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Casimir interaction between two smoothly deformed cylindrical surfaces
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We generalize the derivative expansion (DE) approach to the interaction between almost-flat smooth
surfaces, to the case of surfaces which are optimally described in cylindrical coordinates. As in the original
form of the DE, the obtained method does not depend on the nature of the interaction. We apply our results
to the study of the static, zero-temperature Casimir effect between two cylindrical surfaces, obtaining
approximate expressions which are reliable under the assumption that the distance between those surfaces
is always much smaller than their local curvature radii. To obtain the zero-point energy, we apply known
results about the thermal Casimir effect for a planar geometry. To that effect, we relate the time coordinate
in the latter to the angular variable in the cylindrical case, as well as the temperature to the radius of the
cylinders. We study the dependence of the applicability of the DE on the kind of interaction, considering the
particular cases where Dirichlet or Neumann conditions are applied to a scalar field.
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I. INTRODUCTION

The Casimir effect has been justly regarded as one of the
most startling macroscopic manifestations of fluctuations,
be them quantum mechanical or thermal, of a field [1].

To make predictions about the Casimir effect, typically
involves evaluating the influence of nontrivial boundary
conditions on the vacuum (or thermal) expectation values of
the relevant observables. That task is, except when highly
symmetrical geometries are considered, rather involved. One
of the main reasons for that is that those expectation values
usually do not satisfy a superposition principle, when
regarded as functionals of the boundary. Thus, it is not
possible, in general, to calculate the total energy in the
presence of a given boundary, by adding the contributions
due to each one of the possible pairs of surface elements into
which the boundary may be decomposed [2]. As a conse-
quence, rather few “universal” (i.e., applicable to an arbitrary
surface) properties of the Casimir effect are known.

The motivation to develop approximate methods to deal
with rather general geometries hardly needs to be emphas-
ised. One of those methods, of much wider applicability
than the Casimir effect, is the so called proximity force
approximation (PFA), originally introduced by B. Derjaguin
in 1934 [3], within the context of the interaction between
interfaces. This method has subsequently been applied to
several unrelated areas, like nuclear physics [4,5], Van der
Waals interactions and, lately, the Casimir effect [1], with
varying degree of success.

In its most frequently used version, the PFA is applied to
a setup consisting of two interacting surfaces, L and R, such
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that L is assumed to be a plane, and R, which (also by
assumption) can be represented by means of a single
function, w(x; ), the height of R at each point x| of L.

Then, Epga, the PFA approximation to the interaction
energy E between the surfaces, is:

EPFAE/dGEH{W(XIIH’ (1)

where do is the area element at a point x|, on L, and &£ (h)
denotes the energy per unit area for two parallel surfaces,
i.e., for w(x) = h, where h is a constant.'

Until quite recently, there were no known controlled
ways of generalizing the PFA, so as to include shape-
dependent corrections in an ordered perturbative expansion.
A step in that direction has been taken with the introduction
of the derivative expansion (DE) [6-10], an approach that
leads to a modification of (1) whereby the surface energy
density function includes derivatives of y, meant to account
for a dependence on the surface’s local curvature.
Successive terms in the expansion have an increasing
numbers of derivatives of y; the PFA being reinterpreted
as the zeroth (leading) order term in that expansion.

This kind of approach is quite independent of the nature
of the interaction, what makes its potential range of
applicability rather wide. However, the implementation
of the DE for surfaces that cannot be described by using
a single Monge patch is problematic, in part because of the

"The approximation above can be generalized to two curved
surfaces whenever they may be both represented by two func-
tions, y;, wg, which measure the respective height about a
common reference surface.
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seemingly important role played by the Fourier trans-
formation of the distance function y, when written in
Cartesian coordinates [11], and also because of the different
topology of the manifolds. This article presents an answer
to that point, for the specific case of two cylindrical
surfaces. Besides implementing the DE, we also show that
the functions that define it may be derived from known
results obtained for a planar system at a finite temperature
[10], by relating the periodicity of the imaginary time to the
one of the angular variable.

Next-to-leading order corrections to the PFA have
already been calculated for particular cases of almost-
cylindrical surfaces, for instance, in [12,13]. This kind of
geometry is also interesting from the experimental point of
view, since it can be used to create configurations that allow
us to measure lateral Casimir forces, as it is analyzed in
these references.

This paper is organized as follows: in Sec. II, after briefly
reviewing the DE in its usual, single Monge patch formu-
lation in II A, we present in II B the analogous construction
for cylindrical surfaces. Technical details of the derivation
are presented in an Appendix.

In Sec. III, we apply the DE to the Casimir energy for a
quantum real scalar field satisfying either Dirichlet or
Neumann conditions. Finally, in Sec. IV, we summarize
our conclusions.

