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Isoscaling and the high-temperature limit
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This study shows that isoscaling, usually studied in nuclear reactions, is a phenomenon common to all cases of

fair sampling. Exact expressions for the yield ratioR21 and approximate expressions for the isoscaling parameters

α and β are obtained and compared to experimental results. It is concluded that nuclear isoscaling is bound to

contain a component due to sampling and, thus, a word of caution is issued to those interested in extracting

information about the nuclear equation of state from isoscaling.
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I. INTRODUCTION

Recent studies of the isospin dependence of nuclear reac-

tions at intermediate energies have been studied by comparing

fragmenting collisions of similar mass and energies but differ-

ent isospin. Experimentally, the ratio of isotope yields in two

different systems, 1 and 2, R21(n, z) = Y2(n, z)/Y1(n, z), has

been seen to follow, approximately, an exponential function

of the neutron number, n, and the proton number, z, of the

isotopes; dependence known as isoscaling [1–3]:

R21 = Y2(n, z)/Y1(n, z) = C exp(αn + βz), (1)

where α and β are fitting parameters and C is a normalization

constant. This fit has been studied under the light of several

theoretical models of nuclear reactions and, under different

assumptions (see, e.g., Ref. [4]), the fitting parameters can be

expected to be related to the symmetry term of the equation of

state, Csym, through

α =
4Csym

T
[(Z1/A1)

2
− (Z2/A2)

2], (2)

where T is the assumed temperature of both reactions. Thus the

interest on studying the isoscaling phenomenon: R21 has the

potential of elucidating the behavior ofCsym at varying isospin,

temperature, and so on. It is relevant to note that according to

the above displayed relation the coefficient α should approach

0 as T increases.

In a series of recent works, however, it has been shown that

the phenomenon of isoscaling can be found very early—before

thermalization—in classical molecular dynamics simulations

of nuclear reactions [5], as well as in nonthermal physical

phenomena, such as in percolating networks. In particular,

percolation in two “colors” (i.e., protons and neutrons [6]), or

in extended “polychromatic” nets [7], has demonstrated that

the isoscaling behavior of the form of Eq. (1) emerges as a

direct consequence of simple combinatorial problems with,

e.g., α = ln(q2/q1), where qi = Ni/Ai . These results point to

the fact that isoscaling, although connected to the equation

of state, can also be produced by nonthermal processes and

then probabilistic aspects of the problem can play a disturbing

role complicating the determination of Csym from isoscaling

deermination. Thus the motive of the present work is to study

the probabilistic aspects of isoscaling.

In this studywe investigate the phenomenon of isoscaling in

the very simplest scenario—free of the geometrical constraints

imposed by bond percolation—of sampling “protons” and

“neutrons” directly from an urn. In Sec. II we will obtain

the correct isoscaling law using probabilistic arguments and

will show that Eq. (1) is a limiting approximation to the

exact expression. In Sec. III we compare our results to

experimental values, after which the manuscript closes listing

several conclusions.

II. ISOSCALING AND SAMPLING

Consider the problem of building clusters containing a

number a of nucleons by simply grabbing these a particles

from an urn in which there are A particles composed of Z

“protons” andN “neutrons,” i.e., A = N + Z. We assume the

sampling to be without replacement, and with no interactions

among the particles nor with the urn itself; these premises

are known as simple random sampling (SRS) in the statistics

circles.

To use this setup to study isoscaling we first focus on

determining the yield of fragments, Y (n, z), that the previous

scheme would produce after a large number of samplings.

It stands to reason that such yield would be directly related

to the probability of drawing n neutrons and z protons, i.e.,

a = n + z. Repeating then for a second urn with a different

isotopic composition, one can easily obtain the corresponding

R21 and, thus, the scaling law.

Let us first determine the probability of ending with a

cluster composed by n neutrons and z protons, i.e., a = n + z.

