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Equilibrium of anchored interfaces with quenched disordered growth
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The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is
examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows
for a simple but thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is
found that the interface roughens linearly with the substrate size only in the vicinity of special disorder
realizations. Otherwise, it remains stiff and tilted.
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Studies of inhomogeneous interface growth have thrived e 12
in a variety of physical contextd] characterizing phenom- (WIL, 1) = [E [hi(® = H(®)] ' 1)
i

ena as diverse as fluid imbibition in porous mef and

crystalline surface growth on disordered substrgBdslt is  where H(t) is the mean interface height, and the overbar
known that in these situations a small amount of disorder caindicates an ensemble average over all possible evolution
severely modify the interface motion and ultimately alter itshistories up to time. On general groundgl,11], it can be
roughening behavidr]. This is the case of time independent argued thatW(L,t)) scales as *f(t/L? with a universal

but spatially random growth rates arising, for instance, fromscaling function behaving &$x) ~ x¥' for x< 1, whereas for

a quenched array of columnar defects pinning the flux linesx>1 it remains constant. Consequently, ferL? the width
here playing the role of interfaces, in dirty high temperaturesaturates ak® while growing ag*'? at much earlier stages. In
superconductorf4]. Another mechanism whereby the inter- what follows we content ourselves with studying just the
face character results deeply affected at large times is reafermer situation, i.e., the stationary regime controlled by the
ized by anchoring conditions which suppress fluctuations atoughening exponent In contrast to the dynamic exponent
the interface boundaries. Such confined geometries actually s lends itself more readily for a thorough analysis under
occur in the unbinding of polymers from a w@ll], and also  growth disorder, so hereafter we shall work over Ed).
emerge as domain walls @2+ 1)-dimensional cellular au- directly in the limitt— co.

tomaton model$6], as well as in stationary nonequilibrium a. Particle representationTo this aim, let us first con-
systems ind=1 [7]. In this work we focus on the combined sider the conditions that the SS imposes on the above pro-
effect that quenched disorder and anchoring conditionsesses. For ease of analysis we retain the interface slopes
brings about in the steady stat8S properties of one- s;=h;—h;_;=x1 rather than its heights, or alternatively the
dimensional1D) interfaces, at both macroscopic and micro-set of occupation numberfn}={(1+s)/2} conforming a
scopic scales. This extends the SS results obtained in a rhaeight configuration. This enables to exploit the well known
lated study[8] where the interplay between a single growth mapping[1,9] from a 1D RSOS interface to a driven particle
inhomogeneity and anchored boundaries was considered. system, i.e.h;=2;-;(2n;—1), here specially adapted to ac-

The problem is most conveniently treated in the discretecount for both anchored and free edges as well as for
formulation of growth processes. As usig], here we rep- quenched disorder. In particular, height variations at the free
resent the latter in terms of restricted solid on sgREOS  boundary translate here into injection and ejection of par-
configurations of heightshg),hy, ... ,h. growing stochasti- ticles, as is easily visualized in Fig. 1. In this latter represen-
cally on a substrate of size. Throughout the evolution, tation one can readily build up a SS probability measure
fluctuations are suppressed entirelyzgtwhereas all othe; P({n}) satisfying detailed balance, regardless the specific re-
can increasgdecreasgin two height units with substrate alization of disorder considered. In equilibrium, the bulk and
dependent ratesg; (e/) [10]. Due to the RSOS constraints right boundary processes will demand, respectivebe Fig.
|hj+1—hj| =1, these variations can only occur at local extremal)
of the interface, as illustrated in Fig. 1. Despite its simplicity, )
it will turn out that this model encompasses a disorder driven &P, .., 1,0, . on) = 6P(ny, .. .0,1,omy),
transition along with unusual roughening exponents alike ::1 :’:1 (2)
those produced by isolated impuritiggj.