II. THE DERIVATIVE EXPANSION

A. Standard formularion

We begin by reviewing the main features of the DE in its
simplest setup: two surfaces, L and R, as the ones
mentioned in the previous Section. More specifically, we
assume that a Cartesian coordinate system has been chosen
such that L and R occupy the regions (subsets of R?) given
by: s, = {(x1,x2,0)} and s = {(x;.x2,w(x)))}, respec-
tively. Here, x| = (x;, x,) and y is a smooth function of x;.
Let F[y]| denote the interaction energy between the two
surfaces (not necessarily originated in the Casimir effect)
written as a functional of w. The DE yields an approxi-
mation to F' as a series of local terms, ordered according to
their increasing number of derivatives of . Up to the
second order’:

Fly] = Foly] + Foly] + - - (2)
with
Foly]= / Vp(x). Faly]= / Zwx)Vel2  (3)

(see, for example, [11]).

2Although in principle one could consider an arbitrary number
of orders, the number of terms involved and the complexity
involved in their calculation grows rather fast.
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Once the functions V and Z are determined, by any
suitable method, the previous equations may then be used
to obtain approximate values for the interaction energy
between surfaces having different geometries, namely,
defined by different functions .

One can see that the zeroth order term Fy[y/] above does
reduce to the PFA. Indeed, considering a (temporarily)
finite integration area S, and a constant /(X)) = a, all the
terms but the first one vanish. Hence, the function V may be
determined as follows:

V(o) = fim (%) @
Thus,
Foly] = / Vip(x,), (5)
X

which agrees, mutatis mutandis with the PFA (1).

The next-to-leading-order (NTLO) term F,, is in turn
determined by the Z function, which may be obtained in an
analogous way. For, example, one can evaluate F[y| for
w(x)) = a +n(x)), where 7 is a function of x, whose
mean value is 0, while a is the average distance between the
two surfaces. Expanding F up to the second order in 7, Z
may be extracted from the second order term in a
momentum expansion of the Fourier transform of F [11].

B. DE for cylindrical surfaces

We present here the conventions and results about the
DE, when applied to cylindrical surfaces, assuming their
geometries may be naturally described in terms of cylin-
drical coordinates (p, ¢, z). Details regarding the derivation
of this result are presented in the Appendix.

The geometry corresponds again to two surfaces, which
we now denote by / and O. We retain the property that one
of them is a coordinate surface, and the other can be defined
by giving the distance of each one of its points to the first
one. Indeed, we assume now s; to be a constant-p
coordinate surface, namely, a circular cylinder of radius
p = a, while R occupies a region s, such that, for any
given value of ¢ and z, its radius is determined by a single
function y: p = w(p, z). As in the previous subsection, we
decompose y into its average and its departure about
it y(p,z) =b+n(e.z2).

The procedure outlined in the Appendix shows that the
DE, up to the second order, is given by the expression:

Fly| = Foly] + Faly] + - - (6)

where

Foly] = / bFo(b+n(x)) (7)
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and

Faly] = / (20w () (@) + Za(y () O

+ Zia(w () (9pw) (O-9) (8)

This result relies upon the same assumptions as the
Cartesian case, except for an extra condition, namely, that
y and its derivatives are periodic functions of the angular
variable. Besides, we have kept a mixed term involving
derivatives with respect to the angle and z. The reason to
keep that term is that one might want to apply the
approximation to systems where an external field breaks,
for example, the invariance under ¢ — —¢@. One may
imagine, for example, the existence of an external magnetic
field along z. When there are sufficient symmetries, that
term will of course vanish.

ITII. APPLICATIONS

In this section, we apply the DE for cylindrical surfaces
to the interaction energy resulting from the Casimir energy
for a real scalar field. We work within the functional
integral approach, in the imaginary time formulation, where
the spacetime metric becomes the identity matrix when
Cartesian coordinates x = (xg, X1, X, x3) are adopted, x
denoting the Euclidean (imaginary) time. Spatial coordi-
nates are denoted collectively by x.

The vacuum energy, which we shall denote by E,, may
be obtained as the zero-temperature limit of the free energy
(see, e.g., [14]), by means of the expression

Ey= —/}imﬁ‘1 log Z, 9)
where Z denotes the canonical partition function for a
temperature 7 = ' (natural units where kz = 1 have
been adopted). This expression must not be mistaken for
the energy of the free vacuum, since boundary conditions
may—and will—be included in Z.

To include such boundary conditions, we will use two
o-functionals: §; and &, respectively. Z, which will be a
functional of y, can then be written as follows:

Zly] = / D6, [P [ple=504, (10)

where the integral is over ¢ configurations which are
periodic in the time interval [—g g] and Sy[¢] is the free
Euclidean action. This shall be given by:

Suld) = [ @xtop ()

where the x integral runs from —g to —|—§. Similarly, we
define Z, as the partition function when no boundary
conditions are applied.
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A. Scalar field with Dirichlet conditions

We first consider a real scalar field ¢ and approximately
cylindrical surfaces, upon which Dirichlet conditions are
imposed. The world volumes swept by those surfaces will
be parametrized as s; = {(xg,pcos,psing,z):p =a} and
so={(xo,pcosp,psing,z):p=y(¢p,z)}. Here, p € [-x,7),
Xg € (—00, ), and z € (—o0, ).

We assume that w (@, z) = b + (¢, z), with b > a, and
n a differentiable function such that |5(¢@,z)| < b —a,
Y @, z. Following the derivation in the Appendix, we
choose b so that

/_: do /_: dzn(g.z) =0, (12)

and hence the surface s, is, on average, a cylinder of radius
b, and the first order term in the functional expansion in
powers of 7, vanishes.

