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Intra- and intercycle interference of electron emissions in laser-assisted XUV atomic ionization
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We study the ionization of atomic hydrogen in the direction of polarization due to a linearly polarized XUV pulse
in the presence of a strong IR laser. We describe the photoelectron spectra as an interference problem in the time do-
main. Electron trajectories stemming from different optical laser cycles give rise to intercycle interference energy
peaks known as sidebands. These sidebands are modulated by a coarse-grained structure coming from the intracy-
cle interference of the two electron trajectories born during the same optical cycle. We make use of a simple semi-
classical model that offers the possibility to establish a connection between emission times and the photoelectron
kinetic energy. We analyze such interference pattern as a function of the time delay between the IR and the XUV
pulses and also as a function of the laser intensity. We compare the semiclassical predictions with the continuum-
distorted-wave strong-field approximation and the ab initio solution of the time-dependent Schrodinger equation.
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I. INTRODUCTION

New sources of coherent XUV and soft-x-ray radiations
delivering pulses with durations in the femtosecond range and
with unprecedented high intensities open new perspectives
in atomic and molecular physics. Such sources produced
from either high-order harmonics or an x-ray free-electron
laser (XFEL) pave the way to explore the dynamics of
atomic, molecular, and even solid-surface systems undergoing
inner-shell transitions. In this way, multiphoton spectroscopy
involving synchronized IR and XUYV pulses in the strong-field
regime can be achieved. The photoelectron spectra from rare-
gas atoms have been extensively studied in the simultaneous
presence of two pulses from the XUV source and from an IR
laser with a time-controlled delay working as a pump-probe
experiment [1-3].

The two-color multiphoton ionization where one of the two
radiation fields has low intensity and relatively high frequency
while the other is intense with a low frequency is usually
known as laser-assisted photoemission. Depending on the
features of both laser fields (typically the pulse durations),
two well-known regimes, the streak camera and sideband,
can be distinguished [4-8]. In the former, the XUV pulse
is much shorter than the IR period 7; = 27 /w;, where w;,
is the IR laser frequency and therefore the electron behaves
like a classical particle that gets linear momentum from the IR
laser field at the instant of ionization [1]. On the other hand,
in the latter, where the XUV pulse is longer than the laser
period Ty, the photoelectron energy spectrum shows a main
line associated with the absorption of one XUV photon accom-
panied by sideband lines, located more or less symmetrically
on its sides. The equally spaced sidebands with separation hw;,
are associated with an additional exchange of laser photons
through absorption and stimulated emission processes. The
analysis of the resulting two-color photoelectron spectra can
provide information about the high-frequency pulse duration,
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laser intensity, and the time delay between the two pulses.
However, the intermediate situation where the duration of the
XUV pulse is comparable to the laser period has not been
thoroughly studied.

An accurate theoretical description of the process must
be based on quantum mechanical concepts, i.e., by solving
ab initio the time-dependent Schodinger equation (TDSE)
for the atomic system in the presence of the two pulses.
However, the precise calculation of the response of a rare-
gas atom presents considerable difficulties. The numerical
resolution of the TDSE for a multielectron system relies on the
single-active-electron approximation, with model potentials
that permit one to reproduce the bound-state spectrum of the
atom with satisfactory accuracy [9,10]. Models based on a
time-dependent distorted-wave theory, such as the strong-field
approximation (SFA) and the Coulomb-Volkov approxima-
tion, have been extensively employed to study the streaking of
the sideband regime transition (see, for example, [11-13]). In
the specific sideband regime, where both laser pulse durations
are infinite, the soft-photon approximation [14—17] provides
a useful description of some general features. However, when
discussing the physical content of full numerical results or
experimental data where finite-duration pulses are used, it is
instructive to compare them to qualitative predictions, such as
the simple man’s model [18]. Using this semiclassical model
for the case of above-threshold ionization (ATI) by one-color
lasers, it is possible to identify the photoelectron spectra as
the interplay of intra- and intercycle interferences of direct
electron trajectories [19,20].

In this paper we extend the semiclassical approxima-
tion [19,20] to analyze the laser-assisted photoemission spectra
of hydrogen atoms by an XUV pulse, particularly in the
intermediate case where tx = 7. We show that the role of the
IR laser field in the XUV photoionization is threefold: (a) Due
to the average wiggling of the electron, it downshifts the energy
of the continuum states of the atom by the ponderomotive
energy U ; (b) several IR photons can be absorbed or emitted in
the course of the ionization process, giving rise to sidebands (or
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intercycle contributions); and (c) it is responsible for intracycle
modulations of the sidebands in the photoelectron emission
(PE) spectrum. Whereas for (b) we show that the exchange
of IR photons in the energy domain can be interpreted as
the interference among different electron trajectories emitted
by the atom at different optical cycles giving origin to the
formation of sidebands, more importantly, the interfering
electron trajectories within the same optical cycle give rise to
a well-determined modulation pattern encoding information
on the ionization process in the subfemtosecond time scale
for (c). The same behavior has been observed by Geng et al.
in [21] for single ionization of He where the contribution of
rescattered electrons for single ionization by the IR laser must
be considered. By considering two XUV attosecond pulses
separated by the laser period they were able to determine
intercycle interference, whereas when considering only one
XUV attosecond pulse, only the intracycle interference arose.
The paper is organized as follows. In Sec. II we describe
the different methods of calculating the photoelectron spectra
for the case of laser-assisted XUV ionization: by solving
the TDSE ab initio, making use of the theory of the SFA,
and a semiclassical model (SCM) that gives rise to simple
analytical expressions. In Sec. III we present the results and
discuss a comparison of results calculated within the different
methods. A summary is given in Sec. IV. Atomic units are
used throughout the paper, except when stated otherwise.

