(8))) = vol({0,1,2}) = 1 < rank(H ().

5. Logarithm-free Nilsson series

If we assume that 3 is generic, then all of the Nilsson solutions of H 4 (/) are automati-
cally logarithm-free. We now turn our attention to the logarithm-free Nilsson solutions of
H 4(8) without any assumptions on the parameter 3.

Definition 5.1. For a vector v € C", its negative support is the set of indices

nsupp(v) = {z e{l,...,n}| v € Z<0}.
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A vector v € C™ has minimal negative support if nsupp(v) does not properly contain
nsupp(v + u) for any nonzero u € kerz(A). We denote

3.1 N, = {u € kerz(A) | nsupp(u + v) = nsupp(v)}.

When /3 is arbitrary, the fake exponents of H 4(3) with respect to a weight vector w
can have negative integer coordinates. For such a v, we wish to construct an associated
basic Nilsson solution of H 4(f), in the same way as we did in Proposition 4.3.

Proposition 5.2. Ler w be a weight vector for H 5(8) and let v € C™ be a fake exponent
of H A(3) with respect to w. The series

5.2) Oy = Z [ [U]U7 l.u-t,-'u7

u v
UE N, + }u+

where [v],_ and [u + v}, are asin (4.1), is well defined. This series is a formal solution
of Ha(B) if and only if v has minimal negative support, and in that case, ¢, is a basic
Nilsson solution of H () with respect to w. Consequently, v is an exponent of Ha ()
with respect to w.

Proof. The series is well defined because, as the summation is over N,, there cannot be
any zeros in the denominators of the summands. The second assertion holds with the same
proof as Proposition 3.4.13 of [24]. To see that ¢, is a basic Nilsson solution of H 4 (),
we can argue in the same way as in the proof of Proposition 4.3. O

Lemma 3.4.12 of [24] shows that if the negative support of v is empty, then equations
(5.2) and (4.3) coincide.
We now consider Nilsson series in the direction of a weight vector.

Definition 5.3. Formal solutions of Ha(f3) of the form (2.1) that satisfy the first two
conditions in Definition 2.6 are called (formal) series solutions of H 4(3) in the direction

of w.

The C-vector space of logarithm-free formal A-hypergeometric series with parameter
3 in the direction of w is denoted by .7, (H 4(3)).

Theorem 5.4. Let w be a weight vector for H o(f3). The set
(5.3) {dy | v is an exponent of H 4(83) with minimal negative support}
is a basis for %, (Ha(0)).

The previous result was stated in [23, Display (7)], in the special case when I 4 is
homogeneous. Its proof for the case when 3 € Z? appeared in [8, Proposition 4.2]; we
generalize that argument here.

Proof. Linear independence of the proposed basis elements follows from Lemma 2.8, so
we need only show that these series span .7, (H A (53)).
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Let G(z) € ., (Ha(B)), and suppose that 2 appears in G with nonzero coefficient
A € C. We claim that v has minimal negative support. By contradiction, let u € kerz(A)
such that nsupp(v + u) is strictly contained in nsupp(v). This means that there is 1 <
i < nsuch that v; € Z.g and v; 4+ u; € N. In particular, u; > 0.

Since G is a solution of H 4(3), the operator 9"+ — 9%~ € I, annihilates G. Note
that nsupp(v + «) C nsupp(v) implies that 9"~ z" # 0. Then some term from 9%+G
needs to equal A, 0"~ ", which is a nonzero multiple of ¥ ~"~. But any function f such
that 0"+ f = ¥ %~ must involve log(z;). This produces the desired contradiction.

Fix v such that 2* appears with nonzero coefficient A, in G, and let ¢ be the subseries
of G consisting of terms of the form A, ,z" " with u € kerz(A) and A\, 4, € C, such
that nsupp(v + u) = nsupp(v). Our goal is to show that ¢ is a constant multiple of one
of the series from (5.3). This will conclude the proof.

We claim that 1) is a solution of H 4(/3). That the Euler operators (E' — 3) annihilate
1) follows since they annihilate every term of G. To deal with the toric operators, recall
that 9%+ G = 9"~ G for all u € kerz(A). But terms in 9%+ G that come from 1) can only
be matched by terms in 9%~ G that also come from 1, so 9"+ — 0%~ must annihilate 1,
for all u € kerz(A).

