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Sorting without a Golgi complex
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The endoplasmic reticulum-Golgi-target organelle route is one of the most studied events and

has fascinated researchers for years. However, the conservative mechanism of protein sorting

and delivery is now being challenged by the finding of unconventional pathways driving protein

sorting and transport. Protozoa parasites are being rediscovered as good models for analyzing

alternative targeting pathways, associated with their ability to adapt to diverse environments

and hosts. Here, we have gathered all the available information about secretory protein traf-

ficking in Giardia lamblia, with a focus on how this protozoan parasite is able to sort and direct

proteins to different compartments in the absence of a Golgi complex.
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1 | INTRODUCTION

Cell differentiation mechanisms, which result in the formation of

refractory or resistance stages, constitute a strategy commonly

observed in both free-living and parasitic organisms in response to

changing unfavorable environments. The life cycle of Giardia lamblia

includes 2 stages: a mobile form, the trophozoite, capable of coloniz-

ing the host's digestive tract, and a resistant and infectious form, the

cyst, able to survive under adverse conditions and colonize new hosts

(Figure 1). In Giardia, the process of differentiation that converts the

trophozoite into a cyst involves a precise disassembly of the cytoskel-

eton as well as coordinated deposition of the fluid material that will

form the fibrillar cyst wall.

When the fine structure of a growing trophozoite is analyzed,

just a few defined organelles can been observed: 2 nuclei surrounded

by their nuclear envelope (NE), the endoplasmic reticulum (ER) and

the lysosome-like peripheral vacuoles (PVs) with polarized distribu-

tion beneath the plasma membrane (PM) (Figure 2A). In addition,

encystation-specific secretory vesicles (ESVs) can be observed only in

encysting trophozoites (Figure 2B). From the morphological point of

view, no Golgi complex, peroxisomes or mitochondria were ever

observed by electron microscopy in the trophozoite or cyst. How-

ever, these absences are not correlated with the lack of Golgi or

mitochondrial functions. In the last decade, the presence of orga-

nelles of mitochondrial origin has been described in Giardia in the

form of mitosomes, which are located in the cytoplasm and between

both nuclei,1,2 and the expression of conserved mitochondrial pro-

teins required for iron-sulfur protein maturation was proved.3 Also,

protein sorting to specific targets has been described during growth

and encystation in this parasite,4-6 showing that at least one of the

many Golgi functions takes place in this unicellular parasite.

There is thus new evidence placing the ER at the center of the

scene, playing a critical function as a core facility for protein (and

lipid) sorting. This review aims to summarize and conciliate all the

results obtained in this matter, showing that Giardia, like other para-

sites, contains a particular way of trafficking proteins, probably as a

result of a reductive evolution process, involving loss of genes,
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organelles and functions.7 The reduced giardial organellar compo-

nents have been attracting scientists in the field for many years now.

This characteristic had led to the idea that Giardia might be “the miss-

ing link” between prokaryote and eukaryote cell.8 It has also been

erroneously defined as “primitive” or “ancestral” due to its stripped-

down subcellular complexity and the presence of genes with high

sequence similarity to bacterial homologs.9-11 Giardia was clustered

at the base of the eukaryotic tree, suggesting its early divergence

from other eukaryotes.12 However, current opinion presumes that

Giardia is not a vestigial cell, but rather displays a powerful example

of adaptation to anaerobic conditions and to a parasitic lifestyle. In

this context, the idea that Giardia keeps the basal mechanism for

secretory trafficking of eukaryotic cells makes this parasite a very

useful tool to understand its streamlining for efficient protein

transport.