Following most studieg1], we concentrate on the root
mean square dispersion of heights, commonly associated to
the width W of the system. Under quenched growth thisand therefore the SS distribution must be of the form
further requires the averaging @ over all disorder realiza- e >i Vi"i. Specifically, Eq.(2) entails a hard-core particle po-
tions (denoted by the brackets belpwamely, tential V;=V;1+2i_; In(¢/€), whereas Eq.(3) fixes the

E{_P(nl, - ,nL_l, 1) = GLP(nl, . ,nL_l,O), (3)
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FIG. 1. RSOS interface anchoredhgt thought of as an asym-
metric exclusion process in which height slopgsh;—h;_; are
associated to particle occupatlomﬁs=2(1 +sj). At the free edgén
variates in 2-2) with ratee_ (/) by particle depositiotievapora-
tion), whereas for ¥ j <L height changes correspond to lgfght)
particle hoppings with rates; (e) Lower panel: typical snapshot
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tion, namely, u—1, for which height variables become
strongly correlated.

b. Height distribution Before embarking in the evalu-
ation of the double average of Ed.), we should determine,
first, whether the growth of a given sample can actually pro-
duce a rough interface. It may well happen that while the
width increases with the typical substrate size, the whole
system becomes actually smooth, as is the case of the linear
profile exhibited in Fig. 1. In analyzing this issue we focus
attention on a more microscopic level of description such as
the single height probability densityP(hy) at a given loca-
tion N. In turn, this requires the evaluation of dparticle
partition functionZy, = wy/M! constructed as

2
JrIMSN
whereX’ restricts the sums tfj; # - - #ju} €[1,N] so as to
keep a constant number of particles within that interval.
Clearly, thisM-body quantity(M <N) is associated to the
wanted probability athy=2M-N, since by construction
P(2M~N)=Z,,/[I1}L,(1+ue™v)]. To account for the hard-
core interactions we build up a recursive relation in the par-
ticle number M. Introducing the auxiliary functions
g(k):,ukEJ!\':1 e Vi, this can be achieved via the
identity wy=9(1)wy-1—(M-1)Sy-»(2), where the latter
factor is defined generically as Sy_(k)
=uM3le kVJE’l € iz e Viv In parhcularS,vI (2) in-
volves constralned sums havifg# j1 # -+ # ju-2t € [1,N]

and subtracts the unwanted terms resulting frovih—1)
double occupation configurations includedgfil) wy,_;. Us-

e Vip e e_VjM, (5)

- M
oy = K

for L=10° after 10 steps per hEIght using a binary disorder with ing a similar criteria, we may also infer tha$,_,(2)

€'/€=0.8,1.2 under conditioB), i.e., for p=p, in the text. Other-

wise, configurations become tilt¢dotted ling. Inset: Gaussian dis-
tribution of heights forj =100, at and slightly belowp. (upper and

lower lines.

value of the additive constant. Equivalently, by introduc-

ing the total particle numbeN=X; n;, we thus obtain a
sample dependent grand canonical fornP({n})
=(uV12)e=i ViN(V;=0), with a particle fugacity u
=Il; ¢/ and a normalizing partition functio@=II;(1
+u €Vi). A similar SS form appeared in Rg8], although
constrained throughout by fixed number of particles as

=g(2) wpy-_o—(M=2)Sy_5(3), where the last term now can-
cels triple occupation contributions ®,_,(2). Thereafter,
iterating this reasoning down td =1, it can be straightfor-
wardly verified that in terms of thg-particle partition func-
tionsZj=w/j! we are left with

M-1

M+1
ev 1) oM + 3 (- ol

Iy= M- )z (6)
whereZ;=g(1). A simple numerical evaluation of such re-
currence thus enables us to examine the height distribution,

particularly at the tails where statistics become more de-

imposed by thetwo anchored edges considered there. Bymanding. Despite the noisy particle potentiabf individual
restricting to a single anchored boundary, here we facilitateamples it turns out that favi > 1 the distribution itself col-
significantly the analysis of all SS aspects discussed subséapses towards a universal—Gaussian—form. This is evi-
quently, though at the expense of the nonequilibrium apdenced by the semilog inset of Fig. 1, for instance, in the

proach given in Ref[8].For posterior use, it can be easily
checked that the particle densitigsinvolved in the calcula-
tion of height profiles are

= (1 +]1 ej’/ej)_l,

=i

(4)

case of a binary concentratignof growth rates with prob-
ability pS[(e'/e)—a]+(1-p)S[(€'/e)—b]. Also, recursion

