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Abstract
The Western Sierras Pampeanas (WSP) of Argentina record a protracted geological history from the Mesoproterozoic assem-
bly of the Rodinia supercontinent to the early Paleozoic tectonic evolution of SW Gondwana. Two well-known orogenies 
took place at the proto-Andean margin of Gondwana in the Cambrian and the Ordovician, i.e., the Pampean (545–520 Ma) 
and Famatinian (490–440 Ma) orogenies, respectively. Between them, an extensive continental platform was developed, 
where mixed carbonate–siliciclastic sedimentation occurred. This platform was later involved in the Famatinian orogeny 
when it underwent penetrative deformation and metamorphism. The platform apparently extended from Patagonia to north-
western Argentina and the Eastern Sierras Pampeanas, and has probable equivalents in SW Africa, Peru, and Bolivia. The 
WSP record the outer (deepest) part of the platform, where carbonates were deposited in addition to siliciclastic sediments. 
Detrital zircon U–Pb SHRIMP ages from clastic metasedimentary successions and Sr-isotope compositions of marbles from 
the WSP suggest depositional ages between ca. 525 and 490 Ma. The detrital zircon age patterns further suggest that clastic 
sedimentation took place in two stages. The first was sourced mainly from re-working of the underlying Neoproterozoic 
metasedimentary rocks and the uplifted core of the early Cambrian Pampean orogen, without input from the Paleoproterozoic 
Río de la Plata craton. Sediments of the second stage resulted from the erosion of the still emerged Pampean belt and the 
Neoproterozoic Brasiliano orogen in the NE with some contribution from the Río de la Plata craton. An important conclusion 
is that the WSP basement was already part of SW Gondwana in the early Cambrian, and not part of the exotic Precordillera/
Cuyania terrane, as was previously thought.

Keywords Cambrian clastic metasedimentary rocks · Sr-isotope dating of marbles · SW Gondwana Cambrian platform · 
SW Gondwana paleogeography · Sierras Pampeanas · Precordillera/Cuyania terrane

Introduction

Modern convergent ocean-continent plate margins often pre-
serve evidence of a succession of processes such as mag-
matism, accretion of oceanic or continental terranes, sub-
duction interruption and margin stability, and formation of 

sedimentary basins in different tectonic settings. This type of 
long-lived non-collisional orogeny is defined as accretionary 
and records continental crust growth by means of mantle-
derived magmatism or accretion of oceanic crust (Cawood 
et al. 2009). Recognition of these processes is more com-
plicated in the case of old continental margins that were 
overprinted by younger orogenic processes. Such is the case 
of the Paleozoic SW margin of Gondwana, where multiple 
orogenic events occurred and which is being re-worked by 
the Andean orogeny along the eastern Pacific Ocean.

The pre-Andean basement of SW South America pre-
serves a continuous record of processes from Rodinia break-
up to Gondwana assembly (for a review see Casquet et al. 
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2012a). The latter culminated in the early Cambrian and 
resulted in a string of orogenic belts stretching from Brazil 
down to South Africa, i.e., the Araguaia, Paraguay, Pampean 
and Saldanian belts (e.g., Rapela et al. 1998; Rozendaal et al. 
1999; Fonseca et al. 2004; Tohver et al. 2006; Vaughan and 
Pankhurst 2008; D´el-Rey Silva et al. 2016). Contempora-
neously with these orogenies the Iapetus ocean opened in 
the west (present coordinates) and a new continental mar-
gin developed that eventually evolved into the present day 
Andean margin, i.e., the proto-Andean margin of Gondwana. 

The Paleozoic history of the margin is well preserved in the 
pre-Mesozoic basement of the Andean foreland in Argen-
tina. Basement outcrops extend from northwestern Argen-
tina and the Puna altiplano southwards to the Sierras Pam-
peanas and Patagonia (Fig. 1).

The Sierras Pampeanas, between 26° S and 33° S (behind 
modern flat-slab subduction of the Nazca plate), preserve 
evidence of an early Cambrian orogeny, i.e., the Pampean 
orogeny that resulted from continental collision between ca. 
545 and 520 Ma; for a recent reviews see Ramos et al. (2015) 

Fig. 1  Map of Precambrian cratons and early Paleozoic terranes of southern South America (modified after Casquet et al. 2012a). MARA: acro-
nym of Maz-Arequipa-Río Apa. PP: Paranapanema craton. RPC: Río de la Plata craton



2607International Journal of Earth Sciences (2018) 107:2605–2625 

1 3

and Casquet et al. (2018). Subsequent, east-dipping subduc-
tion of the Iapetus Ocean started at the proto-Andean mar-
gin of Gondwana, resulting in the Ordovician magmatism 
and metamorphism of the Famatinian orogeny (between ca. 
490 and 440 Ma), which is widely recorded from Patagonia 
to NW Argentina (e.g., Pankhurst et al. 1998, 2000, 2006; 
Bahlburg et al. 2016). This is part of the approximately 
18,000 km long Terra Australis orogen that fringed SW 
Gondwana from Australia to Venezuela (Cawood 2005). It 
was followed by a protracted history of orogenic events that 
still continues at the Andean margin. Between the Pampean 
and Famatinian orogenies there is a period of time of ca. 
30 myrs which is poorly known, because the sedimentary 
record was strongly involved in penetrative Famatinian 
(post-490 Ma) deformation and metamorphism and fossils 
were generally not preserved. Torsvik and Cocks (2011) and 
Casquet et al. (2012b) proposed that during this period a 
wide continental platform developed along the SW Gond-
wana margin. This was coeval with exhumation and erosion 
of the Pampean orogeny, and with the lateral docking of 
the Río de la Plata craton along the Córdoba fault (Fig. 1) 
(Verdecchia et al. 2011).

The Sierras Pampeanas of Argentina offer an excellent 
opportunity to study the early Paleozoic evolution of SW 
Gondwana. In this work we provide U–Pb SHRIMP detri-
tal zircon ages from clastic metasedimentary rocks and Sr-
isotope composition of marbles from Cambrian sequences 
of the Western Sierras Pampeanas. Data provided here, 
combined with those previously published from the Eastern 
Sierras Pampeanas, Patagonia, and NW Argentina, allow us 
to better constrain the Cambrian continental platform model, 
to establish the source areas of sediments and to better define 
the paleogeographic evolution of this tract of the SW Gond-
wana margin close to the Cambrian–Ordovician boundary.

