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The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is
examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows
for a simple but thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is
found that the interface roughens linearly with the substrate size only in the vicinity of special disorder
realizations. Otherwise, it remains stiff and tilted.
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Studies of inhomogeneous interface growth have thrived
in a variety of physical contexts[1] characterizing phenom-
ena as diverse as fluid imbibition in porous media[2] and
crystalline surface growth on disordered substrates[3]. It is
known that in these situations a small amount of disorder can
severely modify the interface motion and ultimately alter its
roughening behavior[1]. This is the case of time independent
but spatially random growth rates arising, for instance, from
a quenched array of columnar defects pinning the flux lines,
here playing the role of interfaces, in dirty high temperature
superconductors[4]. Another mechanism whereby the inter-
face character results deeply affected at large times is real-
ized by anchoring conditions which suppress fluctuations at
the interface boundaries. Such confined geometries actually
occur in the unbinding of polymers from a wall[5], and also
emerge as domain walls ofs2+1d-dimensional cellular au-
tomaton models[6], as well as in stationary nonequilibrium
systems ind=1 [7]. In this work we focus on the combined
effect that quenched disorder and anchoring conditions
brings about in the steady state(SS) properties of one-
dimensional(1D) interfaces, at both macroscopic and micro-
scopic scales. This extends the SS results obtained in a re-
lated study[8] where the interplay between a single growth
inhomogeneity and anchored boundaries was considered.

The problem is most conveniently treated in the discrete
formulation of growth processes. As usual[9], here we rep-
resent the latter in terms of restricted solid on solid(RSOS)
configurations of heightssh0d ,h1, . . . ,hL growing stochasti-
cally on a substrate of sizeL. Throughout the evolution,
fluctuations are suppressed entirely ath0, whereas all otherhj
can increase(decrease) in two height units with substrate
dependent ratese j se j8d [10]. Due to the RSOS constraints
uhj+1−hju=1, these variations can only occur at local extrema
of the interface, as illustrated in Fig. 1. Despite its simplicity,
it will turn out that this model encompasses a disorder driven
transition along with unusual roughening exponents alike
those produced by isolated impurities[8].

Following most studies[1], we concentrate on the root
mean square dispersion of heights, commonly associated to
the width W of the system. Under quenched growth this
further requires the averaging ofW over all disorder realiza-
tions (denoted by the brackets below), namely,

kWsL,tdl =KH 1

L
o

j

fhjstd − Hstdg2J1/2L , s1d

where Hstd is the mean interface height, and the overbar
indicates an ensemble average over all possible evolution
histories up to timet. On general grounds[1,11], it can be
argued thatkWsL ,tdl scales asL§fst /Lzd with a universal
scaling function behaving asfsxd,x§/z for x!1, whereas for
x@1 it remains constant. Consequently, fort@Lz the width
saturates asL§ while growing ast§/z at much earlier stages. In
what follows we content ourselves with studying just the
former situation, i.e., the stationary regime controlled by the
roughening exponent§. In contrast to the dynamic exponent
z, § lends itself more readily for a thorough analysis under
growth disorder, so hereafter we shall work over Eq.(1)
directly in the limit t→`.

a. Particle representation. To this aim, let us first con-
sider the conditions that the SS imposes on the above pro-
cesses. For ease of analysis we retain the interface slopes
sj =hj −hj−1= ±1 rather than its heights, or alternatively the
set of occupation numbershnj;hs1+sd /2j conforming a
height configuration. This enables to exploit the well known
mapping[1,9] from a 1D RSOS interface to a driven particle
system, i.e.,hj =oiø js2ni −1d, here specially adapted to ac-
count for both anchored and free edges as well as for
quenched disorder. In particular, height variations at the free
boundary translate here into injection and ejection of par-
ticles, as is easily visualized in Fig. 1. In this latter represen-
tation one can readily build up a SS probability measure
Pshnjd satisfying detailed balance, regardless the specific re-
alization of disorder considered. In equilibrium, the bulk and
right boundary processes will demand, respectively(see Fig.
1)

