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Recent neutron scattering experiments addressing the magnetic state of the two-leg-ladder selenide compound
BaFe,Se; have unveiled a dominant spin arrangement involving ferromagnetically ordered 2 x 2 iron superblocks,
that are antiferromagnetically coupled among them (the “block-AFM”state). Using the electronic five-orbital
Hubbard model first-principles techniques to calculate the electronic hopping amplitudes between irons, and
the real-space Hartree-Fock approximation to handle the many-body effects, here it is shown that the exotic
block-AFM state is indeed stable at realistic electronic densities close to n ~ 6.0. Another state with parallel
spins along the rungs and antiparallel along the legs of the ladders (the “CX” state) is close in energy. This state
becomes stable in other portions of the phase diagrams, such as with hole doping, as also found experimentally
via neutron scattering applied to KFe,Se;. In addition, the present study unveils other competing magnetic
phases that could be experimentally stabilized by varying either n chemically or the electronic bandwidth by
pressure. Similar results were obtained using two-orbital models, studied here via Lanczos and density-matrix
renormalization group (DMRG) techniques. A comparison of the results obtained with the realistic selenides
hopping amplitudes for BaFe,Se; against those found using the hopping amplitudes for pnictides reveals several

qualitative similarities, particularly at intermediate and large Hubbard couplings.
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I. INTRODUCTION

The study of Fe-based superconductors'= continues to un-
veil fascinating new discoveries at a fast pace. Among the most
recent developments is the report of superconductivity in the
intercalated iron selenides Ko gFe,_, Se, and (T1L,K)Fe,_,Se,.*
In addition, at the special composition Kg gFe; ¢Se, with the
iron vacancies in a v/5 x /3 arrangement, neutron scattering
studies™® of this (insulating) compound have revealed an
unusual magnetic order. This magnetic state involves 2 x 2
iron blocks with their four spins ferromagnetically ordered,
large ordering temperatures, and concomitant large magnetic
moments ~3.3 upg/Fe. The 2 x 2 blocks are antiferromagnet-
ically coupled among them. Phase separation tendencies have
also been reported in this type of insulator.” Photoemission
experiments for (T1, K)Fe; 73Se, revealed a Fermi surface with
only electronlike pockets at wave vectors (;7,0) and (0,7),%
showing that the Fermi surface nesting of hole and electron
pockets is not sufficient to understand these materials.’

The developments described above suggest that progress in
the understanding of chalcogenides could be made if the iron
spins are arranged differently than in the nearly square lattice
geometry of the FeSe layers. For this reason considerable
interest was generated by recent studies’'# of BaFe,Se; (the
“123” compound) since this material contains chains made of
[Fe,Se;]%>~ building blocks separated by Ba. These effective
two-leg iron ladders in BaFe,Se; are cutouts of the layers
of edge-sharing FeSe, tetrahedra normally found in layered
chalcogenides. Each double chain consists of pairs of iron
atoms (the “rungs”) located one next to the other forming
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PACS number(s): 74.70.Xa, 74.20.Rp, 71.10.Fd, 75.10.Lp

a one-dimensional arrangement perpendicular to those rungs,
defining indeed a two-leg ladder structure. In the context of the
Cu-oxide high-T, superconductors, spin-1/2 two-leg ladders
have also been much studied because of their unusual spin
gap, induced by the ladder geometry. The Cu-oxide-ladder
spin state is dominated by rung spin singlets, and a tendency
to superconduct upon doping.'>!® In particular, the compound
SrCu, 03 is the Cu-based analog of BaFe,Ses.!”

A recent remarkable development that increases the rele-
vance of the iron-based ladders is the following. The prepara-
tion of a single layer of alkali-doped FeSe with the geometry
of weakly coupled two-leg ladders was recently reported in
Ref. 18, where it was also argued that this ladder system is
superconducting based on the presence of a gap in the local
density of states. These results suggest that Fe-based ladders
provide a simple playground where even superconductivity
can be explored, increasing the similarities with the Cu-oxide
ladders that are also superconducting.!”

BaFe;Se; is an insulator, with a resistivity displaying
an activation energy between A ~0.13 eV (Ref. 14) and
A ~0.178 eV (Ref. 11). The 123-ladder compound has long-
range antiferromagnetic (AFM) order at ~250 K, with low-
temperature magnetic moments ~2.8 1 g, and it displays short-
range AFM correlations at higher temperatures (in particular
£ ~35A at room T).'%'2 Upon cooling, the magnetic order
presumably settles along the ladder directions first, and then
weaker interladder interactions establish the long-range order.
Neutron diffraction studies'®!'* reported a dominant magnetic
order at low 7T involving blocks of four iron atoms with
their moments aligned, coupled antiferromagnetically along
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FIG. 1. (Color online) Magnetic states observed in the phase
diagrams of the multiorbital Hubbard models used in this study,
employing the geometry of a two-leg ladder.