Geological setting

The tectonic framework

The Sierras Pampeanas are N–S elongated ranges uplifted by 
reverse faulting in response to the Cenozoic Andean orog-
eny (Jordan and Allmendinger 1986) (Fig. 2). The applica-
tion of robust geochronological methods over the last two 
decades has permitted recognition that the Eastern Sierras 
Pampeanas (ESP) and Western Sierras Pampeanas (WSP) 
(Fig. 2) have quite different geological histories. The ESP 
comprise mainly Neoproterozoic to late Cambrian clastic 
metasedimentary rocks (Rapela et al. 2016 and references 
therein) variably affected by the Pampean and Famatinian 
orogenies with abundant early Paleozoic magmatism (e.g., 
Rapela et al. 1998; Pankhurst et al. 1998, 2000; Steenken 
et al. 2011; von Gosen et al. 2014; Ramos et al. 2015 among 

many others). In contrast, the WSP consist of a complex 
igneous and metamorphic basement resulting from late Mes-
oproterozoic orogenies (Grenville orogeny; ca. 1.3–1.0 Ga; 
Rapela et al. 2010 and references therein; Varela et al. 2011) 
and late Neoproterozoic to late Cambrian metasedimentary 
cover (carbonate and siliciclastic rocks; e.g., Varela et al. 
2011; Ramacciotti et al. 2015a; Ramacciotti 2016; Rapela 
et al. 2016 and references therein), both overprinted by the 
Famatinian, but not the Pampean, orogeny (Figs. 1, 2).

The Pampean orogeny involved early Cambrian (ca. 
545–530 Ma) cordilleran I-type magmatism, mainly inter-
mediate-P/T metamorphism that reached granulite-facies 
conditions, widespread anatexis and granite formation at 
ca. 520 Ma (Rapela et al. 1998; Sims et al. 1998; Schwartz 
et al. 2008; Drobe et al. 2011; Iannizzotto et al. 2013). This 
orogeny is shown schematically in Fig. 3 based on Casquet 
et al. (2012a). It involved collision between a Laurentia-
derived Paleoproterozoic-to-Mesoproterozoic continental 
block called MARA and other eastern Gondwana continents 
such as the Kalahari and the Rio de la Plata cratons. Colli-
sion was preceded by consumption of a hypothetical ocean, 
the Clymene Ocean of Trindade et al. (2006). MARA broke 
away from Laurentia in the early Cambrian almost coevally 
with the Pampean orogeny and with the opening of the Iape-
tus Ocean (Fig. 3).

The trailing edge of MARA became the SW Gondwana 
margin, which remained passive until the early Ordovi-
cian when subduction of the Iapetus oceanic plate initi-
ated the Famatinian orogeny. The latter orogeny involved 
early-to-middle Ordovician subduction-related I-type and 
peraluminous magmatism (e.g., Pankhurst et al. 1998, 
2000; Dahlquist et al. 2008) and coeval low-to-high-grade 
low-P/T metamorphism (Murra and Baldo 2006; Gallien 
et al. 2010; Larrovere et al. 2011; Tibaldi et al. 2013). In 
some areas, such as the Argentine Puna, magmatism as 
young as 440 Ma has been ascribed to a late Famatinian 
stage (e.g., Bahlburg et al. 2016). This orogeny has been 
explained as resulting from collision against the proto-
Andean margin of Gondwana of the Precordillera terrane 
(e.g., Ramos 1988; Astini et al. 1995; Dalziel 1997; Astini 
and Dávila 2004). This terrane was first named after the 
Argentine Precordillera, a morphotectonic block that lies 
immediately west of the Sierras Pampeanas (Fig. 2a); it 
consists of an early Cambrian to middle Ordovician car-
bonate platform with paleontological Laurentian affinity 
(e.g., Benedetto 2004). There is controversy regarding 
the provenance of this terrane and time of docking (e.g., 
Ramos 2004; Finney 2007 and references therein). In 
the allochthonous (exotic) model, the Precordillera con-
tinental block rifted from the Laurentian margin—the 
Ouachita embayment of the Appalachian margin—in the 
early Cambrian at ca. 540 Ma (Astini et al. 1995; Thomas 
et al. 2012). The Sierra de Pie de Palo (WSP) was further 
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included in the Precordillera terrane as part of a larger 
composite terrane, Cuyania (for a review see Ramos 2004 
and references therein). However, other authors have sug-
gested that the Pie de Palo block was already attached to 
SW Gondwana in Cambrian times and that it was autoch-
thonous or para-autochthonous and, in consequence, part 
of the upper plate during Famatinian subduction (Galindo 

et al. 2004; Finney 2007 and references therein; Mulcahy 
et al. 2007, 2011).

The metasedimentary rocks

Several Neoproterozoic to early Paleozoic sedimentary 
successions have been recognized in the Sierras Pampea-
nas, mainly by means of detrital zircon U–Pb ages, with 

Fig. 2  Geological map of the Sierras Pampeanas and Precordillera 
(a;  modified after Rapela et  al. 2016)  and stratigraphic relationship 
of the metasedimentary units of northwestern Argentina and the Sier-
ras Pampeanas (b). ESP: Eastern Sierras Pampeanas, WSP: Western 
Sierras Pampeanas. Am: Sierra de Ambato, An: Sierra de Ancasti, 
Ch: Sierra de Chepes, Fa: Sierra de Famatina, LCH: Loma de Las 