2 | PLAYING ALONE: THE ER AS A
CENTRAL SORTING WORKSPACE

The giardial ER is a membrane network distributed symmetrically

from the NEs throughout the cytoplasm of the cell. Ultrastructural

and biochemical analysis showed that it shares common aspects with

the ER of most eukaryotic cells. For instance, the chaperone

G. lamblia binding immunoglobulin protein (GlBiP) is located in the

lumen of the ER. It possesses the classical Lys-Asp-Glu-Leu (KDEL)

retention signal at its C-terminus and a signal peptide at its N-

terminal end that determines its entry into the ER.13-15 In addition,

the ER proteins, G. lamblia disulfide isomerases (GlPDIs),16 are also

present at the lumen of the ER, contributing to the correct folding of

newly synthesized proteins, and are retained in the ER by the pres-

ence of KDEL-like motifs at its C-terminus.17 Recently, the KDEL

receptor (KDELR), which keeps the ER-soluble proteins in the ER

through retrieval mechanisms in many eukaryotic cells,18 was found

in Giardia (GlKDELR).19 Finding that the KDELR is involved in the ret-

rograde transport of ER proteins through the coat complex protein I

(COPI) vesicles that bud from the cis-Golgi back to the ER in both

yeast and mammalian systems, suggested that this might be a univer-

sal behavior. However, GlKDELR do not cycle between compart-

ments but remain stacked at the ER in this parasite, playing retention

rather than recycling functions (see below).19

Another conserved ER function involves the participation of

the translocation machinery in the recognition of the hydrophobic

signal sequences present in almost all secreted or membrane-

inserted proteins.20 Recently, the functional characterization of the

coat protein complex II (COPII) components21 enabled the identifi-

cation of putative ER exit sites (ERES). The presence of the 5 core

COPII components Sar1, Sec23/24 and Sec13/31 in the Giardia

genome12 led to the idea that this parasite might contain some

structures with characteristics observed in other eukaryotes besides

the clear lack of a Golgi complex. In this regard, Faso et al reported

that GlSec23 and GlSec24 are located at the ERES, which were co-

stained with a protein chimera that is transported to the PM.22

GlSec23-HA also colocalized with one of the cyst wall proteins

FIGURE 1 Life cycle of Giardia lamblia. After the ingestion of the

infective cyst, commonly present in contaminated food or water,
excystation takes place, releasing trophozoites that multiply by binary
fission. The growing trophozoites are the vegetative form of the
parasite that colonizes the intestinal epithelium of human and other
vertebrates. When encystation is induced, the CWM is synthesized
and transported in ESVs (arrows). The CWM is released forming the
infective cyst that may survive in harsh environments until it finds a
new host

FIGURE 2 Membranous compartments of trophozoites. A, Each nucleus (blue) is surrounded by a NE. The ER is a membrane network

distributed throughout the cytoplasm of the cell. Lysosome-like PVs possess polarized distribution underneath the PM and between the nuclei
(arrowhead). Immunofluorescence assays and confocal microscopy show the NE, ER and PVs labeled with specific antibodies, that is, anti
β-importin-HA (Mayol and Ropolo, unpublished), GlBiP and AP-2 mAb, respectively. 40,6-Diamidino-2-phenylindole was used to stain the nuclei.
(B) At 6 hours post-induction (h.p.i.) of encystation, ESVs are generated from the ER. Mature ESVs are denoted by the ring-like distribution of
CWP1. Close to the cell periphery, the ESVs are reduced in size (~24 h.p.i.). Anti-CWP1 mAb was used for immunofluorescence assays and
confocal microscopy. Bar, 5 μm
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(CWPs) transported by a regulated mechanism (see below), suggest-

ing that both continued and regulated protein secretion begin at

the same ERES sites.21 In addition, it was demonstrated that these

2 types of secretions depend on the small GTPase Sar1

(GlSar1),22,23 which like its homologous in other eukaryotes is

involved in the initial recruitment of COPII proteins at the ERES

membrane.23,24 GlSar1 cellular distribution from the ERES to the

ER was affected by brefeldin A (BFA), an antibiotic produced by

fungal organisms that completely redistribute the Golgi proteins

into the ER in other cells.25,26 Without a Golgi complex, this result

suggests that the sites where the protein sorting takes place may

be specialized ER membranes, sensitive to BFA.