The number of ways in which a cluster of a particles can be

obtained from randomly sampling an urn with A particles is

(Aa ) = A!/[a!(A − a)!]. Out of these possibilities only (Nn )×

(Zz ) will correspond to clusters with n neutrons and z protons.

Thus, if we now assume that the probability of getting a

fragment of size a out of an urn with A particles is P (a,A),
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the normalized yield of such a sampling will be:

Y (n,N, z, Z) = P (a,A)P (n,N, z, Z,A)

= P (a,A)

(N
n

)(Z
z

)

(A
a

)

. (3)

In particular, for the case of sampling a particles composed

of n neutrons and z protons (a = n + z) from an urn with

A1 = Z1 + N1, the term P (n,N1, z, Z1) becomes

P (n,N1, z, Z1, A1) =

(N1
n

)(Z1
z

)

(A1
a

)

=
N1!

n!(N1 − n)!

Z1!

z!(Z1 − z)!

a!(A1 − a)!

A1!
.

And taking the ratio of this probability to the probability

of obtaining n neutrons and z protons from a sampling of

a nucleons from an urn with A2 nucleons composed of N2

neutrons and Z2 protons, the isoscaling ratio is given exactly

by

R21 =
P (a,A2)

P (a,A1)

P (n,N2, z, Z2, A2)

P (n,N1, z, Z1, A1)
(4)

=
P (a,A2)

P (a,A1)

(N2
n

)(Z2
z

)

(A2
a

)

(A1
a

)

(N1
n

)(Z1
z

)

, (5)

which can be readily used for calculations taking P (a,A2)/

P (a,A1) as an overall normalization.

This expression, although close to the usual exponential law

(1), is not a straight line in the linear-log plot of R21 versus N ;

the fact that experimental data also deviate from such a linear

behavior is reassuring (see, e.g., Ref. [8]). The approximate

exponential law (1) can be obtained from the exact result

(4) using the binomial approximation to the hypergeometric

distribution (see, e.g., Ref. [9]) which, in this case, depends on

the assumption that x ¿ Xi for x = a, n, z,Xi = Ai, Ni, Zi

and i = 1, 2. The sampling isoscaling ratio then becomes

R21 ≈
P (a,A2)

P (a,A1)
exp

[

n ln

(

q2

q1

)

+ z ln

(

p2

p1

)

]

, (6)

where we have introduced the probabilities of extracting a

neutron, qi = Ni/Ai , and a proton, pi = Zi/Ai .

Comparing to Eq. (1) we identify the overall normaliza-

tion constant as C = P (a,A2)/P (a,A1) and the isoscaling

parameters as α(S) = ln(q2/q1) = ln(N2A1/N1A2), β(S) =

ln(p2/p1) = ln(Z2A1/Z1A2), in perfect agreement with the

percolation results [6,7]. Reviewing the procedure leading to

Eq. (6), it is clear that exponential law is a direct result of the

sampling.

[For completeness, although not relevant to the nuclear

case, we note that a functionally similar result can be

obtained for the case of sampling with replacement. In this

case, fragments with a = n + z will appear with probabil-

ity P (n,N, z, Z,A) = Cpzqn
= Cpz(1− p)a−z, where C is

given by the normalization C−1
= (pA+1

− qA+1)/(p − q),

with p and q defined previously. Using this for urns 1 and 2

leads to

R21 =
P (a,A2)

P (a,A1)

[

pz
2q

n
2

pz
1q

n
1

]

[

(p2 − q2)
(

−qa+1
1 + pa+1

1

)

(p1 − q1)
(

−qa+1
2 + pa+1

2

)

]

= C(a)
P (a,A2)

P (a,A1)

[

q2

q1

]n [

p2

p1

]z

, (7)

where C(a) = [(2p2 − 1) (−qa+1
1 + pa+1

1 )]/[(2p1 − 1)

(−qa+1
2 + pa+1

2 )]. Because C(a) is independent of n and z,

Eq. (7) depends on these variables in a functionally similar

manner as the isoscaling law (1).]