Chacras, LLA: Sierra de Los Llanos, ME: Sierras de Maz y Espi-
nal, PAN: Pan de Azúcar, SAn: Sierra de Ancaján, SB: Sierra Brava, 
SC: Sierras de Córdoba, SNA: Sierra Norte de Córdoba-Ambargasta, 
SPP: Sierra de Pie de Palo, STN: Sierra del Toro Negro, Um: Sierra 
de Umango, VFLH: Sierra de Valle Fértil-La Huerta
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deposition peaking at various times and in various paleo-
geographic settings (see Rapela et al. 2016, and references 
therein). The older succession is Ediacaran (ca. 620 Ma) to 
early Cambrian and is well exposed in the WSP (Difunta 
Correa Metasedimentary Sequence) but also extends to the 
ESP (Ancaján Series) as far as the Sierras de Córdoba, where 
it was involved in the Pampean orogeny (Murra et al. 2016) 
(Fig. 2b). This succession consists of metapelites, marbles, 
para-amphibolites and metaconglomerates with detrital zir-
con ages peaking mainly at ca. 1.5–1.3 Ga and 1.3–1.0 Ga. 
This succession is supposed to have been sourced mainly 

from SE Laurentia (the Granite–Rhyolite and Grenville 
provinces of North America) but also cannibalistically from 
the Grenvillian basement of the WSP itself (Ramacciotti 
et al. 2015a, b; Rapela et al. 2016). These sediments were 
interpreted as deposited in the hypothetical Clymene Ocean 
over the eastern margin (present coordinates) of the MARA 
block (Fig. 3; Casquet et al. 2012a).

Another sedimentary sequence, long-known in the ESP 
and in NW Argentina, coeval in part with the Difunta Cor-
rea sequence, is the Puncoviscana Formation (Fig. 2b). Since 
metamorphic grade and deformation decreases northwards, this 

a  ca. 620

Clymene 
Ocean

Difunta Correa
Metasedimentary Sequence

and Ancaján Series

Opening of the Clymene Ocean

Laurentia          MARA Kalahari

Sediments of this age not recorder so far 
in ESP (probably tectonically eroded)

Proto-Appalachian margin of Laurentia
(Lynchburg Group, Konnarock,
Mt. Rogers and Catoctin Fm.)

b  ca. 540-530 Ma Opening of the Iapetus Ocean and Pampean 
oblique subduction

Early Cambrian 
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and accretionary wedge
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  conjugate margins

  Clymene 
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Fig. 3  Geotectonic evolution of southern SW Gondwana between ca. 620 Ma and the end of the Pampean orogeny at ca. 520 Ma preceding east-
ward extension of the sedimentary platform. Modified after Casquet et al. (2012a). RPC = Río de la Plata craton (ca. 2.02–2.25 Ga)
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formation is better displayed in NW Argentina; it consists of 
a rhythmic alternation of slates and sandstones with abundant 
primary structures and early Cambrian trace fossils, subordi-
nate carbonates, and minor volcanogenic rocks (Aceñolaza and 
Toselli 2009 and references therein). In the type section its dep-
osition was dated at 537.3 ± 0.3 Ma (age of interbedded felsic 
tuff; Escayola et al. 2011). In the ESP, i.e., Sierra de Ancasti, 
Sierras de Córdoba, Sierra Norte de Córdoba, middle-to-high-
grade metasedimentary rocks intensely affected by the Pam-
pean orogeny were considered equivalents of the Puncoviscana 
Formation (Rapela et al. 1998; Escayola et al. 2007; von Gosen 
and Prozzi 2010). In the Sierras de Córdoba, the depositional 
age of the Puncoviscana Fm. is constrained by the oldest gran-
ite intruding it at ca. 545 Ma (Schwartz et al. 2008). The detrital 
zircon age pattern of the Puncoviscana Fm. is characterized 
by two main peaks at ca. 1000–1100 Ma and ca. 680–570 Ma 
which are typical of Gondwana sources such as Natal-Namaqua 
belt of South Africa (Kristoffersen et al. 2016) and the Bra-
siliano–Panafrican belts, respectively (Schwartz and Gromet 
2004; Rapela et al. 2007, 2016). Therefore, this formation was 
probably deposited between ca. 570 and 537 Ma, in a forearc 
basin or as an accretionary wedge laid down along the east-
ern margin of the Clymene Ocean when it became active in 
the late Neopreoterozoic or the early Cambrian (Rapela et al. 
2016; Casquet et al. 2018). The contact between the Ancaján 
Series and the Puncoviscana Formation in the ESP has been 
interpreted as a cryptic suture (Fig. 2b) (Casquet et al. 2018).

In NW Argentina, where the sedimentary relationships are 
preserved, middle Cambrian sedimentary rocks of the Mesón 
Group unconformably overlie the folded Puncoviscana Fm. 
(Tilcaric unconformity). The upper boundary of the Mesón 
Group is the Iruyic unconformity, overlain by the Early Ordo-
vician Santa Victoria Group (e.g., Sánchez and Salfity 1999; 
Aceñolaza 2003). These two unconformities bracket the period 
of time that is the focus of this paper (i.e., late early Cam-
brian to the Cambrian–Ordovician boundary). The applica-
tion of U–Pb detrital zircon geochronology (LA–ICP–MS and 
SHRIMP) has shown that many metasedimentary rocks in the 
ESP were in fact deposited within this same period (Collo 
et al. 2009; Drobe et al. 2011; Verdecchia et al. 2011; Cristo-
folini et al. 2012; Casquet et al. 2012b; Rapela et al. 2016) and 
were called “Post-Puncoviscan Series” by Rapela et al. (2016). 
These sequences underwent penetrative deformation and meta-
morphism during the Famatinian orogeny. The equivalents to 
these protoliths in the WSP and elsewhere in Argentina are the 
focus of this work.

Sampling

Clastic metasedimentary rocks and marbles were collected 
from three localities in the Western Sierras Pampeanas 
(WSP): (1) the eastern flank of the Sierra de Pie de Palo, 

and two small metamorphic outcrops named (2) Loma de 
Las Chacras and (3) Pan de Azúcar near the western flank 
of Sierra de Valle Fértil—La Huerta (Figs. 2a, 4; coor-
dinates and mineral composition in Table 1). The Sierra 
de Pie de Palo is a large metamorphic block with Meso-
proterozoic (Grenvillian) rocks and an Ediacaran to Cam-
brian siliciclastic and carbonate sedimentary cover that 
underwent strong deformation and low- to medium-grade 
metamorphism in the Early Ordovician (Fig. 4a, b, e.g., 
Baldo et al. 1998; Casquet et al. 2001; Vujovich et al. 2004; 
Rapela et al. 2010; Mulcahy et al. 2011). The upper strati-
graphic unit consists of the Caucete and Nikizanga groups 
that, respectively, crop out on the western and eastern 
flanks of the range. Both are composed of schists, quartz-
ites and marbles (Naipauer et al. 2010a; Mulcahy et al. 
2011; Ramacciotti 2016). One quartzite from the Nikizanga 
Group was collected for detrital zircon U–Pb geochronol-
ogy (SPP-22,043; Fig. 4b; Supplementary material). Two 
samples of graphitic marbles from the Nikizanga Group 
were collected for Sr-isotope determination (Table 2). Gra-
phitic marble beds are a few-meters thick and show a rhyth-
mic banding of ca. 2–20 mm thick dark grey and light grey 
bands. The latter are either calcite-rich (mainly calcite and 
minor muscovite, epidote and phlogopite) or graphite-rich 
(graphite, dolomite, quartz and plagioclase).