the ladder direction (Fig. 1, top state). This state is sometimes
dubbed the plaquette state, but here it will be referred to as
the “block-AFM” state or just “Block”. The ferromagnetic
2 x 2 building blocks present in the block-AFM state of the
ladders are the same blocks reported before in K sFe; ¢Ses,
with the iron vacancies in the v/5 x +/5 distribution. When
the 123-ladder material is doped with K as in Ba;_, K, Fe,Ses,
experimentally it is known that the magnetic state evolves
from the block-AFM state, through a spin glass, eventually
arriving for KFe,Se; to the spin state labeled “CX” also
displayed in Fig. 1, where the spins in the same rung are
coupled ferromagnetically but they are antiferromagnetically
ordered in the long ladder direction.'® Note that in BaFe,Se;
the valence of Fe is expected to be 2 4, if those of Ba and
Se are 4 2 and —2, respectively, giving an electronic density
n = 6.0. But in KFe;Ses, K has valence + 1, thus rendering
the average valence of Fe to be 4-2.5, that corresponds to an
electronic density n = 5.5.

In the present paper, results for multiorbital Hubbard
models are reported. The lattice distortions'®!! are partially
taken into account via the hopping amplitudes, as described
below. However, part of our results presented in the following
sections show that even without lattice distortions the 2 x 2
block-AFM state is stable in regions of the phase diagrams
that are constructed by varying the on-site Hubbard repulsion
U, the Hund coupling Jy, and the electronic density n1% In
other words, our most important result is that several models,
studied with several approximations, systematically contain
the block-AFM state as a robust phase in the phase diagram.
Moreover, the other recently observed'? CX state is also found
in the resulting phase diagrams. Several competing states that
could be stabilized in related compounds or under pressure or
via chemical doping are also discussed.
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The present study is carried out mainly using the Hartree-
Fock approximation for the five-orbital Hubbard model, em-
ploying both a set of hopping amplitudes that are deduced from
first-principles techniques applied to the selenide 123 ladders,
as explained below, and also an “old” set of hopping that
was previously employed in layered pnictides. The purpose of
using two sets of hoppings is to gauge how sensitive the results
are with regard to modifications in those hopping amplitudes.
In addition, our results for pnictide hoppings can be considered
predictions in case two-leg ladder pnictides are synthesized in
the future. Results for a reduced two-orbital Hubbard model
using Lanczos?” and the density-matrix renormalization group
(DMRG)?' techniques are also presented here, also for two sets
of hoppings. Overall, the two phases observed experimentally
in neutron scattering, the block-AFM and the CX states,
are stable in regions of the phase diagram centered at the
realistic Hund coupling Jy/U = 0.25. With regard to phase
diagrams, gaps, magnetic moments, and competing states, a
reasonable qualitative agreement is found between the two
different hopping sets, and for the different number of orbitals
considered in our effort. Studies of the spin-fermion two-
orbital model?? using Monte Carlo simulations®* also provide
aphase diagram compatible with those of the Hubbard models.

II. FIVE-ORBITAL HUBBARD MODEL, HOPPING
AMPLITUDES, AND METHODS

In this section, the focus will be on the derivation of
the hopping amplitudes needed for the five-orbital Hubbard
model and in providing details of the real-space Hartree-Fock
technique employed. The models used in this paper have
all been extensively discussed before, thus details will not
be repeated. In particular, the five-orbital Hubbard model is
explicitly defined in Ref. 24. With regard to the hopping
amplitudes for the 123-ladder compounds, here they have
been calculated using first-principles techniques, as explained
below. These hoppings will be refereed to as the selenide
hoppings in the rest of the paper.?> For completeness, results
using the hoppings corresponding to layered pnictides®® will
also be used, and the results compared with one another. While
the data gathered with the realistic selenide hoppings are our
most important set of results, contrary to naive expectations it
will be shown that a reasonable agreement is observed between
these two a priori quite different sets of hopping amplitudes,
at least at a qualitative level. The electronic density of main
interest is, in principle, n ~ 6.0 (i.e., 6 electrons/Fe), thus our
efforts are centered at this density, but some results varying n
are shown below as well (or verbally described). As explained
before, the on-site intraorbital Hubbard repulsion is U, the
Hund coupling is Jy, and the interorbital repulsion U’ is
assumed to satisfy U’ = U — 2Jy. Ladders of sizes 2 x L
(L = 4,8, 16, 32) were studied, and size effects were found to
be mild. Periodic (open) boundary conditions are used along
the chain (rung) direction.

