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Non-Markovian quantum jumps from measurements in bipartite Markovian dynamics
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The quantum jump approach allows to characterize the stochastic dynamics associated with an open quantum
system submitted to a continuous measurement action. In this paper we show that this formalism can consistently
be extended to non-Markovian system dynamics. The results rely on studying a measurement process performed
on a bipartite arrangement characterized by a Markovian Lindblad evolution. Both renewal and nonrenewal
extensions are found. The general structure of nonlocal master equations that admit an unraveling in terms of
the corresponding non-Markovian trajectories is also found. By studying a two-level system dynamics, it is
demonstrated that non-Markovian effects such as an environment-to-system flow of information may be present
in the ensemble dynamics.
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I. INTRODUCTION

One of the central achievements of the theory of open
quantum systems is the possibility of assigning to a given
master equation an ensemble of stochastic realizations. They
can be put in one-to-one correspondence with a well-defined
continuous-in-time measurement process performed over the
system of interest. When the measurement apparatus is able
to detect transitions between the system’s levels [1–5], the
realizations consist in a sequence of disruptive instantaneous
changes, associated with the measurement recording events,
while in the intermediate time regime the ensemble dynamics
is smooth, being defined by a nonunitary dynamics. These
basic ingredients, which define the quantum jump approach
(QJA) [6–8], are well understood for Markovian dynamics,
that is, those where the evolution of the system density matrix
is local in time.

In the last ten years, an ever-increasing interest has been
paid to the development of a consistent non-Markovian
generalization of the standard (Markovian) open quantum
system theory [8]. In the generalized scheme the system
density-matrix evolution is characterized by (time-convoluted)
memory contributions [9–21]. Both a theoretical interest as
well as a wide range of physical applications motivate this line
of research.

Relevant achievements in the study of non-Markovian
master equations were formulated on the basis of stochastic
phenomenological approaches [10–13] and related concepts
[14–21]. On the other hand, much less progress has been
achieved in the formulation of stochastic processes that can
be read as the result of a continuous measurement action
performed over a system characterized by a nonlocal-in-time
(non-Markovian) evolution. In fact, while there exist different
stochastic dynamics that on average recover a non-Markovian
density matrix evolution, its reading in terms of a continuous
measurement process is problematic. Remarkable examples
are the non-Markovian quantum state diffusion model [22] and
the unraveling of local-in-time master equations characterized
by negative transition rates [23]. The realizations associated
with these approaches can only be read in the context of
hiddenlike-variable models [22,23].

The main goal of this paper is to demonstrate that it is
possible to formulate a consistent generalization of the QJA
such that on average the ensemble of measurement realizations
recovers a nonlocal non-Markovian density matrix evolution.
The basic idea of our analysis is to study the QJA in a bipartite
Markovian arrangement. Then, we search for the conditions
(interaction symmetries) that allows to formulate a closed
stochastic dynamic for the system of interest. The coupling
with the second or auxiliary system introduces the memory
effects. In contrast with previous approaches [22,23], the
reading of the stochastic realizations in terms of a continuous-
in-time measurement process is guaranteed by construction.

We show that a renewal non-Markovian measurement
process can be obtained from the bipartite dynamics. Renewal
means that the interval statistics between successive events is
always the same, being defined by a probability distribution
called the waiting-time distribution [3]. A nonrenewal dynam-
ics is also defined. As in the standard Markovian formalism,
the occurrence of each case depends on the properties of the
resetting state [5] associated with each measurement event.
The structure of the corresponding non-Markovian master
equations is also found.

We remark that there exist previous studies where the
QJA is formulated for a system that interacts with extra
unobserved “classical” degrees of freedom [24–26]. While our
approach relies on a similar underlying dynamic (strictly, here
no classicality condition is imposed), we demonstrate that over
a similar basis it is possible to get a consistent non-Markovian
generalization of the QJA. In fact, in contrast with previous
contributions [24–26], we focus the analysis on the possibility
of establishing a closed stochastic system dynamics, that is,
without involving “explicitly” the degrees of freedom of the
auxiliary system.

The paper is outlined as follows. In Sec. II, in order
to introduce the notation as well as basic results on which
our analysis relies, we provide a summary of the standard
Markovian QJA. In Sec. III we demonstrate that the basic
structure of the standard QJA can be embedded in a bipartite
Markovian dynamics, providing in this way the theoretical
background for its non-Markovian generalization. Possible
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(bipartite) interactions that lead to a closed system dynamics
are found. The non-Markovian density matrix evolution is
determined for both renewal and nonrenewal measurement
processes. In Sec. IV we study a particular example that
explicitly shows the consistency of the present proposal.
Furthermore, it demonstrate that non-Markovian features such
as an environment-to-system flow of information [27] may
be present in the ensemble dynamics. The conclusions are
presented in Sec. V. In Appendix A we provide a derivation of
the statistics of the measurement events in the standard case.
In Appendix B we work out an alternative derivation of the
non-Markovian system density matrix evolution based on the
measurement statistics.

II. MARKOVIAN QUANTUM JUMPS

The standard QJA allows defining the (stochastic) dynamics
of an open quantum system when it is subjected to a
measurement process. The basic ingredients of the formalism
are the system density matrix evolution, the definition of
the apparatus measurement action, the conditional dynamics
between detection events, and their statistical characterization.
Below, we review these elements.

We write the evolution of the system density matrix ρs
t as

d

dt
ρs

t =
(
L̂0 +

∑
α

γαĈ[Vα]

)
ρs

t , (1)

where L̂0 is an arbitrary superoperator that may include
Hamiltonian as well as dissipative (Lindblad) superoperators
[8]. From now on the caret denotes a superoperator. The
second contribution in (1) is defined by an addition of Lindblad
channels

Ĉ[V ]ρ = VρV † − 1
2 {V †V,ρ}+, (2)

each one characterized by the operator Vα and the transition
rate γα. With {·,·}+ we denote an anticommutation operation.

We assume that the system is monitored by only one
measurement apparatus, which is sensible to all Lindblad
transitions channels Ĉ[Vα]. Hence, the master equation (1)
is rewritten as

d

dt
ρs

t = (D̂ + Ĵ )ρs
t . (3)

The superoperator Ĵ reads

Ĵ ρ =
∑

α

γαVαρV †
α . (4)

It defines the system transformation after a measurement event.
In fact, when a recording event happens, consistently with
quantum measurement theory [8], the system density matrix
suffers the disruptive transformation ρ → M̂ρ (jump or state
collapse),

M̂ρ = Ĵ ρ

Trs[Ĵ ρ]
=

∑
α γαVαρV †

α{∑
α γαTrs[V

†
αVαρ]

} , (5)

where Trs[· · ·] denotes a trace operation. On the other hand,
in Eq. (3) the superoperator D̂ is defined as

D̂ρ = L̂0ρ − 1

2

∑
α

γα{V †
αVα,ρ}+. (6)

In the QJA, this superoperator defines the system dynamics
between detection events. In fact, given that in the interval (τ,t)
no detection event happens, the system dynamics is defined by
the (conditional) normalized propagator

T̂c(t − τ )ρ = T̂ (t − τ )ρ

Trs[T̂ (t − τ )ρ]
. (7)

The superoperator D̂ generates the dynamics of the unnor-
rmalized propagator T̂ (t − τ ), which reads

T̂ (t − τ )ρ = exp[(t − τ )D̂]ρ. (8)

In this way, the trajectories associated with the measurement
process are a piecewise deterministic process [8] which
combine a deterministic time evolution [Eq. (7)] with jump
processes [Eq. (5)].