To impose the condition ¢, ;= 0, we insert in Z[y/] the
functionals &;[¢] and 5[¢], defined in terms of auxiliary

fields &;(y) and &y (y) as:

310 = [ Derexp| / G060 - ) (13)

s

50[4’}:/950@"1’ {l/y g()’)ﬁo()’)fﬁ(}’)w]

(14)
where y = (xo, 0, 9, 2), ¥ = (x0,0,2), [,= [7dep [ dz x

S22, dxg [5°pdp and g(y)) is the determinant of the metric

induced on s,.
Integrating out ¢, we see that:

%VO/]:/DZ,‘ID%GXP{—% ,‘fA(yII)TAB(y\l’yh)‘fB(yh) ’
T
(15)

where A and B may be I or O, and TAB(yH’yh) are the
components of a matrix kernel T, defined as T(yH, y[ ‘) =

My )D(yyj. v )M(y))), with

M) = (“ 93y>>

@ 0
- (o \/(’9¢W)2+w2(1+(61w)2)>’ (16)

)

_(py D
and ID(yH,yh) = (D(I)Il D(’)‘(’)). The latter are
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Dy (v y)) = (v al(=0*)~"|y|. a)
Dio(y).y)) = (v al(=0%)7"y).w(e'. 2))
Doi(yy- ) = - wle. D)I(=0*)7"y|. a)
Oy 7)) =

(
Doo (. ) = vy wle. I(=*) "y wle'.2))  (17)

where ( (=071 Y|-p") is the (free) ¢-field propagator.

Thus, neglecting irrelevant contributions:
Ey = lim 1Trlo T (18)
0= s TR

In the following subsections, we consider the different
terms in the expansion of (18) in powers of # which are
needed to construct the DE.

1. Oth-order term

To this order, we need to take yw = b, and find the
resulting matrix elements T. These may be obtained using
the propagator definition explicitly, writing the momenta
k| = (ky, k) in polar coordinates, and using the identities

eixcosa — Z ime(x)ema (19)

m=—00

and
A ds H ZJZ(Sa):In(lkH'a)K”(lkH'a)’ (20)

which is valid for every n € Z. In these expressions, J,, are
Bessel functions of order n, while I, and K, denote
modified Bessel functions. This leads to the result:

with
TT(kH,n)
:<a21n(|k||a)Kn(|k||la) abln(k|la)Kn(|k|lb))
abl,(|ky|a)K,([ky[b) b1, (|k)|b)K,([k)|b) /°
(22)
and yj = (xo. 2).

Thus, the interaction energy per unit length &) becomes:

1
1 m
50 /}—M}o L—o 2ﬁL Tr log T

= ZA Zlogdeﬂ?(ku, n). (23)

n
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Evaluating the determinant, and discarding contributions
which represent self-energy terms (i.e., depending on each
separate surface), we arrive to the result:

1 oo |1 In(kyla)K, (ky[b)
b0 = zﬂ Z,,:l s {1 1, (Ik [0)K,, (ky[a)]”

which is valid for any a < b. This agrees with the known
result for this case [15].

We know that the energy per unit area corresponding to
the above result should approach the analogous result for a
couple of parallel planes when the cylinders are sufficiently
close to each other. Let us study this now, deriving at an
intermediate step an approximate expression, which is
neither the result for cylinders nor for planes: it will
correspond to planes with a periodic coordinate, related
to the angular variable. When d = b — a < a, we can use
the n — oo approximations [16,17]:

(24)

t
I ~ et 25
(n2) %[5 (25)
and
t
K,(nz) =\ /;—ne‘"é(@, (26)
h = 1 = 1 2 1 2 .
where ¢ mand () =VvI1+z7+ og(l+m)

Thus, when d < a, the ratio in (24) can be approximated
as follows

In(|kH|a) (‘k\||b) 2”[521 E(2)]
L(kb)K, (kyla) ~
—2nl og( HN)
(27)
with z; = |k |a/n and z, = |k|b/n. Next, expanding the

exponents in (27) for d < a, we have found that the most
accurate way to do so is to write the result in terms of d and
r = (b + a)/2, obtaining:

1,(|k)|a)

Kn(|k\||b) N€_2d (n/r)*+k
1,(|k)|b)

K,(kyla)~

(28)

Therefore,

%AZlog (1

n

_ (n/r)2+kﬁ) ’ (29)

which is the intermediate expression mentioned above;
indeed, it contains a sum over a discrete ‘“momentum,’
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corresponding to the angular variable. This expression,
when divided by 2zr, yields the energy per unit area £y (r).
Moreover, it tends to the proper limit, i.e., to the parallel
planes result when r — oo:

r—o0

£o(c0) = limEO(r):% / log (1 — e=211). (30)
Ky

The way in which the limit is reached, may be studied by
considering the difference between these two magnitudes,
Eo(r) = &o(oo)
o 1 log (1 _ 2 /k§+kf—(e+iz)2)
=2r - dr . ’
/—oo Zﬂ/ /(ko,kl) e2rrletin) _q
(31)

(where we converted the series to an integral), which is not
analytic at r — oo, since ¢™ has an essential singularity at
x — oo. Namely, it is not possible to expand £y (r) — Ey(o0)
as a series in powers of 1/r.