The selenides hopping amplitudes for the 123 ladders
were obtained via a first-principles density functional theory
calculation of the nonmagnetic normal state. The calculation
was conducted using the WIEN2K implementation of the full
potential linearized augmented plane wave method in the local
density approximation.?’” The k-point mesh was taken to be
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TABLE I. Hopping matrices for the BaFe,Se; material obtained
from a tight-binding Wannier function analysis of the first-principles
results (in eV units). The matrices are written in the orbital basis
{d2,d_y2,d,;, dy;, d.,} for the on-site energy and interorbital
hopping (¢°"St®), nearest-neighbors hoppings (1N, both along the
rungs and the legs) and next-nearest-neighbors hoppings (t""~). The
long (short) direction of the ladder is oriented along the y (x) axis.
The convention for the iron site labels is in Fig. 2. Note that each
5 x 5 matrix in this table should be considered as the hopping matrix
to move from one iron to another as indicated. For a given Fe-Fe bond,
the full matrix that includes both the back and forth processes for the
hopping is of size 10 x 10 and it consist of a 5 x 5 matrix of this
table in a nondiagonal block, the transpose in the other nondiagonal
5 x 5 block, and the on-site matrix (top of this table) in both diagonal
blocks.

Matrix BaFe,Se;
—0.4604 —0.0617 0.0534 —0.0345 —0.0178
—0.0617 —0.5947 —0.0851 0.0371 0.0169
¢OnSite 0.0534 —0.0851 —0.0719 —0.0030 0.0165
—0.0345 0.0371 —0.0030 —0.1669 0.0286
—0.0178 0.0169 0.0165 0.0286 —0.1632
—0.0807 —0.3276 —0.0139 0.2734 0.0456
—0.3276 —0.2875 —0.0702 0.2661 0.0228
lf:gl_)g 0.0139 0.0702 —0.1477 —0.0531 0.2714
0.2734 0.2661 0.0531 —0.2733  0.0373
—0.0456 —0.0228 0.2714 —0.0373 —0.0397
0.0497 —0.2674 0.0187 —0.1186 —0.0738
—0.2674 —0.3943 —0.0388 —0.3449 —0.0195
llggrqx —0.0187 0.0388 —0.0580 0.0199 —0.2689
—0.1190 —0.3449 —0.0199 —0.3107 —0.0147
0.0738 0.0195 —0.2689 0.0147 —0.1343
—0.0421 0.2853 —0.1718 —0.0162 0.0055
0.2853 —0.3801 0.3311 0.0411 0.0098
zf‘u‘ffg‘gﬁ7 —0.1718 0.3311 —0.2881 —0.0115 —0.0259
—0.0162 0.0411 —0.0115 —0.0058 —0.2303
0.0055 0.0098 —0.0259 —0.2303 —0.0153
—0.0421 0.2853 0.1718 —0.0162 —0.0055
0.2853 —0.3801 —0.3311 0.0411 —0.0098
trr‘u‘yg‘lﬁz, 0.1718 —0.3311 —0.2881 0.0115 —0.0259
—0.0162 0.0411 0.0115 —0.0058 0.2303
—0.0055 —0.0098 —0.0259 0.2303 —0.0153
—0.0185 0.0054 0.1140 0.0893 —0.0721
—0.0159 —0.0379 —0.0661 0.0603 —0.0118
NN —0.1483 0.0837 0.2117 0.0843 0.0679
—0.1442 —0.0490 0.0801 0.1823 0.0559
—0.0879 —0.0017 —0.0304 —0.0529 0.0644
—0.0185 0.0054 —0.1140 0.0893 0.0721
—0.0159 —0.0379 0.0661 0.0603 0.0118
o 0.1483 —0.0837 0.2117 —0.0843 0.0679
—0.1442 —0.0490 —0.0801 0.1823 —0.0559

0.0879 0.0017 —0.0304 0.0529 0.0644
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FIG. 2. (Color online) Label convention of the iron sites used in
Table I, adapted from Fig. 1(b) of Ref. 10. The single and double lines
along the y axis denote two different lattice spacings, with specific
numbers taken from Ref. 10. The two selenium sites denote locations
above and below the plane defined by the iron ladder.

7 x 15 x 19. The lattice constants were taken from Ref. 10.
Table I shows the hopping parameters calculated by repre-
senting the resulting self-consistent Kohn-Sham Hamiltonian
with low-energy ([—2.5,2] eV) symmetry-respecting Wannier
functions?® with strong Fe-d symmetry. Since the influence of
the As-p orbitals are integrated into the tail of the Wannier
functions, the parameters correspond to an effective iron-only
model with five orbitals per iron. The staggered location of
the selenium atoms, above and below the plane defined by
the Fe atoms, is taken into account in the calculation. For a
similar discussion in the context of the three orbital model, see
Ref. 29. Note also that Table I contains the hoppings that are
needed for the full description of the system, based on the iron
locations in Fig. 2. Other hoppings are all identical to one of
those shown in Table I. For instance, the hopping matrix from
Fe2 to Fe7 is the same as the hopping matrix from Fel to Fe8
in Table I; the hopping matrix from Fel to Fe7 is the same as
the hopping matrix from Fe2 to Fe8, etc.