Giardia does depend on exogenous lipids for energy production

and membrane biogenesis. It was shown that ceramide is interna-

lized through the endocytic pathways and targeted to the perinuc-

lear/ER membranes (PNM) during growth.19,27 Interestingly, it was

found that the ERES are enriched in ceramide excimers, which in

other cells are present exclusively at the region trans of the Golgi

complex (TGN, trans-Golgi network).19,28 This property was

observed when the ceramide analogous BODIPY-C5 ceramide,

which fluorescence emission shifted from green to red as the probe

concentrates at the TGN in human skin fibroblasts,28 colocalized

with GlSec23 and the CWPs in this parasite.19 Whether these spe-

cialized ERES in Giardia represent sites of synthesis of higher

organized lipids is still unknown, but a recent report showed that

the enzyme glucosylceramide transferase, which catalyzes the

transfer of uridine diphosphate (UDP)-glucose and UDP-galactose

to ceramide in the Golgi in other cells, is located at the PNM and

some spots in the ER of Giardia trophozoites.29

Another particularity of this parasite is that the ER lacks a cal-

nexin/calreticulin chaperone system that ensures the proper folding

and quality control of newly synthesized glycoproteins.30-32 Indeed,

Giardia has a single nucleotide sugar transporter for UDP-GlcNAc,

which appears to be involved in the synthesis of glycolipids rather

than glycoproteins32 suggesting that, in the absence of protein glyco-

sylation, a compensatory glycan-independent quality control of

protein-folding occurs, imparted by GlBiP and GlPDI family members,

as was shown for Caenorhabditis elegans.33

Tremendous progress has been made trying to understand how

Giardia is able to sort lipids and proteins to different target compart-

ments. At this point, a critical role of the ER as a core center for pro-

tein and lipid selection has emerged in the absence of a Golgi

complex. These findings place Giardia at the center of the scene, tak-

ing into account the importance of the endomembrane system in

eukaryotic organization and the fundamental functions of this system

for the establishment of parasitic lifestyles.

3 | (LOOKING FOR) THE GIARDIAL GOLGI
COMPLEX

Subcellular compartmentalization probably originated by autogenesis,

that is, from the elements present in the pre-eukaryotic cell.34 The

evolutionary mechanisms involved in the appearance of cellular com-

partmentalization are not known with accuracy, but it is quite clear

that the presence of compartments made possible an increase in the

abundance and the complexity of the cellular components. Probably

the partition of the cellular volume facilitated the ordering of bio-

chemical reactions within the cell, allowing the establishment of more

complex regulatory pathways. In eukaryotes, the nerve center where

the lipid and protein fluxes converge is the Golgi complex. As a gen-

eral rule, the Golgi complex consists of flattened membrane-enclosed

disks, called cisternae, joined together forming structures called cis-

ternal stacks. Each stack is flanked on 2 sides by the cis-Golgi net-

work (CGN) and the TGN.35 The role of the CGN is the exchange of

lipids and proteins between the ER and the Golgi, while the cargoes

are classified at TGN in specialized vesicles for different cellular

destinations.

The Giardia trophozoites do not appear to have structures similar

to the membrane cisternae that characterize the Golgi complex.36

Although clusters of parallel cisternae have been visualized in the par-

asite during encystation by electron microscopy, the absence of any

Golgi markers makes it impossible to consider these structures as a

true Golgi complex.36,37 On the other hand, structures resembling the

Golgi have been evidenced in vegetative and encysting trophozoites

through the use of the Golgi marker NBD-C6 Ceramide.27,38 How-

ever, it was not possible at that time to establish a correlation

between the regions labeled with the fluorescent analog and the

cisterna-like structures observed by electron microscopy. To address

this point, a combination of BODIPY FL C5-ceramide staining,

coupled to the diaminobenzidine photooxidation method39-41 and

transmission electron microscopy, was used to define ceramide-

stained structures. In this way, it was possible to assure that ceramide

labeled tubule-vesicular PNM cisterna-like structures of growing and

encysting trophozoites.19 The staining of ER membranes of early

encysting cells was also detected at the site of ESV biogenesis.19 This

suggests that the ER possesses Golgi-structural properties from

which secretory vesicles are formed.