2. 2nd order

To obtain the function Z, in the DE, we evaluate in this
subsection the second order term in the energy. We do this
by applying the analogy between the cylindrical geometry
and a planar system at a finite temperature, in the limit
d < r. The approximation will be checked in the concrete
example for which the exact result is known, namely, that
of eccentric cylinders.

To perform this comparison, we consider the partition
functions Z7[y] for approximately flat surfaces described in
Cartesian coordinates, and Z€[y/], for cylindrical surfaces:

2Py
Z
= /DfLDé:R exp [—% ) ‘fA(x)KAB(xlvxi)fB(xl)}
K
(32)
ZCy]
Z§
~ [ Pepzoexy H /y . f:A(yoTAB(y,yﬁ)éB(y;)}
(33)

These expressions are evidently different; indeed, even
since the components of x| and y|; have different dimen-
sions. To make the comparison less awkward, we replace ¢
by xy = ro € [—zr, zr). This implies that, at least in the
r — oo limit, the two partition functions should agree.

PHYSICAL REVIEW D 96, 076015 (2017)

Performing that change of variables in (33), we obtain an
additional % factor, which leads to the conclusion that
ZPly]/ 28 = ZCw]/Z§ is equivalent to the equality
between the kernels

TAB()’H»YW

7 = Kap(x). x)). (34)

,
When r is much larger than d but still finite, the integral of
one of the momenta in the calculation of 745 should be
replaced by a sum over discrete momenta, as it happened
for the Oth order, since one of the coordinates is periodic.
We have at our disposal the calculation for one such
system: two almost planar surfaces at a finite temperature
T. In that kind of system, the fields are periodic in
the imaginary time: xo € [-1/2T, 1/2T], where T is the
temperature. Therefore, to use the results of such calcu-
lation, it is enough to replace f by 2zr.

The second order of I'p = —1log Zp, which may be
extracted from [10], is:

1 -
RS SY ST AN
with

ﬁp(i’l,kH) = / Tlp(XO,XH)e_ikH'xHe_iw/’)xo
(%0.%1.%2)=(x0.X)))

(36)
and
1
k) = - / (md/ )’ + 9]
! ”rd4; PHE(PI-Pz) I
x \/1m + nd /P + (py +1))?
o 1
1—¢2 (md/r)*+p]
y ! (37)
62\/[(m+")d/r]2+(l’u+lu)2 -1 ’

Let us apply (II A 2) to a concrete example, that of two
eccentric cylinders. This will allow us to find the explicit
form of the function Z, involved in the proposed DE. We
consider the external cylinder to be perturbed by a function
nc(@) = ecosg. In the limit € < d, this describes two
slightly eccentric cylinders, whose axes are separated by a
distance e.

To obtain the interaction energy, we need 77p(n, k).
Setting nc(@) = np(xy), we see that

i1p(n.k))|* = 27)2r?L26(k ) )72€* (8,1 + 8,-1).  (38)

076015-5



J.D. MELON FUKSMAN and C.D. FOSCO
Thus:

2
lim ~2 Y1 Ll _ar ¢

Jim === [FP(1,0) + f@(-1,0)]. (39)

Then we can use polar coordinates to perform the integral
over p| in Eq. (37). Defining p = x/(a — 1), witha = b/a,
we may then write the second order in # of the interaction
energy per unit length, as

Vim/(a+ P+
87za4 Z/ 1 — e~2a=1)/[2m/(at1)P+p?
y V[2<m+ D/(a+ P +°

2a=1)y/[2(m+1)/(a+1)P+p* _

2)
551//:

e

VB DTt D

2a-1)y/Rm=1)/(at )47 _ 1]’

(40)

which in the limit a ~ 1 (d < r) reduces to:

P e

87za4 1_6—20: D/mip?

X[ V(m+1)>+p? V(m=1)>+p? }
a0t 17407 _ 1 p2a=)y/m=17 407 _ 1]

(41)

5(() w]=-

The value of £2/[y] thus obtained may be compared
with the second order term which follows from the exact
result in [15], where it is denoted as E™ /L, since it
corresponds to the transverse magnetic mode of the EM
field. The second order of this exact solution is given by:

ETM 2)
L 471(142/ dop’ 1—DTM“
™
X [DgM +1';\)/TMICCI], (42)
n+1l.n+
where
Dib | Li(p) [Kuoi(ap)  Kopi(ap)
™ __ n n n+
P = K, () Ln_map) +1n+1<ap>} #3)
L,(p) 1,41 (p) [Knl(aﬂ) Km(ap)]z
NTM — + 44
KK ) L Im(ap) | Tylap)) Y
TM,cc __ In(p)Kn(ap)
D™ = K,(p)1,(ap)’ 43)

and where ¢ is again the eccentricity of the cylinders. To
perform the comparison with our approximate expression,
we first divided them by €?/a*.