s2d

eL8Psn1, . . . ,nL−1,1d = eLPsn1, . . . ,nL−1,0d, s3d

and therefore the SS distribution must be of the form
e−o j Vjnj. Specifically, Eq.s2d entails a hard-core particle po-
tential Vj =V1+oi, j lnsei /ei8d, whereas Eq.s3d fixes the
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value of the additive constant. Equivalently, by introduc-
ing the total particle numberN=o j nj, we thus obtain a
sample dependent grand canonical formPshnjd
=smN /Zde−o j VjnjsV1;0d, with a particle fugacity m
=p j e j /e j8 and a normalizing partition functionZ=p js1
+m e−Vjd. A similar SS form appeared in Ref.f8g, although
constrained throughout by afixed number of particles as
imposed by thetwo anchored edges considered there. By
restricting to a single anchored boundary, here we facilitate
significantly the analysis of all SS aspects discussed subse-
quently, though at the expense of the nonequilibrium ap-
proach given in Ref.f8g.For posterior use, it can be easily
checked that the particle densitiesn̄i involved in the calcula-
tion of height profiles are

n̄i = S1 + p
jùi

e j8/e jD−1
, s4d

while the pair correlations needed for the analysis of height-
height correlators appearing inW, result totally decoupled,
that is, ninj = n̄in̄j ∀ i Þ j and for all disorder realizations.
However as we shall see below, there is a particular situa-

tion, namely, m→1, for which height variables become
strongly correlated.

b. Height distribution. Before embarking in the evalu-
ation of the double average of Eq.(1), we should determine,
first, whether the growth of a given sample can actually pro-
duce a rough interface. It may well happen that while the
width increases with the typical substrate size, the whole
system becomes actually smooth, as is the case of the linear
profile exhibited in Fig. 1. In analyzing this issue we focus
attention on a more microscopic level of description such as
the single height probability densityPshNd at a given loca-
tion N. In turn, this requires the evaluation of anM-particle
partition functionZM ;vM /M! constructed as

vM = mM o
j1¯ jMøN

8e−Vj1 ¯ e−VjM , s5d

whereo8 restricts the sums toh j1Þ ¯ Þ jMjP f1,Ng so as to
keep a constant number of particles within that interval.
Clearly, thisM-body quantitysM øNd is associated to the
wanted probability athN=2M −N, since by construction
Ps2M −Nd=ZM / fp j=1

N s1+me−Vjdg. To account for the hard-
core interactions we build up a recursive relation in the par-
ticle number M. Introducing the auxiliary functions
gskd=mko j=1

N e−kVj, this can be achieved via the
identity vM =gs1dvM−1−sM −1dSM−2s2d, where the latter
factor is defined generically as SM−kskd
=mMo j8e

−kVjo j1¯ jM−k
8 e−Vj1¯e−VjM−k. In particular,SM−ks2d in-

volves constrained sums havingh j Þ j1Þ ¯ Þ jM−2jP f1,Ng
and subtracts the unwanted terms resulting fromsM −1d
double occupation configurations included ings1dvM−1. Us-
ing a similar criteria, we may also infer thatSM−2s2d
=gs2dvM−2−sM −2dSM−3s3d, where the last term now can-
cels triple occupation contributions toSM−2s2d. Thereafter,
iterating this reasoning down toM =1, it can be straightfor-
wardly verified that in terms of thej-particle partition func-
tions Zj =v / j ! we are left with

ZM =
s− 1dM+1

M FgsMd + o
j=1

M−1

s− 1d jgsM − jdZjG , s6d

whereZ1=gs1d. A simple numerical evaluation of such re-
currence thus enables us to examine the height distribution,
particularly at the tails where statistics become more de-
manding. Despite the noisy particle potentialV of individual
samples it turns out that forM @1 the distribution itself col-
lapses towards a universal—Gaussian—form. This is evi-
denced by the semilog inset of Fig. 1, for instance, in the
case of a binary concentrationp of growth rates with prob-
ability pd fse8 /ed−ag+s1−pdd fse8 /ed−bg. Also, recursion
s6d reveals that in most cases the interface is characterized by

a tilted profile h̄N, ±N whose local height fluctuationssHFd
set out to be quitesmall, even far away from the anchored
boundaryh0, i.e., the interface isstiff, in agreement with the
linear snapshot displayed in Fig. 1. On approaching certain
disorder conditions however, Gaussian tails widen signifi-
cantly sslope diminishing shown in the insetd, so HF take
over and the stiff regime no longer holds. This is illustrated
by the rough profile also exhibited in Fig. 1.