The Loma de Las Chacras is a small outcrop of metamor-
phic rocks tectonically separated from the Sierra de Valle 
Fértil-La Huerta by a large Cenozoic fault that obliquely 
cuts the Paleozoic orogenic grain (Figs. 2, 4c). It consists of 
a core of granulitic garnet–kyanite migmatites and garnet 
amphibolites overlain by low-grade garnet schist, quartzites 
and minor marbles, all affected by the Ordovician Famatin-
ian orogeny (Vujovich 1994; Casquet et al. 2012c; Mulcahy 
et al. 2014). The depositional age of the low-grade metasedi-
mentary rocks is unknown. Sr, C, and O-isotope composition 
of these marbles underwent post-depositional changes and 
are not suitable for isotope stratigraphy (Galindo et al. 2004; 
Naipauer et al. 2005; Peralta and Castro de Machuca 2010). 
Detrital zircons were separated from low-grade metasand-
stone interbedded with garnet schists (LCH-22049; Fig. 4c; 
Supplementary material).

The Pan de Azúcar is a small poorly known hill (ca. 
2 km long) immediately west of the Sierra de Valle Fértil-
La Huerta, and south of Loma de Las Chacras (Figs. 2, 4d). 
It consists of strongly retrogressed low-grade metamorphic 
rocks: orthogneisses, marbles, phyllites and quartzites. The 
Pan de Azúcar marbles were correlated with those of the 
Caucete Group based on lithological similarities (Bastías 
et al. 1984; Ramos and Vujovich 2000). Just as in the Loma 
de Las Chacras, the Sr, C, and O-isotope composition was 
obliterated by alteration processes (Galindo et al. 2004). 
Detrital zircons were concentrated from a quartzite (PAN-
22001; Fig. 4d; Supplementary material).
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Analytical methods

Zircon was separated and concentrated using standard 
crushing, washing (to decant slime), heavy liquids, and 
paramagnetic separation procedures, as described by 
Rapela et al. (2007). The zircon-rich heavy mineral con-
centrates were poured onto double-sided tape, mounted in 
epoxy together with chips of the Temora reference zircon, 
sectioned approximately in half, and polished. Cathodo-
luminescence (CL) images were used to reveal the inter-
nal structures of the sectioned grains. The samples were 
analysed at the Research School of Earth Sciences of the 

Australian National University (Canberra) with SHRIMP 
RG in reconnaissance mode and with SHRIMP II for more 
precise geochronology, following methods as in Williams 
(1998) (Supplementary material). The reconnaissance 
mode consisted of four scans through the mass range for 
each analysis, and reference zircon analysis once every 
five unknowns, whereas the geochronological mode, used 
to better constrain the youngest population of zircons, 
consisted of six scans with full count times on the mass 
stations, and reference zircon analysis once every three 
unknowns. Data were reduced using Isoplot/Ex (Lud-
wig 2003). Common Pb corrections for ages older than 

Fig. 4  Geological maps with location of the analysed samples (U–
Pb SHRIMP zircon ages and Sr-isotope composition of marbles). a 
Geological map of the southern Sierra de Pie de Palo, b Inset of the 
Sierra de Pie de Palo in the Filo del Grafito area, where the Nikizanga 

Group crops out. c Geological map of Loma de Las Chacras (modi-
fied from Mulcahy et al. 2014), d Geological map of Pan de Azúcar, 
after Peralta and Castro de Machuca (2010)

Table 1  Location, rock type 
and mineral composition of 
analysed the samples

a U–Pb SHRIMP detrital zircon geochronology
b Sr-isotope composition. Mineral abbreviations after Whitney and Evans (2010)

Sample Latitude (S) Longitude (W) Rock type Mineral composition

SPP-22043a 31° 32′ 15.3″ 67° 51′ 26.9″ Quartzite Qz + Pl + Kfs + Ms + Bt + Chl 
+ Ep + Zrn + Opq

LCH-22049a 31° 18′ 05.5″ 67° 31′ 36.2″ Metasandstone Qz + Ms + Bt + Grt + Pl + Zrn
PAN-22001a 31° 24′ 31.9″ 67° 27′ 40.5″ Quartzite Qz + Pl + Ms + Chl + Cal + Zrn
SPP-27016b 31° 35′ 40.5″ 67° 51′ 52.0″ Graphitic marble Cal ± (Dol,Gr,Opq)
SPP-23018b 31° 37′ 22.6″ 67° 53′ 14.2″ Graphitic marble Cal ± (Dol,Gr,Opq)
PPL-46b 31° 36′ 04.0″ 67° 52′ 23.0″ Graphitic marble Cal ± (Qz,Ab,Ms,Gr,Opq)
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800 Ma were made using 204Pb and, for younger ages, by 
means of 207Pb (Williams 1998). For ages younger than 
800 Ma 238U/206Pb ages were used, whereas for the older 
ones 207Pb/206Pb ages were preferred. Analyses with high 
common Pb (> 2.5% for reconnaissance mode and > 1% 
for geochron mode), discordance > 10%, and error age 
(1σ > 5%) were discarded.

