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We investigate models of interacting dark matter and dark energy for the Universe in a spatially flat

Friedmann-Robertson-Walker space-time. We find the ‘‘source equation’’ for the total energy density and

determine the energy density of each dark component. We introduce an effective one-fluid description to

evidence that interacting and unified models are related to each other, analyze the effective model, and

obtain the attractor solutions. We study linear and nonlinear interactions, the former comprises a linear

combination of the dark matter and dark energy densities, their first derivatives, the total energy density,

its first and second derivatives, and a function of the scale factor. The latter is a possible generalization of

the linear interaction consisting of an aggregate of the above linear combination and a significant

nonlinear term built with a rational function of the dark matter and dark energy densities homogeneous

of degree 1. We solve the evolution equations of the dark components for both interactions and examine

exhaustively several examples. There exist cases where the effective one-fluid description produces

different alternatives to the �CDM model and cases where the problem of coincidence is alleviated. In

addition, we find that some nonlinear interactions yield an effective one-fluid model with a Chaplygin gas

equation of state, whereas others generate cosmological models with de Sitter and power-law expansions.

We show that a generic nonlinear interaction induces an effective equation of state which depends on the

scale factor in the same way as the variable modified Chaplygin gas model, giving rise to the ‘‘relaxed

Chaplygin gas model.’’
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I. INTRODUCTION

Certain high precision astronomical observations sug-
gest that the Universe entered an accelerated expansion
stage when the value of its scale factor was approximately
one-half of the current one. This important discovery,
which was based on the observations of the brightness of
a class of supernovae (SNIa) [1], has been confirmed by
precise measurements of the spectrum of the cosmic mi-
crowave background (CMB) anisotropies [2] as well as the
baryon acoustic oscillations in the Sloan digital sky survey
luminous galaxy sample [3]. This discovery has trans-
formed cosmology into a very active area in current phys-
ics and will surely fix the bases of important advances in
the future, because the consensus between cosmologist
points in the direction in which the understanding of the
phenomenon will probably require a unified comprehen-
sion of the gravitational and the other fundamental inter-
actions. The above aspect of the expansion of the Universe,
which becomes manifest on very large scales, will only be
detectable from very distant astronomical objects.

Basically, the evidences indicate that the Universe was
dominated by nearly pressureless dark matter in the long
lasting initial stage that goes back almost to its most early
stages after the big bang. This was an epoch characterized
by an every time slower expansion. However, the behavior

got reversed and the Universe began an accelerate expan-
sion under the domination of its dark energy component
characterized by a negative pressure [4]. This behavior has
lasted till the present and most likely will continue forever.
At large scales, there are strong evidences for a spatially
flat and accelerating universe transiting from a scenario
dominated by matter accumulated by purely attractive
gravitational effects to another dominated by a dark com-
ponent dispersed by repellent gravitational effects. The
reasons, causes, and details of when this transition hap-
pened are still not understood. These are part of the queries
to answer in those projects which are framed in this active
investigation area inside the cosmology. It is interesting to
note that for a sufficiently intense acceleration one can
speak rather of superacceleration; then the possibility ex-
ists that the Universe has a catastrophic end with a sud-
denly future singularity at a finite time (big rip) and a total
disintegration of the well-known structures.
To investigate the mechanisms that govern the dynamics

of the evolution of the Universe from its early stage until its
recent accelerated phase, we will consider fundamentally
two types of models denoted, respectively, as interacting
and unified models. The aspects of the evolution in which
we will be concerned are those connected to theoretical
descriptions of the dark matter and dark energy.
In the interacting models, the source of Einstein equa-

tions which describe the dynamics of the Universe at large
scale includes an aggregate of different material fluids and*chimento@df.uba.ar
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scalar fields that are conserved individually or interact
among them. This is in principle the simplest, and perhaps
the most obvious hypothesis, and it is in fact, the one that
has provided more advances in the knowledge of the
phenomenon of the recent acceleration of the Universe;
see [5,6], and references therein. Following observational
evidences we will consider three fundamental components:
baryons, dark matter, and dark energy. Given the dynami-
cal similarity between baryons and dark matter, we will
make a simplified model replacing both components with a
nearly pressureless dust, while the dark energy will be
described by a fluid with a linear equation of state. This
will allow us to focus our investigations on models of two
fluids with energy transfer. Our goals will be the following
ones: on one hand, we will mainly investigate linear and
nonlinear interactions, they will be considered as functions
of dark matter and dark energy densities, their first deriva-
tives, the total energy density with its derivatives up to
second order, and the scale factor. On the other hand, we
will analyze the relation between interacting and unified
models. We will also examine the problem of coincidence:
are the proportions of matter accumulated by gravitative
effects and dark energy comparable at the present time for
a strange coincidence or for a fundamental reason? Many
models in the literature [7] have been proposed to alleviate
the problem of coincidence, for instance, quintessence,
k-essence, phantom, quintom, tachyon, etc.

In unified models, the Einstein equations will have a
single component working as dark matter and dark energy
at different stages. It interpolates smoothly between a
matter dominated phase in the early stage and dark energy
in the late stage of the evolution, so inducing an accelerated
expansion of the Universe. Consistently, the Universe
evolves from a power-law stage to a de Sitter stage. The
Chaplygin gas and its extensions were the unified models
that have been more studied in the literature [8–15].
Nevertheless, preliminary results indicate that observatio-
nally the equation of state of dark energy still cannot be
determined precisely. This information has produced sev-
eral generalizations of those models, as for instance, the
variable modified Chaplygin gas model with an equation of
state, depending explicitly on the scale factor [16–21].

At the present, there exists some controversy between
interacting and unified models that we can express in the
following question. Are unified models more probable and
satisfactory than interacting models profusely studied in
the literature? Perhaps, this controversy does not exist and
one could expect some sort of resemblance between these
different models. In this case it would be particularly
interesting to find a relation between interacting and uni-
fied models. As far as we know, no study has been made in
this direction. In the following we will examine, from the
dynamical point of view, when interacting and unified
models may be considered as similar ones.

The paper is organized as follows: in Sec. II we consider
two fluids, dark matter and dark energy, with energy trans-

fer, develop an effective one-fluid description, and find the
source equation for the total energy density. Then, we write
the evolution equation for the effective barotropic index,
introduce a separable interaction, and investigate the con-
ditions of stability for constant solutions. In Sec. III we
introduce the ‘‘linear interaction I’’ and describe some
particularly simple interacting models. After that we focus
on the ‘‘linear interaction II’’ and find the exact scale factor
and the effective barotropic index. Finally, we analyze a
‘‘general linear interaction’’ which induces a generalized
�CDM model. In Sec. IV we consider a ‘‘nonlinear inter-
action’’ which includes a rational function of the energy
densities of both dark components homogeneous of de-
gree 1 and separate the analysis into two main cases. There,
we show that the effective equation of state of two fluids
with energy transfer includes the equations of state of
several generalizations given for the Chaplygin gas. In
Sec. V we give a prescription to obtain an interacting
model from a unified one. Finally, in Sec. VI the conclu-
sions are stated.

II. DARK SECTOR EVOLUTION

A. Effective one-fluid description

Let us consider an expanding universe modeled by a
mixture of two interacting fluids, namely, dark matter and
dark energy with energy densities �c and �x, and pressures
pc and px, respectively. Because of the energy transfer
between both dark components, they do not evolve sepa-
rately [5] and the Einstein equations in a spatially flat
Friedmann-Robertson-Walker (FRW) universe read

3H2 ¼ �c þ �x; (1)

_� c þ _�x þ 3Hð�c þ pc þ �x þ pxÞ ¼ 0; (2)

where a is the scale factor andH ¼ _a=a. The conservation
equation (2) evidences the interaction among the compo-
nents admitting the mutual exchange of energy and
momentum.
For the two dark components we assume equations of

state pc ¼ ð�c � 1Þ�c and px ¼ ð�x � 1Þ�x, where the
barotropic indices �c and �x are constants. The dark matter
is composed of nearly pressureless components with a
barotropic index �c � 1 and the dark energy has a baro-
tropic index satisfying the condition �x < �c. Many of our
results will even be valid when we include the possibility of
phantom dark energy �x < 0. The total energy density �
and the conservation equation for the interacting two-fluid
model are

� ¼ �c þ �x; (3)

�0 ¼ ��c�c � �x�x; (4)

where the prime indicates differentiation with respect to
the new time variable 0 �d=d�¼d=3Hdt¼d=dlnða=a0Þ3

LUIS P. CHIMENTO PHYSICAL REVIEW D 81, 043525 (2010)

043525-2



and a0 is some value of reference for the scale factor.
Solving the system of equations (3) and (4) we get the
energy density of each dark component as a function of �
and its derivative �0

�c ¼ ��x�þ �0

��
; �x ¼ �c�þ �0

��
; (5)

where �� ¼ �c � �x is the determinant of the linear
equation system (3) and (4), being positive for our model.
In turn, the ratio of the energy densities becomes r ¼
�c=�x ¼ �ð�x�þ �0Þ=ð�c�þ �0Þ.