Since G is a solution of H 4(/3) in the direction of w, so is ¢. This implies that in,, (1))
is a logarithm-free solution of in(_,, ,,)(Ha(/3)), and therefore, by [24, Theorems 2.3.9
and 2.3.11], in,, (%) is a linear combination of (finitely many) monomial functions arising
from exponents of H 4(3) with respect to w. By construction of v, these exponents differ
by elements of kery(A). Arguing as in the proof of [24, Theorem 3.4.14], we see that
in,, (1) can only have one term, that is, in,, (1)) = A,z¥ where v is an exponent of H 4(03)
with respect to w and A\, # 0. Since A, z" is a term in G, v has minimal negative support.
Thus, v is an exponent of H 4(3) with respect to w that has minimal negative support.

To finish the proof, we show that 1) = A\, ¢,. Suppose that u € N,,, which means that
u € kerz(A) and nsupp(v + u) = nsupp(v). The equality of negative supports implies
that 9%-2¥ = [v],,_a” %~ is nonzero. Since 9%~ = 9"+, 9¥+1) must contain the
term A, [v],,_z¥~%~, which can only come from 9%+ A, ,z""%. Thus

Ao[V]u_ 27" = 0% Aypu2T = Apyu[v + u]quva““*.
Consequently A, 4, = )\U%, that is, the coefficient of V"% in 1) equals ), times the
wr
coefficient of 2?7 in ¢,,. Therefore 1) = \,¢,, as we wanted. O

The next theorem gives a bijective map between the space of logarithm-free series
solutions of H () in the direction of w and a subspace of the logarithm-free solutions
of H,(4y(Bo, ) in the direction of (0, w). Note that .7, (HA(8)) € A, (Ha(B)) fol-
lows immediately from the previous result, as the series ¢, are basic Nilsson solutions of
H 4 () in the direction of w.

Theorem 5.5. Let w be a weight vector for H 4(3) and let By be a homogenizing value for
A, B, and w. Then p(-Zw(Ha(B))) equals the C-linear span of the logarithm-free basic
Nilsson solutions of H () (Bo, B) which are associated to standard pairs with respect to
(0, w) that pass through zero.
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Proof. Since p is linear, we only need to consider the image of the elements of a basis for
the space .7, (H4(0)), such as the one given in Theorem 5.4.

We claim that if v is a fake exponent of H 4(/3) with respect to w that has minimal
negative support, then pg,(v) = (8o — |v|,v) is a fake exponent of H,(4)(fo,3) with
respect to (0, w) corresponding to a standard pair that passes though zero, and moreover,
P, (v) has minimal negative support. The first part is proved using Lemma 4.4. To see
that pg, (v) has minimal negative support, first recall that 5y — |v| ¢ Z because [ is a
homogenizing value for A, 3 and w. This implies that 0 is not in the negative support
of pg,(v) + u, for any p € kerz(p(A)). Now use the bijection u — (—|u|, u) between
kerz(A) and kerz(p(A)) and the fact that v has minimal negative support, to conclude
that pg, (v) has minimal negative support.

To complete the proof, we show that p(¢,) = ¢, 5, (v)- Lemma 4.7 is this statement in
the case when nsupp(v) = (), but now we have to pay attention to the supports of these
series.

The same argument we used to check that pg, (v) has minimal negative support yields
N, = 7(N, Pﬁo(v))’ where 7 is the projection onto the last n coordinates, and therefore
p(¢y) and ¢, 5, (v) have the same support. The verification that the corresponding coeffi-
cients are the same is straightforward. ]

6. Convergence of hypergeometric Nilsson series

Until now, we have made no convergence considerations in our study of Nilsson solutions
of A-hypergeometric systems. The purpose of this section is to investigate convergence
issues in detail. In particular, Theorem 6.4 states that, if w is a perturbation of (1,...,1),
the elements of .4,,(H 4((3)) have a common domain of convergence. Moreover, assum-
ing that the cone spanned by the columns of A is strongly convex, results from Section 7
imply that dimc (A4, (Ha(5))) = rank(Ha(5)). This provides an explicit construction
for the space of (multivalued) holomorphic solutions of H 4((3) in a particular open subset
of C".

When the parameter 3 is generic and w is a perturbation of (1, ..., 1), the convergence
of the elements of .A4;,(H4(8)) was shown in [22]. In Subsection 6.2 we complete this
study by considering other weight vectors.

Notation 6.1. We have already used the notation | - | to mean the coordinate sum of a
vector. When applied to a monomial, such as x*, | - | means complex absolute value. Let
w be a weight vector for Ha(3) and let {y1,...,Yn—a} C Z" be a Z-basis for kerz(A)
suchthaty;-w > 0fori=1,...,n—d. Foranye = (¢1,...,6n_4q) € Rggd, we define

the (non empty) open set

6.1) Up e ={zeC"| a7

<eg fori=1,...,n—d}.