II. THEORY AND METHODS OF LASER-ASSISTED
PHOTOEMISSION

We want to solve the problem of atomic ionization by
an XUV pulse in the presence of an IR laser both linearly
polarized along the Z direction. The TDSE in the single-active-
electron (SAE) approximation reads

i%llﬁ(ﬂ) = H[y (1)), 6]

where the Hamiltonian of the system within the dipole
approximation in the length gauge is expressed as

)
H:%—l—V(r)—i—?'Fx(f)‘f‘?‘FL(t)' )

The first term in Eq. (2) corresponds to the active electron
kinetic energy, the second term is the potential energy of the
active electron due to the Coulomb interaction with the core,
and the last two terms correspond to the interaction of the atom
with the electric fields Fx(¢) and Fy(¢) of the XUV pulse and
IR laser, respectively.

As a consequence of the interaction, the bound electrgn in
the initial atomic state |¢;) is emitted with momentum k and
energy E = k?/2 into the final unperturbed state |¢ ). The
photoelectron momentum distributions can be calculated as

dP
E=|Tif|2, 3)

where Tis is the T-matrix element corresponding to the
transition ¢; — ¢y.
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A. Time-dependent Schrodinger equation

In order to numerically solve the TDSE in the dipole
approximation for the SAE [Eq. (1)], we employ the general-
ized pseudospectral method [22-24]. This method combines
the discretization of the radial coordinate optimized for the
Coulomb singularity with quadrature methods to allow stable
long-time evolution using a split-operator representation of
the time-evolution operator. Both the bound and the unbound
parts of the wave function |/ (¢)) can be accurately represented.
Due to the cylindrical symmetry of the system, the magnetic
quantum number m is conserved. After the end of the laser
pulse the wave function is projected onto eigenstates |k,€)
of the free atomic Hamiltonian with positive eigenenergy
E =k?/2 and orbital quantum number £ to determine the
transition amplitude Ti¢ to reach the final state @) (see
Refs. [25-27]):

1 .
Ty = m;e‘w) V21 + 1Py(cos O)(p. 1Y (ts)). (4)

In Eq. (4), 8,(p) is the momentum-dependent atomic phase
shift, 6 is the angle between the electron momentum k and the
polarization direction Z, and P, is the Legendre polynomial
of degree ¢. In order to avoid unphysical reflections of the
wave function at the boundary of the system, the length of the
computing box was chosen to be 1200 a.u. (~65 nm) and the
maximum angular momentum considered was £,x = 200.

B. Strong-field approximation

Within the time-dependent distorted-wave theory, the tran-
sition amplitude in the prior form and length gauge is expressed
as

+00 N N
=i [ dilG GOl - Fy) 47 FuligGon).

(&)

where ¢;(F,t) = ¢;(F)e'!»" is the initial atomic state with
ionization potential /,, and XJZ(? ,1) is the distorted final state.
As the SFA neglects the Coulomb distortion in the final
channel, the distorted final wave function can be written as

x5 (7,1) = x"(7,1), where [28]
p [% / dr'lk + /K(t’)]z]

(6)

is the length-gauge Volkov state and A(t) is the vector potential
due to the combined electron field

F(t) = FL(t) + Fx(0). (7)

For the sake of simplicity, hereinafter we consider ionization
of a hydrogenic atom of nuclear charge Z = 1.

_exp [i(k + A(t)) - 7]

V=

C. Semiclassical model

From TDSE and SFA calculations we have observed that
for moderate laser intensities the first and second terms in
Eq. (5) are well separated in the energy domain: Whereas the
single-photon XUV ionization (first term) leads to ionization
of electrons with final kinetic energy close to E >~ hwx — I,
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(with wy the photon energy of the XUV pulse), the ionization
due to the IR laser (second term) leads to electrons with
final kinetic energy mostly less than twice its ponderomotive
energy E < 2U,. If we focus on the emission due to the XUV
pulse around energy E >~ wy — I,, the contribution from IR
ionization [the second term in Eq. (5)] is negligible when
U, < wx — I,. Therefore, inserting Eq. (6) into Eq. (5), the
transition amplitude within the SFA reads

+00 oL N
Tif = —i/ dt d(k + A(1))

oo

o0 7 e N2
.ﬁx(t)exp{—i/ dt’[mJﬂP“, ®)

where the dipole element d (v) is given by

i) = w [diewi-i FFad. o

Let us suppose that the XUV pulse has the form F x() =
ZFxo(t) cos wxt, where Fxo(t) is a slowly nonzero varying
envelope function in the time interval with duration ty. In this
case, writing coswyt = [exp(iwxt) + exp(—iwxt)]/2, the
transition amplitude can be written as Ty = T;f + Ty, where
T} and T; correspond to the absorption and emission of an
XUV photon, respectively. We can discard the emission term
since it does not lead to ionization. In other words, according
to the rotating-wave approximation, the 7;; contribution lies
in an energy domain close to £ >~ —wy — I, which is not in
the continuum. Therefore, we can write

i ~+00
Ty =T = —’5 / dr d_(k + A1) Fxo(r) exp [i S(1)],

oo

(10)

where

00 7 T reN12
S(t)=—/ dz’[pr—wx} (11)

is the generalized action for the case of laser-assisted photoe-
mission for single XUV photon absorption. As the frequency
of the XUV pulse is much higher than the IR laser one, for
XUV pulses not much more intense than the IR laser, we can
consider the vector potential as due to the laser field only,
ie., A(t) ~ AL(t), neglecting its XUV contribution [29]. In
the same way, the ponderomotive energy due to the wiggling
of the active electron in the XUV field can be neglected, so
U, =(Fro/ 2w, )? for flattop envelopes. If the IR pulse has a
nonconstant envelope, a U, value for each cycle needs to be
considered [30].