At this point, we introduce an energy transfer between
the two fluids by separating the conservation equation for
the system (4) into the two equations

�0
c þ �c�c ¼ �Q; (6)

�0
x þ �x�x ¼ Q: (7)

Here, we have considered a coupling with a factorized H
dependence 3HQ, where the interaction term Q, with
dimensions of an energy density, generates the energy
transfer between the two fluids. With this assumption the
dynamics of �c and �x is dictated by the scale factor
instead of H. Differentiating the first or the second
Eq. (5) and combining with Eq. (6) or with Eq. (7), we
obtain a second order differential equation for the total
energy density

�00 þ ð�c þ �xÞ�0 þ �c�x� ¼ Q��: (8)

A similar equation was reported in [22] for the particular
interaction Q ¼ c1�c þ c2�x, with c1 and c2 constants.

The interacting two-fluid model has been reduced to an
effective one-fluid model with total energy density � and
total pressure p ¼ pc þ px, whose effective equation of
state is

pð�; �0Þ ¼ ��� �0: (9)

From the above point of view and the conservation of the
total energy-momentum tensor of the system, we assume
an effective one-fluid description with equation of state
p ¼ ð�� 1Þ�, where the effective barotropic index � ¼
ð�c�c þ �x�xÞ=� ranges between �x < � < �c. The ef-
fective conservation equation becomes �0 þ �� ¼ 0;
hence the expression for the energy density of the dark
components (5) is replaced by

�c ¼ ��x � �

��
�; �x ¼ �c � �

��
�; (10)

and the ratio becomes r ¼ ð�� �xÞ=ð�c � �Þ. Expressing
these equations in terms of the energy density parameters

�c ¼ �� �x

��
; �x ¼ �c � �

��
; (11)

we get r ¼ �c=�x.

In other words, given an interaction Q, the total energy
density � of the effective one-fluid model is determined by
solving the source equation (8). Once we know �, we are
able to find the effective equation of state from Eq. (9) and
the scale factor by integrating the Friedmann equation
3H2 ¼ �, without knowing �c and �x separately. Both
energy densities are easily calculated by replacing � and
�0 into Eq. (5). For instance, in the no interaction case,
Q ¼ 0, the energy density of the effective one-fluid model
is � ¼ c1=a

3�c þ c2=a
3�x , where �c is the first term and �x

the second one. Likewise p ¼ ð�c � 1Þ�c þ ð�x �
1Þ�x ¼ ��� �0 is the effective equation of state. For
any value of the constants c1 and c2, the total energy

density � ! c2=a
3�x , the scale factor a ! t2=3�x , and the

power-law solution t2=3�x becomes an attractor.
Throughout the paper ci; c

0
i; . . . and bi; b

0
i; . . . with i ¼

0; 1; 2; 3; . . . will represent constants.
Basically, we have shown that an interacting two-fluid

model can be seen as an effective one-fluid model or
equivalently considered as a unified one. Concerning this
result, can the interacting two-fluid model or its unified
version be derived from a Lagrangian? We observe that the
dynamics of the unified or effective model is given by the
two independent Einstein equations

3H2 ¼ �; _�þ 3Hð�þ pÞ ¼ 0: (12)

These equations cannot determine the three quantities a, p,
and � because we have 1 degree of freedom. Usually, the
system of equations (12) is closed with an equation of state
p ¼ pð�Þ. When we assume that the effective energy-
momentum tensor Tik splits into two dark components,
Tik ¼ Tc

ik þ Tx
ik, Eqs. (12) become Eqs. (1) and (2). The

latter equations cannot determine the five quantities a, �c,
�x, pc, and px. To preserve the 1 degree of freedom of the
unified model we have introduced an equation of state for
each dark component pc ¼ ð�c � 1Þ�c and px ¼ ð�x �
1Þ�x. Then, by changing these equations of state we obtain
a very large set of interacting models which are equivalent
to a unified one, meaning that the decomposition into dark
matter and dark energy is not unique. We should take into
account this degeneration and after that, we should go to
the central point of deriving the interacting models from a
Lagrangian. Some effort in this direction was reported in
[23].
Although in unified cosmologies we have not dealt with

the evolution of large-scale inhomogeneities, it is impor-
tant to mention something about its nonhomogeneous gen-
eralizations. This is an issue of interest because candidates
for the dark matter unification will only be valid if they
ensure that initial perturbations can evolve into a deeply
nonlinear regime to form a gravitational condensate of
superparticles that can act like cold dark matter. In this
sense one could follow the covariant and sufficiently gen-
eral Zeldovich-like nonperturbative approach given in [8].
It would be interesting to investigate in future works
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whether the equivalence between coupled and unified
models holds also at the level of perturbation theory.

B. Asymptotic stability

The knowledge of stable solutions for the interacting
two-fluid model is very useful because these attractor
solutions determine the asymptotic behavior of the energy
density of each dark component, so that their contributions
to the total energy density become constants. These scaling
solutions are characterized by constant energy density
parameters �cs, �xs and they are reached for a broad
range of initial conditions, hence alleviating the problem
of coincidence. Another point of view consists of looking
for a dynamical solution of the problem of coincidence
such that the Universe approaches a stationary stage, i.e.,
the existence of attractor solutions for the evolution equa-
tion of the effective barotropic index. Thus, on the attrac-
tor, the ratio r turns asymptotically constant,
rs ¼ �cs=�xs ¼ �cs=�xs ¼ ð�s � �xÞ=ð�c � �sÞ.
Consistent with both points of view, the effective baro-
tropic index tends to the asymptotic constant value �s, as
we can see from

�s ¼ �c�cs þ �x�xs ¼ rs�c þ �x

1þ rs
: (13)

From these two relations we can extract two different types
of solutions: (i) for �s � 0, we integrate the barotropic
index �s ¼ �2 _H=3H2 and obtain the power-law expan-

sion a ¼ t2=3�s ; (ii) for �s ¼ 0, we have a final de Sitter
stage, H ¼ const, with�cs ¼ �xs ¼ 0 and rs ¼ ��x=�c.

As Eq. (13) relates the constant density parameters�cs,
�xs, the ratio rs and the effective barotropic index �s, we
will investigate the stability of the constant solution �s

from the evolution equation of the effective barotropic
index. Also, we will find the conditions of stability for
the solutions �s and get the attractor when the energy
transfer between both dark components is generated by a
separable interaction. To this end, we deduce the differen-
tial equation for � by differentiating �0 ¼ ��� and by
replacing �0 and �00 ¼ ð�2 � �0Þ� into the source equation
(8), so we have

�0 � ð�� �cÞð�� �xÞ ¼ ���

�
Q: (14)

First, we assume that a constant solution � ¼ �s of
Eq. (14) with �x < �s < �c exists, and after that, we will
impose the condition of stability so that �s is stable. An
interaction satisfying the existence requirement belongs to
the class

Qð�sÞ ¼ ð�s � �cÞð�s � �xÞ
��

�; (15)

withQð�sÞ< 0. The negative value ofQð�sÞ indicates that
the energy is being transferred from dark energy to dark
matter, meaning that the latter component will dilute more

slowly compared to its conserved evolution, �c / a�3�c ,
whereas the accelerated expansion of the Universe de-
creases compared with the noninteracting case, �x < �s.
Interestingly enough, from Eq. (13), the result Qð�sÞ< 0
guarantees that the ratio r asymptotically tends to the
constant value rs, thus alleviating the problem of coinci-
dence [24–28]. For the class of interactions (15), �s is a
stationary solution of (14) and we obtain the scale factor

a ¼ t2=3�s by integrating �s ¼ �2 _H=3H2.
In what follows the analysis of stability will be restricted

to interactions that have the form Q ¼
Qð�c; �x; �

0
c; �

0
x; �; �

0; �00Þ. By using Eq. (5) and �0 ¼
��� with �00 ¼ ð�2 � �0Þ�, we obtain that �c;x ¼
�c;xð�; �0Þ and �0

c;x ¼ �0
c;xð�0; �00Þ, and then the interaction

becomes Q ¼ Qð�; �0; �Þ. For simplicity we adopt the
separability of Q; that is, Q ¼ Qð�; �0; �Þ ¼ �Qð�; �0Þ
and write