The propagator T̂ (t) completely defines the statistics of the
measurement process. In fact, it allows to calculate the survival
probability between measurement events. Given that at time τ

the state of the system is ρτ , the probability P0(t − τ |ρτ ) of
no detection event happening in the interval (τ,t) is

P0(t − τ |ρτ ) = Trs[T̂ (t − τ )ρτ ]. (9)

The probability distribution w(t − τ |ρτ ) of the interval (t − τ )
follows as w(t − τ |ρτ ) = −(d/dt)P0(t − τ |ρτ ), delivering

w(t − τ |ρτ ) = −Trs[D̂T̂ (t − τ )ρτ ]. (10)

By using that (d/dt)Trs[ρs
t ] = 0, Eq. (3) implies that

−Trs[D̂·] = Trs[Ĵ ·], leading to the equivalent expression
w(t − τ |ρτ ) = Trs[Ĵ T̂ (t − τ )ρτ ]. On the other hand, notice
that P0(t − τ |ρτ ), or equivalently w(t − τ |ρτ ), depends ex-
plicitly on the state ρτ .

From the previous statistical objects it is possible to define
the “conditional distribution” [3]

wc(t − τ |ρτ ) = w(t − τ |ρτ )

P0(t − τ |ρτ )
. (11)

It defines the probability density for recording a detection event
at time t, given that no counts are recorded in the interval (τ,t),
and given that the last one was recorded at time τ. Therefore,
wc(t − τ |ρτ ) gives the probability density for a jump at time
t given that we know that no event occurred up to the present
time since the last one [3]. Trivially, from Eqs. (9) and (10) it
can be written as

wc(t − τ |ρτ ) = −Trs[D̂T̂ (t − τ )ρτ ]

Trs[T̂ (t − τ )ρτ ]
. (12)

A. Stochastic dynamics

With the previous elements, it is possible to define the
dynamics of a stochastic density matrix ρst

s (t) such that its
average over realizations, denoted by an overbar, recovers the
system state

ρs
t = ρst

s (t). (13)

Each realization corresponds to a given recording realization
of the measurement apparatus. Its structure can be established
by studying the counting statistics of the measurement process
(see Appendix A).
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Given the initial state ρs
0, we can evaluate P0(t − 0|ρs

0).
The time t1 of the first detection event follows by solving the
equation P0(t1 − 0|ρs

0) = r, where r is a random number in
the interval (0,1). The dynamics of ρst

s (t) in the interval (0,t1)
is defined by Eq. (7). At t = t1 the disruptive transformation
ρst

s (t1) → M̂ρst
s (t1) is applied. The subsequent dynamics is

the same. In fact, after the nth measurement event at time tn,

ρst
s (tn) → M̂ρst

s (tn), the time tn+1 for the next detection event
follows from

P0(tn+1 − tn|M̂ρst
s (tn)), (14)

equated to r, where again r is a random number in the interval
(0,1). The dynamics in the interval (tn,tn+1) is defined by the
conditional propagator (7).

The previous algorithm determines the realizations over
finite time intervals [6]. It is also possible to obtain
the evolution over infinitesimal intervals. Its structure remains
the same [Eqs. (5) and (7)]. Nevertheless, instead of Eq. (14),
the jump statistics are determined from wc(t − τ |ρτ ), Eq. (11).
Given that the last event happened at time τ and that no
detection was found in the interval (τ,t), the probability �P of
having a detection event in the infinitesimal interval (t,t + dt)
is (by definition) [3]

�P = wc(t − τ |ρst
s (τ )) dt. (15)

From Eqs. (6), (7), and (12), we can write

�P =−dtTrs
[
D̂ρst

s (t)
]=dt

∑
α

γαTrs
[
V †

αVαρst
s (t)

]
. (16)

The happening or not of a detection follows by comparing �P

with a random number in the interval (0,1). This alternative
algorithm generates the same realizations as the previous one
[6]. Nevertheless, in this last scheme the Markovian property of
the underlying master equation is self-evident in the expression
for �P. In fact, �P does not depend on the “history” of ρst

s (t)
in the interval (τ,t). It depends only on ρst

s (t).

B. Renewal and nonrenewal measurement processes

An extra understanding of the QJA is achieved by specifying
the operators {Vα} that determine the measurement transfor-
mation Eq. (5). When the system state after a measurement
event (resetting state) is always the same, the statistics of the
time interval between events is defined by a unique probability
distribution (the waiting-time distribution). In this case, the
measurement process is a renewal one. This situation arises
when the measurement apparatus is sensible to all transitions
(|u〉 � |rα〉) between a given system state |u〉 and a set of
alternative states {|rα〉}. Therefore, the operators {Vα} have the
structure

Vα = |rα〉〈u|, (17)

which in turn, from Eq. (5), imply the measurement transfor-
mation

M̂ρ = ρ̄s ≡
∑

α

pα|rα〉〈rα|, pα = γα{∑
α γα

} . (18)

Hence, the conditional dynamics [Eq. (7)] always starts in
the same resetting state ρ̄s [5,6]. Furthermore, the survival
probability and waiting-time distribution [Eqs. (9) and (10),

respectively], after the first event (ρτ → M̂ρ = ρ̄s) are always
the same, being defined as

P0(t) = Trs[T̂ (t)ρ̄s], w(t) = −Trs[D̂T̂ (t)ρ̄s]. (19)

In consequence, the interval statistics does not depend explic-
itly on the time τ of the last events and it is always the same.
The operators (17) arise, for example, in optical systems such
as two-level fluorescent systems, where ρ̄s is a pure state, and
three-level � configurations [5,6].

In general, the operators may read

Vα = |rα〉〈uα|, (20)

that is, the measurement apparatus is sensible to different tran-
sitions |uα〉 � |rα〉. This case may happen when the natural
frequencies of the different transitions are indistinguishable
for the measurement apparatus; for example in cascade optical
systems [5]. The measurement transformation

M̂ρ =
∑

α γα〈uα|ρ|uα〉|rα〉〈rα|{∑
α γα〈uα|ρ|uα〉} (21)

delivers a state that depends on the predetection state. Hence,
it is not possible to define a unique statistical object as in the
previous case, that is, the survival probability and waiting-time
distribution correspond to the general expressions Eqs. (9)
and (10), respectively.