FIG. 1. RSOS interface anchored ath0, thought of as an asym-
metric exclusion process in which height slopessj =hj −hj−1 are
associated to particle occupationsnj =

1
2s1+sjd. At the free edgehL

variates in 2s−2d with rateeL seL8d by particle deposition(evapora-
tion), whereas for 1ø j ,L height changes correspond to left(right)
particle hoppings with ratese j se j8d. Lower panel: typical snapshot
for L=103 after 105 steps per height using a binary disorder with
e8 /e=0.8,1.2 under condition(8), i.e., for p=pc in the text. Other-
wise, configurations become tilted(dotted line). Inset: Gaussian dis-
tribution of heights forj =100, at and slightly belowpc (upper and
lower lines).
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c. Roughening criterion. It is therefore important to
focus on these special conditions so as to ensure a meaning-
ful result in the calculation of Eq.(1). Let us then consider
the fluctuations of the total number of particlesks2l;kN 2

−N 2̄l, averaged over a generic growth disorder. For equilib-
rium regimes, this is a representative quantity to look at, as
in terms of the occupation densities it is immediate to check
that it coincides with the height variance at the free edge of
the interface, i.e., 4ks2l=khL

2−hL
2l whereas by construction it

constitutes an upper bound for all HF. To facilitate its analy-
sis and by virtue of the products involved in Eq.(4), it is
convenient to introduce the rate disorder variablesui
=lnsei8 /eid, in terms of which these fluctuations are casted as
ks2l= 1

4o j=1
L kfcoshs 1

2oi=j
L uidg−2l. Assuming a site indepen-

dent distribution of growth ratios, say with meankul and
variances2, we can thus exploit the central limit theorem
[12] for these new variables and carry out the disorder aver-
age. Hence, it can be readily shown that

ks2l . o
j=1

k

a j +
1

4s
o

j=k+1

L E
−`

+` expF−
su − jkuld2

2js2 G
Î2p j cosh2Su

2
D du, s7d

wherea j =kn̄L+1−js1−n̄L+1−jdl, andk is eventually a large but
finite integer sk!Ld. The point to emphasize here is that
whatever disorder distribution is considered, the interface
fluctuations are intrinsically dominated by the above series
of integrals. Thus, apart from a bounded quantity 0
øo j=1

k a j øk/4, the effect of any distribution onks2l will
parallel the one caused by the Gaussian disorder. On the
other hand, as long assÞ0 the asymptotic analysis of Eq.s7d
shows that the value ofkul is crucial, since for largeL

ks2l ~ 5ÎL, if Kln
e8

e
L = 0

bounded, otherwise,

s8d

which finally provides the disorder conditions able to pro-
duce a rough interface. In common with this result, HF
around a single growth inhomogeneity as that considered in
Ref. f8g can also grow unbounded insofare=e8 throughout
the bulk. However, for that situation HF turn out to increase
linearly with the substrate sizef8g. As was mentioned earlier,
roughening occurs for fugacities such thatm→1± in turn
favoring strong fluctuations in the particle occupation num-
bers. In that case,us̄iu,1 and height variables become tightly

correlated along the substrate sincehihj − h̄ih̄j =si −ok=1
i s̄k

2d
Þ0, ∀ i , j . Otherwise, the slopess̄i →−1,1 si.e., N̄ /L
→0,1d, so the interface becomes tilted and hardly flexible

becausekhi
2− h̄i

2lø4ks2l ∀i is bounded.To illustrate the ef-
fectiveness of the above criterion for non-Gaussian cases, we
address to the binary distribution referred to above. Using
the binomial distribution to weight all possible forms in
which the growth ratiosa,b may show up on a segment of
length l, we find

ks2l = o
l=1

L

o
k=0

l S l

k
Dpks1 − pdl−k

4 cosh2wl,k
, s9d

where 2wl,k;k ln a+sl −kdln b. Figure 2 shows the typical
behavior of this quantity fora,1,b. In agreement with
condition s8d, there exists a critical concentrationpc=f1
−ln a/ ln bg−1, i.e., kul=0, for which particle fluctuations
increase asÎL ssee inset of Fig. 3d, while in the thermo-
dynamic limit diverge asup−pcu−1 as indicated by the inset
of Fig. 2. In nearingpc from below saboved, this disorder-
driven transition brings the interface from a tilted state
with slope −1s+1d to a rough phase in a continuous man-
ner. Clearly, forb,1,a the rapprochement direction is

FIG. 2. Particle fluctuations arising from a binary growth distri-
bution. Data fora=0.5,b=1.5 while varying the concentration ofa.
Curves from top to bottom denote in turn results forL=105,104 and
103. The inset exhibits the same algebraic divergence(dashed slope)
either nearingpc=f1−ln a/ ln bg−1 from below or above(dotted and
solid lines closely following each other;L=105).