Qð�; �0; �Þ ¼ ð�� �cÞð�� �xÞ
��

Fð�; �0Þ�; (16)

where the function F depends on � and �0. Several inter-
acting models analyzed in the literature are described by
the interaction term (16); see, for instance, [22–36]. For
later proposals the separable Q also can be rewritten as

Qð�; �0; �Þ ¼ ���
�c�x

�
Fð�; �0Þ; (17)

by using Eq. (10). In particular, for the F ¼ const case, the
latter interaction (17) will be investigated in detail in
Sec. IVB and there we will show that the equation of state
of the effective one-fluid model generates several versions
of the modified Chaplygin gas equation of state.
By combining Eqs. (14) and (16) we rewrite the evolu-

tion equation of the effective barotropic index as

�0 ¼ �ð�� �cÞð�� �xÞðF� 1Þ: (18)

In conclusion, when the function F fulfills the two con-
ditions

Fð� ¼ �s; �
0 ¼ 0Þ ¼ 1; (19)

and�
@�0

@�

�
ð�s;0Þ

¼ � ð�s � �cÞð�s � �xÞF�ð�s; 0Þ
1þ ð�s � �cÞð�s � �xÞF�0 ð�s; 0Þ< 0;

(20)

where F� and F�0 stand for the partial derivatives of F with

respect to � and �0, respectively, then �s is a stable solution
or an attractor. In other words, when the condition (19) is
satisfied, the constant solution �s becomes a stationary
solution of Eq. (18). Besides, �s is stable whenever the
condition of stability (20) is fulfilled. Hence the scaling
solutions are attractors.
When the interaction Q does not satisfy the existence

requirement of belonging to the class (15) there is no
constant solution of the evolution equation of �.
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However, in Sec. IV we will examine the structural stabil-
ity for some interactions which do not satisfy the existence
requirement, as for instance, the inhomogeneous nonlinear
interaction.

III. LINEAR INTERACTION

Various cosmological models investigated in the litera-
ture are described by an interaction depending linearly on
the energy densities �c, �x and the total energy density �
[22–35]. From the beginning we have seen in Eq. (5) that
�c and �x are linear functions of � and its derivative �0.
This encourage us to investigate linear combinations of �c,
�x, �, and �

0, namely, the linear interaction I (Ql). We will
study simple examples where the dark components interact
with each other successively only by each term of Ql and
review some of the models investigated with these particu-
lar couplings. For more generality, we will extend this
study to the case of considering the linear interaction II
(QL). It has new term proportionals to the first derivative of
the energy densities �0

c, �
0
x and a term proportional to the

second derivative of the total energy density �00. It is
motivated for the fact that the source equation (8) becomes
a linear second order differential equation for the interac-
tion QL. In this extended case we will solve the Friedmann
equation and find the exact scalar factor together with the
effective barotropic index. Also, we consider the possibil-
ity of adding a constant term to QL and introduce the
general linear interaction (QgL) with the intention of hav-

ing a de Sitter scenario. After that we consider the con-
tribution of a function of the scale factor and present the
more general linear interaction (QmgL) to obtain other

different final stages. Below, we will investigate the out-
standing aspects of those interactions.

A. Linear interaction I

Here we consider a linear combination of �c, �x, �, and
�0 and define the linear interaction I in the following
convenient form:

Qlð�c; �x; �; �
0Þ ¼ c1

ð�s � �cÞð�s � �xÞ
��

�

þ c2ð�s � �cÞ�c � c3ð�s � �xÞ�x

� c4
ð�s � �cÞð�s � �xÞ

�s��
�0: (21)

It has been obtained from Eq. (16) by choosing the function
F,

Flð�Þ ¼ c1
ð�s � �cÞð�s � �xÞ
ð�� �cÞð�� �xÞ þ c2

�s � �c

�� �c

þ c3
�s � �x

�� �x

þ c4
�ð�s � �cÞð�s � �xÞ
�sð�� �cÞð�� �xÞ : (22)

Particular cases of the Ql (21) with c1 ¼ c4 ¼ 0 were
previously investigated in Refs. [22,29,30], with c2 ¼

c3 ¼ c4 ¼ 0 in [31–33], with c1 ¼ c3 ¼ c4 ¼ 0 in [34],
and with c1 ¼ c2 ¼ c4 ¼ 0 in [24–28].
When we impose the condition (19) to the function (22),

we obtain

c1 þ c2 þ c3 þ c4 ¼ 1: (23)

Then, a constant solution �s of Eq. (14) exists provided
that Eq. (23) be satisfied. Also, by combining Eqs. (5),
(21), and (23), we reduce the interaction (21) to a function
which depends only on the total energy density and its first
derivative

Qlð�; �0Þ ¼ h�þ ��1
s ½h� ð�s � �cÞð�s � �xÞ��0

��
;

(24)

h ¼ c1ð�s � �cÞð�s � �xÞ � c2�xð�s � �cÞ
� c3�cð�s � �xÞ: (25)

Inserting this Ql into Eq. (14), we find the two constant
solutions

��
l ¼ �s; �þ

l ¼ �c�x � h

�s

: (26)

In turn, the condition of stability (20) gives

�s � �þ
l < 0; (27)

so the constant solution �s is asymptotically stable pro-
vided that �s < �þ

l or �2
s < �c�x � h. For positive energy

densities also must be satisfied in which �x < �s < �þ
l <

�c. Besides, for given values of �c and �x, the inequality
(27) bounds the range of constants c1, c2, c3, c4 and the
form of the Ql (21), yielding a stable cosmological model

with the power-law expansion a ¼ t2=3�s .
By writing the source equation (8) for the Ql (24), we

have that

�00
l þ ��1

s ð�2
s þ �c�x � hÞ�0

l þ ð�c�x � hÞ�l ¼ 0; (28)

and its general solution is

�l ¼ b1a
�3�s þ b2a

�3�þ
l : (29)

This total energy density has a vanishing limit for an
expanding universe. Then the interacting model is finally
realized when the general solution (29) is inserted into the
energy density of each dark component (5) and the effec-
tive equation of state (9)

�cl ¼ ð�s � �xÞb1a�3�s þ ð�þ
l � �xÞb2a�3�þ

l

��
; (30)

�xl ¼ ð�c � �sÞb1a�3�s þ ð�c � �þ
l Þb2a�3�þ

l

��
; (31)

pl ¼ ð�s � 1Þ�l þ ð�þ
l � �sÞb2a�3�þ

l : (32)
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The coupling between the two dark components modifies
dynamically, typical characteristics of �c and �x. In fact,
the Universe begins with a mix of dark matter (30) and dark
energy (31) represented approximately by the unstable

energy densities �c / ð�þ
l � �xÞa�3�þ

l and �x /
ð�c � �þ

l Þa�3�þ
l , respectively. After that, the instability

of the constant solution �þ
l induces the Universe to evolve

from that unstable era, characterized by rþ ¼ ð�þ
l �

�xÞ=ð�c � �þ
l Þ, to a stable final stage where the dark

matter and dark energy densities are dominated by the
stable components �c / ð�s � �xÞa�3�s and �x / ð�c �
�sÞa�3�s . The stable solution �s is associated with an
asymptotically stable ratio rs ¼ ð�s � �xÞ=ð�c � �sÞ
with the expected result rþ > rs, showing that the linear
interaction alleviates the problem of coincidence. In turn,
the scale factor interpolates between the unstable stage,

evolving as a / t2=3�
þ
l , and the stable stage evolving as a /

t2=3�s . Meanwhile the effective equation of state (32) plays
the role of a peculiar fluid at the initial stage, while at late
times it turns into the equation of state of a perfect fluid.
For large scale factors the quantities �, �c, �x, �

0, p, and
Ql behave as a�3�s ; in this way, the original evolution
equations (6) and (7) for the dark components become
algebraic equations.

B. Linear examples

Now, we analyze four simple cases by considering sepa-
rately, each term of the Ql (21). In all these examples we
select the four function Flð�Þ in such a way that the
condition (19) is satisfied identically.