PHYSICAL REVIEW D 96, 076015 (2017)

TABLE I. Comparison, for different values of a, between (41)
and (42). The fourth column contains the error, defined as:

100 x 2 x (EM™@)/L — £87)/(E™2)/L + &),

a "/ (/a®y  |E™MP/L|/(€/a*)  Error (%)
1.1 12933.6 13557.6 4.7

1.01 6.60 x 108 6.62 x 108 0.3
1.001 7.2034 x 102 7.2058 x 102 0.03
1.0001 7.21003 x 10'° 7.21012 x 10'® 0.001
1.00001  7.21010 x 1020 7.21012 x 1020 0.0003

Performing the sums and integrals numerically, we have
found that while (40) is indeed a better approximation than
(41) for o = 1.1 and bigger, they are quite similar for
smaller values. In Table I, we show the comparison
between (41) and (42). The error in the approximate
expression decreases when a — 1, staying below 0.3%
when a < 1.01.

Finally, let us obtain the function Z, of the DE for this
case, based also on the example of eccentric cylinders. For
w = y(@), this expansion reduces to:

alvl = [ viwton + zw@)(32) | @o

Now, setting w(¢p) = b +n(p), with |7l < b—a, and
expanding up to second order in %:

Blo 1= [ a0 Vo) + VOhte) + 3V O o)

+ Z,(b) <§—Z> 2] . (47)

Setting now 7(¢) = € cos ¢, we arrive to:

Eoly] =2xV(b) + %62 V"(b) + ne*Z,y(b).  (48)

Hence we can extract the function Z,(b):

Z,(b) = )

ne?
(Eolvl ~20v(0) =" v'5) ). a9)
At this point, it is useful to separate the total energy E, as a
sum of its different orders in €. Doing so, we can see that
the zeroth-order term equals 2zV(b). Hence, we are left
with the following reduced expression:

2.0) = (BP0 - Vo). 60

e

where EE)Z) [y] is the second order term (in €) of the energy.
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At this time, we note that we can extract this term either
from [15], or from the approximation (41). We just need to
evaluate the second derivative of V(b) with respect to b.
Using our approximate expression for concentric cylinders
we obtain:

V(b):£Z/ log (1—e‘2d ‘"/’>2+“ﬁ). (51)
n JK|

Finally, we arrive to:
|

PHYSICAL REVIEW D 96, 076015 (2017)
‘LZ /m dpp(p* + n?)
82t — Jo

x cosech? ((a -1/ p*+ n2>, (52)

V"(b) _

with @ = b/a.
Z,(b) may then be obtained by using our results for the
energy.

Z,(b) = 4%12;400 dp{'%cosech%(a— 1)/ p? + n2)

1 (mt1)? [\/m+ +p? w—wMWZ}} (53)
o2a- l)\/m 77 [p2le=1)y/(mt 17472 _ eZ(a—l) m=12+7 _ 1] )"

_2a41_

To sum up, equations (46), (51) and (53) determine the
second order DE for the Dirichlet case.

B. Scalar field: Neumann conditions

The same calculations can be performed when Neumann
conditions are imposed. For this purpose, we choose the
following boundary conditions:

pp()ls, = (54)
Oup(y )Iso = (55)

with 0, = n"9, and 0, = ;2. where n* () is a unit vector
perpendicular to s, and x* are usual Cartesian coordinates:

NE(y)

O = Ry )T

(56)

with

0 (

O,wsing +ycos g (u
(
(

=
I
o

—_— — ~— —

Nt (yy) = (57)

1
=0,y cosp +wsing  (u=2
3

_l/jazl//

=
|

Again, we can include the boundary condition using
functionals &;[¢)] and 5o [¢]:

5¢r1/Dapr[a@m@—w@¢@ﬂ
#l= / Dgpexp {i /y g()’)&o()’)MaMb()})}
(58)

Following analogous steps to those in Sec. [II A, Z may be
written in a familiar form:

= / D¢/ Déoexp [—% €A<y|)NAB<y|JWB@U}

Y
(59)

where

Nu(y)3)) = a2[0,0,01 (=32 )], (60)

Nio(y|): )’h) = a[0,dy(y(=0%)"! |yl>]p:a,p':l,,(yh) (61)

Noy(y. ) = alowdy 01019,y ma (62)

NOO(yH ’ yh) - [8N8;V<y‘ (_62)_1 |yl>]p:y/(yu),p’:y/(y"‘) ’ (63)

with 0], = % and 0y = N* (yi ‘)8”. As before, this allows us

to calculate the first orders in # of the interaction energy.
1. Order 0 in n

We start again with the order O in #. Following similar
steps as before, we obtain that the matrix N(y, y[ |) may be

written as:

NGy y)) = K o=y Zemw IN(n.Ky),  (64)

where
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B 2<612151(|k|||a)K’n(|k||€l) abl;,([ka)

K2(|k||b))
abl(|k|a)K,,([ky|b) b2I,(|k|b) .

K, (k) |b)
(65)

This matrix leads to the interaction energy per unit area:

47”/ Xn:logdetN )
_ U _ Ly(|ky|a) K (K |b)
28 [l AL

which coincides with the exact solution for concentric
cylinders, computed in [15].