In addition, and for completeness, the hopping parameters
of Ref. 26 obtained for pnictide compounds were also used
in our studies. The goal was to test our conclusions against
reasonable modifications in the hoppings. Several aspects of
our results were found to be qualitatively similar for the two
sets of hoppings although, of course, quantitatively there are
substantial differences.

The five-orbital Hubbard model is studied here using
the real-space Hartree-Fock (HF) approximation, taking into
account the staggered location of the Se atoms via the
proper hopping amplitudes. Recently, the same method was
successfully employed in the analysis of KjgFe;¢Se, and
other systems.’*3! A real-space approach, where all the HF
expectation values that need to be found self-consistently
are assumed independent from site to site, allows for the
system to select spontaneously the state that minimizes the
HF energy, reducing the bias into the calculations. The HF
expectation values are obtained by an iterative process that
reduces the energy until convergence.’”> The results shown
below have been computationally obtained by two procedures:
(1) using as initial configurations the states in Fig. 1 and then
comparing energies after convergence, or (ii) starting with
totally random values and analyzing the spin order particularly
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at short distances. Procedure (ii), computationally demanding
due to the large number of iterations needed, sometimes allows
for the identification of “unexpected” phases [that then become
part of (i)] and also to confirm the results of procedure (i).

III. RESULTS FOR THE FIVE-ORBITAL
HUBBARD MODEL

A. Phase diagrams and the block-AFM phase

The main results of the present HF study of the five-
orbital Hubbard model are shown in Fig. 3, where the phase
diagrams varying U/W and Jy/U are presented using both
the realistic selenides hoppings for the 123 ladders as well
as the pnictides hoppings for comparison. The bandwidth
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FIG. 3. (Color online) Phase diagram of the five-orbital Hubbard
model in the real-space HF approximation. The label convention
for the phases is in the upper inset and also in Fig. 1. PM denotes
a paramagnetic state. (a) Results for a 2 x 16 cluster, using the
selenides hopping amplitudes for the 123 ladders, and at electronic
density n = 6.0. (b) Same as (a) but for electronic density n = 5.75.
(c) Results for a 2 x 32 cluster, using the pnictides hopping ampli-
tudes, and working at electronic density n = 6.0.
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W of the five-orbital Hubbard model is ~2.8 eV for the
selenides hoppings, while for the pnictides hoppings it is
~4.8 eV.? In all cases, Figs. 3(a)-3(c) show the remarkable
result that the block-AFM phase found in neutron experiments
for the 123 ladders'®'* becomes stable in a robust region
of the phase diagram. This is interesting since the 2 x 2
blocks in ladders are not as clearly geometrically defined
as in the +/5 x +/5 iron-vacancies arrangements, where each
of the plaquettes of the tilted square lattice of those iron
vacancies already contains a 2 x 2 block inside. In our two-leg
ladders, on the other hand, the ferromagnetic (FM) blocks do
emerge spontaneously in the calculations described here and
in experiments as well. As explained before, the present results
were confirmed using unbiased random starting configurations
for the HF expectation values and an iterative procedure for
convergence. By this procedure, the stability of the block-AFM
state was indeed tested at several points of the phase diagram.
Moreover, it is interesting that the region of stability includes
the realistic ratio Jy/U = 0.25, found before to correspond
to the “physical region” where a good agreement theory
experiment was observed for the pnictides.?*3?

With regard to the actual value of U/ W, note that the block-
AFM phase is stabilized starting at U/ W ~ 0.5 — 0.6 for the
selenides hoppings [Figs. 3(a) and 3(b)] and at U/W ~ 0.6
for the pnictide hoppings [Fig. 3(c)]. This is similar to the
value ~0.52 reported for K gFe; ¢Se, in Ref. 30 using similar
techniques. The critical U/ W quoted above are slightly larger
than the U/ W ~ 0.31 needed for the pnictides in the planar
geometry of the “1111” and “122” materials to form the C-type
AFM state,>*3% but note that in our present results magnetic
order in the CX channel (the analog of the C-type AFM
phase) is reached at U/ W ~ 0.3 in good agreement with those
previous investigations. Considering that it is the block-AFM
state that is found experimentally for the 123-ladder selenides,
this suggests that these selenides are more strongly correlated
than pnictides and their ratios of U/ W are roughly 0.5/0.3 =
1.66. Note also that the actual values of U/ W are still smaller
than 1, the ratio often considered as the boundary of the
strong coupling limit, implying that the selenide ladders are
still “intermediate” coupling compounds.> However, the HF
approximation favors ordered states, and including quantum
fluctuations the U/ W needed to stabilize the block-AFM phase
may exceed 1. On the other hand, note also that results in
real ladders may be influenced by the presence of a robust
electron-lattice coupling (mentioned in Refs. 10 and 11) that
may render stable the block-AFM phase even at values of U/ W
not as large as needed for its stabilization when based entirely
on an electronic mechanism. In spite of these caveats, it is clear
that even with lattice distortions incorporated the presence
of sizable electronic correlations appears to be important to
stabilize the block-AFM state.