When we focused on proteins that might help to find a Golgi-like

complex in Giardia, several particularities appeared. For example, both

the small ADP-ribosylation factor 1 (ARF1) GTPase and the giardial

COPI-βCOP were detected in the cytoplasm, but also association

with the PVs in growing trophozoites.5,23 Still, the localization of

these proteins is different from that of NBD-C6 ceramide, suggesting

that these markers identify different compartments or regions of

what was once considered a Golgi-like structure in the parasite.38 In

addition, the characterization of proteins involved in vesicular tether-

ing and docking suggests the absence of a typical Golgi complex (see

below).10 Interestingly, the Giardia genome lacks glycosyltransferases

and peripheral membrane proteins associated with the Golgi (termed

“golgins”) that function along the secretory pathway, but contains the

Golgi-like proteins implicated in the endolysosomal pathway, like the

homotypic fusion and vacuole protein sorting (HOPS) and the trans-

port protein particle (TRAPP) complexes.12,42 Although no characteri-

zation of these 2 proteins was performed, in silico analysis suggest

that some features of the endolysosomal pathways are somehow

conserved in this parasite. With the absence of Golgi matrix proteins

and Golgi enzymes, the question that remains is whether the expres-

sion of these Golgi proteins is necessary to outline the structure and

identity of the Golgi complex.43-45
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4 | LESS IS MORE: CORE PROTEINS OF THE
SECRETORY MACHINERY

Members of the subfamily of the Ras superfamily of low-molecular-

mass GTPases (Rabs) and the N-ethylmaleimide-sensitive factor acti-

vating protein receptor (SNAREs) families play a central role in all

steps of intracellular membrane trafficking. While 35 SNAREs and

60 Rabs were found in humans,46 Giardia possesses only 7 Rab and

17 putative SNARE proteins on its genome.10,12 The earliest step in

vesicle trafficking and docking is achieved by the function of Rabs

that cycle between the active GTP and the inactive GDP states. Rabs

appear to function mostly as part of the vesicle-trafficking machinery,

but there is evidence that some of them might function regulating

the process.44 In the context of a reduced set of organelles and key

proteins involved in vesicle trafficking, it is not surprising that Giardia

is able to successfully perform vesicle docking and fusion, although in

its own way. For example, the giardial GlRab1 and GlRab2a/2b, simi-

lar to the human Rab 1A and 2, respectively, which participate in ER

to Golgi vesicular transport, were localized in the ER, the PVs and at

the membrane of the ESVs during encystation.47 Later, by using a

specific anti-GlRab1 pAb, GlRab1 was observing cycling between the

cytoplasm and the sites of ESV biogenesis (ERES?), as the parasite life

cycle goes from growing to encysting trophozoites.23 Further analysis

of Rab1 localization and function did not permit recognition of Golgi-

like structures but reinforced the idea that the ER recruits Golgi-like

Rabs. None of the Rab family members, F, D and 32, described in the

Giardia genome were associated with biosynthetic-secretory traffick-

ing, except for the Rab11 orthologs that have been localized in the

PVs and linked with the transport of ESVs to the PM.48

SNARE proteins, on the other hand, participate in the last step of

the fusion reaction, involving a complex formation by the interaction

of SNAREs located on a transport vesicle with SNAREs from the tar-

get membrane. It was recently discovered that most vesicle SNAREs

have an arginine residue (R-SNAREs), while a glutamine residue was

found in syntaxins and SNAP-25-like proteins (Q-SNAREs). Concur-

rently, the Q-SNARE group was classified as Qa-SNAREs (syntaxins),

Qb-SNAREs (25-kDa synaptosomal-associated protein-SNAP25-N-

terminal SNARE motif ), and Qc-SNAREs (SNAP-25 C-terminal

SNARE motif ).46 The specificity in the SNARE complex function is

fulfilled as long as the 3Q:1R ratio is preserved.49,50 Expression and

localization of 17 giardial HA-tagged SNAREs enabled speculation

about the role of these proteins, specifically in secretory trafficking.10

Interestingly, the closest orthologues to the SNAREs present in the

Golgi and TGN were located in the PNM in this parasite10 and at

least 4 Q-SNAREs presented an ERES pattern, suggesting, once again,

that the ER itself may perform at least the protein sorting and deliv-

ery function attributed to the Golgi complex in other cells.

5 | TRAFFICKING TO THE PLASMA
MEMBRANE

The major secretory cargo are surface proteins called variant-specific

surface proteins (VSPs), which form a thick coat at the parasite sur-

face and play a critical role in antigenic variation and cell survival.