On the other hand, one again expects the matrices U and N
to satisfy an analogous relation to (34) in the limit d < r, i.e.,

(y R4 |>
72 ~U(x), H) (67)
where U is the equivalent to the matrix K in (32), in the case
where Neumann conditions are imposed. At order O in 7, this
relation can be proved approximating the Bessel functions as
in (26), which gives:

/ Z ikH(yH_yh)lk | 1 e—d|kH\
T4z ¢ ] e~k 1 ’

(68)

()’H yH

where, as before, k|| = (@,,, kH), with w,, = n/r. Finally, we
can use this to calculate the interaction energy per unit
length:
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1 n/r
& EA;I"g(l‘e ) 9)

Q

As it happens when Dirichlet conditions are imposed, if we
divide this expression by 2zr and take the limit r — oo, we
again obtain the energy density per unit area between
parallel planes. On the other hand, Eq. (69) leads to the
same value of 56 obtained with Dirichlet conditions, in the
limit d < r. Then, in that limit, the energy per unit length of
the electromagnetic field coupled to perfect conductors
shaped as s; and s, must be the following:

Sl(EM)

__ ol(Dirichlet)
0 - 50

+ g(l)(Neumann) —9 gé(Dirichlet)

< [ Stog (1 VI, (70)
ky

which coincides with the limit d < r of the exact solution
(see [15]).

2. Order 2 in

We consider here the second order term. We shall see
that, when Neumann boundary conditions are imposed on
s; and 5o, depending on the variables upon which z
depends, the energy can have nonanalytic properties that
may render the DE not applicable in certain cases.

The second order term from I'p[y], calculated in [10], is

rdfy] = 52 / 4Ok lip(n kP (71)
n I

with

[m(m + n)(d/r)* +py.(p) +1)]?

()(n kH n_rd42/
1

H\/(md/ +Pn\/ (m +n)d/rP* + (p) +1)?

1

(72)

X bl
| = o2/ mdir? 407 23/t /rP+(py1? _

where = dkH, and f = 2zr as before.

The expansion of g(?) close to zero momentum can be
used to obtain the different orders in derivatives of 7, which
is not possible if g (n, k| ) is not analytic in a neighbour-
hood of (n, k) = (0,0). One way to verify this kind of
issue is to study the behavior of the function ¢(*(0, k)
around k|| = 0. Examining Eq. (72), we can see that the
terms with m # 0 will be analytic, since they are integrals
of quotients of analytic integrable functions that do not
vanish. We still have to see the term with m = 0, for which

l
we define g(k)) as the term with m =0 in (72) when
n = 0. Namely,

1 / (o +1)P 1 1

ard* [y, pyllpy + 1) 1= e 2Pil 2Pt — 1
(73)

g(k)) =—

A long calculation that involves dimensional regularization
proves that, close to kH = 0, this function behaves as
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2

k
o) % 9(0) = 555 log (Ke?) + O3, (74

where the term of order kﬁ is finite.

Replacing it in Eq. (71), a term proportional to
kﬁ log(kﬁdz) would give rise to contributions to the energy
proportional to

/ / (@, 2)02 log (=d*02)n(g. z), (75)
x| Jo.z

and therefore the proposed DE would not be applicable to
this case. If 7 does not depend on z, however, [ip(n. k)|
results to be proportional to §(k;), which nullifies the
contribution of terms such as k7 log(k?d”) whose limit as
k| — 0 is 0. Consequently, the applicability of the DE

depends in this case on the analyticity of ¢(?(n,0) as a
function of n. On the other hand, these problems with k| do
not appear when Dirichlet conditions are fixed, since in that
case the zero-momentum expansion of the function equiv-
alent to g(kj|) has only the (’)(kﬁ) term, apart from the

constant one.

IV. CONCLUSIONS

We have constructed a version of the DE which is
suitable for application to cylindrical surfaces, and for a
rather general interaction. That expansion has then been
applied to the Casimir effect at zero temperature, for a real
scalar field satisfying either Dirichlet or Neumann con-
ditions on two surfaces. We have shown how, in the limit
where the DE yields approximate results, one can deter-
mine the functions appearing in the DE approximation just
from the knowledge of results for planar surfaces at finite
temperature. The role of the temperature is here of course
rather fictitious, since it is used (via the Matsubara
formalism) to have a periodic coordinate. We have checked
numerically the intuitive idea that, when two cylindrical
surfaces are very close in comparison with the curvature
radius, the predictions coming from exact results are
essentially the same as the ones coming from planes with
a periodic coordinate. We may say that, at least to the
second order, the DE is sensitive to the topology (perio-
dicity) of the system, albeit not to the detailed geometry
(the metric tensor).

In the Neumann case, the same known nonanalyticity
found at finite temperature for planes arises. However, one
can also show explicitly that, if the surfaces are translation
invariant in z, the nonanalyticity disappears from the final
expression.
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APPENDIX: DERIVATION OF THE DE
FOR TWO CYLINDRICAL SURFACES

We derive here the DE shown in Sec. II B for cylindrical
surfaces [Egs. (6) to (8)]. For this, we consider two
surfaces: 7, which corresponds to p=a, and O to y(¢p, z) =
b+ n(p,z), with b > a.