In the block-AFM phase found in our study the magnetic
moment per Fe is large and close to saturation. More specif-
ically, it is ~4.0 up for the selenides hoppings and ~3.9 up
for the pnictides hoppings, with small variations caused by
the selection of specific values of U. The difference with the
experimental result'® ~2.8 uz may be caused by the absence
of fluctuations in the HF approximation,* or by the neglect
of lattice distortions in our effort, as already discussed. But at
least qualitatively the large value of the magnetic moment, as

024404-4



MAGNETIC STATES OF THE TWO-LEG-LADDER ALKALI ...

compared with the relatively small moments reported in some
layered pnictides is here properly reproduced.

In the present Hartree-Fock effort, square 8 x 8 clusters
have also been studied to address the coupling between ladders
in the direction perpendicular to the legs. In practice, a weak
interladder coupling was introduced by multiplying by a small
factor ¢ = 0.1 all the hoppings connecting sites belonging to
different individual 2 x 8 ladders (thus the 8 x 8 cluster has
four of these two-leg ladders). Other values of (small) o« were
used and the results were all similar. The main result (not
shown) is that the phase diagrams using the 8 x 8 clusters are
virtually identical to those found for the individual two-leg
ladders, for both sets of hoppings, with the only interesting
detail that the weak coupling between the ladders establishes
an effective antiferromagnetic coupling between them, as
found experimentally.'?

B. The CX phase and other competing states

It is important to remark that in all Figs. 3(a)-3(c) there are
several other magnetic states in addition to the block-AFM
state. In particular, the CX phase found experimentally in
hole-doped ladders'® also occupies a robust region of the
phase diagram, and it is located next to the block-AFM phase
for both the selenides 123-ladder hoppings as well as the
pnictide hoppings, at the electronic densities investigated in
Fig. 3. Its region of stability includes areas with smaller or
similar values for U/ W than those where the block-AFM
state is stable. Our investigations varying n reveal that this
phase is stable in a broad region of parameter space, including
the n = 5.5 electronic density corresponding to KFe,Ses,!?
indicating once again a good agreement between calculations
and experiments. In fact, Fig. 3(b) shows that the CX state
is more stable at electronic density n = 5.75 than at n = 6.0,
compatible with experiments. The CX state can be considered
closely related to the C-AFM state of layered pnictides with
the wave vector (r7,0), thus its stability particularly close to
the PM state should not be too surprising.

Varying U/ W and Jy/U, phases that have not been ob-
served experimentally for the two-leg ladders become stable.
For instance, when the Hund coupling is small compared with
U, a G-type antiferromagnetic state is found, with staggered
magnetic order. In the other extreme of magnetic order,
ferromagnetism is observed in a small region of parameter
space for a sufficiently large U and Hund couplings, for both
sets of hoppings. The qualitative tendency from G to CX to
block-AFM to FM with increasing Jy/ U at robust U/ W goes
together with the tendency to FM order in the vicinity of each
iron atom: for the G state the three NN links are AFM, for
the CX state two are AFM and one is FM, for the block-AFM
state two are FM and one AFM, and of course for the full FM
state all NN links are FM.

Small “islands” of other states are also present in the phase
diagram corresponding to the pnictides hoppings, including
the CY state which is another relative of the C-AFM state of
the pnictides, as well as the flux and 7 states (see Fig. 1 for the
spin arrangement corresponding to these states). But it is clear
that the block-AFM, CX, G, FM, and PM states dominate the
phase diagrams.
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FIG. 4. (Color online) Density of states of the five-orbital Hub-
bard model (in the HF approximation), at Jy/U = 0.25, and the
values of U/ W indicated. The type of phase state corresponding
to each value of U/W is also indicated. (a) corresponds to the
selenides hoppings for the 123-ladder compound and electronic
density n = 6.0. The bandwidth W in this case is ~2.8 eV.
(b) corresponds to the pnictides hoppings, for comparison. The
electronic density is n = 6.0, and the bandwidth W is ~4.8 eV. In
both cases, the small oscillations at U/ W = 0 and in the CX phase
are caused by size effects in the long direction of the 2 x 16 or 2 x 32
clusters used and the intrinsic small size in the rung direction.

C. Density of states

The density of states (DOS) of the block-AFM state for
both the cases of the selenides 123-ladder hoppings and the
pnictides hoppings are shown in Fig. 4 for representative
couplings. The presence of a gap at the chemical potential
for the block-AFM state and for both hoppings indicates an
insulating state, in agreement with experiments. While the
values of the gap for the block-AFM state (A ~0.40 eV
and A ~0.45 eV for the selenides and pnictides hoppings,
respectively) are larger than reported experimentally,'’-!*
the qualitative trends are correct. Further improvement with
experiments can be achieved by better fine tuning U/ W and
Ju/ U, by adding effects arising from the three dimensionality
of the problem, incorporating other lattice distortions, etc.