III. NON-MARKOVIAN QUANTUM JUMPS FROM
BIPARTITE MARKOVIAN DYNAMICS

The previous elements and results that define the QJA,
without introducing any new element, can also be established
for bipartite dynamics. Here, in addition to the system of
interest S we consider an auxiliary or ancilla system A. Their
joint dynamics is Markovian. Furthermore, we assume that
the measurement apparatus is sensible to the same system
transitions as before. Thus, we can define a stochastic density
matrix ρsa

st (t) such that its average over realizations recovers
the bipartite density matrix ρsa

t = ρsa
st (t). The density matrix

of S is recovered by a partial trace operation over the auxiliary
system A,

ρs
t = Tra

[
ρsa

t

] = Tra
[
ρsa

st (t)
]
. (22)

Trivially, by introducing the stochastic matrix

ρs
st(t) = Tra

[
ρsa

st (t)
]
, (23)

we recover Eq. (13), that is, ρs
t = ρs

st(t). At this point, we
ask about the existence of different S-A interactions and
evolutions under which it is possible to get a closed stochastic
dynamics for ρs

st(t), that is, without involving explicitly the
ancilla state. In addition to this constraint, here we search for
interaction structures that introduce a minimal modification of
the standard approach, that is, it should be possible to define a
measurement transformation [Eq. (5)], a conditional interevent
dynamic [Eq. (7)], and a survival probability [Eq. (9)].
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A. Bipartite Markovian embedding

Taking into account the evolution Eq. (1), we write the
bipartite evolution as

d

dt
ρsa

t =
(
L̂0 +

∑
αlm

γαlmĈ[Vαlm]

)
ρsa

t . (24)

The operators Vαlm are defined as

Vαlm = Vα ⊗ |al〉〈am|. (25)

The set of states {|al〉} provides an orthogonal and normalized
basis of the ancilla Hilbert space. The system operators {Vα}
are the same as before. Notice that the diagonal contributions,
defined by the operators Vαmm = Vα ⊗ |am〉〈am|, correspond
to system’s transitions that only happen when the ancilla
system is in the state |am〉. The nondiagonal contributions
Vαlm = Vα ⊗ |al〉〈am| correspond to system transitions that
occur simultaneously with the ancilla transition |am〉 � |al〉.

In Eq. (24), the superoperator L̂0 includes not only the
system evolution [L̂0 in Eq. (1)] but also an arbitrary evolution
for the ancilla system as well as the system-ancilla interaction.
For this last contribution, we only demand that it must not
include any interaction proportional to the transitions defined
by the operators {Vα}. On the other hand, the measurement
apparatus remains the same, that is, it only detects the
system transitions. Therefore, we split the bipartite master
equation (24) as

d

dt
ρsa

t = (D̂ + Ĵ )ρsa
t , (26)

where the superoperator Ĵ reads

Ĵρ =
∑
αlm

γαlmVαlmρV
†
αlm. (27)

The measurement transformation [see Eq. (5)] in the bipartite
Hilbert space becomes

M̂ρ = Ĵρ

Trsa[Ĵρ]
=

∑
αlm γαlmVαlmρV

†
αlm{∑

αlm γαlmTrsa[V †
αlmVαlmρ]

} . (28)

The goal is to obtain a closed (stochastic) evolution for the
system with almost the same elements as in the Markovian
case. The free parameters are the rates γαlm. In order to have
the same measurement transformation as before [Eq. (5)], for
arbitrary bipartite states ρsa one must demand the condition

Tra[M̂ρsa] = M̂[ρs], (29)

where evidently ρs = Tra[ρsa]. There exist different ways of
satisfying this condition. Here, for simplicity, we choose the
constraint

M̂ρsa = M̂[ρs] ⊗ ρ̄a, (30)

where ρ̄a is a particular ancilla density matrix. Notice that after
a measurement event, the system and ancilla become uncorre-
lated. Trivially, this measurement transformation satisfies the
previous condition Eq. (29).

The conditional system dynamics between collision events
can be written as in Eq. (7), but now the unconditional
propagator reads

T̂ (t − τ ) = Tra{exp[D̂(t − τ )]ρ̄a}. (31)

It arises from the partial trace over the ancilla system of the
bipartite conditional propagator T̂ (t − τ ) = exp[D̂(t − τ )],
and the condition (30). The superoperator D̂ is

D̂ρ = L̂0ρ − 1

2

∑
αlm

γαlm{V †
αlmVαlm,ρ}+. (32)

As we have chosen the stronger separability condition (30),
the propagator defined by T̂ (t) [Eq. (31)] not only is com-
pletely positive but also its time evolution is given by an
homogeneous equation. In fact, in a Laplace domain, f (z) ≡∫ ∞

0 dte−ztf (t), Eq. (31) becomes T̂ (z) = Tra[ 1
z−D̂

ρ̄a]. This

expression can be rewritten as T̂ (z) = {Tra[(z − D̂)−1(z −
D̂)ρ̄a]}−1 × {[T̂ (z)]−1}−1. Using in the curly brackets that
M−1 × N−1 = (N × M)−1, where M and N are arbitrary ma-
trices, it follows that T̂ (z) = ([T̂ (z)]−1{zTra[(z − D̂)−1ρ̄a] −
Tra[(z − D̂)−1D̂ρ̄a]})−1, which in turn leads to the expression
T̂ (z) = [z − D̂(z)]−1, where the system superoperator D̂(z) is

D̂(z) =
{

Tra

[
1

z − D̂
ρ̄a

]}−1

Tra

[
1

z − D̂
D̂ρ̄a

]
. (33)

Hence, in the time domain we get

d

dt
T̂ (t) =

∫ t

0
dt ′D̂(t − t ′)T̂ (t ′), (34)

where the memory superoperator D̂(t) is defined by its Laplace
transform (33). We notice that in the Markovian case T̂ (t) =
exp[tD̂] [see Eq. (8)] implying the local-in-time evolution
(d/dt)T̂ (t) = D̂T̂ (t). Thus, in the present approach the
conditional evolution between measurement events becomes
nonlocal in time. This property also implies that in general,
even for pure initial conditions |�〉, the conditional evolution
cannot be decomposed into pure states [6–8], that is,

T̂ (t)(|�〉 〈�|) 	= |�(t)〉 〈�(t)| . (35)

Under the assumption Eq. (30), the previous analysis
demonstrates that it is possible to obtain a closed evolution
for the system dynamics. It remains to determine the statistics
of the measurement events. As the bipartite dynamics is
Markovian, here we also have a well-defined survival prob-
ability [see Eq. (9)]. By using Eq. (30), it is possible to write

P0(t − τ |ρτ ) = Trsa{exp[(t − τ )D̂]ρτ ⊗ ρ̄a} (36a)

= Trs[T̂ (t − τ )ρτ ], (36b)

where T̂ (t) is given by Eq. (31). Notice that ρτ is a system
state. Furthermore, this expression has the same structure as
Eq. (9). The definition of the conditional propagator T̂ (t)
is the unique difference. The corresponding waiting-time
distribution [Eq. (10)] here reads

w(t − τ |ρτ ) = −Trsa{D̂ exp[(t − τ )D̂]ρτ ⊗ ρ̄a}. (37)

From Eq. (34) the equivalent expression follows:

w(t − τ |ρτ ) = −
∫ t−τ

0
dt ′Trs[D̂(t − t ′)T̂ (t ′)ρτ ], (38)

which leads to a natural non-Markovian generalization of
Eq. (10). On the other hand, the conditional waiting-time
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distribution Eq. (11) here becomes

wc(t − τ |ρτ ) = − ∫ t−τ

0 dt ′Trs[D̂(t − t ′)T̂ (t ′)ρτ ]

Trs[T̂ (t − τ )ρτ ]
. (39)

B. Stochastic dynamics

As in the Markovian case, the previous objects
[Eqs. (30), (34), and (36)] completely define the system realiza-
tions associated with the measurement process. Therefore, the
algorithm associated with Eq. (14) remains exactly the same.
The unique modification is the definition of the propagator
T̂ (t), which in turn modifies the conditional dynamics as well
as the measurement event statistics.