Sr-isotope composition was determined from the cal-
cite-rich bands of marbles at the Geochronology and Iso-
tope Geochemistry Center of the Complutense University, 
Madrid (Table 2). To exclude contamination by other miner-
als, carbonate samples (ca. 30 mg) were leached in a 10% 
acetic acid solution and then centrifuged to remove the insol-
uble residue (Fuenlabrada and Galindo 2001). The solution 
was subsequently evaporated and then dissolved in 3 ml of 
2.5 N HCl. Sr was separated using cation-exchange columns 
filled with BioRad® 50W X8 (200/400 mesh) resin. The 
procedural blank was less than 2 ng Sr. Sr-isotope composi-
tion was determined on an automated multicollector Phoe-
nix HCT040 (by ISOTOPx, UK) thermal ionization mass 
spectrometer (TIMS) and 87Sr/86Sr values were normalized 
to a 86Sr/88Sr value of 0.1194. The NBS-987 standard was 
routinely analysed along with our samples and gave an aver-
age 87Sr/86Sr value of 0.710246 ± 0.000020 (2σ, n = 10). All 
the 87Sr/86Sr values reported here had within-run statistics 
that were at or below 3.0 × 10− 6 (2σ).

U–Pb SHRIMP detrital zircon ages

Zircon grains from the three analysed samples show simi-
lar characteristics and are generally ca. 100 μm in length 
and have variable shapes, from euhedral prisms with sub-
rounded or broken edges (due to sedimentary transport) to 
equant forms (Fig. 5). Most grains show internal oscilla-
tory zoning and some have xenocrystic cores. No post-dep-
ositional metamorphic rims were recognized. Dating was 
focused on grains with oscillatory zoning.

Sierra de Pie de Palo (SPP‑22043)

Sixty grains were analysed in reconnaissance mode (Sup-
plementary material), seven of which were discarded due to 
high common Pb or discordance; they were not considered as 
significant ages nor included in the probability density plot. 
The remaining analyses range from 462 to 2753 Ma with a 
main peak at ca. 535 Ma, and subordinate groups of ages at 
ca. 680, 1040 and 2040 Ma (Fig. 6). The younger group con-
sists of ages from ca. 460 to 560. The sample was then re-run 
in geochronological mode to better constrain the maximum 
depositional age. Thirty-two analyses were carried out in 
this mode, three of which correspond to Mesoproterozoic 
ages, whereas the younger ones ranged from 437 to 608 Ma Ta
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Fig. 5  Cathodoluminiscence images of zircons from the analysed samples showing morphology and internal structures
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(Fig. 7a, b, c). Seven of the latter ages were discarded due 
to high common Pb or discordance, and were not included 
in the probability density plot. Thus, the youngest concord-
ant age is 494 ± 4 Ma, followed by two concordant spots 
at 496 ± 7 and 506 ± 6 Ma and an age population (n = 13) 
peaking at 525 ± 3 Ma (MSWD = 0.73; P = 0.72; Fig. 7d). 
Zircons from this group are euhedral prisms with variably 
rounded edges (due to transport) and internal oscillatory 
zoning. They have U contents between 104 and 583 ppm, Th 
between 13 and 281 ppm, and Th/U ratios between 0.04 and 
0.75, mostly > 0.4. Zircon morphology, internal structures, 
and Th/U ratios suggest an igneous origin for most of these 
younger grains. As a general value we consider Th/U > 0.1 
as igneous origin and Th/U < 0.1 as metamorphic origin 

following Rubatto (2002, 2017) although this is not always 
applicable (e.g., Grant et al. 2009; Marshall et al. 2011). 
Because of expected but unresolved Pb loss due to Famatin-
ian metamorphic overprint the maximum depositional age of 
this sample must probably lie between 525 ± 3 Ma (youngest 
peak) and 494 ± 4 Ma (youngest single age).

Loma de Las Chacras (LCH‑22049)

Sixty grains were analysed in reconnaissance mode, six 
of which were discarded due to high discordance or com-
mon Pb and were not included in the probability density 
plot. Ages range from 501 to 2673 Ma with a main group 
of dates between 501 and 800 Ma, distributed in peaks 
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at ca. 540, 600 (the main peak) and ca. 800 Ma (Fig. 8a). 
Paleoproterozoic zircons with 207Pb/206Pb ages between 
1860 and 2101 Ma define a discordia in the Wetherill 
diagram with a lower intercept at 1269 ± 69, and an upper 
intercept at 2167 ± 39 (MSWD = 1.11) suggesting that the 
source of the older zircons was a Paleoproterozoic crust 
re-worked in the middle-to-late Mesoproterozoic. The 
younger zircons range from 501 to 549 Ma and corre-
spond to variably round to prismatic grains with internal 
structures from oscillatory zoning to unzoned. They have 
U contents between 85 and 825 ppm, Th = 11–305 ppm 
and Th/U = 0.10–1.03, i.e., commonly igneous values. 
The youngest spot yields 501 ± 8 Ma and is followed 
by two spots at 511 ± 5 and 535 ± 6 Ma. Because some 
unresolved Pb loss cannot be excluded because of the 
Famatinian thermal overprint the latter ages are minimum 
values. If Pb loss was small we can infer a maximum 

depositional age for this sample between ca. 501 Ma and 
ca. 535 Ma.

Pan de Azúcar (PAN‑22001)

Fifty-two analyses were carried out in this sample in recon-
naissance mode, four of which were discarded due to high 
discordance and one due to a damaged grain tip (spot 31; 
Supplementary material), and these were not included in 
the probability density plot. Accepted ages range from 527 
to 1877 Ma with a main peak at ca. 1250 Ma and a smaller 
peak at ca. 1115 Ma. The two youngest zircons yielded 
527 ± 6 and 529 ± 6 Ma, and three older spots yield 544, 
656 and 805 Ma. Only two grains are Paleoproterozoic, at 
ca. 1.83 and 1.88 Ga (Fig. 8b). Zircons have U contents 
between 58 and 799 ppm, Th between 22 and 536 ppm and 
Th/U ratios between 0.15 and 0.99. The younger spots have 
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low common Pb contents. Younger grains are prismatic 
and rounded because of sedimentary transport. They show 
internal oscillatory zoning and have Th/U ratios between 
0.22 and 0.63 suggesting an igneous origin. Since we could 
expect some unresolved Pb loss we infer that the maximum 
depositional age of the quartzite is 527 ± 6 Ma or perhaps 
somewhat older.