(1) c2 ¼ c3 ¼ c4 ¼ 0

Q� ¼ ð�s � �cÞð�s � �xÞ
��

�;

F� ¼ ð�s � �cÞð�s � �xÞ
ð�� �cÞð�� �xÞ :

(33)

This negative interaction Q� < 0 represents an energy

transfer from dark energy to dark matter. The interaction
Q� between quintessence and a pressureless component in

a spatially flat FRW cosmology produces a transition from
a phase dominated by dark matter to an accelerated expan-
sion phase dominated by dark energy [31–33].
Simultaneously the interaction Q� alleviates the problem

of coincidence of the present Universe [7].
By imposing the condition (20) on the function F� (33),

F0
�ð�sÞ ¼ � 1

�s � �c

� 1

�s � �x

< 0; (34)

we find that the solution � ¼ �s is an attractor provided
�x < �s < ð�c þ �xÞ=2< �c. InsertingQ� into the source

equation (8) we obtain the total energy density and the
effective equation of state (9)

� ¼ b1a
�3�s þ b2a

�3ð�cþ�x��sÞ; (35)

p ¼ ð�s � 1Þ�þ ð�c þ �x � 2�sÞb2a�3ð�cþ�x��sÞ: (36)

For any value of the initial conditions b1, b2 and large-
scale factor, the total energy density � ! b1=a

3�s and the
effective equation of state (36) adopts the barotropic per-

fect fluid form p � ð�s � 1Þ� with a ! t2=3�s . Hence, the
power-law expansion is asymptotically stable.
The dark matter and dark energy densities (5) can be

written as

�c ¼ ð�s � �xÞb1a�3�s þ ð�c � �sÞb2a�3ð�cþ�x��sÞ

��
;

(37)

�x ¼ ð�c � �sÞb1a�3�s þ ð�s � �xÞb2a�3ð�cþ�x��sÞ

��
:

(38)

Thus, the ratio r� tends to rs ¼ ð�s � �xÞ=ð�c � �sÞ,
where rs is an attractor.
(2) c1 ¼ c3 ¼ c4 ¼ 0

Q�c
¼ ð�s � �cÞ�c; F�c

¼ �s � �c

�� �c

: (39)

For this interaction, with Q�c
< 0 [34], the condition (20)

is not satisfied

F0
�c
ð�sÞ ¼ ð�c � �sÞ�1 > 0; (40)

and the power-law solution a ¼ t2=3�s , with �s restricted to
the interval �x < �s < �c, is unstable. This model contains
serious instabilities on the perturbations of the dark energy
component [35].
In this example the solution of the source equation (8)

with the interaction Q�c
and the effective equation of state

(9) are

� ¼ b1a
�3�s þ b2a

�3�x ; (41)

p ¼ ð�s � 1Þ�þ ð�x � �sÞb2a�3�x : (42)

For any value of the initial conditions b1, b2 and for the
large-scale factor, the total energy density (41) has the limit

��c
! b2=a

3�x , meaning that a ! t2=3�x since �x < �s.

Accordingly, the effective equation of state (42) becomes
that of the dark energy p � ð�x � 1Þ� indicating that the
interaction Q�c

would not be adequate to describe the

evolution of dark components. The model seems to be
completely dominated by the dark energy. In fact, the
energy densities (5) are

�c ¼ ð�s � �xÞb1a�3�s

��
; (43)

�x ¼ ð�c � �sÞb1a�3�s

��
þ b2a

�3�x ; (44)
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and the ratio r�c
/ a�3ð�s��xÞ ! 0. Then, at late times, the

interacting two-fluid model with energy transfer Q�c

would not solve the problem of coincidence and it would
not be suitable to fit the present observations. However, this
coupling can work when it is combined linearly with some
of the other parts of Ql.

(3) c1 ¼ c2 ¼ c4 ¼ 0

Q�x
¼ �ð�s � �xÞ�x; F�x

¼ �s � �x

�� �x

; (45)

with Q�x
< 0. This interaction was examined in several

papers [24–28]. Now the condition of stability (20) is
satisfied

F0
�x
ð�sÞ ¼ ð�x � �sÞ�1 < 0; (46)

and the solution �s is stable. By solving the source equa-
tion (8) for Q�x

and using Eq. (9), we obtain the total

energy density and the effective equation of state; they
read as

� ¼ b1a
�3�s þ b2a

�3�c ; (47)

p ¼ ð�s � 1Þ�þ ð�c � �sÞb2a�3�c : (48)

For any value of the initial conditions b1, b2 and the large-

scale factor, the total energy density � ! c1=a
3�s and a !

t2=3�s because �s < �c. The effective equation of state
behaves as p � ð�s � 1Þ�, showing that the interacting
model is dominated by the attractor �s.

The dark matter and dark energy densities (5) are given
by

�c ¼ ð�s � �xÞb1a�3�s

��
þ b2a

�3�c ; (49)

�x ¼ ð�c � �sÞb1a�3�s

��
; (50)

showing that the ratio r�x
! rs ¼ ð�s � �xÞ=ð�c � �sÞ on

the attractor. Then, the interaction Q�x
may adequately

represent a coupled model of dark matter and dark energy.
In fact, the ratio of these components has enough parame-
ters to be adapted to the observations; consequently this
interacting model may be a candidate to alleviate the
problem of coincidence. A cosmological model with the
above characteristic was proposed for the current Universe
which consists of noninteracting baryonic matter and in-
teracting dark components [24]. There two interacting
fluids were used in the dark sector with constant barotropic
indices. The energy transfer was taken proportional to the
dark energy density Q�x

, and it was shown that the model

leads to a correct behavior which is expected for a viable
scenario of the present Universe, as for instance, the de-
celeration parameter, density parameters, and luminosity
distance. Also the interaction ��x

was used to show that the

overall energy transfer should go from dark energy to dark

matter if the second law of thermodynamics and the
Le Châtelier–Braun principle are to be fulfilled, guarantee-
ing that the ratio r�x

asymptotically tends to a constant,

thus alleviating the problem of coincidence [26]. The
evolution of a viscous cosmology model was also analyzed
by employing an energy transfer between the dark compo-
nents induced by the interaction Q�x

[27].

(4) c1 ¼ c2 ¼ c3 ¼ 0

Q�0 ¼ ð�c � �sÞð�s � �xÞ
�s��

�0;

F�0 ¼ �ð�s � �cÞð�s � �xÞ
�sð�� �cÞð�� �xÞ :

(51)

By using �0 ¼ ��� < 0, we see that the interaction Q�0 is

negative. When the condition of stability (20) is imposed to
the function F�0 , we get

F0
�0 ð�sÞ ¼ �c�x � �2

s

�sð�s � �cÞð�s � �xÞ< 0; (52)

which means that �c�x > �2
s . This inequality determines

the range of values of the attractor �s. Solving the source
equation (8) forQ�0 and inserting it into Eq. (9), we find the

total energy density and the effective equation of state

� ¼ b1a
�3�s þ b2a

�3�c�x=�s ; (53)

p ¼ ð�s � 1Þ�þ ��1
s ð�c�x � �2

sÞb2a�3�c�x=�s : (54)

When �c�x > �2
s is satisfied whatever be the initial con-

ditions b1, b2 the total energy density has the limit � !
b1=a

3�s for the large-scale factor, evidencing that �s is an
attractor.
The dark matter and dark energy densities (5) are given

by

�c ¼ ð�s � �xÞb1a�3�s þ �x�
�1
s ð�c � �sÞb2a�3�c�x=�s

��
;

(55)

�x ¼ ð�c � �sÞb1a�3�s þ �c�
�1
s ð�s � �xÞb2a�3�c�x=�s

��
;

(56)

and r�0 ¼ ð�s � �xÞ=ð�c � �sÞ on the attractor. As far as

we know, this interacting model was not investigated in the
literature. It appears as a feasible candidate to be consid-
ered to describe the evolution of the dark components and
to alleviate the problem of coincidence.

C. Linear interaction II

To enlarge the set of linear interactions, we take into
account a coupling with the first derivative of dark matter
and dark energy densities, �0

c and �0
x. Coming back to

Eq. (5), we observe that the above assumption introduces
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a dependence with the second derivative of the total energy
density. Then, we generalize theQl adding these new terms
and defining the linear interaction II,QL, in such a way that
it verifies the conditions of stability (19) and (20). As far as
we know, this kind of coupling was not investigated in the
literature, so we will analyze in detail the QL.