On the other hand, the infinitesimal-time-step algorithm de-
fined by Eq. (15) can also be applied. Nevertheless, in contrast
to Eq. (16), here it is not possible to write a simple expression
for �P in terms of either ρs

st(t) or its history [see Eq. (39)].
Therefore, in this generalized non-Markovian approach the
infinitesimal algorithm, while it can be formally implemented,
it does not provide an efficient numerical simulation method,
nor does it have a simple physical interpretation.

C. Symmetries of the bipartite dynamics

It remains to demonstrate that in fact there exist different
bipartite Lindblad equations that fulfil the condition (30),
where the bipartite measurement transformation is given by
Eq. (28). From Eq. (25), it can be written as

M̂ρ =
∑

αlm γαlmVα〈am|ρ|am〉V †
α ⊗ |al〉〈al|{∑

αlm γαlmTrs[Vα〈am|ρ|am〉V †
α ]

} . (40)

The result of calculating Tra[M̂ρ] can be written in terms of
M̂ [Eq. (5)] only if γαlm = γαldm, where dm is an arbitrary
dimensionless coefficient. Equation (40) becomes

M̂ρ =
∑

αm γαVαdm〈am|ρ|am〉V †
α ⊗ ρ̄α

a{ ∑
αm γαTrs[Vαdm〈am|ρ|am〉V †

α ]
} , (41)

where ρ̄α
a ≡ ∑

l(γαl/γα)|al〉〈al | and γα ≡ ∑
l γαl . With the

operator definitions (17) and (20), Eq. (41) can satisfy the
weaker condition (29). Nevertheless, the resulting bipartite
state is a classical correlated one (with vanishing discord).
To satisfy the separability condition (30), which leads to the
homogeneous dynamics (34), the states ρ̄α

a must not depend
on the index α. Hence, we demand γαl = γαcl, where cl is also
an arbitrary dimensionless coefficient. The rates γαlm become

γαlm = γαcldm,
∑

l

cl = 1, (42)

which from Eq. (40) leads to

M̂ρ = M̂
[ ∑

m

dm〈am|ρ|am〉
]

⊗ ρ̄a. (43)

The ancilla resetting state ρ̄a is

ρ̄a =
∑

l

cl|al〉〈al |. (44)

For simplicity, we assumed
∑

l cl = 1. If this condition is not
met, it can always be satisfied by a renormalization of the
Lindblad channel rates, γα → γα/

∑
l cl .

The expression (42) can be read as a symmetry condition on
the bipartite Lindblad evolution Eq. (24). It leads to Eq. (43),
which does not recover explicitly Eq. (30). The fulfillment of
this constraint can be achieved by choosing different sets of
values for the coefficients dm, which depend on the specific
structure of M̂.

1. Renewal case

When the measurement transformation M̂ leads to a
renewal process, Eqs. (17) and (18), independently of the
coefficients dm it follows that M̂[

∑
m dm〈am|ρ|am〉] = ρ̄s .

Therefore, Eq. (43) leads to

M̂ρ = ρ̄s ⊗ ρ̄a. (45)

Evidently this expression satisfies the condition (30). Further-
more, it tells us that the stochastic dynamics developing in
the bipartite S-A Hilbert space is also a renewal measurement
process.

Similarly to the Markovian case, after the first detection
event the statistics of the time interval between consecutive
events is defined by a unique survival probability

P0(t) = Trs[T̂ (t)ρ̄s], (46)

or equivalently a unique waiting-time distribution

w(t) = −
∫ t

0
dt ′Trs[D̂(t − t ′)T̂ (t ′)ρ̄s]. (47)

These expressions follow from Eqs. (36) and (38) after
introducing the resetting property defined by Eq. (45). They
generalize the Markovian expressions (19).

2. Nonrenewal case

When the measurement transformation M̂ does not lead
to a renewal process [Eqs. (20) and (21)], the coefficients
dm cannot be arbitrary. In fact, the only way of satisfying
the condition (30) is by choosing dm = 1 (after a rate
renormalization we can also take dm equal to an arbitrary
real constant). As the states {|am〉} are a complete basis of
the ancilla Hilbert space, for any bipartite state ρsa it follows
that

∑
m〈am|ρsa|am〉 = Tra[ρsa] = ρs. Thus, Eq. (43) recovers

Eq. (30),

M̂ρ = M̂[ρs] ⊗ ρ̄a. (48)

Notice that this result is valid for both the nonrenewal
and renewal cases. Nevertheless, the condition dm = 1 is
“necessary” only in the former case. The symmetry condition
on the rates γαlm [Eq. (42)] then reads

γαlm = γαcl,
∑

l

cl = 1. (49)

In contrast to the renewal case, here the measurement statistics
remains defined by the general expression Eqs. (36) and (38).

D. Density matrix evolution

Under the symmetry conditions defined by Eqs. (42)
and (49) the stochastic dynamics of ρs

st(t) [Eq. (23)] has the
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same structure as in the Markovian case. For both renewal and
nonrenewal measurement processes, the main difference from
the Markovian case is the conditional dynamics. It remains
to calculate the time evolution of the system density matrix
ρs

t , Eq. (22). In Appendix B we perform this calculation by
averaging the realizations of ρs

st(t), that is, from ρs
t = ρs

st(t).
Here, using an alternative procedure, the evolution of the
system state is obtained from the bipartite dynamics (24) by
using that ρs

t = Tra[ρs
t ].

For simplicity, we take a separable bipartite initial condition

ρsa
0 = ρs

0 ⊗ ρ̄a, (50)

where ρs
0 is an arbitrary system state and ρ̄a is the ancilla

resetting state defined by Eq. (44). The bipartite Lindblad
evolution (24) can formally be integrated as

ρsa
t = exp[D̂t]ρsa

0 +
∫ t

0
dt ′ exp[D̂(t − t ′)]Ĵ

[
ρsa

t ′
]
. (51)

The superoperators Ĵ and D̂ were defined in Eqs. (27) and (32),
respectively. By using the rates condition Eq. (42) and the
operator definition (25), we get

Ĵ
[
ρsa

t

] =
∑

α

γαVαO
[
ρsa

t

]
V †

α ⊗ ρ̄a. (52)

To shorten the notation we defined the superoperator

O[ρsa
t ] ≡

∑
m

dm〈am|ρsa
t |am〉. (53)

Taking the partial trace over the ancilla degrees of freedom,
Eq. (51) leads to

ρs
t = T̂ (t)ρs

0 +
∫ t

0
dt ′T̂ (t − t ′)

∑
α

γαVαO
[
ρsa

t ′
]
V †

α , (54)

which in turn, from Eq. (34), allows us to write

dρs
t

dt
=

∫ t

0
dt ′D̂(t − t ′)ρs

t ′ +
∑

α

γαVαO
[
ρsa

t ]V †
α .