Sr‑isotope composition of marbles

Two samples of graphitic marbles from the Nikizanga 
Group (SPP-27016 and SPP-27,018) examined under XRD 
and microscope consist mainly of calcite with accessory 
amounts of dolomite, quartz and graphite. They yielded 
87Sr/86Sr values of 0.70903 and 0.70911, similar to that of 
sample from the same stratigraphic group PPL-46 (87Sr/86Sr 
= 0.70902; Galindo et al. 2004) (Table 2). The three val-
ues are coincident within errors and all passed the chemical 
screening criteria (e.g., Melezhik et al. 2001) suggesting that 
carbonates underwent minor post-depositional modification. 
Moreover, the two samples show high Sr and very low Rb 
contents (Table 2) implying that post-deposition radiogenic 
contribution of 87Rb to the Sr-isotope composition is small.

The Sr-isotope composition of marbles from Pan de Azú-
car and Loma de Las Chacras was modified by alteration 
processes and cannot be used to constrain the depositional 
age (Galindo et al. 2004; Naipauer et al. 2005). However, 
the Sr-isotope composition of the Nikizanga Group marbles 
(87Sr/86Sr between 0.70903 and 0.70911) fits the compiled 
seawater Sr-isotope compositions (Veizer et al. 1999; Hal-
verson et al. 2010; McArthur et al. 2012) between 510 and 
480 Ma on both sides of the maximum 87Sr/86Sr value of ca. 
0.709200 that was reached at ca. 500 Ma (Fig. 9). This range 
(510 − 480 Ma) is compatible with the maximum U–Pb zir-
con depositional ages yielded by sample SPP-22043 from 
the same unit and the other two samples analysed in this 
work.

Discussion

Age of deposition and regional correlation 
of the WSP Cambrian sequences

Detrital zircon geochronology constrains the maximum age 
of sedimentation of the WSP clastic metasedimentary rocks 
studied here to between ca. 535 ± 6 Ma and 494 ± 4 Ma, 
i.e., the minimum and maximum age estimates recovered 
from the three samples. The range can be best bracketed 
between a peak value at 525 ± 3 and 494 ± 4 Ma based on 
sample SPP-22,043. Sr-isotope dating of Nikizanga Group 
marbles (between ca. 510 and 480 Ma) is compatible with 

the younger ages yielded by zircons. Sedimentation most 
probably took place between the late early Cambrian (ca. 
525 Ma; late Terreneuvian) and the late Cambrian (ca. 
490  Ma; Furongian) (International Chronostratigraphic 
Chart, 2017; Cohen et al. 2013). This interpretation is com-
patible with the absence in all the successions of zircons 
that can be reliably ascribed to derivation from Famatinian 
granitoids (≤ 490 Ma; Pankhurst et al. 2000) and with the 
end of the Pampean orogeny and related collisional magma-
tism at ca. 520 Ma (Casquet et al. 2018). Detrital zircon age 
patterns and maximum depositional ages similar to those of 
the WSP sequences described here have been recognized in 
other metasedimentary successions in Argentina. They are 
shown in Fig. 11 separated into two groups, according to 
whether they contain or not detrital grains with Paleoprote-
rozoic Rio de la Plata craton ages. Overall the samples show 
three main groups of detrital zircon ages: early Cambrian 
(Pampean orogeny), Neoproterozoic (Brasiliano orogeny) 
and Mesoproterozoic (Grenville orogeny). A group of sam-
ples further show grains with Paleoproterozoic ages assigned 
to the Rio de la Plata craton (between ca. 2.0 and 2.2 Ga; 
Rapela et al. 2007; see Fig. 11).

Marbles similar to those of the Nikizanga Group, Pan de 
Azúcar and Loma de Las Chacras were also recognized in 
the thick carbonate succession of the upper Caucete Group 
(El Desecho and Angacos formations; Naipauer et al. 2010b) 
in the western flank of the Sierra de Pie de Palo. In fact, 
the Caucete Group marbles were correlated on the basis 
of their Sr-isotope composition with the Nikizanga Group 
marbles by Galindo et al. (2004). U–Pb LA–ICP–MS detri-
tal zircon ages obtained by Naipauer et al. (2010b) in the 
lower siliciclastic layers of the Caucete Group (El Que-
mado and La Paz formations) record two main groups of 
ages between ca. 1000 and 1450 Ma, and a minor group 
between ca. 550 and 530 Ma. Naipauer et al. (2010b) sug-
gested a minimum 207Pb/206Pb age of ca. 550 Ma for the 
El Quemado Fm. (sample QLPcz2), which was interpreted 
as the maximum depositional age of the Caucete Group. 
However, a weighted average 238U/206Pb age of 517 ± 10 Ma 
(n = 12) was recalculated for the youngest zircons of sample 
QLPcz2 by Amato and Mack (2012). Thus, the maximum 
depositional age of the El Quemado Fm. could be much 
younger and within the range of ages argued above for the 
Nikizanga Group quartzite. Moreover, the youngest detrital 
zircons from sample QLPcz2 have morphology and internal 
texture features similar to those of our samples. Such a cor-
relation has important paleogeographic consequences (see 
below). Cambrian marbles have been found in other areas of 
the WSP, e.g., Sierra de El Gigante and Sierra de Umango 
(Fig. 2); (Galindo et al. 2004; Varela et al. 2001) as well as 
in Patagonia (Mina Gonzalito complex; Varela et al. 2014) 
indicating that coeval carbonate sedimentation took place 
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over a wide area in the late early to the late Cambrian times 
(triangles in Fig. 10).