III. COMPARISON TO EXPERIMENTAL ISOSCALING

The energy dependence of the isoscaling parameters has

already been explored in collisions [5]; here we compare the

isoscaling parameter α obtained from experiments to those

from samplings and study their variation as a function of beam

energy.

In viewof the previous result, namely the fact that isoscaling

can be expected from the mere act of fragmenting a system,

the question to answer now is: what fraction of the nuclear

isoscaling is due to sampling?

In what follows wewill show to which extent combinatorial

effects (i.e., symentropy effects; see Ref. [12]), are relevant by 1

comparing the value of α obtained from experimental calcu-

lations with the one resulting from the simple combinaorial

analysis. It is worth realizing at this point that in the case of

the combinatorial analysis we are disregarding all correlations,

in particular those associated with energy terms and then

correspond to the very high temperature limit (see, e.g.,

Ref. [7]).We then expect that the contribution of combinatorial

terms to be apparent in collisions at high energies. Here

we present a direct comparison of our findings to two sets

of experimental data—not to try to reproduce them but to

assess the relative magnitude of the sampling contribution

to isoscaling and to attempt to draw a baseline from which

future experimental studies will be able to extract the nuclear

contribution to this effect. The data used were obtained by

Yennello et al. [11] at the Cyclotron Institute of Texas A&M
University.

The values of α(E) used in this comparison are

shown in the inset of Fig. 1 and correspond to the ra-

tios of the yields Y (40Ar+ 58Fe)/Y(40Ca+
58Ni), Y (58Fe+

58Fe)/Y(58Ni+ 58Ni), Y(40Ar+ 58Ni)/Y(40Ca+
58Ni), and

Y(58Fe+
58Ni)/Y(58Ni+ 58Ni) at the energies shown. The

main panel of Fig. 1 shows the ratio of α(E) to the

corresponding parameter obtained from the sampling, α(S) =

ln(N2A1/N1A2); cf. Eq. (6).

It is easy to see that at all energies α(E) > α(S) and that

for large energies α(E) → α(S). A second point of interest is

the fact that on division by α(S), the previously scattered four

curves of α(E) values collapse into a single group.
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FIG. 1. Ratio of experimental

α(E) to the sampling α(S) as a

function of energy.

IV. CONCLUSIONS

The conclusions of this work are quite simple. First we

note that isoscaling can be expected to appear in any system

undergoing a fair sampling; nuclear fragmentation, being a
type of sampling, is bound to exhibit this phenomenon.

Second, the inherent correlations of nuclear systems are

expected to have an effect on the fairness of the sampling
modifying the yield ratio R21 and the isoscaling parameters

α and β, as was demonstrated by a direct comparison to

experimental results.

Finally, a word of caution is needed if one attempts to

extract information about the nuclear equation of state from

isoscaling. Given that it is now known that a sampling-

related isoscaling is ever present, obtaining quantities such

as Csym from Eq. (2) is not straightforward. In principle, the

experimental results should contain the isoscaling produced

by sampling, and—in some regime—both R21(E) and α(E)

should tend to R21(S) and α(S).

The indication that α(E) → α(S) at high energies in-

dicates (perhaps) that at those energies nuclear binding is

less important and the “sampling” is closer to that of a

noninteracting urn; at lower energies, however, the reaction

has longer interaction times and the phase space available

for the sampling becomes a complex function of the energy
distancing itself from the fair sampling case of Eqs. (4) and

(6). This is consistent with the implications of Eq. (2) that,

through its inverse dependence on the temperature, indicates

that in the limit of high energies the expected contribution

from the equation of state to the isoscaling coefficients

should vanish: α → 0. Likewise, studies of bond percolation

on polychromatic substrates [7,12] (generated through the

nuclear lattice model at temperature T ) have shown that in

the limit of high temperatures only the probabilistic term

survives.
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Rev. C 73, 044601 (2006).

[6] A. Dávila, C. Escudero, J. A. López, and C. O. Dorso, Physica
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