]
(55)

If all dm = 1, it follows that O[ρsa
t ] = ρs

t . Hence, from
Eq. (55) we get the closed density matrix evolution

dρs
t

dt
=

∫ t

0
dt ′D̂(t − t ′)ρs

t ′ +
∑

α

γαVαρs
t V

†
α . (56)

Notice that this evolution contains both convoluted as well
as local-in-time contributions. It is valid for both renewal
and nonrenewal measurement processes. On the other hand,
in the case of renewal processes the coefficients dm may
be arbitrary and the previous expression does not apply.
By using the specific form of the operators Vα [Eq. (17)]
it follows that

∑
α γαVαO[ρsa

t ]V †
α = ρ̄sγ 〈u|O[ρsa

t ]|u〉, where
γ = ∑

α γα and the system resetting state ρ̄s is defined
by Eq. (18). By using in Eq. (55) that (d/dt)Trs[ρs

t ] =
0, it follows that γ 〈u|O[ρsa

t ]|u〉 = − ∫ t

0 dt ′Trs[D̂(t − t ′)ρs
t ′],

implying the closed density matrix evolution

dρs
t

dt
=

∫ t

0
dt ′D̂(t − t ′)ρs

t ′ − ρ̄s

∫ t

0
dt ′Trs

[
D̂(t − t ′)ρs

t ′
]
. (57)

In the present approach, this expression corresponds to the
more general master equation consistent with a renewal

measurement process. Notice that Eq. (56) is a particular case
of this more general expression. By comparing both equations,
we realize that it applies when γ 〈u|ρs

t |u〉 = ∫ t

0 dt ′Trs[D̂(t −
t ′)ρs

t ′].

E. Arbitrary master equations

Equations (56) and (57) represent one of the central results
of this section. They correspond to master equations that admit
an unraveling in terms of an ensemble of trajectories associated
with a continuous measurement action defined by the set of
operators {Vα}. Equation (56) is valid for both renewal and
nonrenewal measurement processes [see Eqs. (17) and (20),
respectively] while Eq. (57) is only valid for renewal processes
[Eq. (17)]. Now we ask about which conditions an arbitrary
non-Markovian master equation must to satisfy to admit the
non-Markovian unraveling defined previously.

One condition is the possibility of rewriting the master
equation with the structure defined by Eq. (56) or (57). On
the other hand, the ensemble representation can only be
assigned if the memory superoperator D̂(t) through the relation
(d/dt)T̂ (t) = ∫ t

0 dt ′D̂(t − t ′)T̂ (t ′) [Eq. (34)] defines a well-
behaved survival probability P0(t − τ |ρ) = Trs[T̂ (t − τ )ρ]
[Eq. (36)] for “arbitrary” system states ρ. A well-behaved
survival probability means that it is a decaying function, that is,
for arbitrary times τ < t1 < t2, it must satisfy P0(t2 − τ |ρ) �
P0(t1 − τ |ρ), implying

Trs[T̂ (t2)ρ] � Trs[T̂ (t1)ρ], t1 < t2. (58)

Taking into account that the realizations can be determined
from P0(t |ρ), the fulfillment of the previous inequality guar-
antees the possibility of assigning a non-Markovian unraveling
to a master equation with the structure (56) or (57).

IV. NON-MARKOVIAN RENEWAL TWO-LEVEL
TRANSITIONS

Here, we work out an example that explicitly shows the
consistency of the previous results. Both the system of interest
and the ancilla are two-level systems. Their states are denoted
|±〉 and {|1〉,|2〉}, respectively. The Markovian dynamic of the
bipartite state ρsa

t [Eq. (24)] here reads

d

dt
ρsa

t = − i

h̄

[
H0,ρ

sa
t

] + (γ C[σ11] + γ ′C[σ21])ρsa
t . (59)

The bipartite Hamiltonian contribution is defined by the
operator

H0 = h̄
σx ⊗ σx, (60)

where σx is the x Pauli matrix in the basis of each Hilbert
space. The remaining Lindblad contributions [Eq. (2)] with
rates γ and γ ′ are defined by the operators

σ11 = σ ⊗ |1〉〈1|, σ12 = σ ⊗ |1〉〈2|. (61)

The lowering system operator is defined as σ = |−〉〈+|.
Notice that σ11 leads to system transitions between the

upper and lower states |+〉 � |−〉 that can only happen
when the ancilla is in the state |1〉. In addition, σ12 leads
to the same system transitions but in this case they occur
simultaneously with the ancilla transition |2〉 � |1〉. Thus, the
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dissipative dynamics drives the system to its ground state. On
the other hand, the unitary evolution can excite the system
to its upper state. In consequence, the interplay between both
contributions leads to successive system transitions |+〉 �
|−〉. Each transition can be associated with a recording event
in the measurement apparatus.

It is simple to check that Eq. (59) has the structure
defined by Eqs. (24) and (25), and also fulfills the symmetry
condition Eq. (42). Consistently with the previous analysis,
the superoperator Ĵ [Eq. (27)] is defined as

Ĵρ = γ σ11ρσ
†
11 + γ ′σ12ρσ

†
12, (62)

leading to the expression

Ĵρ = (γ 〈+1| ρ |+1〉 + γ ′ 〈+2| ρ |+2〉) |−〉 〈−| ⊗ |1〉 〈1| .
From here, the measurement transformation [Eq. (28)] associ-
ated with each event reads

M̂ρ = |−〉〈−| ⊗ |1〉〈1|. (63)

Therefore, the state after a detection is independent of
the previous bipartite state ρ, which in turn implies that the
measurement process is a renewal one [see Eq. (45)]. The
bipartite conditional dynamics between events is defined by
the superoperator [Eq. (32)]

D̂ρ = − i

h̄
[H0,ρ] − 1

2 {(γ σ
†
11σ11 + γ ′σ †

12σ12),ρ}+. (64)

In order to obtain simple analytical expressions from now on
we analyze the case γ ′ = γ . Notice that it is also possible to
take γ ′ = 0 with γ > 0, or γ = 0 with γ ′ > 0.