Provenance of siliciclastic units 
and paleogeographic implications

Comparison of the detrital zircon age patterns of the WSP 
studied in this contribution with those of Patagonia, the 
ESP, NW Argentina, and the Tandilia and Ventania systems 
suggest that a continuous sedimentary basin with similar 
sedimentary sources probably existed over a very large area 
of SW Gondwana between the end of the Pampean orogeny 
(ca. 520 Ma) and the beginning of Famatinian subduction 
(ca. 490 Ma). The source areas of the correlated sequences 
mentioned above can be attributed to the Pampean belt 
(520–545 Ma), the Brasiliano/Panafrican orogen (SE Brazil; 
570–700 Ma), the Natal-Namaqua belt (southern Kalahari 
craton; 1.0–1.2 Ga) and the Río de la Plata craton (Paleo-
proterozoic ages; 2.05–2.2 Ga) (Fig. 12). Cannibalization 
of both the Puncoviscana Formation and the Difunta Cor-
rea Metasedimentary Sequence may also have played a role 
providing Mesoproterozoic zircons between 1.0 and 1.45 Ga 
(Ramacciotti et al. 2015a; Rapela et al. 2016 and references 
therein). Both formations were thoroughly involved in the 
Pampean orogeny.

Torsvik and Cocks (2011, 2013) suggested that an exten-
sive shelf existed along the SW Gondwana margin in the 
middle Cambrian. This model was used by Casquet et al. 
(2012b) to explain similarities in the detrital zircon age pat-
terns of the post-Pampean metaasedimentary successions 
of the ESP and the Tandilia–Ventania. We hypothesize here 
that the shelf also extended to the WSP, Patagonia and NW 
Argentina (Fig. 12a, b). In this hypothesis, the WSP prob-
ably constituted the outer (deepest) part of the basin. The 
scarcity or absence of marble or calc-silicate rocks of late 
early-to-late Cambrian age in the ESP and NW Argentina 
(Mesón Group) probably resulted from an inner position in 
the platform, i.e., closer to the coast line, where siliciclastic 
sedimentation prevailed (Augustsson et al. 2011). Further 
west (i.e., seaward) carbonate sedimentation took over, as is 
common in the outer part of mixed carbonate–siliciclastic 
shelves (e.g., Yancey 1991). Greco et al. (2017) hypothe-
sized that the late early Cambrian metasedimentary rocks of 
the North Patagonian Massif (e.g., the Nahuel Niyeu basin), 
which we interpret here as part of the SW Gondwana shelf, 
were laid down in a subduction-related extensional forearc 
basin. However, no evidence whatsoever of a subduction-
related magmatic arc or of deformation and metamorphism 
of late early Cambrian age is recognized in the extensive 
Sierras Pampeanas or NW Argentina regions. Moreover, in 
the late early-to-middle Cambrian (520 − 500 Ma), anoro-
genic rift-related magmatism was widespread in the Sierra 
de la Ventana and its South African pre-Atlantic counterpart, 

the Saldania belt (Rozeendal et al. 1999; Da Silva et al. 
2000; Rapela et al. 2003).

Verdecchia et  al. (2011) divided the Cambrian ESP 
metasedimentary successions according to whether or not 
they contained zircons with ages typical of the Río de la 
Plata craton (Paleoproterozoic; 2.05–2.2 Ga). This craton 
reached its present position east of the Sierras Pampeanas 
by large-scale right-lateral displacement along the Córdoba 
fault between 520 and 510 Ma (Rapela et al. 2007) (Fig. 12a, 
b). The rising Pampean orogenic belt probably hindered the 
access of detritus from the Río de la Plata craton to the shelf 
in the early stage. Later, sometime between 520 and 510 Ma, 
the orographic barrier disappeared, at least part of it, and 
zircons from the craton could reach the sedimentary basin 
in the west (Verdecchia et al. 2011) (Fig. 12c, d). The first 
group (older) has abundant Mesoproterozoic zircons and 
a lack of Río de la Plata craton ages; it is represented by 
the Caucete Group, the Pan de Azúcar, three units from the 
ESP (Negro Peinado Fm., Sierra de Ambato, and Sierra de 
Valle Fértil) and the North Patagonian Massif succession 
(Fig. 11). The second group is characterized by the presence 
of zircons with Río de la Plata craton ages (2.05–2.2 Ga), 
dominant Pampean and Brasiliano ages, and a subordinate 
Mesoproterozoic component. Sequences of this group are 
represented by the Nikizanga Group, the Ventania and 
Tandilia sediments, the Mesón Group, two ESP units (Sierra 
de Los Llanos and Achavil Fm.) and Loma de Las Chacras 
(Fig. 11). We propose that after final docking of the Río 
de la Plata craton the shelf sediments were mainly sourced 
from exposed Pampean orogenic belt and that a Brasiliano 
component gradually increased in importance as the Pam-
pean belt was eroded and eventually covered by sediments 
(Fig. 12c, d).

The Cambrian continental platform recognized in Argen-
tina probably extended northwards to Peru and Bolivia and 
south westwards to SW Africa (Chew et al. 2007; Barnett 
et al. 1997). The Old Marañon complex of Peru contains 
migmatites of ca. 478 Ma (leucosome igneous zircons) 
whose sedimentary protoliths were deposited at ca. 530 Ma 
(Chew et al. 2007). Although detrital zircon ages were not 
determined in these migmatites, Ordovician granitoids and 
the Young Marañon complex contain abundant zircons of 
ca. 520–500 Ma, ca. 600–650 Ma and 900–1300 Ma (Chew 
et al. 2007, 2008; Cardona et al. 2009). These ages are 
similar to those of the Argentinian late early-to-late Cam-
brian metasedimentary rocks described in this work. Car-
dona et al. (2009) invoked a Pampean age basement hidden 
below the Peruvian Andes to explain the detrital zircon ages, 
although that basement has not yet been found. An alterna-
tive explanation is that the sediments were transported from 
the south (Pampean orogenic belt), along the western margin 
of the Amazonia craton. Similar detrital zircon age patterns 
to those of the Marañon complex were also recognized in 
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the Ordovician sedimentary rocks of the Arequipa Massif of 
southern Peru and Bolivia (Reimann et al. 2010).

In the Saldania belt (South Africa) (Fig. 12), the Kango 
Group comprises a lower carbonate–turbiditic association 
(Goegamma Subgroup) and an upper clastic succession 
(Kansa Subgroup). The latter is represented by immature 
sandstones and conglomerates which were interpreted 
as beach, fluvial and alluvial fans deposits (Le Roux and 
Gresse 1983). They have detrital zircon ages of ca. 520 Ma 
and were probably deposited in the early Cambrian (Barnett 
et al. 1997). Moreover, the Upper Nama Group (Fish River 
Subgroup) in Namibia corresponds to shallow marine and 
fluvial sediments (Germs 1974, 1983; Geyer 2005) with a 
maximum depositional age of ca. 530 Ma (detrital zircon 
ages; Blanco et al. 2011). All these African sediments may 
correspond to the internal part, i.e., near to the shoreline, of 
the shelf inferred here (Fig. 12a, b).