When the XUV pulse is shorter than the period of the IR
laser, i.e., tx < Ty = 2w /wy, the electron is emitted with
kinetic energy that depends on the vector potential at the
ionization time, which is known as a streak camera [1,2,4,31].
However, hereinafter, we restrict our analysis to the case where
the XUV pulse is comparable to or longer than the period of
the IR laser, i.e., Tx = Tp. Specifically, the SCM consists of
solving the time integral of Eq. (10) by means of the saddle-
point approximation [32-35]. In this sense, the transition
probability can be written as a coherent superposition of
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classical trajectories with the same final momentum k as

=Y /27 Fxo(t,)d, (k + A(t,))
UK A FL)l'

: o d?S(ty)
x exp | iS(#) +1i—sgn ,

47 ar (12

where from Eq. (11) d28(t,)/dt* = —[k + A(t,)] - F(t,), sgn
denotes the sign function, and ¢, are the ionization times
corresponding to the stationary points of the action, i.e.,
dS(t;)/dt = 0. Then, from Eq. (11), the ionization times fulfill
the equation

A 2
—[k+2(“)] + 1, —wy =0, (13)

Let us consider an IR electric field F, (1) =
—Fopcos(wpt)z, which is a good approximation for long
laser pulses where we can neglect the effect of the envelope.
The vector potential is thus A(¢) = (Fro/wr)sin(w1)Z. In
the following we restrict our analysis to forward emission
in the direction of polarization, i.e., k, > 0 and k, =0 in
cylindrical coordinates. Under the condition Fjo/w; < vy,
where vy = ,/2(wx — 1) is the electron momentum for
ionization of an XUV pulse only, there are two ionization
times per optical cycle. They are the early ionization time
tU'D and the late ionization time t'? corresponding to
the jth optical cycle, where U =19 4 27 /0w, (j — 1),
with @ = 1,2 [see Figs. 1(b) and 1(d)]. In order to find the
expressions for 9% we must consider two cases, k, < vy and
k, > vo, with solutions

1 wr 4
1D = —sin™! [_F lvo — kzl], 112 = — — D (14)

wr, L0 wL
and
11 1 . 1] wL b4
£t = —sin | —=—|vg — k| | + —,
or Fro oL
3
1 = — — 0D, (15)
wr
respectively.

Real ionization times are in the framework of classical
trajectories of escaping electrons. Equation (13) delimits the
classical realm to momentum values |I‘;’—LLU(I<Z —vg)| < 1. In
other words, the possible classical values of the electron
momentum along the positive polarization axis are restricted
to vo — Fro/wp < k; < vy + Fro/wr. Outside this domain,
ionization times are complex due to the nonclassical na-
ture of such electron trajectories. The imaginary part of
these ionization times gives rise to exponentially decaying
factors, for which complex (nonclassical) trajectories pos-
sess minor relevance compared to real (classical) ones. In
consequence, hereinafter we restrict our SCM to classical
trajectories.
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FIG. 1. (a) and (c) Total electric field F(t) = F;(t) + Fx(¢) and
(b) and (d) vector potential A(t) = A.(¢) + Ax(¢) as a function of
time. The IR laser parameters are Fo = 0.02, v, = 0.05, 7, =77,
and the XUV pulse with the parameters Fyy = 0.01 and wyx = 1.5.
The duration of the XUV pulse is (a) and (b) Ty = 7, and (c) and
(d) tx = 37,. In (b) and (d) the electron emission early (late) times
for a given final momentum k, are marked by circles (triangles). The
shaded area denotes the active time window when XUV ionization
takes place.

Including Eq. (12) in Eq. (3), the ionization probability is
calculated as

; Z V27 Fxo(t9)d. (k. + A1)
Tl k. + AU FL(tG@)[1/2

2

X exp |:iS(t(j’°‘))—i%sgnF(t(j'“))] . (16)

with o = 1 (2) corresponding to the early (late) release times
of Eq. (14) [Eq. (15)]. In Eq. (16), we have stated that vy is
always positive. Assuming now that the depletion of the ground
state is negligible, the ionization rate [the prefactor before
the exponential in Eq. (16)] is identical for all subsequent
ionization bursts (or trajectories) and is only a function of
the time-independent final momentum k. This is only valid
for the special case that the IR laser is a plane wave with no
envelope and the envelope of the XUV pulse Fx(t) is time
independent, i.e., flattop pulse, and also for the case where
the effect of the Coulomb potential on the receding electron
is negligible (SFA). We consider that the flattop XUV pulse
comprises an integer number of IR optical cycles, i.e., Tx =
NT, = 2Nn/wy. As there are two interfering trajectories per
optical cycle of the IR field, the total number of interfering
trajectories with final momentum k, is 2N, with N being
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the number of IR cycles involved. The sum over interfering
trajectories in Eq. (16) can thus be decomposed into those
associated with the two release times within the same cycle
and those associated with release times in different cycles.
Consequently, the momentum distribution [Eq. (16)] can be
written within the SCM as

2

N 2
12 oGy _ T (j.@)
| Tl —F(k»ZZexp(zS(rf ) —igsenF Y ))

a7

where the second factor on the right-hand side describes
the interference of the 2N classical trajectories with final
momentum k, and tY°% is a function of k, through Eqgs. (14)
and (15) for k; < vg and k; > vy, respectively. The ionization
probability I'(k,) is given by

2 Gy 2
(k) = 2 (Fxo)“ld(k; + A )] ’ (18)

2
|voFro,/1— ;U—in)(kz — v)?|

where d,(v) was defined in Eq. (9).

