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Influence of beam collimation on fast-atom diffraction studied via a semiquantum approach2
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The influence of the collimating conditions of the incident beam on diffraction patterns produced by grazing
scattering of fast atoms off crystal surfaces is studied within a semiquantum approach, called the surface initial
value representation (SIVR) approximation. In this approach we incorporate a realistic description of the incident
particle in terms of the collimating parameters, which determine the surface area that is coherently illuminated.
The model is applied to He atoms colliding with a LiF(001) surface after passing through a rectangular aperture.
As was experimentally observed [Nucl. Instrum. Methods Phys. Res., Sect. B 350, 99 (2015)], SIVR spectra as
a function of the azimuthal angle are very sensitive to the width of the collimating slit. We also found that the
length of the collimating aperture affects polar angle distributions, introducing additional interference structures
for the longer collimating slits.
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I. INTRODUCTION16

Diffraction patterns produced by grazing scattering of swift17

atoms and molecules (with energies in the keV range) on18

surfaces are nowadays becoming a powerful surface analysis19

tool, which is giving rise to a technique known as grazing-20

incidence fast-atom diffraction (GIFAD or FAD) [1,2]. In21

recent years the FAD method was successfully applied to very22

different kinds of materials, ranging from insulators [3–5] to23

semiconductors [6,7] and metals [8–10], as well as structured24

films [11] and molecules [12] adsorbed on surfaces. However,25

in spite of the extensive experimental and theoretical work26

devoted to the research of FAD since its first experimental ob-27

servation [3,4], the complete understanding of the underlying28

quantum processes is far from being achieved. In particular,29

the study of the mechanisms that contribute to the coherence30

or decoherence of the scattered particles is still in its infancy.31

The observation of quantum interference effects for fast32

atoms impinging on crystal surfaces strongly relies on the33

preservation of quantum coherence [13–15] and, in this34

regard, the coherence conditions of the incident beam play35

an important role. Motivated by Ref. [16], in this article we36

investigate the influence of the collimation of the incident37

beam on FAD patterns by making use of a recently developed38

approach called the surface initial value representation (SIVR)39

approximation [17]. With this goal we explicitly take into40

account the experimental collimating conditions to determine41

the surface region that is coherently illuminated by the particle42

beam and use this information to build the initial wave packet43

that describes the unperturbed state of the incident particle44

within the SIVR method.45

The SIVR approximation is a semiquantum approach that46

was derived from the initial value representation (IVR) method47

by Miller [18] by using the corresponding semiquantum time48

evolution operator in the frame of a time-dependent distorted-49

wave formalism. This strategy incorporates an approximate50

description of classically forbidden transitions on the dark side51

of rainbow angles, making it possible to avoid the classical52
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rainbow divergence present in previous semiclassical models 53

for FAD, like the surface-eikonal (SE) approach [19,20]. Such 54

a weakness of the SE method affects the intensity of the 55

outermost diffraction maxima when these maxima are close to 56

the classical rainbow angles [10], i.e., the extreme deflection 57

angles of the classical projectile distribution. The SIVR 58

approach, instead, provides an appropriate description of FAD 59

patterns along the whole angular range, even around classical 60

rainbow angles, without requiring the use of convolutions 61

to smooth the theoretical curves [17]. Therefore, the SIVR 62

method can be considered as an attractive alternative to quan- 63

tum wavepacket propagations, offering a clear representation 64

of the main mechanisms of the process in terms of classical 65

trajectories through the Feynman path integral formulation of 66

quantum mechanics. 67

In order to analyze the influence of the beam collima- 68

tion on FAD spectra, an extended version of the SIVR 69

approximation—including the collimating parameters—is ap- 70

plied to evaluate FAD patterns for He atoms grazingly imping- 71

ing on a LiF(001) surface after going through a rectangular 72

aperture. The paper is organized as follows: The theoretical 73

formalism is summarized in Sec. II. Results for different sizes 74

of the collimating aperture are presented and discussed in 75

Sec. III, while in Sec. IV we outline our conclusions. Atomic 76

units (a.u.) are used unless otherwise stated. 77

II. THEORETICAL MODEL 78

Let us consider an atomic projectile P with initial momen- 79

tum �Ki , which is elastically scattered from a crystal surface 80

S, ending in a final state with momentum �Kf and total energy 81

E = K2
f /(2mP ) = K2

i /(2mP ), with mP being the projectile 82

mass. By employing the IVR method [21], the scattering state 83

of the projectile at time t can be approximated as [17] 84

∣∣�(SIVR)+
i (t)

〉 = 1

(2πi)3/2

∫
d
−→
R ofi(

−→
R o)

∫
d
−→
K ogi(

−→
K o)