We start building the QL by combining linearly the
quantities �c, �x, �

0
c, �

0
x, �, �

0, and �00

QL ¼ c1�c þ c2�x þ c3�
0
c þ c4�

0
x þ c5�þ c6�

0 þ c7�
00:

(57)

By using Eqs. (5) the first and second terms of the QL

reduce to a linear combination of the total energy density
and its derivative whereas the third and fourth terms reduce
to a linear combination of the first and second derivatives
of the total energy density. Then, rearranging all the terms
in Eq. (57), the QL can be reduced to a linear combination
of the basis elements �, �0, and �00. Finally we get

QL ¼ c01�þ c02�0 þ c03�00; (58)

where the constants c0i are linear combinations of the
constants ci in the QL (57). On the other hand, the QL

(58) also can be obtained from Eq. (16) by selecting the
function FLð�; �0Þ as

FL ¼ ð�s � �cÞð�s � �xÞ
ð�� �cÞð�� �xÞ

�
b1 þ b2

�

�s

þ b3
�2 � �0

�2
s

�
;

(59)

where we have used that �0 ¼ ���, �00 ¼ ð�2 � �0Þ�.
The coefficients

b1 ¼ ��c01
ð�s � �cÞð�s � �xÞ ; (60)

b2 ¼ � �s��c
0
2

ð�s � �cÞð�s � �xÞ ; (61)

b3 ¼ �2
s��c

0
3

ð�s � �cÞð�s � �xÞ ; (62)

satisfy the constrain

b1 þ b2 þ b3 ¼ 1; (63)

after imposing the condition (19) to the function (59). By
combining Eqs. (58), (59), and (63), we obtain the finalQL

QL¼ u�þ��1
s ½uþv�ð�s��cÞð�s��xÞ��0 þv��2

s �00

��
;

(64)

with

u ¼ ð�s � �cÞð�s � �xÞb1; (65)

v ¼ ð�s � �cÞð�s � �xÞb3: (66)

Coming back to Eq. (14), the QL generates the two con-

stant solutions

��
L ¼ �s; �þ

L ¼ �s

�c�x � u

�2
s � v

; (67)

while the condition of stability (20) yields

�s � �þ
L < 0; (68)

with the additional requirement �x < �s < �þ
L < �c.

For QL (64), the exact general solution of the source
equation (8) is given by

�L ¼ b01a
�3�s þ b02a

�3�þ
L : (69)

Then, the QL induces a stable cosmological model with a

final behavior described by the power-law expansion, a ¼
t2=3�s . In addition, the energy density of each dark compo-
nent (5) and the effective equation of state (9) are

�cL ¼ ð�s � �xÞb01a�3�s þ ð�þ
L � �xÞb02a�3�þ

L

��
; (70)

�xL ¼ ð�c � �sÞb01a�3�s þ ð�c � �þ
L Þb02a�3�þ

L

��
; (71)

pL ¼ ð�s � 1Þ�L þ ð�þ
L � �sÞb02a�3�þ

L : (72)

For large-scale factors, similar to theQl case, the quantities
�, �c, �x, �

0
c, �

0
x, �

0, �00, p, and the QL behave as a�3�s ; in
this way, the original evolution equations of the dark
components (6) and (7) become algebraic equations. In
the initial regimen the above quantities behave as in the Ql

case with �þ
l substituted by �þ

L .

Finally, the Friedmann equation 3H2 ¼ �L for the
source (69) is implicitly solved and one finds the scale
factor

aL ¼ ½! sinh���2=3ð�þ
L��sÞ; (73)

t ¼ 2ffiffiffiffiffiffiffiffi
3b02

p ð�þ
L � �sÞ

Z
½! sinh����s=ð�þ

L��sÞd�; (74)

where !2 ¼ b01=b
0
2; see the details in [37]. Because of

�þ
L > �s, the latter equation shows that the variables t

and � have the same asymptotic limits. Then, it is appro-
priate to investigate the scale factor and the remaining
quantities in the two asymptotic regimes. The effective
barotropic index reads

�L ¼ �þ
L þ �ssinh

2!��

cosh2!��
; (75)

so as t grows the model interpolates between the initial �þ
L

and the final �s values. Equations (73)–(75) allow us to
express the dark matter and dark energy densities (10), the
total energy density (69), the ratio rL, and the effective
pressure (9) as functions of the new time �. In particular, at
early and later times, the asymptotic limits of the ratio rL
become
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rþL ¼ �þ
L � �x

�c � �þ
L

; rs ¼ �s � �x

�c � �s

: (76)

These ratios satisfy the crucial relation rþL > rs; thus the
QL gives the possibility of alleviating the problem of
coincidence.

D. General linear interaction and �CDM model

We complete the subject of linear interaction by enlarg-
ing the basis elements with a constant, so that the new base
will be c, �, �0, and �00. After that we generalize these basis
elements by introducing a function of the scale factor
instead of the constant c. Although, the effective one-fluid
model is able to mimic the essential features of the�CDM
cosmological model, clearly, the introduction of both mod-
ifications could produce radical alternatives to the �CDM
model.

With this aim in mind, we first introduce the general
linear interaction, QgL, by adding the constant Q0=�� to

the QL, so

QgL ¼ Q0

��
þQL; (77)

where we have assumed that the constrain (63) holds for
the constants in the QL. Obviously the condition of stabil-
ity (68) does not hold. A particular type of the linear
combination (77), Q ¼ c0 þ c1�c þ c2�x, was analyzed
in [36]. Here, we investigate the consequences of the QgL

on the �CDM model. Combining Eqs. (8), (64), (67), and
(77) the source equation (8) for the total energy density
becomes

ð1� v��2
s Þ�00 þ ��1

s ð�2
s þ �c�x � u� vÞ�0

þ ð�c�x � uÞ� ¼ Q0: (78)

Its general solution and the corresponding effective equa-
tion of state (9) are

�gL ¼ �eff þ b01a�3�s þ b02a�3�þ
L ; (79)

pgL ¼ ��eff�s þ ð�s � 1Þ�gL þ ð�þ
L � �sÞb02a�3�þ

L ;

(80)

where �eff ¼ Q0�s=�
þ
L ð�2

s � vÞ is the effective cosmo-
logical constant, induced by the constant term Q0=�� in
the QgL. In order for �eff > 0, we need to choose the

parameters of the interacting model such that Q0=ð�2
s �

vÞ> 0.
At late times the total energy density has the limit �gL !

�eff and the effective equation of state becomes p �
��eff . Thus, the effective one-fluid model can be associ-
ated with a unified dark sector model whose scale factor
interpolates between a power-law phase and a de Sitter

stage H ¼ H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=�eff

p
. H0 is the attractor solution in

the phase space for any value of the initial conditions b01
and b02.
From Eq. (5), the dark matter and dark energy densities

�cL and �xL are

�cL ¼ ��x�eff

��
þ �cL; �xL ¼ �c�eff

��
þ �xL: (81)

It is interesting to comment that, in general, when the total
energy density tends asymptotically to �eff for a ! 1,
Eq. (5) shows that the dark matter energy density has the
final limit �c ! ��x�eff=�� < 0. To relieve this problem
we may assume a phantom equation state for the dark
energy, with �x < 0, so the energy densities (81) become
positive and the ratio rgL tends to r1 ¼ ��x=�c > 0.

Curiously, the QgL dresses the bare phantom dark energy

density �x and gives a decreasing dark energy density (81)
with the final limit �c�eff=��. In the cases in which we
admit that �s or �

þ
L or both are negative, one or two dark

components have a final phantom phase with increasing
energy densities.
A more general linear interaction, QmgL, can be intro-

duced by adding a well-behaved function fð�Þ to the QgL,

so we get

QmgL ¼ �þ
L ð�2

s � vÞ
�s��

�eff þ fð�Þ
��

þQL: (82)

The general solution of the source equation (8) is obtained
by finding the particular solution of ð1� v��2

s Þ�00 þ
��1
s ð�2

s þ �c�x � u� vÞ�0 þ ð�c�x � uÞ� ¼ fð�Þ and
adding it to the total energy density (79). Essentially, for
large-scale factors, the behavior of the effective one-fluid
model is defined by the relative weight between the con-
stant �þ

L ð�2
s � vÞ�eff=�s�� and the function fð�Þ. In this

way, the additional f term determines the final behavior of
the more general interaction model and how much it de-
viates from the cosmological �CDM model. The case
where the coupling (82) reduces to the f term was inves-
tigated in [38].