In the same way as in ionization by an IR laser field
alone [19,20] and after a bit of algebra, the sum in Eq. (17)
can be written as

2

Z Z exp (1 S —

j=1 a=1

sgnF(t(f “)))

= ZZe’Sf cos <— — %) (19)

where §; = [S(tY:D) + S(t-?)]/2 is the average action of the
two trajectories released in the jthcycleand AS; = S(tV:D) —
S(tU?) is the accumulated action between the two release
times U1 and tY+? within the same jth cycle. There are two
solutions of Eq. (14) [Eq. (15)] per optical cycle: The early
release time V') and the late release time tY-? in Eq. (14)
[Eq. (15)] lay within the first (or third) quarter of the jth cycle
and the second (or fourth) quarter of the jth cycle, respectively.

From Eq. (11), the semiclassical action along one electron
trajectory with ionization time +“*% can be written, up to a
constant, as

. k2 F}, .
Sy = <?Z +1,+ 4—2 —w )t(/"")

_ Fuo F Eo ;
—k cos(wtV ) — —L sinQwtV ). (20)
6"L wy,

The average action depends linearly on the cycle number j,
S; =S+ JS, (21)

where Sy is a constant that will be canceled out when the
absolute value in Eq. (17) is taken and § = (27 /w;)(E +
U, + 1, — wyx).

On the other hand, the difference of the action AS; is a
constant independent of the cycle number j, which can be

053404-4



INTRA- AND INTERCYCLE INTERFERENCE OF ...

expressed (omitting the subindex j) as

K2 1
AS = 7+I,,+U,,—wx w—L

. 1| oL
) 22k —
X {n sin |: 0| - v0|i|}

+sgn(k, — vo) (3k + vo)\/
wL

2
wr

k., — v)2.
FL20( Z 0)

(22)

We note there is a discontinuity of AS at k, = vy, which is
also present in the formalism of Refs. [11,13,36]. This occurs
in the present case where the XUV pulse starts at the time #,
so that A(t,) = 0. In general, the discontinuity of AS depends
on the delay between both pulses. In the next section we show
how this discontinuity mirrors the electron emission spectra.

In the same way (after some algebra) as for the case of
ionization by a monochromatic pulse [19,20,37,38], Eq. (17)
together with Egs. (19) and (21) can be rewritten as

. S 2
|Ti¢|2 = 4T (k.) cos® (ﬁ - 3) [W] . @3
2 4 sin(S/2)

F(k:) B(k;)

This expression indicates that the PE spectrum can be
factorized into two different contributions: (i) the interference
stemming from a pair of trajectories within the same cycle
(intracycle interference), governed by the factor F(k,), and
(ii) the interference stemming from trajectories released at
different cycles (intercycle interference), resulting in the well-
known sidebands given by the factor B(k;). When N — oo,
the intercycle (second) factor becomes a series of § functions,
ie., B(k;) > Y, 8(E — E,), where

E,=no, +wx—1,-U, 24)

are the positions of the sidebands, in agreement with the
conservation of energy for the absorption and/or emission of
n IR photons and one XUV photon. When n < 0 the emission
of |n| IR photons is meant, whereas when n = 0, the ATI peak
for the absorption of only one XUV photon of frequency wy
is described. It is worth noting that the energy of this ATI
peak and all sidebands are shifted with the ponderomotive
energy of the IR laser U, according to Eq. (24). The intracycle
interference arises from the superposition of pairs of classical
trajectories separated by At = U2 —tU:D of the order of
less than half a period of the IR laser pulse, i.e., At < 7/wg,
giving access to an emission time resolution of < 1 fs (for near
IR pulses), while the difference between 1'% and 1Y+ ig
2r/wy,i.e., the optical period of the IR laser. Equation (23) is
structurally equivalent to the intensity for crystal diffraction:
The factor F(k;) represents the form (or structure) factor
accounting for interference modulations due to the internal
structure within the unit cell, while the factor B(k;) givesrise to
Bragg peaks due to the periodicity of the crystals. The number
N of slits is determined by the duration of the XUV pulse
7y = 2N7m/wy. Therefore, B(k,) in Eq. (23) may be viewed
as a diffraction grating in the time domain consisting of N slits
with F(k;) being the diffraction factor for each slit. As in each
optical cycle there are two interfering electron trajectories, it
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is reasonable to obtain a Young-type intracycle interference
pattern of the form F(k,) = cos’(AS/2 — m/4).

III. RESULTS AND DISCUSSION

In order to compare the different methods described in the
preceding section and probe the general conclusion of the SCM
that the momentum distribution can be thought as the interplay
between the inter- and intracycle interference processes, we
consider flattop envelopes for both the IR and XUV pulses for
the TDSE and the SFA calculations. In this sense, the IR laser

field can be written as
Fu(t) = Fuo(t) cos [a)L <t — %)}z (25)

where the envelope is given by

o ifo<r<2Z
Fro(t) = Frof 1 if 22 <r< — = (26)
(=N

lf‘L'L 2—’Z<I<IL

2w

and zero otherwise, so the IR laser field is a cosinelike pulse
centered in the middle of the pulse, i.e., t = 7 /2, where 7,
is the laser pulse duration comprising an integer number of
optical cycles with a central flattop region and linear one-cycle
ramp on and ramp off.