VSPs belongs to a family of proteins encoded by a repertoire of

around 200 genes, only one of which is expressed on the cell surface

at a given time.51 These are type I membrane proteins containing a

highly variable extracellular domain, a conserved transmembrane

domain and an invariant 5-amino acid (CRGKA) cytoplasmic tail.

Much data have been obtained about which domains drive these pro-

teins to the PM. However, fewer results have been found in the

study of how these proteins are selected for constant delivery to the

PM and where this selection takes place. It was reported that export

of VSPs is sensitive to BFA.38 But, does a selected sorting to the PM

exist in the absence of a bona fide Golgi complex? It was shown that,

when the cytoplasmic tail of the VSPH7s was deleted, the protein still

ended at the PM, and that, when its cytoplasmic tail is exchanged for

another containing a lysosomal-delivery motif, the VSPH7-chimera

ends up on the PV membranes instead of the PM of WB1267 trans-

fected trophozoites.4 These 2 results indicate that the lack of sorting

signaling on the cytoplasmic tail of VSPs is actually the “signal” that

eventually directs the protein to the PM. In favor of this claim is the

fact that the VSPH7 gene (and protein) is not present in the strain

WB1267, with a very low probability that VSPH7 without its cyto-

plasmic domain was driven to the PM by its association with native

WB1267 VSPs. These results contradict those of Marti et al, but

since their experiments were performed by the heterologous expres-

sion of a Toxoplasma gondii SAG1 surface antigen exodomain instead

of a giardial VSP, this might behave differently.52 Current analysis of

VSP trafficking revealed that the post-translational modification of

the conserved cytoplasmic tail of VSP by palmitoylation53,54 and by

citrullination55 is not responsible for VSP trafficking but is essential

for VSP segregation to raft-like domains of the PM (palmitoylation)