6.1. General parameters

The following result is the main technical tool in this section.
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Theorem 6.2. Let w be a weight vector for H o(3) and let {71, ..., Vn—a} be a basis for
kerz(A) such that w -~; > Ofori = 1,...,n —d. Let ¢ = >z "p,(log(x)) be a
basic Nilsson solution of H o(3) as in (2.1), such that |u| > 0 for almost all u € supp(¢),
meaning that the set {u € supp(¢) | [u| < 0} is finite. Then there exists € € R such
that ¢ converges in the open set Uy, .

Proof. We may assume without loss of generality that |u| > 0 for all u € supp(¢).
Choose 3y a homogenizing value for A, 3 and w, and recall from Definition 3.16 that the
homogenization of ¢ is

plg) = Z a(')“‘ { Bo=lvl "D, (log (o), log(w1), - . ., log(z,)) |

u€supp(¢)

where p,, and p,, are related by (3.2). By Theorem 3.17, p(¢) is a basic Nilsson solution
of H,(ay(Bo, 3) with respect to (0,w). Since H A) (8o, B) has regular singularities, [24,
Theorem 2.5.16] implies that there exists € € R7 4 2% such that p(¢) converges (absolutely)
in the open set

Uo,w),e = {(x0,2) € crtt | |xa|7i‘x"’i| <eni=1,...,n—d}.

We make use of the convergence of p(¢) to prove convergence for ¢.
As p(¢) converges absolutely in %g, )., convergence is preserved when we reorder
terms. Use the fact that |u| > 0 for all u € supp(¢) to rewrite

o= 3 o s,
m=0

where

fm(zo,. ..,z Z " Tpu(log(xo), log(zy), . . ., log(z,))

|u|=m

is a polynomial in log(zo) whose coefficients are (multivalued) holomorphic functions of
the n variables x1, ..., x,. Recall that, by Definition 2.6, there exists a positive integer
K such that the degree of f,, in log(xg) is less than or equal to K for all m € N. A key
observation is that

(6.2) :(b(xlw")xn)'

zro=1

WK

(mgoflv‘fmfm(xo, T, .. ,a:n)>

0

3
I

Since {1} X e C %o w).e» if we show that 3> 200~ 17" £ converges absolutely
on %o, u),e- the convergence of ¢ on %, ¢ will follow.
For A € C and m € N, we denote the m-th descending factorial by

N =AA=1)...(A—m+1).

Set A = By — |v|. Since [y is a homogenizing value for A, 3 and w, we have \ ¢ Z. We
claim that the domain of convergence of 3.°°_ [N 2o~ ™ fm contains U0,w),e- Butif
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this is true, the convergence of anozo zg‘_m fm on %), follows by comparison, since
the absolute value of [A],,, grows like (m — 1)! as m goes to co. Thus, all we need to show
in order to finish our proof is that >_0c_, [\],n @y~ f,m converges absolutely on Uo,w) e

Consider f,, as a polynomial in log(zq). By construction, the coefficients of f,, are
constant with respect to zg. Denote by ffnT ) the r-th derivative of fm with respect to
log(zo). Then fn, (K1) = 0 since the degree of f,, in log(z) is at most K. We compute
O (x) fm) for m > K, using the fact that £ =0ifr > K.

05 (23 fm) = 05" 00 () fin) = 05 (@3~ (afm + f1n))
=3 2@ O = U + A+ A= D)+ 1))

- xé m(CO()‘am)fm + cl()‘7m)fr/n +...+ CK()‘vm)fr(nK))v

where
J

cj(\,m) = > [T =in +1).
1<iy <+ <ipp— j<m k=1

Note that, as m goes to 0o, the dominant term in absolute value in ¢; (A, m) is Hm o

r + 1), which grows like H;”:jl r = ((7;7_11))! . But then, if j > 0, [\ — j],,, grows faster

than ¢; (o, m) as m goes to oo, because [\ — j],, grows like % In other words,
A
(6.3) lim [(T]”) —0 forj>1.
m— 00 — J

Since p(¢) converges absolutely on the open set %(¢, )., Jop(®) is also absolutely con-
vergent on % .),e» and

dop(¢) = Do >, 0" [w5 f Z " (80w fin)
m=0

oo

=" Ny 2 fl] @t

m=0
oo

=AY (2 ] + D00 20 ]

m=0 m=0

The series >~ 94" [mé‘fl fm] converges in %(g,.,),e because it is a basic Nilsson solu-
tion of the regular hypergeometric system H,4)(5o — 1, 3) with respect to (0, w). (We
may need to decrease € coordinatewise for the previous assertion to hold.) This, and
the convergence of dy(p(¢)), imply that Y ~_, O [a:()\_l f},] converges absolutely on
U 0,w),e- Proceeding by induction, we conclude that

6.4) Z ngxé_jf,(nj) converges absolutely on %o ., forj =1,..., K.

m=0
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Now we induct on K — ¢ to show that

(6.5) Z 7D —mf9  converges absolutely on Uouw),efort=0,1,... K.
m=0

The ¢ = 0 case of this assertion is exactly what we needed to verify in order to finish the

proof.