In the same way, we can define the XUV pulse as

Fy(t) = Fyo(t) cos |:a)x (z ity — %):|z @7

with envelope

(;—f[t if 1, < lb+
2. 2
Fyot) = Fyol 1 if 1, + ”<t<e Z o (28)
moDoxif ¢, — wx<t<te

and zero otherwise. We consider that there is an integer number
of optical cycles in the XUV pulse, i.e., N = 7x/2nwy is a
natural number, with a linear one-cycle ramp on and ramp off.
The time #1, in Eq. (27) characterizes the delay between the
centers of the IR and XUV pulses and t, = t15 + 7. /2 — tx /2
and t, = t1, + 7. /2 + Tx /2 denote the beginning and the end
of the XUV pulse, respectively.

In Figs. 1(a) and 1(c) the total electric field F(¢) is plotted as
a function of time [as defined in Eqs. (7) and (25)—(28)] with
IR laser parameters Fro = 0.02, w; = 0.05, and 7, =77,
and XUV pulse parameters Fxo = 0.01 and wx = 1.5 with
duration tx = Ty, in Fig. 1(a) and tx = 37} in Fig. 1(c). The
XUV pulse opens an active window in the time domain for
laser-assisted XUV ionization marked with a yellow shadow
in Fig. 1. The definitions of the IR and XUV pulses ensure a
flattop vector potential A(¢) fulfilling the boundary conditions
A(0) = A(ty) = 0. In Figs. 1(b) and 1(d) we show the values
of A(t) when ty =T, and tx = 3Ty, respectively. They
look quite the same since for the chosen parameters the
amplitude of the vector potential of the IR laser pulse is
Frowx/Fxowp = 60 times higher than the amplitude of the
XUYV vector potential.

We analyze how the intercycle interference factor B(k;)
and the intracycle interference factor F'(k,) in Eq. (23) control
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FIG. 2. (a)Buildup of the interference pattern following the SCM.
The intracycle pattern is given by the structure pattern F'(k;) in a
red thick line and intercycle interference is given by the function
B(k;) with N = 3 [Eq. (23)]. (b) Total interference pattern F(k,)B(k;)
with N = 3. The IR laser parameters are F;, = 0.02, o, = 0.05, the
XUV frequency wy = 1.5, and delay time 7, = 0. Both fields are
cosinelike. For the sake of comparison, the intracycle pattern F'(k,)
of (a) is shown in light gray. Vertical lines depict the positions of the
sidebands E, of Eq. (24).

the electron spectrum for laser-assisted photoemission within
the SCM. The factor B(k,) calculated with the electric field
described in Fig. 1(a) is shown in Fig. 2(a) in a (blue) thin
line as equispaced peaks with separation between consecutive
peaks equal to the IR laser frequency Aw; = 0.05. The peaks
of the function B(k;) agree perfectly with the energies E,
corresponding to the sidebands [see Eq. (24)] marked with
thin vertical lines. Equation (23) predicts N — 2 secondary
peaks per optical cycle produced by the interference of electron
trajectories originated within an active window of N optical
cycles (slits) in the laser pulse (diffraction grating). In our case,
two minima and a secondary peak are observed due to the
interference of three optical cycles (t, = 37 ). The intracycle
structure factor F(k;) shown in the (red) thick curve displays
oscillations with maxima unrelated to the sidebands. The
positions of these maxima can be calculated with AS = 2m,
with integer m. The separation of consecutive maxima of the
intracycle factor F'(k,) depends on the electron kinetic energy
in a nontrivial way, being the separation of the consecutive
intracycle maxima higher close to the classical boundaries
(E =0.51 and 1.65 a.u.) than at intermediate energies. There
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is a discontinuity of the difference of the action as a function of
energy (and k;) at E = v(z) /2. According to Eq. (13), ionization
times are calculated as the intersection of the horizontal line
vo — k, with the vector potential A(¢). When k, > vy, the two
ionization times lay in the second half of the optical cycle
of the active window [see Fig. 1(b)]. As k, approaches vy,
the early release time ') goes to the middle of the active
window, whereas the late release time ¢(1'? goes to the end
of it. In turn, when k, < vy, the situation is different: As k.
approaches vy, the early release time 1)) goes to the beginning
of the active window, whereas the late release times 72
goes to the middle. Such discontinuity does not exist in the
case of intracycle interference in above-threshold ionization
by one-color pulses since, in that case, vp = 0 (there is no
XUV pulse) in Eq. (22) [19,20,37,38].

In Fig. 2(b) we show the interference pattern for the case
of N = 3 interfering cycles in the active window [Figs. 1(c)
and 1(d)]. Only the factor B(k,)F(k,) is displayed, setting
the variation of the ionization rate I"(k,) to unity to focus on
the interference process. For the sake of comparison, in light
gray, the intracycle pattern F (k) of Fig. 2(a) is also displayed.
We observe that the intercycle sideband peaks given by B(k;)
[Fig. 2(a)] are modulated by the intracycle interference factor
F(k;). The intracycle interference can lead to the suppression
of sidebands (for example, near E = 1.4).