IV. NONLINEAR INTERACTION

Let us assume that the energy transfer between the dark
matter and dark energy components is produced by the
following nonlinear interaction:

QnL ¼ c8�
2
c þ c9�c�x þ c10�

2
x

�
þQL þ fð�Þ��

��
; (83)

where the QL is given by Eq. (64), fð�Þ�� is a nonlinear
atypical term proportional to a well-behaved function
fð�Þ, which depends on the scale factor � ¼ lna3, and to
��. The constant � will be determined later on so that the
source equation (8) can be recast in a solvable equation.
So far we have examined interactions depending linearly

on the dark matter and dark energy densities, their first
derivatives, the total energy density, and its derivatives up

LINEAR AND NONLINEAR INTERACTIONS IN THE DARK . . . PHYSICAL REVIEW D 81, 043525 (2010)

043525-9



to second order. However, it will be interesting to consider
an interaction term which includes a rational function of
the energy densities �c and �x homogeneous of degree 1,
as for instance the first three terms on the right-hand side
(rhs) of Eq. (83). It could be considered as a possible
generalization of the Ql (24) and the QL (64). In
Sec. IVB we will see that the rational interaction terms
are of particular importance. Besides, a coupling depend-
ing on the scale factor will be useful so that the equations
of state of the effective one-fluid model produce equations
of state which extend and generalize those of the
Chaplygin gas [8–15] and the variable modified
Chaplygin gas model [16–21].

By using Eq. (5) we have shown that theQL reduces to a
linear combination of the three elements of the base � ¼
c01�þ c02�0 þ c03�00 [see Eqs. (58) and (64)]. Following

similar arguments, the three terms in the numerator of
the nonlinear part of Eq. (83), c8�

2
c þ c9�c�x þ c10�

2
x,

become a linear combination of �2, ��0, and �02.
Rearranging all these terms, we obtain the final form of
the nonlinear interaction (83),

QnL ¼ c001�02 þ �ðc002�þ c003�0 þ c004�00Þ þ fð�Þ��þ1

���
;

(84)

where the c00i are linear combinations of the remaining
constants. Below we will see that the nonlinear terms
arising from the homogeneous function of degree 1 in the
energy densities �c, �x, and fð�Þ�� produce original
results, as for instance, the effective equation of state
describes universes which have power law and the
de Sitter expansions. Also these terms are really respon-
sible for the effective equation of state to have a reminis-
cence of the Chaplygin gas, including its different versions.
From Eqs. (8) and (84), we obtain the nonlinear differential
equation for �

��00 þ �c þ �x � c003
1� c004

��0 � c001
1� c004

�02 þ �c�x � c002
1� c004

�2

¼ f

1� c004
��þ1: (85)

In the particular case where the first and last terms on the
rhs of the QnL (84) vanish simultaneously, Eq. (85) be-
comes a homogeneous linear differential equation for �.
However, in other cases, the general solution of the source
equation (85) will be obtained from a nonlinear superpo-
sition of the two basis solutions of a second order linear
differential equation.

Renaming the four constants in Eq. (85) by b1, b2, b3,
and b4, respectively (from left to right) and changing to the

new variable x ¼ �ð1þb2Þ with b2 � �1 or c001 þ c004 � 1,
Eq. (85) turns into the equation of a forced dissipative
(b1 > 0) or antidissipative (b1 < 0) linear oscillator

x00 þ b1x
0 þ b3ð1þ b2Þx ¼ b4ð1þ b2Þfð�Þ; (86)

where we have chosen � ¼ �b2 ¼ c001=ð1� c004 Þ. If x1h and
x2h are the two basis solutions of the homogeneous equa-
tion (86), then the general solutions of Eq. (85) can be
written as a nonlinear superposition of these basis solutions

�nL ¼ ðb5x1h þ b6x2h þ xpÞ1=ð1þb2Þ. There xp is the par-

ticular solution of Eq. (86) and b5, b6 are integration
constants. From now on, Eq. (86) will substitute the source
equation (8) for the QnL.
In what follows we will study the solution of Eq. (86)

considering separately the homogeneous case f ¼ 0, the
example of Chaplygin gas, and the inhomogeneous case
f � 0. The latter will be divided into two parts, the f ¼
f0 ¼ const case, and the f ¼ fðaÞ case where the ‘‘relaxed
Chaplygin gas model’’ will emerge.

A. The homogeneous case

In the f ¼ 0 case, the source equation (86) becomes
homogeneous and the QnL (84) reduces to

Qh ¼ c01��1�02 þ c02�þ c03�0 þ c04�00

��
: (87)

By inserting the ‘‘homogeneous nonlinear interaction’’

(Qh) into Eq. (86), we easily get the general solution xh ¼
b5a

3��
nL þ b6a

3�þ
nL . Then, coming back to the original vari-

able �h ¼ x1=ð1þb2Þ
h , we have the total energy density; it

reads

�h ¼ ½b5a3��
nL þ b6a

3�þ
nL�1=ð1þb2Þ; (88)

where b5 and b6 are integration constants while ��
nL and

�þ
nL are the characteristic roots of the linear source equa-

tion (86)

��
nL ¼ �b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4b3ð1þ b2Þ

q
2

: (89)

On the other hand, the dark matter and dark energy den-
sities (5) are

�ch ¼ �D

�
½��

nL þ �xð1þ b2Þ��þ b6��
a3�

þ
nL

�b2

�
; (90)

�xh ¼ D

�
½��

nL þ �cð1þ b2Þ��þ b6��
a3�

þ
nL

�b2

�
; (91)

where D ¼ ½ð1þ b2Þ����1 and �� ¼ �þ
nL � ��

nL.
We have started from an interacting two-fluid model and

finally obtained a unified cosmological model where the
dark matter and the dark energy evolve as an effective one-
fluid. Now, combining Eqs. (9) and (88), we find the
effective equation of state

ph ¼ �
�
1þ ��

nL

1þ b2

�
�h � b6��a

3�þ
nL

ð1þ b2Þ�b2
h

: (92)
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Depending on the values of the parameters b1, b2, and b3
the total energy density (88) behaves asymptotically as

�h ! a3�
�
nL=ð1þb2Þ in the limit of large-scale factors, mean-

ing that a ! t�2ð1þb2Þ=3��
nL . For b5 ¼ 0 (þ ) or b6 ¼ 0 (� ),

the model includes the exact power-law expansions a� ¼
t�2ð1þb2Þ=3��

nL . In particular, when ð1þ b2Þ=3��
nL > 0, we

have a final phantom phase entailing that the scale factor
expands so quickly that the scalar curvature R ! 1 in the
limit a ! 1 and it reaches a ¼ 1 in a finite amount of
proper time. In the special cases in which ��

nL ¼ 0 and
��
nL < 0, namely, b1 > 0 and b3 ¼ 0 or b1 < 0 and b3 ¼ 0

[see Eq. (89)], we have a final de Sitter stage with an

effective cosmological constant given by the limit �h !
�eff ¼ b1=ð1þb2Þ

6 or �h ! �eff ¼ b1=ð1þb2Þ
5 . These models

include the modified Chaplygin gas introduced in Ref. [11]
where it was proposed the equation of state p ¼ A��
B=�n, with n � 1, and the parameters A and B were con-
strained to be positive. When both, �þ

nL � 0 and ��
nL � 0,

the equation of state (92) contains those which characterize
various variable modified Chaplygin gas models investi-
gated in Refs. [16–21]. In the next section we concentrate
on a specific nonlinear interaction and study the two asso-
ciated cases where the characteristic root �þ

nL vanishes.

B. Nonlinear examples

Here we investigate the interesting case where Qh takes
the form

Qh0 ¼ ��c

�c�x

�
; (93)

with � constant; see [6] and references therein. The inter-
action (93) also can be obtained from Eq. (17) by choosing
the constant function Fð�Þ ¼ ���c=��. From Eqs. (85)
and (93) we identify the three coefficients b1 ¼
ð�c þ �xÞð1þ b2Þ, b2 ¼ ��c=��, and b3 ¼ �c�xð1þ
b2Þ. Then, the characteristic roots (89) of the source equa-
tion (86) read

�þ
nL ¼ ��xð1þ b2Þ; ��

nL ¼ ��cð1þ b2Þ: (94)

Introducing these roots into the homogeneous general
solution (88) and the effective equation of state (92), they
reduce to

� ¼ ½b5a�3�cð1þb2Þ þ b6a
�3�xð1þb2Þ�1=ð1þb2Þ; (95)

p ¼ ð�c � 1Þ�� b6��
a�3�xð1þb2Þ

�b2
: (96)

This effective equation of state can be identified with those
which were used to build variable modified Chaplygin gas
models [16–21].