and has a clear participation in the control of the antigenic variation

in Giardia.54,55 It was shown that the VSP constitutive pathway is

maintained when the encystation process is triggered, showing a

clear separation of these proteins from those that are transported in

regulated vesicles.21 Recent results suggest that the sorting site might

be at the ERES, as a chimera containing VSP conserved domains

showed colocalization with the ERES marker GlSec23 in early encyst-

ing trophozoites.21 Analysis of the data as a whole coincides on spe-

cific and constant trafficking of the VSPs from the ER to the PM,

which is clearly different to the routes for lysosomal or regulated

secretion pathways.4,22,38,56

6 | CLASSICAL TRAFFICKING TO
UNCOMMON LYSOSOMAL-LIKE
ORGANELLES

The PVs are vacuoles of which the most striking feature is their high

polarization beneath the PM of trophozoites, although they have

been occasionally observed between the nuclei in the region termed

the “bare zone.”56-58 Originally described as lysosome-like

vacuoles,59,60 recent studies showed that they belong to a new cate-

gory of unique organelles that are involved in the sorting of interna-

lized cargo, recycling and degradation of specific molecules “all-in-

one”.56,57,61-63 Regarding secretory trafficking, the PVs are the final

destination of membrane and soluble lysosomal proteins that are

640 TOUZ AND ZAMPONI



delivered by the action of the heterotetrameric adaptor protein

GlAP-1, associated with clathrin, at least to the clathrin heavy chain

GlCHC. But where does the journey of lysosomal protein to PVs

begin? It was observed that GlAP-1 and GlCHC are located at the ER

beside the PVs,29,64,65 and Δμ-AP1 knock-down experiments showed

an accumulation of lysosomal-PV proteins at the ER, notably in the

PNM and in a punctate pattern resembling the ERES spots.65 Inter-

estingly, the ER to PVs trafficking seems to comprise well-conserved

characteristics that involve the Golgi complex in other eukaryotic

cells. Such cases are the membrane protein encystation-specific cys-

teine protease (ESCP), which travels to the PVs using a tyrosine-

based motif; and the soluble acid phosphatase (AcPh), which is trans-

ported by a Vps10p-like receptor (GlVps)57 that also contains a simi-

lar lysosomal motif.4 Thus, ESCP and the AcPh receptor ultimately

bind to the μ1 subunit of GlAP-1, and GlAP-1 to clathrin, to specifi-

cally travel to the PVs. Not surprisingly, ESCP trafficking was

impaired after BFA cell treatment.4

Another conserved lysosomal protein that participates in lysoso-

mal trafficking is the G. lamblia ENTH protein (GlENTHp), an epsin-

like monomeric adaptor the function of which is critical for AcPh traf-

ficking.66 Because Giardia utilizes some of the participants of the pro-

tein trafficking from the TGN to the endosomal-lysosomal system, it

is tempting to conclude that the lysosomal protein delivery mechan-

ism is one of the most conserved in this parasite. However, there are

some points to highlight: (1) neither the function of the clathrin light

chain was described nor clathrin-coated vesicles were observed in

this parasite, (2) the GlENTHp acts as a dual epsin and epsinR mono-

meric adaptor, participating in ER to PVs trafficking and also in

receptor-mediated endocytosis via GlAP-2,66 (3) no other Golgi-

related adaptor complexes or monomeric adaptors (eg, AP-3-4-5,

GGAs, Hrs, etc.) are present in the Giardia genome, (4) no post-

translational lysosomal protein modification was observed and (5) the

giardial retromer complex that participates in the recycling of acid

hydrolase receptors from endosomes to the Golgi in other cells, only

contains the cargo-selection subcomplex, composed by GlVps35-29-

26p, but lacks the structural subcomplex.67 Still, there is no Golgi

complex mediating all these mechanisms. Thus, in the light of the

new discoveries, it seems unsurprising that the ER, particularly the

PNM and the ERES, participates in the sorting of PV resident hydro-

lases. This is another point in favor of the hypothesis that Giardia

evolved from a structurally complex ancestor by reductive evolution

resulting from adaptation to a parasitic lifestyle.

7 | THE DE NOVO-REGULATED
SECRETORY VESICLE FACTORY

Besides its pathogenic characteristics, Giardia has emerged as an

interesting model to study regulated secretory vesicle genesis and

trafficking, as it can be generated de novo just by exchanging the cul-

ture medium.68 In brief, after sensing the stimuli that trigger

encystation,69,70 the synthesis and segregation of the CWPs to the

ERES occurs.22 CWPs are packaged and transported in the ESVs from

the ER to the PM, where they are released in a still undefined process

of exocytosis.4,71-73 At the time of CWP secretion, the GalNAc

homopolymer, which was synthesized and transported within vesicles

distinct from ESVs, is covering the surface of encysting Giardia tro-

phozoites and act as an anchor for these proteins, forming the extra-

cellular matrix.74,75 While most of the CWPs are attached to the

developing cyst, it was demonstrated that CWP1 is also secreted to

the media and incorporated into the cyst wall of distant forming

cysts.76 Encystation is tightly regulated and involves molecules that

intervene at different time points, controlling the beginning and the

ending of the process.55,69,70,77

How regulated secretory vesicles are formed and trafficked dur-

ing Giardia differentiation is a central question that has been debated

in the field for more than 2 decades. In most known specialized

secretory cells (eg, neurons, endocrine cells, exocrine cells and

FIGURE 3 Comparison of the regulated

secretory pathway of an endocrinal cell
and a Giardia trophozoite. (1) Secretory
vesicles bud from the TGN (or ERES for
Giardia) as immature secretory vesicles.
(2) Homotypic fusion is responsible for the
increase in size of secretory vesicles during
maturation. (3) Clathrin-coated immature
vesicles also contain non-specific proteins.
(4) Missorted proteins are removed by
budding off clathrin coats small vesicles.
(5) Acidification (unknown for Giardia) and
condensation lead to the formation of
mature vesicles. In endocrine cells, the
mature vesicles are secreted after a
secretagogue signal. In Giardia, no
secretagogue is required and mature ESVs
are sorted to the PM and sequentially
secreted. The secreted proteins (CWM) are
attached to the GalNAc homopolymer,
which is differentially exported to the cyst
surface. Modified from Reference 86
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hematopoietic cells), the secretory vesicles are permanently pro-

duced, stored in their cytoplasm and secrete their content only upon

receiving a stimulation.78 In contrast, the formation and release of

ESVs in Giardia occurs following a different sequence of events,

which involves reception of stimuli, synthesis of the cyst wall material

(CWM), segregation of CWM into new-forming ESVs, trafficking to

the PM and release to form the cyst wall.79,80 One daring idea was

that of the Hehl group in 2003, when they suggested that the ESVs

are “transient Golgi-like compartments.”5 Since then, this statement

was adopted by this and other groups on the field. This group pro-

posed a cisternal maturation model for the ESVs as follows5: “(1) ESVs

are generated from smaller pre-Golgi vesicles by homotypic fusion;