FIG. 3. Quenched interface width scaling linearly with the sub-
strate size. Averages were taken over Gaussian and binary distribu-
tions (dashed and solid lines, respectively), using condition(8).
Curves in descending order stand in turn fors=1, pc=0.4,s=0.01,
and pc=0.004sa=0.5d; the lowermost slope is 1/2. The inset dis-
plays fluctuations(9) scaling asL1/2 (dashed slope) for pc=0.4.
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inverted, otherwise the system remains tilted.It is ofinter-
est to note here that criterion(8) implies that locally, uniform
interfacesss=0d can fluctuate stronger than disordered ones.
In fact, for ei8=ei all interface configurations are equally
likely so the single height probability density derived from
Eq. (5) reduces toPshd,1/ÎL exps−h2/2Ld. So, in the pure
substrates2~L, rather than diverging as in Eq.(8). What
remains to be seen is whether different scaling behaviors can
also emerge on a more macroscopic description, such as the
width of Eq. (1) and towards which we finally turn.

d. Width behavior. Let us then consider this global
quantity in the slope representation discussed throughout.
After some algebraic steps, it can be readily demonstrated
that the width of a given sample is expressed as

W2sLd =
sL2 − 1d

6L
+

2
L2o

i, j

sL + 1 − jdsi − 1dsisj . s10d

In particular, for equilibrium regimes there is a key simpli-
fication in the average ofW, as sisj = s̄is̄j over all disorder
realizations.

For binary rates, a closed though rather involved expres-
sion of ks̄is̄jl can be easily found upon recurring once more
to the binomial distribution. By inserting that expression in
Eq. (10), the size dependence of the quenched width is
evaluated numerically and plotted in Fig. 3(solid lines), us-
ing the critical concentrationspc required by criterion(8).
Clearly, the results support a power law growth ofkWl con-
sistent with a rather unusual roughening exponentz.1 ex-
tended over more than three decades. Thus, we see that in
sharp contrast to what occurs at the microscopic scale where
HF of disordered interfaces are weakersks2l~ÎLd than uni-
form ones ss2~Ld, macroscopically the former can grow
rougher than the latter. Though as pointed out above HF
around isolated inhomogeneities scale more rapidly, we also

see that for large length scales finite disorder concentrations
amount to a single impurity as both situations are typified by
the samez value[8], a feature which is not evidenta priori.

On approaching weakly disordered regimes however, size
effects become quite pronounced. Even for large substrate
lengthskWl grows with thez=1/2 exponent characteristic of
homogeneous systems[9,13] though asymptotically the lin-
ear scaling is recovered. Hence, at the static level of the
z-exponents there is adiscontinuousscaling regime atpc
=0+,1− where e.e8 for most sites. In fact, the numerical
estimation ofkWl via Eqs. (4) and (10) over a Gaussian
growth distribution yields the same value ofz while also
implying a discontinuous behavior near the homogeneous
case, whens→0+. This is indicated by the dashed lines of
Fig. 3 after averaging over 104 samples. As was discussed in
Ref. [8], such discontinuous feature also emerges under a
single bulk inhomogeneity of even arbitrarily small but non-
vanishing strength.

To summarize, we have constructed a recursive relation
[Eq. (6)] which allowed us to examine disordered interfaces
at microscopic scales. For most situations this yielded a stiff
picture given the small HF obtained, though in the vicinity of
special disorder realizations HF take over and wipe out the
interface stiffness. This led us to propose a roughening cri-
terion by looking at the fluctuations of the total particle num-
ber along with their divergence conditions[Eq. (8)]. Within
such regimes we analyzed the scaling behavior of quenched
widths using both Gaussian and non-Gaussian disorders. The
corresponding results support a linear growth ofkWl with the
substrate size, i.e.,z.1 (Fig. 3), which possibly reflects a
tendency of inhomogeneous interfaces to crumple on large
scales[1,8].
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