Another detail that merits a comment is that the CX phase,
being closer in the phase diagrams to the PM state than
the block-AFM state is, has a metallic or weakly insulating
character that depends on specific details such as the value
of U/W. At a fixed Jy/U such as 0.25, the metal-insulator
transition seems to occur within the CX phase.

IV. RESULTS FOR THE TWO-ORBITAL
HUBBARD MODEL

The results obtained via the HF approximation to the
five-orbital Hubbard model can be further analyzed, at least
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qualitatively, by studying models with less orbitals but using
computational techniques beyond the mean-field approxima-
tion. Consider for instance the two-orbital Hubbard model
employing the d,; and d, orbitals. This model can be studied
exactly in small clusters, via the Lanczos algorithm,”® or
via DMRG techniques. Here, in the first part of the study
using the two-orbital model, the hoppings originally developed
for pnictides will be used, but then in the second part a
set of hoppings derived from the five-orbital hoppings of
the ladder selenides will be employed. For details about
the model, particularly the hoppings for the pnictides case,
and for the technical aspects of the implementation of the
Lanczos technique to multiorbital models see Refs. 35-37.
A phase diagram can be constructed by calculating the spin-
structure factor S(g.,q,), and focusing on the wave vector
that maximizes this quantity. In particular, if S(gx,q,) is
maximized at (0,0) then the state is considered ferromagnetic,
if maximized at (;r,0) it is CX, if at (0,7) it is CY, and if
at (/2,0) it is the block-AFM state. Before providing the
results, it is important to clarify that the discussion involving
two orbitals is qualitative at best. In fact, the two-orbitals
model version of the five-orbitals model derived here from
first principles provides only a limited fit of the Fermi surface.
However, it will be shown that in spite of this quantitative
issues, the crude two-orbitals model used here do present the
block-AFM and CX states in the phase diagrams, showing
that, within reason, their presence does not depend on details
of the hopping amplitudes.

A. Lanczos and pnictides hoppings

By the procedure described above, the results in Fig. 5(a)
were obtained using the Lanczos method on a 2 x 4 lattice,
employing the original hopping amplitudes of the two-orbital
model for the pnictides. At half-filling n = 2.0, which is the
analog of n = 6.0 for five orbitals, the CX state, one of the
states observed in neutron scattering for ladders,'? dominates.
Increasing the electronic density n, the block-AFM state
(the other state reported experimentally)'? is also stabilized,
while decreasing n the CY state (this state has not been
reported experimentally yet) becomes the ground state. While
a quantitative agreement with the five-orbital model results
should not be expected, it is still reassuring that some of
the main tendencies are similar when using two and five
orbitals. These common aspects are: the block-AFM state
is stable at a robust U/ W, the CX state dominates a large
fraction of the phase diagram, and other states appear as
competing alternatives. The reduction from five to two orbitals
preserves the essence of the problem, at least qualitatively
and at the electronic densities of the parent compounds. Note
also that the U/ W needed to stabilize the block-AFM phase
is approximately 1, namely larger than in the five-orbitals
HF analysis. As explained before, the quantum fluctuations
considered in the Lanczos calculation could move the critical
U/W to larger values than in the mean-field approximation
highlighting the need to include correlation effects. However,
since other factors such as finite-size effects in Lanczos could
influence on the actual values of the critical couplings, this
conclusion should be considered only as qualitative. Moreover,
note that the comparison between two- and five-orbitals is also
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FIG. 5. (Color online) (a) Phase diagram of the two-orbital
Hubbard model studied with the Lanczos method on a 2 x 4 cluster,
and at Jy/U = 0.25. Shown are results varying U/ W (W = 12 eV,
see Ref. 35) and the number of total electrons N as 12, 14, 16 (n = 2),
18, and 20. The assignments of the many phases are decided based on
the dominant peak in the spin structure factor. The color convention
is as in Fig. 3. (b) DMRG results showing the dominance of the
CX state (77,0) with increasing L in the spin structure factor S(g,,0)
using 2 x L clusters at U/ W = 0.83, Jy/U = 0.25, and n = 2. (c)
Same as (b) but for the block-AFM state (r/2,0), at U/ W = 0.83,
Ju/U = 0.25,and n = 2.5. The hoppings used in all panels are those
of the pnictides (Ref. 26).

only qualitative since, for instance, working at fixed Jy/U the
phase diagram of Fig. 3 at n = 6.0 contains the block-AFM
phase at a large enough U/ W, while the phase diagram of
Fig. 5(a) at n = 2.0 only has one magnetically ordered state,
the CX state. Another discrepancy is the dominance of the
CY state for n less than 2.0, feature that is not observed in
a five-orbitals context. Thus, the results of both models are
certainly not in one-to-one correspondence.