As in the case of Cartesian coordinates, we begin by
assuming that the functional F[y], that represents the
interaction energy, may be expanded in a functional
Taylor series:

where we have used a shorthand notation x = (¢, z) for the
integration variables. Namely,

/ E/ dz|/ d(pl.../ dz,,/ dg,... (A2)

Since we want to deal with smooth functions,  (and
therefore y) must be 2z-periodic in its angular argument ¢.

The functional derivatives evaluated at the expan-
sion point have been denoted by F(”)(xl,...,xn) =

[m]qzo’ Vn>1, and T©) = F[p]. Since those

functional derivatives are evaluated at y = b, they must
exhibit the same symmetries that leave the geometry of that
system (two concentric circular cylinders) invariant. The
symmetry group contains translations in z and rotations in
. Therefore, we conclude that I'") can only be a constant
function, and that T® (x,, x,) may only depend on the
difference x; — x,. Furthermore, for n > 2, one can show
that ") may be written in terms of just n — 1 independent
variables, for instance, (x; — Xy, Xy — X3, ..., X0 — X,i_1,
Xp 4t x = (= 1x,).

To proceed, as in the case of Cartesian coordinates, we
assume that the radius b has been chosen in such a way that
fx n(x) = 0; with this choice, the n =1 term vanishes.
Thus, introducing the Fourier transform of #:

1 & 5 L
w2 =5-3 l ik, n)ei*ze™ (A3)
with [, = [ %, we see that:

076015-9



J.D. MELON FUKSMAN and C.D. FOSCO

Flu) = Flo
1 /
+3 > RO Ky, ko)
n>2 ( )nml ..... my, Kk ! !

Xﬁ(kl’ml)...f](kn,mn)ﬁ(kl _|_..._|_kn)

xX&(my +---+m,), (A4)
where h(")(kl,...,kn,ml,...
form factors.

Based on the previous expressions, we now deal with the
zeroth and second order terms in the DE (the first order one
vanishes by the proper choice of b).

,m,) are the symmetrized

1. Zeroth order in derivatives

When 7 becomes sufficiently smooth, #(k,m) is con-
centrated around zero momentum, namely, (k = 0,m = 0).
The leading term in this expansion amounts to keeping just
that component, namely, to replacing in (A4) the form
factors by their zero-momentum limits.

Hence,
Fly] = Foly]
= F[b] + ;m")(o, . 0) / . (2,1[),1
> | )

(45)

By taking into account the presence of the delta functions,
we can perform both the integral over k, and the sum over
m,, obtaining:

h™(0,...,0
Ralyl = Flbl+ [ S0 Dy (a0
X n>2 (2”)
Let us now deal with the evaluation of the sum
> h™(0,....0)(n(x))"/ (27)? (A7)

n>2

as a function of x, considering a constant 7 = 7, for which
we get

()
Folb +10) = Folb) +1ZL');’°);73, (A8)

b

n>2

where F(b) denotes the function:
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Flb
Folp) = fim £

: (A9)
where S, ; denotes the total area of the cylinder r = b and
length L.

Hence, we extract the relation:

()
%Z%’?(ﬂ" =Fo(b+n(x))=Fo(b). (A10)

n>2

Using the expression above in (A6), we see that:

I%W%=/bfdb+Mﬂ>
= ["ap / " dbFolb tnlp.2).  (ALD)

Note that the expression above is quite different to the
would-be zeroth order result for the DE based on planar
surfaces. In fact, that would mean to integrate the energy
per unit area for planes, ¥, over a planar surface L.
Indeed, for a physical problem described by two surfaces
defined in cylindrical coordinates by p =r; and p =
ry +n(z, @), this planar PFA yields

= [ Aot -n). (A1)

where S is some intermediate surface, and, clearly, the
result will in general depend on the choice of the surface S.
This is not so for F\,.

The reason for the difference between the two
approaches is of course the fact that the density F
generally depends on both b and a independently, not just
on their difference like it necessarily happens for F}. As a
simple example of this situation, we recall the case of the
electrostatic interaction between two conducting surfaces,
held at a constant potential difference, where F is a
function of log(b/a).

2. Higher orders

To obtain higher order terms in the expansion in
derivatives, we need the corresponding terms in the
Taylor expansion of the momentum space form factors
at zero momentum. Assuming the expansion is well
defined,

W (ky, ..k my, ... my,)
= h"(0,...,0) + AWik; + BWim; + CMiik;k;

+ D(n)ijmimj + E(")ijmikj 4+ .-, (A13)

Besides, the variables m; are integers. However, the
analyticity of A" for m; regarded as real variables is a
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sufficient condition for the validity and unicity of the
expansion (A13).