The conditional propagator T̂ (t) [Eq. (31)] can be defined
when acting on an arbitrary initial condition ρ. By defining
the state ρ̃t = T̂ (t)ρ, the time evolution of T̂ (t) [Eq. (34)] can
be written in terms of the matrix elements

p̃±
t ≡ 〈±|ρ̃t |±〉, c̃±

t ≡ 〈±|ρ̃t |∓〉. (65)

For the populations we get

dp̃+
t

dt
= −

∫ t

0
dt ′k+

t−t ′ p̃
+
t ′ +

∫ t

0
dt ′k−

t−t ′ p̃
−
t ′ , (66a)

dp̃−
t

dt
= −

∫ t

0
dt ′k−

t−t ′ p̃
−
t ′ + (1 − δ̃)

∫ t

0
dt ′k+

t−t ′ p̃
+
t ′ . (66b)

Here, the constant δ̃ must be taken as δ̃ → 1. Thus, the last
term does not contribute. The memory kernels are

k+
t = γ δ(t) + 
2

2
e−tγ /2, k−

t = 
2

2
e−tγ /2. (67)

The coherence evolves as

dc̃±
t

dt
= −

∫ t

0
dt ′k̃t−t ′ c̃

±
t ′ +

∫ t

0
dt ′k̆t−t ′ c̃

∓
t ′ , (68)

where the kernels k̃t and k̆t are

k̃t = γ

2
δ(t) + 
2

4
(1 + e−tγ ), k̆t = 
2

4
(1 + e−tγ ). (69)

Due to the symmetries of the problem, the populations and
coherences evolve independently of each other.

Equations (66) and (68) can be solved in a Laplace
domain. The survival probability [Eq. (36)] reads P0(t |ρ) =

FIG. 1. Survival probability P0(t |ρ) [Eq. (70)] and its associ-
ated waiting-time distribution w(t |ρ) = −(d/dt)P0(t |ρ) for different
initial conditions. In (a) and (b), ρ = |y−〉〈y−|, where |y−〉 =
(1/

√
2)(|+〉 − i|−〉). In (c) and (d), ρ = |−〉〈−|, which correspond

to the resetting state defined by Eq. (63). In all cases, the parameters
satisfy 
/γ = 4.

Trs[T̂ (t)ρ] = Trs[ρ̃t ] = p̃+
t + p̃−

t . We get

P0(t |ρ) = Trs[ρ]e−γ t/2

[(
γ

2ν

)2

cosh(νt) −
(




ν

)2]

−Trs[σzρ]e−γ t/2

[
γ

2ν
sinh(νt)

]
, (70)

where the “frequency” ν reads

ν =
√

(γ /2)2 − 
2. (71)

In Eq. (70) the dependence on the system state ρ is given
by Trs[ρ] and Trs[σzρ], where σz is the z Pauli matrix.
Using the normalization of ρ it follows that Trs[ρ] = 1, while
Trs[σzρ] = 〈+|ρ|+〉 − 〈−|ρ|−〉. Therefore, P0(t |ρ) depends
only on the populations of ρ.

In Fig. 1 we plotted P0(t |ρ) and its associated waiting-time
distribution w(t |ρ) = −(d/dt)P0(t |ρ) [Eq. (38)] for different
initial states ρ. In Figs. 1(a) and 1(b) we took ρ = |y−〉〈y−|,
where |y−〉 is an eigenvector of σy with eigenvalue −1, |y−〉 =
(1/

√
2)(|+〉 − i|−〉). In Figs. 1(c) and 1(d) the initial state is

ρ = |−〉〈−|, that is, the resetting state after a detection event
[see Eq. (63)]. Hence, these objects, after the first measurement
event, completely define the measurement statistics [Eqs. (46)
and (47)]. Consistently with Eq. (58), for both initial conditions
the survival probabilities as a function of time are decaying
functions. On the other hand, while limt→0 w(t ||y−〉〈y−|) 	=
0, given that limt→0 w(t) = 0, an antibunching phenomenon
[7,8] characterize the renewal measurement process.

The survival probability allows to generate the random
time intervals between detection events. On the other hand,
the matrix elements of ρ̃t = T̂ (t)ρ [Eq. (65)] also allow
one to obtain the corresponding normalized conditional
evolution T̂ (t)ρ/Trs[T̂ (t)ρ] = ρ̃t /Trs[ρ̃t ]. In each jump, the
measurement transformation ρ → Mρ = |−〉〈−| applies [see
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FIG. 2. Realizations of the stochastic density matrix ρs
st(t) and

its ensemble average. In (a) and (b) are plotted the population
〈+|ρs

st(t)|+〉 and the imaginary part of the coherence 〈+|ρs
st(t)|−〉,

respectively. In (c) and (d) are plotted an average over 2 × 103

realizations (noisy curves). The full lines correspond to the analytical
solutions Eqs. (73) and (76). In all cases the initial system state is
ρs

0 = |y−〉〈y−|, while the characteristic parameters satisfy 
/γ = 4.

Eq. (63)]. These elements completely define the ensemble of
trajectories associated with the stochastic density matrix ρs

st(t)
(see Sec. III B).

In Fig. 2, a realization of ρs
st(t) is shown through the

matrix elements 〈+|ρs
st(t)|+〉 [upper population, Fig. 2(a)] and

〈+|ρs
st(t)|−〉 [coherence, Fig. 2(b)]. The initial state is ρs

st(0) =
|y−〉〈y−|. In the behavior of 〈+|ρs

st(t)|+〉 it is possible to
observe the successive jumps, where the system state collapses
to the resetting state |−〉〈−|, or equivalently, 〈+|ρs

st(t)|+〉 →
0. The conditional interevent behavior is periodic.

On the other hand, for the chosen initial condition the
coherence 〈+|ρs

st(t)|−〉 does not have a real component.
Hence, from Fig. 2(b) we conclude that after the first event it
dies out. This property follows from the resetting state defined
by Eq. (63) and the fact that the conditional evolution [Eqs.
(66) and (68)] does not couple the populations and coherences
of the system. Notice that for the chosen parameter values an
oscillatory behavior characterizes the conditional coherence
dynamics.

In Figs. 2(c) and 2(d) we plot the population and coherence
behaviors obtained by averaging 2 × 103 realizations (noisy
curves). In addition we also show the curves corresponding
to the exact solution of the density matrix evolution. For
the chosen parameter values [γ = γ ′ in Eq. (59)] it acquires
the structure defined by Eq. (56). By introducing the matrix
elements

p±
t ≡ 〈±|ρs

t |±〉, c±
t ≡ 〈±|ρs

t |∓〉, (72)

the evolution of the population can be written as in Eq. (66)
under the replacement p̃±

t → p±
t and taking δ̃ = 0. Therefore,

the populations are governed by a memorylike classical rate
equation. The solution of these time-convoluted evolutions

reads

p+
t = 
2

γ 2 + 2
2

{
1+e−3γ t/4

[
qc cosh(μt) − qs

γ

μ
sinh(μt)

]}
,

(73)

where

μ =
√

(γ /4)2 − 
2. (74)

The dimensionless coefficients qc and qs introduce the depen-
dence on the initial conditions,

qc = p+
0 (γ 2/
2) + (p+

0 − p−
0 ), (75a)

qs = [p+
0 (γ 2/
2) + (5p+

0 + 3p−
0 )]/4. (75b)