1. Modified Chaplygin gas

We make an adequate selection of the parameters so that
the interaction (93) is focused on a dark energy component

described by some kind of vacuum energy density, i.e.,
�x ¼ 0. Then, b3 ¼ �c�xð1þ b2Þ ¼ 0, �� ¼ �c, b2 ¼
� � �1, �þ

nL ¼ 0, and the second term in Eq. (95) be-
comes constant. Assuming that the dark matter component
is nearly pressureless, we may associate it with a baro-
tropic fluid with a free constant parameter �c ¼ �0 � 1.
Then the energy density (95) abbreviates to

� ¼
�
B

�0

�
�
a0
a

�
3�0ð1þ�Þ�1=1þ�

; (97)

where the new constants B and a0 are redefinitions of the
old integration constants b5 and b6. Hence, by replacing
this energy density in Eq. (9), we obtain the equation of
state of the one effective fluid

p ¼ ð�0 � 1Þ�� B

�� : (98)

It characterizes several unified cosmologies implemented
with Chaplygin gases as the generalized, extended, modi-
fied, and enlarged ones [8–15]. Also, these unified models
along with some others [39–45] were extensively used to
describe unified versions of dark matter and dark energy.

2. Reduced unified model

For �0 ¼ 0, the effective one-fluid model described by
the expressions (97) and (98) is not valid. In this ‘‘reduced
unified model’’ the source equation (86) must be solved
again by making the particular choices b1 ¼ b3 ¼ 0 and
b2 ¼ �. After comparing the latter particular choices with
the coefficients of the nonlinear version of the source
equation (85) we obtain the coefficients of the correspond-
ing ‘‘reduced nonlinear interaction’’ (Qr), c

00
3 ¼ �c þ �x,

c002 ¼ �c�x, f ¼ 0, and c001 ¼ �ðc004 � 1Þ, respectively.
Then, from Eqs. (83) and (84), we get the final Qr

Qr ¼ �ðc004 � 1Þ��1�02 þ �c�x�þ ð�c þ �xÞ�0 þ c004�00

��
:

(99)

Now, the source equation (86) reduces to x00 ¼ 0 and its
general solution is x ¼ b8 þ b9�. Thus, one finds that the

total energy density � ¼ x1=ð1þ�Þ has a logarithmic depen-
dence with the scale factor

� ¼ �0

�
�1þ b ln

�
a

a0

�
3
�
1=ð1þ�Þ

; (100)

where the constants �0 and b are related to the old inte-
gration constants b8 and b9. In turn by using Eqs. (5) and
(9), we find the dark matter and dark energy densities, and
the equations of state of the effective one-fluid model are

�c ¼ � �

��

�
�x þ b

1þ �

�
�0

�

�
1þ�

�
; (101)
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�x ¼ �

��

�
�c þ b

1þ �

�
�0

�

�
1þ�

�
; (102)

p ¼ ��� b�0

1þ �

�
�0

�

�
�
: (103)

The last equation of state also can be seen as a general-
ization of the polytropic equation of state p ¼ K��p ,
where K is a constant and �p is the polytropic index. On

the other hand, by integrating the Friedmann equation with
the total energy density (100), we determine the exact scale
factor

a ¼ a0 exp
1

3b

�
�1þ

�
b

ffiffiffiffiffiffiffiffi
3�0

p ð2�þ 1Þt
2ð1þ �Þ

�ð2ð1þ�ÞÞ=ð2�þ1Þ�
;

(104)

where we have set t0 ¼ 0. Note that the final results (100)–
(104) are independent of c004 , and then the interaction term
�00 does not contribute to the evolution of this reduced
unified model.

C. The inhomogeneous case and the relaxed Chaplygin
gas model

Here we are going to consider the ‘‘inhomogeneous
nonlinear interaction’’ (Qi),

Qi ¼ c001��1�02 þ c002�þ c003�0 þ c004�00 þ fð�Þ�c00
1
=ð1�c00

4
Þ

��
;

(105)

which has been obtained from Eq. (84) by choosing � ¼
�b2 ¼ c001=ð1� c004 Þ. The source equation (86) becomes
inhomogeneous and the general solution is obtained by
adding a particular solution xp to the homogeneous solu-

tion xh ¼ b5a
3��

nL þ b6a
3�þ

nL ; then the general solution

�i ¼ ðxh þ xpÞ1=ð1þb2Þ of Eq. (86)) reads

�i ¼ ½b5a3��
nL þ b6a

3�þ
nL þ xp�1=ð1þb2Þ; (106)

and the equation of state (9) takes the form

pi ¼ �
�
1þ ��

nL

1þ b2

�
�i �

b6��a
3�þ

nL þ x0p � ��
nLxp

ð1þ b2Þ�b2
i

:

(107)

(i) For f ¼ f0 ¼ const, the particular solution xp ¼
b4f0=b3 is constant and the total energy density (106)
along with the effective equation of state (107) describes
a ‘‘double unified model,’’ in a sense that initially the
Universe is dominated by the ‘‘two’’ terms inside the

bracket of �i � ðb5a3��
nL þ b6a

3�þ
nLÞ1=ð1þb2Þ. These two

terms can be seen as a ‘‘nonlinear mixture of two fluids.’’
But at late times the Universe is dominated by a vacuum

energy �i � x1=ð1þb2Þ
p and has a de Sitter expansion. So,

case (i) includes various generalizations of the modified
Chaplygin gas model investigated in Refs. [16–21]. When

the constants b5 or b6 vanish the effective equation of state
(107) turns into Eq. (98) and the double unified model
produces different versions of the Chaplygin gas [11–15].
(ii) For fð�Þ � const and � ¼ lna, the particular solu-

tion xp and consequently the numerator of the last term on

the rhs of the effective equation of state (107) become
arbitrary functions of the scale factor. Then, a fluid obeying
Eq. (107) defines a relaxed Chaplygin gas model.
Finally, we investigate the structural stability of the

solutions corresponding to the source equation (86) for a
well-behaved function fð�Þ, which will be considered as a
degree of freedom in the problem of stability.
We use the analogy with the classical potential problem

by writing Eq. (86) as an equation of motion for a dis-
sipative mechanical system, namely,

d

d�

�
x02

2
þ Vðx; �Þ

�
¼ �Dðx; x0; �Þ; (108)

where

Vðx; �Þ ¼ b3ð1þ b2Þ
2

��
x� b4

b3
f

�
2 � b24

b23
f2
�
; (109)

Dðx; x0; �Þ ¼ b4ð1þ b2Þf0xþ b1x
02: (110)

Vðx; �Þ is the ‘‘potential’’ and Dðx; x0; �Þ is the ‘‘dissipa-
tion’’ of the ‘‘equivalent mechanical system.’’ In addition,
we assume that the potential V is inferiorly bounded by a
function Vb, it has a finite limit for � ! 1, and the dis-
sipation D is positive definite in the same limit.
When b3ð1þ b2Þ> 0, the potential becomes bounded

by the function Vb, thus V � Vb, where

Vb ¼ �b24ð1þ b2Þ
2b3

f2: (111)

This bound is obtained by evaluating the potential (109) on
the limit solution xlim ¼ b4f=b3 of the source equation

(86) for � ! 1, or �lim ¼ ðb4f=b3Þ1=ð1þb2Þ. Therefore,
for a dissipative mechanical system with b1 > 0, the set
of functions fð�Þ such that f ! f0 for � ! 1 and b4ð1þ
b2Þf0 > 0 define a positive definite dissipation, D> 0. In
this context, a solution of the source equation which has the
limit � ! �min may be considered as a ‘‘stable solution.’’

V. STARTING WITH UNIFIED MODELS AND
ENDING WITH INTERACTING ONES

Equations (5)–(7) introduce an alternative interpretation
of unified models by associating them with interacting
models. Several kinds of unified models were extensively
investigated in the literature [39–45], for instance, the
Chaplygin gas and purely kinetic, quintessence,
k-essence and Dirac-Born-Infeld (DBI) cosmologies. For
purely kinetic cosmologies we mean that the pressure and
energy density of each field involve only the time deriva-
tive of the same field.
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At this point we consider two options. In the first one the
equation of state of the unified model has the form p ¼
pð�Þ, as it is for the Chaplygin gas [see Eq. (98)] or we
have purely kinetic quintessence, k-essence, and DBI
fields. These are described by the equations of state pq ¼
�q � 2V0, pk ¼ �F ð _�2ð�kÞÞ, where F ¼ F ð _�2Þ is the

kinetic function and � is the k-essence field, and pDBI ¼
�V0 þ ð�� V0Þ=ð�DBIf0 � V0f0 þ 1Þ for DBI cosmolo-
gies [45]. The parameter V0 represents a constant potential
for the three fields and f0 is the constant warp factor of the
metric. In all the above unified cosmological models, after
integrating the conservation equation of each component,
the total energy density depends only on the scale factor,
� ¼ �ðaÞ. In the second option we include the cases where
the equation of state p ¼ pð�Þ is given but we do not know
� ¼ �ðaÞ explicitly.