If K — ¢ = 0, then fy(,f) = fy(f) is a (maybe zero) constant with respect to xg, and
therefore (6.5) is the j = K case of (6.4). For the inductive step, we compute the m-th

derivative inside the series. The sum >~ o) ff,f ) equals

2N = O 4 ca(A—4¢, m)fffH) +- - Fek—e(A—L4,m) ,(nK))
m=0
=S 27— o fO
m=0
+ Z M e (= m) T g Z 2y ek oA — £,m) fI°).
m=0 m=0

We want to show that >-0°_ 20 ™™ [\ — ], A converges absolutely on %(g .,),c. We

know that >°°°_ 9¢ay ™" O converges absolutely on %(q,.,),c by (6.4), so we need to
control the other summands. But the inductive hypothesis tells us that (6.5) is true for
¢+1,..., K. By comparison using (6.3), and harmlessly multiplying by z, we conclude
that the series >.°°_ 207 ej(A — £, m) 59 converges absolutely on U 0,w),e for
1<j< K-V |

Corollary 6.3. If w is a weight vector for H 4(3) which is a perturbation of (1,...,1),
then all the basic Nilsson solutions of H 4([3) in the direction of w have a common (open)
domain of convergence.

Proof. Let w be a perturbation of (1,...,1). Recall that, if ¢ = 2V ) - 2"p,(log(z))
is a basic Nilsson solution of H A([3) in the direction of w, then |u| > 0 for u € C. (See
the paragraph after Definition 3.3.) Now apply Theorem 6.2. |

One of the main objectives of this article was to construct a basis of series solutions
of H4(f) that have a common domain of convergence. While such constructions are
well known in the regular case, when I4 is inhomogeneous, important theoretical tools
become unavailable. A way of bypassing this difficulty is to assume that the parameters
are generic and w is a perturbation of (1, ..., 1) as in [22]. The following result gives the
desired construction, without any assumptions on (3 (but with the same assumption on w).
Its proof can be found in Section 7, after Theorem 7.5.

Theorem 6.4. Assume that the cone over the columns of A is strongly convex, and let w
be a weight vector for H 4(3) that is a perturbation of (1, ...,1). Then

dime (A3, (Ha(B))) = rank(Ha(8))

and there exists € € R, such that every element of Ny, (H 4(B)) converges in the open

set Uy e-
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6.2. Generic parameters

In this subsection, we assume that 3 is generic as in Convention 4.2. In this case, by
Theorem 4.8, the set

(6.6) Py = {d, | v is an exponent of H 4 () with respect to w}

is a basis for .4, (H4(8)), and we can write the series ¢, is as in (4.3), by the genericity
of the parameters.

We wish to determine which elements of %, have an open domain of convergence.
This depends on the choice of the weight vector w.

Theorem 6.5. Let 3 generic, w a weight vector for H4 (), and ¢, € PB,,. There exists
€ € R’;ad such that ¢,, converges in U, ¢ if and only if |u| > 0 for almost all u €

supp(ey).

Proof. If |u] > 0 for almost all u € supp(¢,), then ¢,, converges on an open set %,, ¢ by
Theorem 6.2.

Now assume that there exist an infinite number of elements u € supp(¢,) such that
|u| < 0. Using the description of supp(¢, ) from (4.3), which applies when (3 is generic,
we can find v € supp(¢,) such that |v| < 0 and {mv | m > my € N} C supp(¢,) for
some mg € N.

Let ¢ be the subseries of ¢,, whose terms are indexed by the set {mv | m > my € N}.
The coefficient of V™™ in 1) is

[, <o [G5" (vi =5 +1)
I[L.>o H;n:yf (vi+3)
which grows like Ay, = [, o(=vim)!/[],, o (vim)! as m goes to co. Since [v| < 0,

lim,, o0 Ay, = 0. Therefore ¢ cannot absolutely converge unless x; = 0 for some ¢
such that ; > 0, and consequently ¢,, does not have an open domain of convergence. O

Remark 6.6. In this section we study convergence of Nilsson solutions of H 4 () with re-
spect to a weight vector w. We can change the point of view and fix a basis {1, ..., Vn—d}
of kery(A); then our results apply to any weight vector w such that 7; - w > 0 for
i=1,...,n—d.