(2) ESVs mature by retrograde transport via COPI-coated vesicles;

(3) mature ESVs are analogous to single-cargo trans-Golgi cisterna

and associated with clathrin; (4) ESVs disperse simultaneously into

small secretory vesicles that fuse with the PM and release their con-

tents.” However, a rigorous analysis is necessary to support a defini-

tive conclusion. It is true that, without a Golgi organelle, the ESVs are

the only post-ER structures, which are visible only during encystation.

It is a long way from there to the claim that they are Golgi cisternae.

Against this statement is the fact that none of the principal Golgi

functions, such as O-glycosylation or lipid- and protein sorting to

TABLE 1 Main proteins of the mammalian and yeast Golgi apparatus and a comparison with the Giardia genome database

Category Mammalian proteins Yeast proteins Giardia proteins

Glycosylation

Glycosidases α-Mannosidase I, II — None

Glycosyltransferases GlcNAc phosphotransferase GlcNAc
transferase I α1,6-fucosyltransferase

β1,4-Galtransferase α1,2-
sialyltransferase

Och1 Mnn9, Van1 Mnn9, 10, 11,
Hoc1, Anp1 Mnn6

Mnn2, 5 Mnn1

—
—
—

Proprotein
processing

Furin prohormone convertases
Carboxypeptidase E

Kex2
Ste13 Kex1

GlFurin-like
—

Protein transport

Sorting receptors Man-6-P receptor
KDEL receptor
p24 proteins
p58/ERGIC53, VIP36
TGN38

Vps10
Erd2 Rer1
Emp24, Erv25, Erp1-6
Emp46/47
—

GlVps receptor
GlKDELR
—
—
—

Small GTPases ARF1-5 ARF1, 2 GlARF-1

Rab1, 1b, 2, 6, 6b, 10, 11, 12, 130, 33b Ypt1, 6, 31, 32, Sec4 Rab1a, Rab2a, Rab 2ba

Membrane fusion Syntaxin ERS24
Membrin rBet1
Syntaxin 5
mYkt6 GOS28 GS15
Syntaxin 6
Syntaxin 16 Vti1a
VAMP3 or 4

Sed5 Sec22
Bos1 Bet1
Sed5
Ykt6 Gos1 Sft1
Tlg1 Tlg2
Vti1
Snc1 or 2

Qa-SNARE 2, Qb-SNARE 5, R-SNARE
1, R-SNARE 2a

Tethers/matrix Giantin
GRASP65

—
Grh1

—
—

HOPS
TRAPP

HOPS
TRAPP

HOPS-like
TRAPP-like

Coatomers

COPI ARF-1
α-COP
β-COP
β0-COP
δ-COP
γ-COP
ζ-COP
ε-COP

Arf1, Arf2, Arf3
Ret1
Sec26
—
Sec27
Sec21
Ret3
Sec28

ARF-1
α-COP
β-COP
β0-COP
δ-COP
γ-COP
ζ-COP
—

COPII Sar1
Sec13
Sec23
Sec24
Sec31

Sar1p
Sec13p
Sec23p
Sec24p
Sec31p

GlSar1p
Sec13p
GlSec23p
GlSec24p (Sec24-like 1, 2 and 3)
GlSec31p

Clathrin AP-1 ab
AP-3
AP-4
AP-5
EpsinR
GGA
Clathrin heavy chain
Clathrin light chain

AP-1
AP-3
—
—
Ent3, Ent5
GGA1, GGA2
Clathrin heavy chain
Clathrin light chain

GlAP-1
—
—
—
GlENTHp (epsin-like)
—
Clathrin heavy chain
Putative clathrin light chain

a The presence of these proteins in specific regions of the ER suggests a Golgi-like function.