To study the consequences of (A13), we may first note that
the coefficients C and D"/ can be regarded as invariant
under the exchange of arbitrary i and j, since they are
multiplied respectively by k;k; and m;m;. On the other hand,

|

PHYSICAL REVIEW D 96, 076015 (2017)

R ({k;}, {m;}) must be invariant under the exchange of any
two pairs (k;, m;) and (k, my). Therefore, using (A13), we
can calculate the difference between /(") and the same factor
when two such pairs are exchanged, up to order 2 in
{m;},{k;}. This gives the following relation for every [, s:

0= (A= A%)(k; — ky) + (B! = BS)(m; — my) + (C = C*%) (kik; — kgky) + 2 ki(k; — k,)(C" = C*)
i#s,l
+2) “mi(m; = my) (D" = D)+ "k;(m; — my)(EY — E¥)
i#s,l J#s,
+) m J(E" — E®) + (E" = E*)(myks — mgk;) + (E" — E*)(m/k; — myk,)), (Al4)
i#s,l
|
where the indices (n) have been omitted. Using this h(”)(kl,_,-,kn,ml,,,,,mn)
equation, we can obtain useful relations involving the ; ; ;
coefficients A, B!, C'/, D'/, and E". For instance, setting =h"(0.....0) + Al )Zk' +B! )Z m;
k; = 0 except for k; and k,, and every m; equal to 0, we
obtain: [ VS ki 4TS k4 DY Y i,
0= (A =A%) (k; — k) + (C!' = C**) (kjk; — k,ky),  (A15) - k
(n) m; j—l—mjk,-
DL 4 B i Y
from where A = A* and C" = C* for every I, s, since i i~ 2
otherwise the functions (k; — k) and (k;k; — k,k) would L (A18)

be linearly dependent. In a similar fashion, another set of
relations may be obtained:

Al = AS Bl Bs Cll Css Dll Dss

El =E», ES=FE' VYlis (A16)
Crl — Crs’ Drl — Drs7
E'=E" VY Is,r/l#s,s#rl#r. (A17)

Using this result, Eq. (A13) may be rendered as

Faly] =

n>2

+ DY n(n = Dn(x)"2(9,n(x))2 + EL nn(x)"10,0,n(x) + EYn(n — 1)y (x)"

Now we can perform an integration by parts of the terms that are proportional to C§">,

proportional to C (l"), we may do what follows:

"o [ azmerteine = -1 [Ta [
oo [

Replacing this in Eq. (A4), we can see that the term
h(0,...,0) gives rise to the functional F, already
calculated in (4). On the other hand, the linear terms are
multiplied by §(k; + -+ k,)8(m; + ...m,), and there-
fore their contribution vanishes. We are finally left with the
order-2 terms, highlighted between brackets in (A18).
Performing analogous steps to those followed in the
previous section, we obtain that these produce a contribu-
tion F,[y] given by

0 e / ()= 02n(x) + €5 = ()" 2(90(x))? + Dy (x) "= ()

2(0n(x))(Opn(x))].  (A19)

D" and E\"). For instance, for those

) + / " dpln(x) 00 ()%

(x)"(0
(x)"2(0n(x))?, (A20)
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if n(p,z) or d.n(e,z) vanish as |z| - co. A similar
procedure can be done for the term proportional to Dg"),
in the case that 77(¢, z) and 0,,77(¢, z) are periodic functions
in ¢, with period 2z. Doing the same with the term
proportional to EE"), we arrive to the desired expression

for the order 2 of Fly]| in derivatives of #:

Bly] = [ {Z(w(x))(0.y)* + Zy(w(x))(O,w)*
+ Zia(w(x))(Opy)(0.w) }

where the functions Z, (b + d), Z,(b + d) and Z,(b + d)
are defined as:

(A21)

Zi(b+d) =) n((zn_)z—l) (€ =i, (A22)
Zb+d) =Y 4”((2 ”_)21) D" — {2, (A23)
Zi(b+d) = Z% [EW — EMan2. (A24)

To calculate these functions in a simpler way, we may
evaluate them for d = 0, which gives us their value in b:

20) =55 00 =P (a29)
2(6) =5 5 DY (B) -DPB). (A26)
Z0(b) = 55 [EX(0) - X)), (A27)

PHYSICAL REVIEW D 96, 076015 (2017)

Finally, to obtain the order two of F[y], it is enough to
change b for y(x) in the argument of these functions, and to
replace them in Eq. (A21).

Thus, the second order DE is

Fly] = / bFo(b +1(x))

+ / (20w () 0.0 + Za(w (1)) Ow)*

+ Zio(w(x))(9pw)(0:) ) (A28)

We recall that we have assumed F[y] to be analytic (as a
functional) in a neighbourhood of v = a as well as the form
factors A(") at zero momenta. On the other hand, 5 and o.n
must tend to 0 as |z| — oo. Finally, y and 0, are periodic
functions of ¢, with period 2z. Except for the last
condition, the other are equivalent to those required to
apply the DE in Cartesian coordinates [11]. In addition, the
method provides a tool to calculate the following orders,
namely, by including higher order products of k; and m; in
the expansion (A13).

Note that, from (A28), the order 2 we obtain is not
proportional to the square of the gradient of y, as it
happened in Cartesian coordinates. This is because, when
considering the interaction energy between two planes
x3 = 0 and x3 = yw(x, x,) in an isotropic space, the func-
tional F[y] must be invariant under rotations in the argu-
ment of y, this is, if (x;,x,)7 is replaced by R.(x;,x,)7,
with R € SO(2). This symmetry is however lost when
considering functions (¢, z), which justifies the mixed
term in (A28). In the presence of extra symmetries (which
may even be discrete), one could of course say more about
the vanishing of one or more terms in DE.
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