(6) reveals that in most cases the interface is characterized by
atilted profile hy~ +N whose local height fluctuation$iF)

set out to be quitesmall even far away from the anchored
boundaryh,, i.e., the interface istiff, in agreement with the
linear snapshot displayed in Fig. 1. On approaching certain

while the pair correlations needed for the analysis of heightdisorder conditions however, Gaussian tails widen signifi-

height correlators appearing W, result totally decoupled,
that is, nnJ nn]DH&J and for all disorder realizations.

cantly (slope diminishing shown in the ingetso HF take
over and the stiff regime no longer holds. This is illustrated

However as we shall see below, there is a particular situaby the rough profile also exhibited in Fig. 1.
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c. Roughening criterionlt is therefore important to
focus on these special conditions so as to ensure a meaning-
ful result in the calculation of Eq.l). Let us then consider 100
the fluctuations of the total number of particles’) = (N2

-N'?), averaged over a generic growth disorder. For equilib-
rium regimes, this is a representative quantity to look at, as
in terms of the occupation densities it is immediate to check < 10 F
that it coincides with the height variance at the free edge of
the interface, i.e., @2 =(h?—h?) whereas by construction it
constitutes an upper bound for all HF. To facilitate its analy-
sis and by virtue of the products involved in Ed), it is
convenient to introduce the rate disorder variables
=In(¢/€), in terms of which these fluctuations are casted as

0.001 0.01 0.1

Ip — pel

i 0 0.5 I
(=72 ([cosh(3=t, uy)] 2). Assuming a site indepen- P

dent distribution of growth ratios, say with medn) and
variances®, we can thus exploit the central limit theorem pytion. Data fora=0.5,b=1.5 while varying the concentration af
[12] for these new variables and carry out the disorder avereurves from top to bottom denote in turn resultslfer1?, 10* and

FIG. 2. Particle fluctuations arising from a binary growth distri-

age. Hence, it can be readily shown that 10%. The inset exhibits the same algebraic divergeieshed slope
either nearingp.=[1-In a/In b]™* from below or abovgdotted and
eXp[ (u—j(uy)? solid lines closely following each othel;=10).
k L -
1 e 2js?
<02>2201j+4—s'2 — N du, (7) L oL = )
j=1 jokt1 J oo 27 cosﬁ(—) =S ( )&’ (9)
2 =1 k=0 \K/ 4 COSH‘PI,k

wherea;=(n+1(1-Ni41-)), andk is eventually a large but  where 2y =k In a+(I-K)In b. Figure 2 shows the typical
finite integer (k<L). The point to emphasize here is that hehavior of this quantity fom<<1<b. In agreement with
whatever disorder distribution is considered, the interfaceondition (8), there exists a critical concentratiqgn=[1

fluctuations are intrinsically dominated by the above series-|n a/In b]™, i.e., (u)=0, for which particle fluctuations

of integrals. Thus, apart from a bounded quantity Ojncrease aslL (see inset of Fig. B while in the thermo-
<Xj; aj=<k/4, the effect of any distribution of®) will  gynamic limit diverge asp—p~* as indicated by the inset
parallel the one caused by the Gaussian disorder. On thsf Fig. 2. In nearingp, from below(above, this disorder-
other hand, as long &s# 0 the asymptotic analysis of E(f)  driven transition brings the interface from a tilted state

shows that the value @iy is crucial, since for largé& with slope —1(+1) to a rough phase in a continuous man-
ner. Clearly, forb<1<a the rapprochement direction is
L it {In=)=0
(0 i < e> ) . . .
bounded, otherwise, 1047 o | stope 172 Gy

which finally provides the disorder conditions able to pro-
duce a rough interface. In common with this result, HF 103 [
around a single growth inhomogeneity as that considered in

Ref. [8] can also grow unbounded insofar e’ throughout

the bulk. However, for that situation HF turn out to increase E
linearly with the substrate siZ8]. As was mentioned earlier, v
roughening occurs for fugacities such that-1* in turn

favoring strong fluctuations in the particle occupation num- 10
bers. In that casés| <1 and height variables become tightly

correlated along the substrate sirlgl; —hih;=(i-2_; )

#0, 0i<j. Otherwise, the slopes —-1,1 (i.e., N/L
—0,1), so the interface becomes tilted and hardly flexible

becguse{hiz—hi2>$4<0'2> L '_S pounded.To |IIustr§te the ef- FIG. 3. Quenched interface width scaling linearly with the sub-
fectiveness of the above criterion for non-Gaussian cases, Werate size. Averages were taken over Gaussian and binary distribu-
address to the binary distribution referred to above. Usingions (dashed and solid lines, respectivelysing condition(8).

the binomial distribution to WEIth all possible forms in Curves in descending order stand in turn $gf_|_’p0:0_4’s:0_0]_,
which the growth ratios,b may show up on a segment of andp,=0.004(a=0.5); the lowermost slope is 1/2. The inset dis-
lengthl, we find plays fluctuationg9) scaling as./? (dashed slopefor p.=0.4.