We need to compare our SCM with quantum SFA and
ab initio calculations by solving numerically the TDSE. In
Figs. 3(a) and 3(b) we plot the energy distribution of electron
emission in the forward direction for the same laser pulse
described in Fig. 1 within the SFA and TDSE, respectively,
for two different durations of the XUV pulse. In the case of
tx = 3T, we observe a set of peaks separated by the laser
frequency w;, in agreement with Eq. (24), whose positions
are pointed with vertical thin lines. By comparing Figs. 2
and 3 we see that the quantum (TDSE and SFA) energy
distributions extend about 0.2 a.u. beyond the classical limits
(vo F FLo/a)L)2 /2. The agreement between SFA and TDSE
results is remarkable and both are qualitatively similar to the
SCM of Fig. 2. We would like to point out that the energy
distributions exhibit sharp modulations, in agreement with the
intracycle interference pattern calculated with an XUV pulse
duration 7y = T}, in a gray thick line. In this sense, the fact
that the intracycle interference pattern modulates the sidebands
in the energy distribution, albeit derived within the SCM, is
also valid for the quantum calculations. The reason for this is
under current investigation, however, we note that it is closely
related to previous works [11-13] where the PE spectrum is
factorized as two contributions as in Eq. (23). It is also worth
mentioning that, as within the SCM, in the SFA and the TDSE
PE spectra there are frustrated sidebands, close to £ = 0.63,
1.03, 1.2, and 1.4 coinciding with the minima of the intracycle
interference pattern.

In what follows we compare the SCM with similar
approximations based on the SFA, like in the works of
Kazansky et al. [11,12], Bivona et al. [13], and the soft-
photon approximation [14]. The authors of [11-13] have also
employed the saddle-point approximation to obtain analytical
expressions for photoelectron spectrum giving rise to the
factorization of the different contributions, i.e., the intra- and
intercycle interferences. Our results are in good agreement
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FIG. 3. Energy distribution in the forward direction for the same
laser parameters and XUV frequency as in Fig. 1 calculated within (a)
the SFA and (b) the TDSE. The laser duration is 7;, = 77; = 879.65
and the XUV field amplitude Fxo = 0.01. Vertical lines depict the
positions of the sidebands E, in Eq. (24).

with previous works [11-13]. Our intracycle factor F(k;)
in Eq. (23) matches exactly with the first-order prediction
of Kazansky et al. In Fig. 4 we compare the SCM, SFA,
soft-photon approximation, and results obtained by application
of Eq. (15) of [11,12] and Eq. (25) of [13]. We observe that
the discontinuity at Egs = 1 for the SCM is also present
for the results of Kazansky et al. and Bivona et al., whereas
the soft-photon approximation predicts only the height of
the sidebands due to the infinite pulse durations considered
in that theory. We want to point out that the soft-photon
approximation in Fig. 4 was modified with respect to Eq. (12)
of [14] in order to include the ponderomotive shift, so the
sideband positions are at the positions in Eq. (24), in agreement
with the energy conservation. The agreement between the
SCM and the other approximations, including the SFA, is
very good since not only does it predict the same number
of maxima on both sides of the zeroth-order sideband but also
their positions are well reproduced.

In order to investigate the dependence of the intracycle
interference pattern on the laser intensity, we show in Fig. 5
calculations of the energy distribution in the forward direction
within the SCM [Fig. 5(a)], the SFA [Fig. 5(b)], and the TDSE
[Fig. 5(c)], for laser field amplitudes from Fro=0 up to
0.05. In this sense, the intracycle pattern in Figs. 2(a), 3(a),
and 3(b) are cuts at Fo = 0.02 of Figs. 5(a), 5(b), and 5(c),
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FIG. 4. Photoelectron spectra in the forward direction (in ar-
bitrary units) for time delay ¢, =0 for the SFA (black dashed
line), the approximation of Bivona er al. [13] (green solid line),
the approximation of Kazansky er al. [11,12] (orange solid line),
the semiclassical model (purple solid line), and the soft-photon
approximation (thin red solid line with circles). The IR laser
parameters are Fo = 0.02, w, = 0.05, 7, = 7T, and the XUV pulse
with the parameters Fyo = 0.01, wx = 1.5, and duration ty = 7.
Both fields are cosinelike.

respectively. The classical boundaries (vy F Fro/w;)?/2 are
drawn as dashed lines and they exactly delimit the SCM
spectrogram of Fig. 5(a), as expected. Figure 5(a) shows that
the discontinuity at E = v /2 = 1 is clearly independent of the
laser field amplitude. Above the discontinuity, the interference
maxima (and minima) exhibit a positive slope as a function
of Fro, whereas below it, the stripes have negative slope. The
boundaries slightly blur for the SFA spectrogram, also showing
the characteristic intracycle stripes with positive (negative)
slope close to the top (bottom) classical boundary, however,
missing the SCM discontinuity at Egis. In Fig. 5(c) the TDSE
calculation exhibits a strong probability distribution for high
values of Fp( in the low-energy region. The source of this
enhancement of the probability is the atomic ionization by the
IR laser pulse alone, which has not been considered in our
SCM and is strongly suppressed in the SFA because the laser
photon energy is much lower than the ionization potential, i.e.,
wr < I,. For this reason we can confirm that the SFA is a
very reliable method to deal with laser-assisted photoemission
rather than ATI by IR lasers. Except for the region where
ionization by the laser field alone becomes important, SFA and
TDSE spectrograms agree with each other and qualitatively
resemble the SCM calculations.