The lower population follows as p−
t = 1 − p+

t . The evolution
of the coherences can be written as in Eq. (68) after replacing
c̃±
t → c±

t . Their explicit solution is

c+
t = e−γ t/2 1

2 [a − b cosh(νt)], (76)

where the coefficients a and b read

a = [c+
0 γ 2/2 − (c+

0 + c−
0 )
2]/ν2, (77a)

b = (c+
0 − c−

0 )
2/ν2. (77b)

In Figs. 2(c) and 2(d), the analytical expressions for both the
populations and coherences, Eqs. (73) and (76), respectively,
recover the ensemble average behavior. This result explicitly
shows the consistency of the proposed approach. On the other
hand, Eqs. (73) and (76) lead to a diagonal stationary density
matrix

ρs
∞ = lim

t→∞ ρs
t = diag

{

2

γ 2 + 2
2
,

γ 2 + 
2

γ 2 + 2
2

}
. (78)

The evolution of the matrix elements (72) can also be rewritten
in terms of the system density matrix ρs

t . From Eqs. (66)
(δ̃ → 0, p̃±

t → p±
t , c̃±

t → c±
t ) and (68) we find

dρs
t

dt
= γ Ĉ[σ ]ρs

t +
∑

i=x,y,z

∫ t

0
dt ′ki

t−t ′ Ĉ[σi]ρ
s
t ′ , (79)

where the Lindblad channels are defined by Eq. (2), σi, i =
x,y,z, are the Pauli matrices, and the memory functions are

kx
t = 
2

8
(e−γ t/2 + 1)2, − k

y
t = kz

t = 
2

8
(e−γ t/2 − 1)2.

As expected, the density matrix evolution (79) has the structure
defined by Eq. (56), where the local-in-time contribution is
directly associated with the system transitions recorded by the
measurement apparatus.

A. Genuine non-Markovian effects

Quantum non-Markovian time-convoluted master equa-
tions can always be rewritten in terms of local-in-time evo-
lutions with time-dependent rates [21]. If the rates are positive
at all times, the measurement dynamics is still consistent
with a standard QJA [23]. On the other hand, if the rates
assume negative values, the dynamics develops “genuine”
non-Markovian effects such as an environment-to-system flow
of information. This phenomenon can be detected through
different measures [27], which in the Markovian case present
a monotonic time decay behavior [8]. Now, we demonstrate
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FIG. 3. Relative entropy with respect to the stationary state
Eq. (80). The density matrix follows from Eq. (79). For the full
line the initial condition is ρs

0 = |y−〉〈y−|, while for the dotted line
it is ρs

0 = |x−〉〈x−|, where |x−〉 = (1/
√

2)(|+〉 − |−〉). In both cases

/γ = 4.

that this phenomenon can also arise in master equations such as
Eqs. (56) and (57). As a measure we choose the relative entropy
[8] with respect to the stationary state (ρ∞

s = limt→∞ ρs
t )

E
(
ρs

t ||ρs
∞

) = Trs
[
ρs

t

(
ln2 ρs

t − ln2 ρ∞
s

)]
. (80)

In Fig. 3 the density matrix obeys the evolution (79), whose
solution is defined by Eqs. (73) and (76). The solid line
corresponds to the initial condition and parameter values of
Figs. 1 and 2. Evidently, the oscillatory behavior of E(ρs

t ||ρs
∞)

demonstrates that (79) cannot be rewritten in terms of a
local-in-time evolution with (time-dependent) positive rates.
The same property arises by choosing the initial conditions
ρs

0 = |±〉〈±|, in which case the system dynamics can be
mapped with a classical two-level system. In general, the
development or not of the revivals strongly depends on the
initial conditions. For example, for ρs

0 = |x−〉〈x−|, where
|x−〉 is an eigenvector of σx with eigenvalue −1[|x−〉 =
(1/

√
2)(|+〉 − |−〉)], E(ρs

t ||ρs
∞) decays in a monotonic way

(dotted line). This case can be understood in terms of the
symmetries of the underlying bipartite dynamics Eq. (59).

V. SUMMARY AND CONCLUSIONS

In this paper we established a non-Markovian general-
ization of the standard QJA. The underlying idea consists
in embedding the system dynamics in a bipartite Markovian
evolution [Eq. (24)]. Assuming that the measurement action is
performed only on the system of interest, we demonstrated that
there exist symmetry conditions on the Lindblad (bipartite)
channels [Eqs. (42) and (49)] that lead to a closed system
stochastic dynamics consistent with a quantum measurement
theory.

For both renewal and nonrenewal measurement processes,
the ensemble of realizations is similar to that of the standard
case. At random times, the system state suffers a disruptive
transformation, which is associated with each recording event.
In the intermediate time intervals, the (conditional) system
dynamic is smooth and nonunitary. The main difference from
the standard approach is this last ingredient. Here, it is not
defined by an exponential propagator [Eq. (34)]. In fact,
it arises from a partial trace over the semigroup evolution

associated with the Markovian bipartite dynamics [Eq. (31)].
Hence, in general, the stochastic dynamics does not admit an
unraveling in terms of pure states [Eq. (35)].

As in the standard case, the jump statistics can be defined
by a survival probability [Eq. (36)], which in general depends
on the system state. In addition to the stochastic dynamics,
we also characterized the system density matrix evolution.
The structure of the corresponding non-Markovian quantum
master equations is defined by Eqs. (56) and (57). Arbitrary
master equations with this structure can be unraveled with the
ensemble of trajectories if it is possible to assign a survival
probability to the conditional dynamics [Eq. (58)].

The consistency of the formalism was checked by studying
the dynamics of a two-level system whose non-Markovian
dynamics leads to successive transitions between the upper
and lower levels. The simplicity of the model allowed us
to obtain short analytical expressions for the measurement
statistics [Eq. (70)] as well as for the density matrix elements
and the corresponding density matrix evolution [Eq. (79)]. The
relevance of the example comes not only from its simplicity.
In fact, it also allowed us to demonstrate that the present
generalization is consistent with a backflow of information
from the environment to the system. This property follows
from the nonmonotonic decay of the relative entropy with
respect to the stationary state (Fig. 3).

While the present formalism leads to a consistent non-
Markovian generalization of the quantum jump approach, it is
clear that it can be extended in different directions. For exam-
ple, one may consider arbitrary initial bipartite states [Eq. (50)]
or the introduction of nonseparable bipartite resetting states
[Eq. (30)]. A less technical aspect should be to consider the
case in which many different measurement apparatuses are
monitoring the system or to determine which kind of consistent
non-Markovian generalization is not covered by a Markovian
embedding.
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APPENDIX A: QUANTUM JUMP
STATISTICS—MARKOVIAN CASE

Here we derive the statistical description of the ensemble of
realizations associated with the Markovian QJA. The solution
of Eq. (3) can formally be written as

ρs
t = exp[D̂t]ρs

0 +
∫ t

0
dt ′ exp[D̂(t − t ′)]Ĵ [ρs

t ′], (A1)

where ρs
0 is the initial system state. This expression can be

iterated, leading to the series expansion

ρs
t =

∞∑
n=0

ρ
(n)
t , (A2)

where each contribution satisfies the recursive relation

ρ
(n)
t =

∫ t

0
dt ′T̂ (t − t ′)Ĵ ρ

(n−1)
t ′ , (A3)
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with ρ
(0)
t = T̂ (t)ρs

0. Therefore, it follows that (n � 1)

ρ
(n)
t =

∫ t

0
dtn · · ·

∫ t2

0
dt1 T̂ (t − tn)Ĵ · · · T̂ (t2 − t1)Ĵ T̂ (t1)ρs

0.