10 10? 10° 104 103
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inverted, otherwise the system remains tilted.It iSntér-  see that for large length scales finite disorder concentrations
est to note here that criterigB) implies that locally, uniform amount to a single impurity as both situations are typified by
interfaces(s=0) can fluctuate stronger than disordered onesthe same value[8], a feature which is not evideatpriori.

In fact, for € =¢ all interface configurations are equally ~ On approaching weakly disordered regimes however, size
likely so the single height probability density derived from effects become quite pronounced. Even for large substrate
Eq. (5) reduces tP(h) ~ 1/L exp(-h?/2L). So, in the pure lengths(W) grows with thef=1/2 exponent characteristic of
substrates?cL, rather than diverging as in Eg8). What ~homogeneous systeni8,13) though asymptotically the lin-

remains to be seen is whether different scaling behaviors cafr Scaling is recovered. Hence, at the static level of the
also emerge on a more macroscopic description, such as ﬂi%az(pqnents there is discontinuousscaling regime ap
width of Eq. (1) and towards which we finally turn. =0",1" where e=¢' for most sites. In fact, the numerical
d. Width behavior Let us then consider this global est|mat|o!1 9f<V‘_” via Egs. (4) and (10) over a Qau35|an
quantity in the slope representation discussed throughou@Wth distribution yields the same value ofwhile also

After some algebraic steps, it can be readily demonstratelﬂnplying a discgntingogs_bghavior near the homo_geneous
that the width of a given sample is expressed as case, whers— 0". This is indicated by the dashed lines of

Fig. 3 after averaging over {@amples. As was discussed in
2_ _ Ref. [8], such discontinuous feature also emerges under a
(L==1 2 o \ ( ¢ also
el T FZ (L+1-j)(i-Dss;. (10 single bulk inhomogeneity of even arbitrarily small but non-
<) vanishing strength.
To summarize, we have constructed a recursive relation

WA(L) =

In particular, for equilibrium regimes there is a key simpli- Eq. (611 which all d ine disordered interf
fication in the average oWV, asss; :s-—s]- over all disorder | q',( )] W ich allowed us to examine disoraere Inter aces
realizations. at microscopic scales. For most situations this yielded a stiff

For binary rates, a closed though rather involved eXprespicture given the small HF obtained, though in the vicinity of

sion of{s_sj) can be easily found upon recurring once more_SpeC'aI disorder realizations HF take over and wipe out the

. e . . .. interface stiffness. This led us to propose a roughening cri-
to the binomial distribution. By inserting that expression N arion by looking at the fluctuations of the total particle num-
Eq. (10), the size dependence of the quenched width isDer alog/ with ?heir divergence conditiofis (85)] Within
evaluated numerically and plotted in Fig($olid lines, us- 9 9 . 9. (©)].

. L : . N such regimes we analyzed the scaling behavior of quenched
ing the critical concentrationp,. required by criterion(8). : . . . .

widths using both Gaussian and non-Gaussian disorders. The
Clearly, the results support a power law growth('8f) con- : X !

i ) . corresponding results support a linear growtW§ with the

sistent with a rather unusual roughening expongatl ex- o : . .

substrate size, i.e{=1 (Fig. 3), which possibly reflects a
tended over more than three decades. Thus, we see that In ) &

: . tendency of inhomogeneous interfaces to crumple on large

sharp contrast to what occurs at the microscopic scale WherseCale 1.8
HF of disordered interfaces are weakés2)« L) than uni- e
form ones(o?x=L), macroscopically the former can grow  The author would like to thank R. B. Stinchcombe for
rougher than the latter. Though as pointed out above HMRelpful observations and correspondence. Support of

around isolated inhomogeneities scale more rapidly, we alsSCSONICET, Argentina, is acknowledged.
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