This table was verified and completed using The UniProt Consortium.93 Data from the Giardia genome was obtained from the GGD.12
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differential-targeted organelles, is accomplished by the ESVs. Also, all

the steps described as part of ESV-cisternal maturation can be clearly

associated with the process of regulated secretory vesicle maturation:

(1) maturation of specialized secretory vesicles involves homotypic

fusion of immature granules resulting in an increase in granule size81;

(2) the recruitment of coatomer proteins during ESV trafficking can

be associated with the vesicle maturation process, as was demon-

strated for endocrine cells. This process involves recruitment of AP-1

and is regulated by ARF182,83; (3) like endocrine cells, the incorpora-

tion of the GlCHC and the COPI complex to the ESV may be impor-

tant for the removal of any membrane proteins inadvertently co-

packaged into the ESVs84; and finally, (4) cargo molecules in maturing

granules undergo condensation, acidification (not proved in Giardia

ESVs), cargo-processing and removal of excess membrane and water,

which yield a reduction in size85 (Figure 3).

These 2 hypotheses are under continued testing and, while they

seem incompatible, they have several consensus points, resolved over

years of investigation. For instance, it is now known that the ESVs

originate in specialized ER membranes, the PNM and the ERES, which

present characteristics of a TGN but are also enriched in COPII coat-

omer complexes and in the small GTPase Rab1.19,23 The budding of

nascent ESVs requires CWM segregation and membrane selection.19

The segregation of the CWM is determined by the expression of

CWP1,87 the common biophysical properties of CWP1, 2 and 3 invol-

ving their leucine-rich repeats,5,88,89 and the 121 basic amino acids of

the CWP2 C-terminal end.90 During the maturation step, CWM pro-

teolytic processing and partitioning occur.71,73 Different steps have

been claimed from this point, ranging from the sequential exocytosis

and deposition of CWM to form the cyst wall,73 to ESV protrusion,72

to the interaction of ESVs with the PVs necessary for CWM dis-

charge and release.4,71 Much more work is required to conciliate

these points of view, but we cannot exclude a co-participation of

these pathways to accomplish cyst formation.

Regarding the role of the GlKDELR during encystation, new data

have shown that it specifically retains GlBiP in the ER, at the zone of

ESV biogenesis, rather than recovering it from the ESVs.19 This find-

ing was supported by analysis of the dynamic of the GlKDELR during

encystation, showing a static behavior of the receptor.19 Still, few

GlBiPs were found inside the ESVs, as its expression is raised during

encystation and the retention mechanism might be exceeded during

this process.90,91 Thanks to the advance in biochemical, genetic and

cell biology approaches, we are confident that we will continue shed-

ding light on these unresolved issues in the not too distant future.

8 | CONCLUSION

The reconstruction of the evolutionary histories that determined the

origin of the diversity of life indicates that, contrary to intuition,

reductive processes are more common than those of complexity. This

finding has enabled models of evolutionary change to be proposed in

which the loss of information, in the form of structures and/or func-

tions, is the “price” for adaptation. In this context, processes of geno-

mic and structural complexity play a key role, providing the material

that is then shaped by the reductive forces during adaptive

processes.92 Table 1 presents the proteins associated with the Golgi

complex in mammalian, yeast and Giardia cells. It is noticed the

absence of key Golgi proteins in Giardia. When the dynamics and

function of vesicular trafficking are analyzed, it becomes ever clearer

that this parasite uses the ER as the central platform in the absence

of a Golgi complex. It is also possible that an unstable Golgi structure

has become too weak to stand and finally collapsed into the

ER. However, the preservation of the ER nature of this membranous

system and the lack of the central Golgi functions argue against this

possibility. Moreover, it was possible to describe that these ER struc-

tures play Golgi functions during secretory transport. This result is

significant because it shows how the temporal reorganization of pre-

existing structures during the adaptive process can lead to novel

functionalities and reduction of structures without loss of function.

This represents an extreme example of function maintenance in the

absence of characteristic structures. More studies are needed to

determine the exact mechanism that mediates these changes in this

particular group of organisms.
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