B. DMRG and pnictides hoppings

This same two-orbital Hubbard model was also studied
using DMRG techniques.?! Open boundary conditions were
employed in both directions, and typically m = 450 states
and 20 sweeps were used. The energy difference between
the last two DMRG sweeps was 107>, The results are in
Figs. 5(b) and 5(c). In Fig. 5(b), the spin structure factor is
shown varying L using a 2 x L cluster with L =4, 8§, 12,
and 16, at n = 2, and fixed Jy/U and U/ W. In this case, the
CX state dominates,*® as found with the Lanczos technique.
In Fig. 5(c), the spin structure factor is shown at n = 2.5,
Ju/U = 0.25, intermediate coupling U/ W = 0.83, and three
cluster sizes showing that in this regime the block-AFM state
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TABLE II. Set of hopping matrices for the two-orbital model
corresponding to the 123-ladder compound (in eV units), obtained
from the selenides set of hoppings for these materials using the five-
orbital model. The matrices are written in the orbital basis {d,., d,.}
along the x, y, x +y, and x — y directions. The long direction of
the ladder is oriented along the x axis (for the five-orbitals results,
the long direction is the y axis, thus a rotation was carried out). “123
compound” column: hopping parameters obtained from tight-binding
fits to the band calculations for BaFe,Se; presented in the section
of the five-orbital Hubbard model. As explained in the five-orbitals
section the fully Hermitian matrix is obtained by constructing 4 x 4
matrices using the transpose of the 2 x 2 matrices here provided.
“DMRG hoppings” column: resulting hopping set for a two-orbital
model with one iron atom per unit cell used in the actual DMRG
calculations for the 123-ladder compound. In this case all of the
hopping matrices are Hermitian already for the 2 x 2 cases.

Matrix 123 compound DMRG hoppings
" 0.14769 —0.05309 0.14769 0
0.05309 0.27328 0 0.27328
o 0.28805 0.01152 0.28805 0.01152
0.01152 0.00581 0.01152 0.00581
ety —0.21166 —0.08014 —0.21166 —0.08430
—0.08430 —0.18230 —0.08430 —0.18230
oy —0.21166  0.08014 —0.21166  0.08430
0.08430 —0.18230 0.08430 —0.18230

dominates, as in the Lanczos calculations. Overall, the DMRG
and Lanczos results are in qualitative agreement, showing that
the CX state and block-AFM state reported experimentally
are stable in portions of the phase diagram of the two-orbital
Hubbard model with the FeAs hoppings, while other states
such as CY and FM (not shown) are close in energy.

C. Selenides hoppings for the two-orbitals model

As explained before, the DMRG results shown above in
Fig. 5 for the two-orbital Hubbard model were obtained
by using the hopping parameters originally developed for
pnictide compounds. As also addressed for the case of the
five-orbital Hubbard model, this is a crude approximation
for BaFe,Se; because the hopping parameters are material
dependent making a study of the two-orbital Hubbard model
with a set of hoppings corresponding to the true 123-ladder
selenide compound imperative. This more realistic set of
parameters was obtained by fitting tight-binding models to the
band structure first-principles results discussed in Sec. II in
the context of the five-orbital Hubbard model. Letting 7, be
the hopping matrix defined in the orbital space y = {d,., d,.}
along the « =x,y,x +y, and x — y directions between
nearest and next-nearest iron atoms, the set of hoppings for
two orbitals can be obtained, and they are shown in the second
column of Table II (123 compound” column). Note that the
five-orbitals results had the long direction along the y axis, but
here a rotation was carried out and the long direction is along
the x axis.
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For the two-leg ladder used in the DMRG calculations,
the presence of the Se atoms with a staggered location above
and below the FeSe ladders in the 123 material imply that
the unit cell must be larger than in the absence of that
lattice distortion.** The other small lattice distortion along
the ladder legs incorporated in the five-orbitals results also
demand such an enlarged unit cell. However, this doubling of
the unit cell increases the complexity of the DMRG calculation
because operators for the additional iron atoms belonging to
the enlarged unit cell must be kept. Then, in order to simplify
the DMRG computation, approximations (discussed in the
next paragraph) will be introduced to reduce the problem to a
two-orbital Hubbard model where all Fe-Fe bonds along the
leg direction are equivalent. The final set of hoppings used in
our DMRG calculation are shown in the “DMRG hoppings”
column shown in Table II. They were obtained by averaging
hoppings along the same direction but for different bonds.

D. DMRG and selenides hoppings

The results obtained with the DMRG technique applied
to the two-orbital Hubbard model using the hoppings for
selenides described in the previous subsection are shown in
Fig. 6. Technical details are the same as in the case of the
pnictides hoppings. Figure 6(a) contains the phase diagram
from the wave vectors that dominate in the spin structure factor.
Figures 6(b) and 6(c) display the behavior of the spin structure
factor at particular couplings, for the two most important
states. Similarly as in the case of the hoppings for pnictides,
at n = 2 there is a dominance of the CX state. In fact, the
region of stability of this CX state is larger with the selenides
hoppings than with the pnictides hoppings. This may lead to
the conclusion that for new ladder compounds synthesized in
the future the CX state should be more likely to appear than
the block-AFM state. Or it could be that our analysis does
not include a lattice distortion that favors the block-AFM state
over the CX state.