So far, we have performed our analysis for the electron
emission in the forward direction for zero time delay ¢, = 0,
i.e., the center of the IR laser and XUV pulses coincide. In order
to reveal how the intracycle interference pattern changes with
the time delay, we vary t, from O up to 7;,. This means that the
center of the XUV pulse shifted by ¢, with respect to the center
of the IR pulse corresponds to a phase in the laser optical cycle
¢ = wptip = 2ntp/ Ty InFig. 6(a) we show the SCM intracy-
cle interference pattern in the forward direction as a function of
the optical phase or time delay #,,. The horizontal stripes show
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FIG. 5. Photoelectron spectra in the forward direction (in arbi-
trary units) calculated at different laser field strengths within (a)
the SCM, (b) the SFA, and (c) the TDSE. The IR laser frequency is
w; = 0.05 and the XUV pulse parameters are Fxo = 0.01, wx = 1.5,
and ty = T,. Both XUV and IR fields are cosinelike. The classical
boundaries of laser-assisted photoemission are shown with dashed
lines. The high-intensity spot in the right bottom corner of (c)
corresponds to ionization by the IR laser pulse alone.

the independence of the intracycle interference pattern with the
time delay, except for the discontinuity in Eq. (22) for energy
values equal to Egisc = [vo — A(Tr/2 — t12 — TL/Z)]Z/Z. For
t; = 0, the discontinuity is situated at Egisc = v§/2 since
A(t/2 — T /2) = 0, as shown in Fig. 2. As t, (and ¢) varies,
the discontinuity follows the shape of the vector potential.
For the cases that ¢ = /2 and 37 /2 the discontinuity moves
to the classical boundary losing entity. For the case ¢ = /2,
the separation between consecutive intracycle interference
stripes is smaller for lower energies and increases as the
energy grows. Contrarily, for ¢ = 37/2, energy separation
between consecutive intracycle interference maxima is higher
for lower energy and diminishes as energy increases. The
SFA and TDSE energy distributions in Figs. 6(b) and 6(c),
respectively, exhibit characteristics similar to those of the
SCM. Interestingly, the discontinuity at Eg can be clearly
observed as a jump of the probability distributions for the
same energy values. The remarkable resemblance between
the SFA and TDSE results shows once again that the SFA
is very appropriate to deal with laser-assisted photoemission
processes and computationally much less demanding than
solving the TDSE ab initio. Low-energy contributions in
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FIG. 6. Photoelectron spectra in the forward direction (in arbi-
trary units) as a function of the optical phase (time delay #,,) within
(a) and (d) the SCM, (b) and (e) the SFA, and (c) and (f) the TDSE.
The IR laser frequency is w;, = 0.05, t, = 77T, and the XUV pulse
has Fyo = 0.01, wy = 1.5, XUV pulse duration (a)—(c) tx = T, and
(d)—() tx = 2T;.

TDSE calculations shown in Fig. 6(c) are due to IR ionization
as described before. There are two characteristics of SFA and
TDSE spectra that deserve more study: (i) For ¢ >~ m/2 the
energy distribution extends to lower-energy values than for
other ¢ values (E =~ 0.5), whereas for ¢ ~ 37 /2 it extends
for higher-energy values (E =~ 1.5), and (ii) the horizontal
intracycle interference stripes show some structure below
the above-mentioned discontinuity, i.e., £ < Egjs., which is
absent above it, i.e., E > E .

When we calculate the energy distribution for an XUV pulse
with duration tx = 27}, our active window comprises two
IR optical cycles. For the particular case of zero time delay,
i.e., t;p = 0 (both IR and XUV pulses centered at the same
instant of time), the vector potential from the perspective
of the active window has a change of sign compared to the
tx = T case, ie., A(t) = —Agsin[wy(t — t,)]. Therefore,
for the sake of comparison, we redefine the optical phase
¢ = wptip —m =2mt;p /Ty, — m, varying the time delay ¢,
from 7./2 up to 37./2. With this new definition, ¢ =0
corresponds to t;, = T /2, with the same behavior of the
vector potential inside the active window. In Fig. 6(d) the
SCM spectrum displays horizontal lines corresponding to the
intercycle interference modulated by the intracycle pattern
of Fig. 6(a). The discontinuity of the intracycle modulation
can also be observed, which mirrors as a probability jump
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FIG. 7. Photoelectron spectra in the forward direction (in arbi-
trary units) for time delays #,, corresponding to (a)—(c) ¢ = 7 /2 and
(d)—(f) ¢ = 37/2 within (a) and (d) the SCM, (b) and (e) the SFA,
and (c) and (f) the TDSE. The IR laser frequency is w; = 0.05,
1, = 77T, and the XUV pulse parameters are Fxo = 0.01, wx = 1.5,
and ty = T (thick dark gray curve) and tx = 27, (thick light gray
curve).

for the SFA [Fig. 6(e)] and TDSE [Fig. 6(f)] too. Once
again, the agreement between the SFA and TDSE is very
good, with the exception of the low-energy contribution
due to the ionization by the IR laser pulse in the TDSE
spectrogram. By comparing the intracycle pattern for ty = T,
in Figs. 6(a)-6(c) to the whole interference pattern for 7y =
2T, in Figs. 6(d)-6(f), we see the interplay between intra-
and intercycle interference, i.e., the intracycle interference
pattern works as a modulation of the intercycle interference
pattern (sidebands) for the active window with a duration of
two optical laser cycles.