Since [ is generic, all the information necessary to compute the Nilsson solutions of
H 4(3) associated to a weight vector w can be extracted from the top-dimensional standard
pairs of in(g,.,)(1,(4)); the simplices appearing in these standard pairs are the maximal
simplices of the coherent triangulation A g .,y of p(A). These triangulations also control
the possible regions of convergence of basic Nilsson solutions of H 4 () in the direction
of w, as a change in triangulation changes %, . There is an object that parametrizes all
coherent triangulations of the configuration p(A). This object is called secondary fan of
p(A), and was introduced by Gelfand, Kapranov and Zelevinsky (see [12, Chapter 7]).

To construct the secondary fan of p(A), we need a Gale dual for p(A), that is, a matrix
B € 7(n=dx(n+1) whose columns form a basis for kerz(p(A)). Denote by bo, ..., b,
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the rows of B, and let A be a coherent triangulation of p(A). For each maximal simplex

o € A, we define a cone
Hy = {Z&bi Ai > 0}.
i¢o
Note that the set {b; | i ¢ o} is linearly independent [12, Lemma 7.1.16], and therefore
Ky is full-dimensional. Define #x = Nyea.#5. Then (wg,w) € R** 1 is such that
A (wy,w) = A if and only if (wo,w) - B belongs to the interior .7 of #x. The cones
J for all coherent triangulations A of p(A) are the maximal cones in a polyhedral fan,
called the secondary fan of p(A) (see also [12, Theorem 7.1.17]).

Given 3 generic, fix w a weight vector for H 4(/3). Then the supports of the basic
Nilsson solutions of H 4 () with respect to w can be described by means of the cones
associated to maximal simplices of the triangulation A g ) of p(A). Indeed, if (vo,v) is
the exponent associated to a standard pair (0%, o) of the monomial ideal in(g,.)(1,(a))-
so that o € A(g ) and 0 € o, we know that the support of the dehomogenized series ¢,
is

Supp(¢v) = {U € kerZ(A) | u; +v; >0 Vi ¢ O'}.

Note that, as 0 € o, the zeroth row of the Gale dual B is not present in this description.
Since the columns of B span kerz(p(A)), the support of ¢, is naturally identified with

(6.7) supp(¢y) = {(b1 - v,..., by - v) |V E zn4andv-b; > —v;, i ¢ o}.

Theorem 6.7 gives a combinatorial condition for a series ¢, associated to a cone %,
(that is, to a standard pair (0%, 0)) to have an open domain of convergence. Note that
several series may be associated with a single cone, and some of them may have open
domains of convergence, while others do not, see Example 6.8.

Given w a weight vector for H4(3), let {(—|v1],71),-- -, (=|VYn-dls Yn—a)} be a Z-
basis of kerz(p(A)) such that forany s = 1,...,n — d, we have -; - w > 0. The vectors
in this basis are the columns of a Gale dual matrix of p(A), whose rows we denote by
bo, ..., bn.

Theorem 6.7. Let [ be generic, w a weight vector for H () and choose a Gale dual

of p(A) as above. Let (vg,v) be an exponent of p(A) corresponding to a standard pair

(0%,0) of in(o,w) (1)) that passes through zero.

o [f —bgy belongs to the interior of %, then the series ¢, has an open domain of conver-
gence that contains %, e for some € € R’;Bd.

o If —by & A, then the series ¢,, does not have an open domain of convergence.

Proof. For the first statement, suppose that —by € #.°, so that —by = Ziga A\;b; with
A; > 0. Then, the polyhedron {v € R"~? | v-b; > —v;,i & 0, —bgy - v < 0} is bounded
and can only contain finitely many points with integer coordinates. Using (6.7) and the
fact that for u = (b1 - v, ..., by, - V) € supp(¢,) we have:

n
|U|:Zbi'l/:7b0'l/,
i=1
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we see that |u| > 0 for all but finitely many elements of supp(¢,). Now apply Theo-
rem 6.5 to conclude that ¢,, has an open domain of convergence of the desired form.

We now prove the second statement. As {b; | i ¢ o} is a basis of R” ¢, we can write
—by = Ziga Aib;. Suppose that \;, < 0 for some iy ¢ o, and consider the infinite set

{vez"|v-by=0fori¢ oU/{ig}andv-b; > 0}.