To clarify the alternative interpretation, let us assume
that we have found the energy density � ¼ �ðaÞ of the fluid
which characterizes a unified model. Then Eq. (5) asso-
ciates this unified model with a two-fluid model whose
components have energy densities �cðaÞ and �xðaÞ, respec-
tively. Besides, inserting �ðaÞ into the source equation (8),
we can calculate the interaction Q ¼ QðaÞ. Therefore, a
one-fluid model with energy density �ðaÞ interpolating
between dark matter and dark energy scenarios can be
expressed as a two-fluid model with energy transfer. In
other words they share the same Friedmann equation and
the same scale factor, so they define the same geometry.

In the case we know the equation of state p ¼ pð�Þ of
the unified model, instead of �ðaÞ, we substitute the former
into Eq. (5) and obtain the energy density of each fluid

�c ¼ pþ ð1� �xÞ�
��

; �x ¼ �pþ ð�c � 1Þ�
��

;

(112)

as a function of �. Hence, this unified cosmological model
has been split into a two-fluid model with energy transfer.
The interaction Q is obtained after using the equation of
state p ¼ pð�Þ, the conservation equation �0 ¼ ��� p,
and �00 ¼ �þ p� p0 in the source equation (8). Thus, the
interaction,

Q ¼ 1

��

�
�c�x�þ ð�þ pÞ

�
1� ð�c þ �xÞ þ dp

d�

��
;

(113)

becomes a function of �.
We conclude that instead of considering interacting and

unified models separately, it is better to see them as
equivalent models. However, the conclusion could be dif-
ferent when the barotropic indices �c and �x are not
constants.

A. The Chaplygin gas as an interacting two-fluid model

For illustration, we consider the class of Chaplygin
gases generated by the equation of state (98) and express

it as an interacting two-fluid model. To this end, we insert
p ¼ pð�Þ, given by Eq. (98), into Eqs. (112) and (113) and
find the dark matter and dark energy densities

�cCh ¼ �

��

�
�0 � �x � B

��þ1

�
; (114)

�xCh ¼ �

��

�
�c � �0 þ B

��þ1

�
; (115)

and the interaction Q

QCh ¼ �
�c�c�x þ�x�

2
x

�

þ ð1þ�Þð�0 ��cÞð�c�c þ�x�xÞ þ�x�x: (116)

It can be written as a function of the total energy density �
by replacing the energy densities (114) and (115) in (116)
or as a function of the scale factor by using Eqs. (97) and
(114)–(116). The interacting models, associated with the
energy densities (114) and (115) and the interaction (116),
are parametrized by �c and �x. It means that we have a set
of coupled two-fluid models which are related with a given
unified model and they are described by the effective
equation of state (98). However, these models differ by
the ratio rCh ¼ �cCh=�xCh

rCh ¼ �Bþ ð�0 � �xÞ��þ1

Bþ ð�c � �0Þ��þ1
: (117)

In particular, for the simplest realization of the Chaplygin
gas model we have investigated in the previous section
(with �c ¼ �0 and �x ¼ 0), we obtain

�cCh ¼ �� B

�0�
� ; �xCh ¼ B

�0�
� ; (118)

rCh ¼ �1þ �0

B
��þ1; (119)

and the interaction (116) reduces to (93). On the other
hand, by inserting Eq. (97) into Eqs. (114)–(119) we can
express the relevant quantities characterizing the interact-
ing two-fluid model in terms of the scale factor.
For expanding universes and �0ð1þ �Þ> 0, the total

energy density (97) ��þ1 ! B=�0 and the ratio has the
nonvanishing limit rCh ! ��x=�c [see Eq. (117)]. Thus,
the above decomposition of the Chaplygin gas could be
used to alleviate the problem of coincidence. However, the
simplest realization of the Chaplygin gas (119) has a
vanishing limit for the ratio rCh ! 0 and it is useless to
solve the problem of coincidence. Also, for � ¼ �0 ¼ 1,
we get the original version of the Chaplygin gas.

VI. CONCLUSIONS

We have investigated several models of dark matter and
dark energy with energy transfer and shown that they can
be considered as unified models, where both dark compo-
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nents are replaced by an effective one-fluid description
with an effective equation of state. The two coupled equa-
tions describing the interacting model have been combined
to obtain a second order differential equation for the total
energy density, ‘‘the source equation.’’ We have assumed a
separable interaction Q ¼ �Qð�; �0Þ, which includes a
large set of cases investigated in the literature, and found
the conditions of stability for the scaling solutions.

We have presented the linear interaction I and imposed
the conditions of stability to restrict the fourth constants of
Ql ¼ b1�þ b2�c þ b3�x þ b4�

0. Then, we have found
the two stationary solutions �s and �þ

l of the evolution

equation for the effective barotropic index, where �s is the
attractor solution. Interestingly, the existence of the attrac-
tor solution is linked to the fulfillment of the requirement
Qlð�sÞ< 0, indicating that the energy is being transferred
from the dark energy to the dark matter. We have consid-
ered several particular examples by analyzing each term of
Ql separately and found that some of these terms, i.e., the
total energy density, its derivative, and the dark energy
density are satisfactory couplings because in each case, the
ratio rs ¼ �cs=�xs is an attractor. These simple models
may alleviate the problem of coincidence. Although, a
coupling proportional to the dark matter energy density
does not lead to stable solutions; however, it can work
when it is combined with the remaining terms of Ql.

Taking into account that �c, �x, �
0
c, �

0
x, �, �

0, and �00 can
be written as linear functions of the basis elements �, �0,
and �00, we have investigated the linear interaction II, by
introducing a linear combination of the former termsQL ¼
c1�c þ c2�x þ c3�

0
c þ c4�

0
x þ c5�þ c6�

0 þ c7�
00, and

reduced it to a linear combination of the latter ones QL ¼
c01�þ c02�

0 þ c03�
00. As far as we know, this interaction has

not been investigated in the literature. We have imposed
the conditions of stability and obtained the stationary
solution for the effective barotropic index, �s and �þ

L ,
where �s is the attractor solution, the exact scale factor,
and the effective barotropic index in implicit form. To
generalize the above coupling, we have gone a step further
by adding a constant and a well-behaved function of the
scale factor to the linear interaction II. Then, we have
introduced the general linear interaction, QgL ¼
�s�

þ
L�eff=��þQL, and a more general linear interaction

QmgL ¼ �þ
L ð�2

s � vÞ�eff=�s��þ fð�Þ=��þQL. Since

the relative weight between the two first terms in QmgL

determines the final behavior of the scale factor, the models
generated by those interactions have given several alter-
natives to the �CDM model.

We have presented a class on nonlinear interaction

QnL ¼ ðc001��1�02 þ c002�þ c003�
0 þ c004�

00 þ

fð�Þ�c00
1
=ð1�c00

4
ÞÞ=��, which leads to several important re-

sults. Although the source equation becomes a nonlinear
differential equation, we have linearized and reduced it to
the equation of motion for a forced linear oscillator with
dissipative or antidissipative effects. Then, the analysis of
this interaction has been separated into two main parts, the
homogeneous case and the inhomogeneous one. In general,
we have found that the equation of state of the effective
one-fluid model depends explicitly on the scale factor. On
the other hand, the Universe evolves to a power-law sce-
nario for large cosmological times. However, for interac-
tions having the form QnL ¼ ��c�c�x=� with � a
constant, we have shown that the effective equation of state
becomes that of the Chaplygin gas when the dark energy
component is described by some kind of vacuum energy
density, i.e., �x ¼ 0. Also, we have investigated the re-
duced unified model obtained for the particular nonlinear
interaction leading to the source equation x00 ¼ 0. In this
case we have shown that the effective equation of state can
be interpreted as a generalization of the polytropic equa-
tion of state.
Generically, when there are no restrictions on QnL, the

equation of state of the effective one-fluid model defines
what we have called the relaxed Chaplygin gas model. It
contains various generalizations of the Chaplygin gas,
including the variable modified Chaplygin gas model
with equation of state p ¼ A�þ BðaÞ=��. To learn more
about this nonlinear interaction, we have included a short
analysis devoted to the structural stability of the source
equation solutions. This has been made by establishing
some connection between those solutions and the respec-
tive function fðaÞ contained in the nonlinear interaction.
For a selected set of functions fðaÞ, we have shown that the
final asymptotic solutions of the source equation can be
easily obtained.
Finally, we have given a prescription to obtain an inter-

acting model starting from a unified one and found the
energy densities of the dark components together with the
interaction term that generates the former model. For
illustration we have applied the prescription to the
Chaplygin gas getting the relevant quantities which define
the interacting model.
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