(A4)

The superoperators Ĵ and T̂ (t) are defined by Eqs. (4)
and (8), respectively. Each contribution ρ

(n)
t can be associated

with trajectories with n detection events. Its statistics can be
obtained by writing the previous expression in terms of the
measurement transformation M̂ [Eq. (5)] and the normalized
propagator T̂c(t) [Eq. (7)]. We get

ρ
(n)
t =

∫ t

0
dtn · · ·

∫ t2

0
dt1Pn[t,{ti}n1]

×T̂c(t − tn)M̂ · · · T̂c(t2 − t1)M̂T̂ c(t1)ρs
0 (A5)

(n � 1) and ρ
(0)
t = P0(t |ρs

0)T̂c(t)ρs
0. The function

Pn

[
t,{ti}n1

] = Trs
[
T̂ (t − tn)Ĵ · · · Ĵ T̂ (t2 − t1)Ĵ T̂ (t1)ρs

0

]
(A6)

is the joint probability density for observing measurement
events at times {ti}n1. It completely characterizes the statistics of
the measurement process. By introducing the auxiliary states
ρti+1 = T̂c(ti+1,ti)M̂ρti , with ρt1 = T̂c(t1,0)ρ0, the previous
object can be rewritten as

Pn

[
t,{ti}n1

] = P0(t − tn|M̂ρtn )

×
n∏

j=2

w(tj − tj−1|M̂ρtj−1 )w
(
t1|ρs

0

)
, (A7)

where the survival probability P0(t |ρ) and the waiting-time
distribution w(t |ρ) are defined by Eqs. (9) and (10), respec-
tively.

The structures of both Eqs. (A5) and (A7) are consistent
with the stochastic dynamics defined in Sec. II A. The second
line of Eq. (A5) consists in successive applications of the
measurement transformations M̂ and intermediate evolution
with the propagator T̂c(t). On the other hand, the weight of each
realization, defined by Eq. (A7), has the same structure as a
renewal process, that is, there exists a probability distribution
(waiting-time distribution) that defines the statistics of the time
interval between consecutive detection events. Nevertheless,
here the distribution depends on the resetting state, that is, the
state after a measurement event.

APPENDIX B: NON-MARKOVIAN MASTER EQUATIONS
FROM THE JUMP STATISTICS

We derived the non-Markovian extension of the QJA by
studying the standard approach in a Markovian bipartite
dynamics. Under the conditions obtained in Sec. III the
system’s stochastic dynamics becomes closed, that is, it can
be written without taking into account explicitly the ancilla
dynamics. Here we derive the corresponding non-Markovian
master equation [see Eqs. (56) and (57)] by averaging the
ensemble of trajectories.

The full counting statistics can be derived from the
Markovian evolution Eq. (26) and its formal solution (51). All
calculation steps described in Appendix A can be extended,

after a trivial change of notation (Ĵ → Ĵ , T̂ → T̂ ), to the
bipartite evolution defined in terms of ρsa

t . By performing
a partial trace over the ancilla degrees of freedom on the
corresponding expressions, by using the bipartite measurement
transformation (30) and the initial bipartite state (50), it is
possible to demonstrate that Eqs. (A5) and (A7) are also valid
for the non-Markovian system dynamics. Nevertheless, in the
non-Markovian case, the propagator T̂ (t) is defined by Eq. (31)
[or equivalently Eq. (34)] while the survival probability P0(t |ρ)
and waiting-time distribution w(t |ρ) from Eqs. (36) and (38),
respectively.

1. Renewal case

When the measurement process is a renewal one, we can
write the joint probability density [Eq. (A7)] as

Pn

[
t,{ti}n1

] = P0(t − tn)
n∏

j=2

w(tj − tj−1)w
(
t1|ρs

0

)
, (B1)

where, in contrast to a Markovian renewal process, here the
survival probability P0(t) and waiting-time distribution w(t)
are defined by Eqs. (46) and (47), respectively. From Eq. (A5)
and by using the renewal property Eq. (18), the previous
expression for Pn[t,{ti}n1] allows us to write

ρ
(n)
t =

∫ t

0
dt ′T̂ (t − t ′)ρ̄s f (n)(t ′) (B2)

[ρ(0)
t = T̂ (t)ρs

0], where the function f (n)(t) is defined as

f (n)(t) =
∫ t

0
dtn · · ·

∫ t2

0
dt1

n∏
j=2

w(tj − tj−1)w
(
t1|ρs

0

)
. (B3)

From Eq. (B2) and the expression for the waiting-time
distribution w(t) [Eq. (47)], we get the recursive relation

ρ
(n)
t = −

∫ t

0
dt ′T̂ (t − t ′)ρ̄s

∫ t ′

0
dt ′′Trs

[
D̂(t ′ − t ′′)ρ(n−1)

t ′′
]
.

(B4)

By adding all these states [see Eq. (A2)] and by using
the non-Markovian time evolution of the propagator T̂ (t)
[Eq. (34)], after some calculation steps, the system density
matrix evolution Eq. (57) is recovered.

2. Nonrenewal case

By using the rate condition Eq. (49) corresponding to
the nonrenewal case, it is possible to demonstrate that the
superoperator Ĵ [Eq. (27)] satisfies the relation

Ĵρ = Ĵ {Tra[ρ]} ⊗ ρ̄a, (B5)

where the system superoperator Ĵ is defined by Eq. (4) and
the ancilla resetting state ρ̄a follows from Eq. (44). By writing
Eq. (A6) in terms of bipartite objects (Ĵ → Ĵ , T̂ → T̂ ), after
introducing Eq. (B5), the joint probability distribution can be
written as

Pn

[
t,{ti}n1

] = Trs
[
T̂ (t − tn)Ĵ · · · Ĵ T̂ (t2 − t1)Ĵ T̂ (t1)ρs

0

]
,

(B6)
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where T̂ (t) and Ĵ follow from Eqs. (31) and (4), respectively.
Notice that in this case, the only difference with the Markovian
case [Eq. (A6)] is the definition of T̂ (t).

In order to obtain the density matrix evolution we need a
recursive relation for the states ρ

(n)
t . Here, this kind of relation

can be easily obtained from the recursive relation (A3) when
applied to the bipartite dynamics. With the aid of Eq. (B5) we

get

ρ
(n)
t =

∫ t

0
dt ′T̂ (t − t ′)Ĵ ρ

(n−1)
t ′ . (B7)

Consistently, the same relation arises from Eqs. (A5) and (B6).
By adding all states ρ

(n)
t , and by using the non-Markovian

time evolution of the propagator T̂ (t) [Eq. (34)], we recover
Eq. (56).
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