For each element v of this set, (v - b1,. ..,V - by,) is an element of supp(¢, ), and the sum
of its coordinates is

ZV'Z)Z‘:V' (sz) :l/'(fbo) :V(Z)\Zbl) :Aio(y'bio)-

i¢o
Thus, supp(¢, ) has an infinite subset consisting of vectors whose coordinate sum is neg-
ative, and by Theorem 6.5, ¢,, does not have an open domain of convergence. O

Example 6.8. If —bg is in the boundary of %, a series arising from o may or may not
have an open domain of convergence, depending on the specific standard pair it belongs
to. For instance, consider:

Ao { 010 -1 }

10 2 4

Then the convex hull of p(A) is a triangle of normalized volume 4. For the weight
(0,w) = (0,1,1,3,3), the corresponding triangulation of conv(p(A)) has only one max-
imal simplex, conv(p(A)) itself. In this case,

Lyay = (03 — 004,07 — 9p03) and  ing ) (I,(a)) = (0003, 0%, 9703, 03).
The monomial ideal in g, (Z,(4)) has four top-dimensional standard pairs:
(1,{0,2,4}), (01,{0,2,4}), (07,{0,2,4}) and (07,{0,2,4}).
A Gale dual of p(A) is

1 0

-2 0

B = 0 -1
1 2

0 -1

and we have —by = (1/2)by, so that —by is in the boundary of .7, for o = {0, 2,4}, the
unique maximal simplex in the triangulation of p(A) induced by (0, 1,1, 3, 3).

For a given generic S and 0 < j < 3, let ¢; denote the logarithm-free series solution
of H 4(3) associated to the standard pair (87, o). Then

v=(v1,1n) € Z2, }

supp(¢;) = {U = (2t v, ) |y ST o, S

For v € supp(¢;) as above, |u| = —v; > —j/2. Consequently, if j = 0,1, |u| € Z
implies that |u| > 0 for all u € supp(¢;), and therefore ¢, has an open domain of
convergence by Theorem 6.5.



30 A. DICKENSTEIN, F. N. MARTINEZ AND L. F. MATUSEVICH

If j = 2,3, consider v = (1, k) for k € N. Then
211 =-2>—j and 11 +2v5=1+2k>0 forkeN.

This means that u = (—2vq, —vo, 11 + 219, —19) = (=2, —k,1 + 2k, —k) € supp(¢;)
for k € N. But then |u| = —1 for infinitely many elements of supp(¢;), and therefore ¢;
does not have an open domain of convergence.

Geometrically, consider the polyhedron

Q; ={veR?*| —2uv; > —j, v —2v; >0},

which is a translate of a cone. Let L be the line orthogonal to —by = (—1,0). Since L
contains one of the faces of @), there are no points in this polyhedron whose dot product
with —by is strictly negative. If j = 1,2, 3, then the set Q; N {v € R? | —by - v < 0}
in unbounded. However, when j = 1, this set contains no integer points. When j = 2, 3,
Q; N{v € R? | —by - v < 0} contains infinitely many integer points.

This example also illustrates the fact that, in order to determine whether a basic Nils-
son solution of H 4 () in the direction of w has an open domain of convergence, knowl-
edge of the triangulation of p(A) induced by (0, w) is not sufficient. For instance, note
that (1,1,2,1) is a perturbation of (1,1, 1, 1), so all Nilsson solutions of H 4 (/) in the
direction of (1,1, 2,1) have an open domain of convergence by Corollary 6.3. However,
(0,1,1,2,1) and (0,1,1,3,3) induce the same triangulation of p(A4), and we already
know that there are Nilsson solutions of H 4(3) in the direction of (1,1, 3, 3) which do
not have open domains of convergence.

As a consequence of Theorem 6.7, we have combinatorial bounds for the dimension
of the space of convergent Nilsson solutions of H 4 () in the direction of w, that holds for
generic parameters 3.

Corollary 6.9. Let 3 be generic, and w a weight vector for Ho(3). Then

Z vol(o) > dime ({9 € A (Ha(B)) convergent }) > Z vol(o),

oeT €T,

where T, = {0 facet of N,y | 0 € 0 and — by € K} and T = {0 facet of Ao ) |
0€oand —by € K} O

The second part of Theorem 6.7 can be restated in a more combinatorial fashion.

Corollary 6.10. Let (3 be generic, and w a weight vector for H o(3). If an element of
the set B, from (6.6) has an open domain of convergence, then its associated maximal
simplex in the triangulation A ., of p(A) also belongs to a coherent triangulation of
p(A) defined by a perturbation of (0,1,...,1).