With regard to the block-AFM state, in Fig. 6(a) it is shown
that this phase indeed exists in the regime of hole doping,
contrary to the case of the hoppings for pnictides where the
block-AFM state was found for electron doping, in a region
of approximately the same size in the phase diagram. Not
finding this state at precisely n = 2 is not a problem since the
actual population of the d,, and d, orbitals is not precisely 2
in the real materials. What is perhaps more surprising is the
dominance of the CX state over the block-AFM state, contrary
to the results of the five-orbitals model where the latter was
fairly stable. This result highlights the shortcomings of the
two-orbitals model.

In the phase diagram of Fig. 6 other phases not observed
experimentally are found such as the CY state and the FM
state, again similar to the case of the hoppings for pnictides
or for the five-orbitals models. While the precise location of
the phases varies from model to model and depends on the
hoppings, the systematic presence of the block-AFM and CX
states is clear in our results.

However, as in the case of the pnictides hoppings, it is
important to remark that the agreement between five- and
two-orbitals calculations is qualitative at best. For instance,
consider the case of n = 2.0 and Jy/U = 0.25 in Fig. 6(a).
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FIG. 6. (Color online) (a) Phase diagram of the two-orbital
Hubbard model studied with the DMRG method employing the
hopping amplitudes presented in Table II (right column). The
cluster used is of size 2 x 8 with open boundary conditions, and
Ju/U = 0.25. Shown are results varying U/ W and the number of
total electrons N as 24, 28, 32 (n = 2), 36, and 40. The assignments
of the many phases are decided based on the wave vector of the
dominant peak in the spin structure factor. The paramagnetic (PM)
phase was assigned based on the similarity with the U = O results,
and for this reason the frontier between the PM and magnetic phases
may not be precise. The color convention is as in Fig. 4, and 300 states
and 15 sweeps were used. (b) DMRG results showing the dominance
of the CX state (r,0) with increasing L in the spin structure factor
S(gx,0) using 2 x L clusters at U/W = 1.25, Jy/U = 0.25, and
n = 2. In these runs, 450 states and 15 sweeps were used. (c) Same as
(b) but for the block-AFM state with wave vector (7/2,0),atU/ W =
1.25, Jy/U =0.25, and n = 1.5, using 2 x4, 2 x 8, and 2 x 12
clusters.

Here, as in the case of the pnictides hoppings Fig. 5(a), the
CX state dominates in the range of U/ W explored. However,
for the case of five orbitals at n = 6.0 and Jy/U = 0.25 in
Fig. 3(a), it is the block-AFM state that dominates. Thus,
only by including variations in the electronic density # is that
similarities between the two cases do emerge.

E. Spin-fermion model results

Complementing these studies, the two-orbital spin-fermion
model for the pnictides’?* was also analyzed using a
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2 x 16 cluster and Monte Carlo (MC) techniques, employing
approximately 50000 MC steps (not shown). At n ~ 2 and
Ju = 0.2 eV, the CX state was found, while at n = 2.5 and
a similar range of Jy the block-AFM state was found, in
agreement with the Lanczos and DMRG studies.

V. CONCLUSION

Using five- and two-orbital models for the two-leg ladder
compounds BaFe,;Se; and KFe,Se;, the phase diagrams
of these models were studied using several many-body
techniques. The richness of the reported phase diagrams
demonstrates that Fe-based superconductors are more complex
than early investigations based on Fermi surface nesting ideas
anticipated.” More specifically, in this study it has been argued
that the experimentally observed CX and 2 x 2 block-AFM
states shown in Fig. 1 are indeed the ground state of purely
electronic Hubbard models in robust regions of parameter
space when varying U/ W, Jy, and the electronic density n, at
least within the HF approximation. Our effort suggests that to
understand the stability of the 2 x 2 block states, theoretical
studies of electronic models using the geometry of two-leg
ladders (much simpler than a full two-dimensional layer) may
be sufficient, although for a quantitative description quantum
fluctuations and the effect of lattice distortions may be needed.
Our study also predicts that several other magnetic phases
could become stable in the vicinity of the CX and block-AFM
states in the phase diagram. The other candidates are in Fig. 1
and the list includes the G-AFM, CY, and FM states, and to
a lesser extent the flux and 7 states. The experimental search
for these states via chemical substitution or pressure would
be important to improve the interplay between theory and
experiments for the Fe-based superconductors. Since these
magnetic arrangements are close in energy, glassy behavior
caused by a multiplicity of energy minima is also possible.!?
Finally, by comparing results using two sets of hopping
amplitudes (one realistic for the ladder selenides and obtained
via first-principles calculations, and another borrowed from
pnictides investigations), several similarities were unveiled
particularly at intermediate and large Hubbard couplings.
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