Implications for the Precordillera/Cuyania terrane

As previously explained, there are two contrasting hypoth-
eses for the origin of the Precordillera terrane and of its 
greater version, the Cuyania composite terrane of Ramos 
et al. (2004 and references therein). Either it was an alloch-
thonous terrane in relation to Gondwana or an autochtho-
nous part of the proto-Andean margin of Gondwana during 
the early Paleozoic (see Finney 2007 and references therein). 
With the evidence provided in this contribution we can now 
better constrain the extent of the Cuyania terrane in the 
WSP. In the allochthonous model, at the time of deposition 
of the WSP sequences (probably mainly between ca. 525 
and 490 Ma), the hypothetical Cuyania terrane was an iso-
lated block drifting across the Iapetus Ocean. Its source was 
allegedly the Ouachita embayment in the Appalachian mar-
gin of Laurentia from which it rifted at ca. 540 Ma to fur-
ther collide with Gondwana in the Ordovician (e.g., Astini 
et al. 1995; Keller 1999; Thomas et al. 2012). A source of 

Cambrian zircons might be found in the igneous rocks of 
the Oklahoma fault system, i.e., the northern boundary of 
the Ouachita embayment, where igneous rocks between 540 
and 530 Ma are found (Thomas et al. 2012 and references 

Fig. 9  87Sr/86Sr ratios of Neo-
proterozoic to early Paleozoic 
seawater carbonates after com-
pilation of Veizer et al. (1999) 
and Halverson et al. (2010). The 
Nikizanga Group marbles with 
87Sr/86Sr ratios of 0.70903–
0.70911 suggest a deposition 
between ca. 510 and 480 Ma, 
coeval with the Caucete Group

0.7055

0.7060

0.7070

0.7075

0.7080

0.7085

0.7090

0.7095

0.7065

450 500 550 600 650 700 750 800

Caucete Group (Galindo et al., 2004; Naipauer et al., 2005)

Nikizanga Group (this paper and Galindo et al., 2004)

Age (Ma)

87
86

S
r/

S
r

Halverson et al., 2010

Veizer et al., 1999
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Fig. 11  Probability density plots 
of U–Pb detrital zircon ages 
from the late early to the late 
Cambrian clastic metasedimen-
tary rocks (Roman numerals 
correspond to samples location 
in Fig. 10). Left-hand column: 
samples with no zircons with 
Río de la Plata craton ages; 
right-hand column: samples 
with Río de la Plata age zircons
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therein). However, the latter ages are older than the well-
defined group of grains of ca. 525 Ma found in our samples. 
This argument can be extended to the 517 ± 10 Ma group 
of detrital zircon grains that constrain the maximum sedi-
mentation age of the Caucete Group—allegedly part of the 
composite Cuyania terrane (review in Ramos 2004). By this 
time the Precordillera/Cuyania terrane had already drifted 
away from Laurentia. In consequence in the allochthonous 
hypothesis the source of Cambrian zircons found in our sam-
ples (and in the Caucete Group) had to be in the Precordil-
lera/Cuyania basement itself: such a source has not so far 
been identified. In the other model, which postulates that the 
WSP basement was part of the SW Gondwana margin in the 
early Cambrian, the source of Cambrian zircons contained 
in the Caucete Groups and in the clastic metasedimentary 
units on the east can be easily found in the Pampean oro-
genic belt, where ages between 520 and 545 Ma are widely 
recorded (e.g., Rapela et al. 1998; Schwartz et al. 2008; Ian-
nizzotto et al. 2013; von Gosen et al. 2014; Casquet et al. 
2018). Thus, the Caucete Group and the Cambrian clas-
tic metasedimentary rocks studied here can be correlated. 

Mesoproterozoic zircons of the Caucete Group (Sierra de Pie 
de Palo) between ca. 1.0 and 1.45 Ga attributed to Lauren-
tian sources by Naipauer et al. (2010b) are interpreted here 
as derived from the re-working of the underlying Difunta 
Correa Metasedimentary Sequence—and/or its Grenvillian 
basement in the WSP-, where such ages comprise the main 
zircon populations (Ramacciotti et al. 2015a; Rapela et al. 
2005, 2016).

Conclusions

The post-Pampean (≤ 525 Ma) clastic metasedimentary 
rocks and marbles of the WSP were variably overprinted 
by the Ordovician Famatinian orogeny (metamorphism 
and magmatism) at ≤ 490 Ma. Detrital zircon ages together 
with the Sr-isotope composition of marbles suggest that 
deposition took place mainly between ca. 525 and 490 Ma.

Between the end of the Pampean orogeny at ca. 520 Ma 
and the beginning of the Famatinian subduction (ca. 
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490 Ma) an extensive mixed carbonate–siliciclastic plat-
form existed on the SW Gondwanan margin of the Iapetus 
Ocean extending at least from Patagonia to NW Argentina. 
The continental margin was thus passive for approximately 
30 myrs. This platform formed in part on the formerly 
accreted MARA block and probably extended as far east 
as the Rio de la Plata craton.

Detrital zircons were variably sourced from the ero-
sion of the uplifted early Cambrian Pampean orogenic 
belt, from the Neoproterozoic Brasiliano orogen and from 
re-working of the Ediacaran to early Cambrian Difunta 
Correa Metasedimentary Sequence and the WSP Grenvil-
lian basement. Final denudation of the Pampean orogen 
eventually allowed input to the basin of detritus from the 
Paleoproterozoic Río de la Plata craton.

Detrital zircon ages and Sr-isotope compositions of the 
WSP successions support the hypothesis that the WSP 
were already attached to SW Gondwana in early Cambrian 
times as part of the MARA block. Therefore, the WSP 
were part of the upper plate during Famatinian subduc-
tion, and not part of the allegedly allochthonous Cuyania/
Precordillera terrane (lower plate) as previously thought.
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