Proof. Using Theorem 6.7 and its notation, we have that if an element of the set %,
from (6.6) has an open domain of convergence, then —by = (0,1,...,1) - B € .%,. So,
there is a perturbation w’ of (0,1,...,1) with " jwib; € £°. It follows that o is a
maximal simplex in the coherent triangulation of p(A) defined by w’'. O
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2 3 5 2 3 5

4 4

0 1 0 1
A= {{Ov 1, 5}7 {0’ 2, 5}} Ag = {{07 1, 4}7 {Oa 4, 5}7 {0: 2, 5}}

2 3 5 2 3 5

4 4

0 1 0 1

As = {{0,1,4},{0,4,5},{0,3,5},{0,2,3}} A4 ={{0,1,5},{0,3,5},{0,2,3}}

Figure 1: The coherent triangulations of p(A) corresponding to perturbations of the vector
(0,1...,1) for Example 6.11.

2 3 5
4
0 1

As = {{0,1,4},{0,3,4},{0,2,3},{3,4,5}}

Figure 2: A coherent triangulation of p(A) from Example 6.11.

Example 6.11. Corollary 6.10 allows us to decide by inspecting the triangulations of
p(A), whether H 4 () has Nilsson solutions in the direction of a weight vector that do not
have an open domain of convergence. Take for instance

2 01 2 2
A= 0 2 2 1 2
and consider the coherent triangulations of p(A), or, equivalently, the coherent triangula-
tions of A U {0}. Note that the triangulations A;, ¢ = 1, ..., 4 appearing in Figure 1 are
all the triangulations induced by perturbations of (0,1, ..., 1). Now consider the triangu-
lation A5 drawn in Figure 2. The simplex {0, 3, 4} belongs to A5 and passes through zero,
but does not appear in any triangulation of p( A) induced by a perturbation of (0,1,...,1);
therefore, Corollary 6.10 ensures that the corresponding Nilsson solutions of H 4(83) (for

generic 3) do not have open domains of convergence.
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7. The irregularity of H 4(/3) via its Nilsson solutions

In this section, we give an alternative proof of [25, Corollary 3.16] using our study of
Nilsson solutions of H 4(/3). We assume as in [25] that the columns of A span a strongly
convex cone.

In Theorem 3.18 we computed the image of p. There is one case in which this map is
guaranteed to be onto.

Proposition 7.1. Suppose that w is a perturbation of (1,...,1). Then the map p is sur-
Jjective.

Proof. First note that none of the minimal generators of the monomial ideal in g ., (I,(4))
have 9y as a factor. This implies that, if u € N"*1 and 9" ¢ ing . (I,(4)), then 950" ¢
in,w)(I,(a)) forall & € N. We conclude that all the standard pairs of inq ., (1,(4)) pass
through zero. Theorem 3.18 completes the proof. O

We wish to find weight a vector w for H 4 (/3) for which p is not surjective. We require
the following statement.

Lemma 7.2. Let A € 74" of full rank d whose columns span a strongly convex cone.
If the row span of A does not contain the vector (1,...,1), there exists w € RZ such
that the coherent triangulation A .,y of p(A) has a maximal simplex that does not pass
through zero. Given 3 € C%, the vector w can be chosen to be a weight vector for H 4(3).

Proof. We use the description of the secondary fan of p(A) from Section 6.

Let B be a Gale dual matrix of p(A) with rows b, ..., b,. Since (1,...,1) is not in
the rowspan of A, the zeroth row of B is nonzero. Because B has full rank n — d, we can
choose o C {1,...n} of cardinality d + 1 such that {b; | i & o} is linearly independent.

The assumption that the columns ay, .. ., a, of A span a strongly convex cone means
that there exists a vector h € R% such that h- A is coordinatewise positive. As p(A)-B = 0,
>ii(h-ai)b; = 0.

Choose w € RZ, and positive real \; for i ¢ o, such that

w;+ X =h-a; fori €o, andw; + \g — A\; = h-a; fori¢ oU{0}.

There is enough freedom in the choice of w that we may assume that (0, w) induces a
triangulation A g,,,) of p(A) and not merely a subdivision. This also implies that w can
be chosen a weight vector for H 4(3), if 3 € C% is given.

We claim that (0, w) - B € J;°. This implies that ¢ is a maximal simplex in A g .,
which does not pass through zero.

To prove the claim, note that

D Wit )b+ Y (wi+Xo—X)bi =Y (h-a)b =0.
ico i¢oU{0} i=1
Then

iwibj, = Z (/\z — )\O)bi — /\ozbi = Z /\z‘bz’ - Aoibi = Z/\ibia
=1

i¢oU{0} ico igoU{0} i=1 ito
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where the last equality follows from —by = >, b;. But then, \; > 0 for i ¢ o implies
that (0, w) - B € J£,°, which is what we wanted. O

The hypothesis that the columns of A span a strongly convex cone cannot be removed
from Lemma 7.2, as the following example shows.