The intracycle energy distributions (tx =7.) in
Figs. 2, 3(a), and 3(b) can be regarded as cuts of the intracycle
interferograms of Figs. 6(a)-6(c), respectively. For the sake
of completeness, we show also in Figs. 7(a)-7(c) the energy
distribution for ¢ = 7 /2 for tx =T and txy = 2T;. We
observe how in all calculations [SCM, SFA, and TDSE in
Figs. 7(a)-7(c), respectively] the separation of the consecutive
intracycle maxima grows as the energy increases. The energy
distributions for ty = 27, show a sideband structure (inter-
cycle interference) modulated by the intracycle interference
pattern. As the separation of the intracycle maxima near
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FIG. 8. Energy distribution in the forward direction calculated
within (a) the SFA and (b) the TDSE. The laser duration is t; =
9T, = 1130.97 and the envelope function of the XUV pulse is
Fxo(t) = sin®(7wt/tx) with Ty = 345.2 and 690.4, which correspond
to a FWHM duration of tEVHM = T, and 27T}, respectively. For
completeness, we also show the intracycle momentum for the flattop
XUV pulse of Fig. 3 (thick gray curve). Vertical lines depict the
positions of the sidebands E, according to Eq. (24).

the lower classical limit is close to the laser photon energy
hwp, it competes with the intercycle interference pattern
(sidebands) for tx = 27, whose separation is also hw;.
Therefore, the interplay of intra- and intercycle interference
patterns gives rise to new oscillation structures of the energy
distribution by ionization of the XUV pulse of duration
tx = 2T} assisted by the laser pulse. For example, a gross
structure is observed [Figs. 7(b) and 7(c)] with a maximum
at E ~0.63 for the SFA and TDSE. The same is valid for
the phase ¢ = 37/2 in Figs. 7(d)-7(f) for the SCM, SFA, and
TDSE, respectively. However, in this case, the competition
between intra- and intercycle interference patterns takes place
close to the classical high-energy limit. Again, a grosser
structure is formed, making the energy distributions similar
when ty = 27, for ¢ = /2 and ¢ = 37w /2. It is expected
that as the active window gets wider, i.e., tx > T, the
agreement between energy spectra for¢ = w/2and ¢ = 37/2
improves.

In the following we investigate the effect of the envelope of
the XUV pulse Fx(¢) on laser-assisted photoemission. So far,
we have used the trapezoidal envelope given by Eq. (28), which
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opens a well-defined active window of duration almost equal
to Tx (since it has a one-cycle ramp on and one-cycle ramp
off, each of duration Ty = 27 /wx < T). Now we consider
an XUV pulse with squared sine envelope

Fyxo(7) = sin® (”—t) = sin’ <”—t> (29)
X0 = 2EVN )

where r)fWHM = 1x/2 is the full width at half maximum
(FWHM) duration of the electric field. The results for the
energy distribution in the forward direction due to an XUV
pulse with sin? envelope with TEWHM = T} assisted by the laser
pulse described in Egs. (25) and (26) calculated within the SFA
and TDSE are displayed in Figs. 8(a) and 8(b), respectively.
Clearly, sidebands are modulated by the intracycle pattern
given by the electron energy distribution produced by the
one-cycle trapezoidal XUV pulse of Egs. (27) and (28).
When we compare these results with the energy distribution
calculated with the flattop pulse of Eqgs. (27) and (28), we
realize that the origin of the modulations of the sidebands is due
to the intracycle interference also for the sin> XUV envelope
of Eq. (29). When we double the duration of the XUV pulse,
ie., TEWHM — 27, | the sideband peaks are sharper because
the doubles of the optical cycles are involved in the active
window enhancing, consequently, the intercycle interference,
giving rise to almost perfect destructive interference (the
minima of the energy distribution are zero). The agreement
between SFA and TDSE calculations is very good. We can
say, therefore, that the envelope of the XUV pulse plays a
minor role in laser-assisted photoemission and most of the
conclusions derived for the flattop XUV pulse are still valid
for a smooth experimental-like envelope shape.

IV. CONCLUSION

We have studied the electron emission in the forward
direction produced by atomic hydrogen ionization subject to
an XUV pulse in the presence of a strong infrared laser pulse
with both pulses linearly polarized in the same direction.

PHYSICAL REVIEW A 94, 053404 (2016)

We extended the SCM developed for ATI due to an IR
pulse to laser-assisted photoemission processes in XUV-IR
ionization. In accordance with previous results employing the
SFA and saddle-point approximation [11-13], the PE spectrum
can be factorized into two contributions, one accounting
for sideband’s formation and the other as a modulation. As
a result, we have an interference pattern of a diffraction
grating in the time domain. The intercycle interference of
electron trajectories from different optical cycles of the IR laser
gives rise to sidebands, whereas the intracycle interference of
electron trajectories born in the same optical cycle originates
from a coarse-grained pattern modulating the sidebands. By
comparing the outcome of ionization considering two XUV
attosecond pulses separated by the laser period with only one
XUV attosecond pulse, Geng et al. in [21] arrived at the same
conclusion. We have also compared the SCM spectra with
the SFA and the solution of the time-dependent Schrodinger
equation calculated ab initio and observed good qualitative
agreement. We have studied the dependence of the electron
emission on the laser intensity and observed that as the IR field
increases, the spectrum becomes wider and approximately
bounded by the classical energy conservation rule. We con-
clude that the SFA is accurate to describe the photoelectron
spectrum when compared to the TDSE in a wide range of
parameters. Finally, we have shown that the intracycle pattern
is independent of the XUV pulse duration and envelope, but
exhibits a jump at a given energy as a function of the time delay
between the two pulses 7, reproducing the profile of the laser
vector potential. This smooth jump in PE spectra manifests
itself as a discontinuity in models based on the saddle-point
approximation, like the present SCM.
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