Example 7.3. Let A = [—1 1]. Then

-2
p(A) = [ é _1 i ], and choose B = 1
1

There are only two coherent triangulations of p(A), namely
Ay ={{-1,1}} and A = {{-1,0},{0,1}}.

Their corresponding cones in the secondary fan are #5, = R<( and #x, = R>(. For
any vector w = (w_1,w;) € R2 ), the number 0 by +w_q -b_1 +wy - by = w_1 +w;
belongs to the cone #Y, = R-( and consequently w always induces a triangulation of
p(A) all of whose maximal simplices pass through zero.

Proposition 7.4. Assume that the columns of A span a strongly convex cone. If the ra-
tional rowspan of A does not contain the vector (1,. .., 1), there exists a weight vector w
such that the linear map

p: Nw(Ha(B)) — Aow) (Hpa)(Bo, B))
is not surjective, where 3y be a homogenizing value for A, (3 and w.

Proof. Use Lemma 7.2 to pick w so that the triangulation A g ,,) of p(A) has a maximal
simplex that does not pass through zero. Then in(q ., (,(4)) has top-dimensional stan-
dard pairs that do not pass through zero. Choose a homogenizing value 3, for A, 3 and w,
and let (vg, v) be a fake exponent of H,(4)(/30, 3) corresponding to such a standard pair
(fake exponents associated to top-dimensional standard pairs always exist). In particular,
vo € N. If (vo, v) has minimal negative support, it is an exponent of H ,( 4 (o, 3) corre-
sponding to a standard pair that does not pass through zero, and the associated logarithm-
free solution @y, ) of H,(4) (Bo, B) cannot belong to the image of p by Theorem 3.18. If
(vo, v) does not have minimal negative support, the argument of [24, Proposition 3.4.16]
produces an element (v(,v’) € ((vo,v) + kerz(A)) whose negative support is minimal
and strictly contained in the negative support of (vg,v), so that vj, is still a non negative
integer. Thus, the standard pair corresponding to (v(,vg) cannot pass through zero, and
®(vy,v1) 1s not in the image of p. a

The following result is due to Berkesch [4, Theorem 7.3].

Theorem 7.5. If the cone over the columns of A is strongly convex and (3 is generic,

rank(H 4 (0)) = rank(H,(a)(fo, 6))-
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We now give a proof for Theorem 6.4.

Proof of Theorem 6.4. Given 3y a homogenizing value for A, 5 and w, Proposition 7.1
states that the spaces .47, (H 4 (3))) and A{o, ) (H,(a)(Bo, #))) are isomorphic. We may
further assume that 0 is sufficiently generic that Theorem 7.5 holds.

As I,(A) is homogeneous, H,(4)(/30, ) is regular holonomic, and Corollary 2.4.16

in [24] implies that dimc (A4{o,w) (Hp(a) (8o, 8))) = rank(H,(a) (5o, B)). So,

dime (A% (HA(B)))) = dime (Ao,uw) (Hpa) (B0, B))))
= rank(Hp(A) (60, ﬁ)) = rank(HA(ﬁ))a

where the last equality is by Theorem 7.5.

Since w is a perturbation of (1,...,1), if ¢ is a basic Nilsson solution of H4(3) in
the direction of w, then |u| > 0 for all u € supp(¢). Therefore we can use Theorem 6.2
to find e € R”;“ such that all basic Nilsson solutions of H4(f3) in the direction of w
converge on %y e O

We are finally ready to show that, in the case when the columns of A span a strongly
convex cone, non homogeneous A-hypergeometric systems are irregular for all 3, thus
generalizing the argument in [24, Theorem 2.4.11], and providing an alternative proof
of [25, Corollary 3.16].

Theorem 7.6. Assume that the columns of A span a strongly convex cone and I 4 is not
homogeneous. Then H 4(3) is not regular holonomic for any 3 € C¢.

Proof. Choose w a weight vector for H 4 () as in Proposition 7.4 and 3y a homogenizing
value for A, 3 and w. Then

dime (A7 (HA(B))) < dime(Ao,w) (Hpa) (B0, 3)))
= rank(H (4 (5o, 3))
= rank(H 4(0)).

The equality in the second line follows from [24, Corollary 2.4.16] because the system
H ,4)(Bo, B) is regular holonomic, as I,(4) is homogeneous. The last equality is by
Theorem 7.5 (we may have to make 3y more generic for this result to hold, but this
does not affect Proposition 7.4). Now [24, Corollary 2.4.16] and dimc (A4, (Ha(0))) <
rank(H 4(5)) imply that H 4 () is not regular holonomic. ]
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