× [JM (t)]1/2�i(
−→
R o) exp(iSt )| �Rt 〉, (1)

where 85

�i( �R) = (2π )−3/2 exp(i �Ki · �R) (2)
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is the initial momentum eigenfunction, with �R being the86

position of the center of mass of the incident atom, and the87

sign “+” in the supra-index of the scattering state indicates88

that it satisfies outgoing asymptotic conditions. In Eq. (1) the89

position ket | �Rt 〉 is associated with the time-evolved position90

of the incident atom at a given time t , �Rt ≡ �Rt (
−→
R o,

−→
K o),91

which is derived by considering a classical trajectory with92

starting position and momentum
−→
R o and

−→
K o, respectively.93

The function St denotes the classical action along the trajectory94

St = St (
−→
R o,

−→
K o) =

∫ t

0
dt ′

[ −→P 2
t ′

2mP

− VSP( �Rt ′)

]
, (3)

with
−→P t = mP d �Rt /dt being the classical projectile mo-95

mentum at the time t and VSP being the surface-projectile96

interaction, while the function97

JM (t) = det

[
∂ �Rt (

−→
R o,

−→
K o)

∂
−→
K o

]
(4)

is a Jacobian factor (a determinant) evaluated along the98

classical trajectory �Rt . This Jacobian factor can be related99

to the Maslov index [22] by expressing it as JM (t) =100

|JM (t)| exp(iνtπ ), where |JM (t)| is the modulus of JM (t) and101

νt is an integer number that accounts for the sign of JM (t)102

at a given time t . In this way, νt represents a time-dependent103

Maslov index, satisfying the condition that, every time that104

JM (t) changes its sign along the trajectory, νt increases by 1.105

The functions fi(
−→
R o) and gi(

−→
K o), present in the integrand106

of Eq. (1), describe the shape of the position and momentum107

wave packet associated with the incident projectile. In a108

previous paper [17] fi(
−→
R o) was considered as a Gaussian109

distribution illuminating a fixed number of reduced unit110

cells of the crystal surface, while gi(
−→
K o) was defined as a111

uniform distribution. Here these functions are derived from112

the collimation conditions of the incident beam in order to113

incorporate a realistic profile of the coherent initial wave114

packet, as explained in the following section.115

By using the SIVR scattering state, given by Eq. (1),116

within the framework of the time-dependent distorted-wave117

formalism [23], the SIVR transition amplitude, per unit of118

surface area S, can be expressed as [17]119

A
(SIVR)
if = 1

S

∫
S

d
−→
R ofi(

−→
R o)

∫
d
−→
K ogi(

−→
K o)

× a
(SIVR)
if (

−→
R o,

−→
K o), (5)

where120

a
(SIVR)
if (

−→
R o,

−→
K o) =−

∫ +∞

0
dt

|JM (t)|1/2eiνtπ/2

(2πi)9/2
VSP( �Rt )

× exp
[
i
(
ϕ

(SIVR)
t − −→

Q · −→
R o

)]
(6)

is the partial transition amplitude associated with the classi-121

cal path �Rt ≡ �Rt (
−→
R o,

−→
K o), with

−→
Q = �Kf − �Ki being the122

projectile momentum transfer and123

ϕ
(SIVR)
t =

∫ t

0
dt ′

[
1

2mP

( �Kf − −→P t ′)
2 − VSP( �Rt ′)

]
(7)

dx

dy

dx

surface

Z0

iK

i

x

Collima�ng

(a)

(b)

aperture

FIG. 1. (Color online) (a) Sketch of the FAD process, including
the collimating aperture. (b) Lateral sight of the scattering process.

being the SIVR phase at the time t . Details of the derivation 124

of the SIVR method are given in Ref. [17]. 125

In this article we use a frame of reference placed on the 126

first atomic layer, with the surface contained in the x-y plane, 127

the x̂ versor along the incidence direction and the ẑ versor 128

oriented perpendicular to the surface, aiming towards the 129

vacuum region. The SIVR differential probability, per unit 130

of surface area, for elastic scattering with final momentum �Kf 131

in the direction of the solid angle �f ≡ (θf ,ϕf ), is obtained 132

from Eq. (5) as 133

dP (SIVR)/d�f = K2
f

∣∣A(SIVR)
if

∣∣2
, (8)

where θf and ϕf are the final polar and azimuthal angles, 134

respectively, with θf measured with respect to the surface and 135

ϕf measured with respect to the x̂ axis. A schematic depiction 136

of the process and the coordinates is displayed in Fig. 1(a). 137

Size of initial coherent wave packet 138

In Eq. (5), the variables
−→
R o and

−→
K o represent the starting 139

position and momentum, respectively, of the classical projec- 140

tile trajectory, both measured at t = 0, while the functions 141

fi(
−→
R o) and gi(

−→
K o) determine the shape of the initial wave 142

packet, satisfying the Heisenberg uncertainty relation. We 143

decompose the starting position as
−→
R o = −→

R os + Zôz, where 144−→
R os = Xox̂ + Yoŷ and Zo are the components parallel and 145

perpendicular, respectively, to the surface plane, with Zo being 146

a fixed distance for which the projectile is hardly affected by 147

the surface interaction. 148
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We assume that the size of the coherent initial wave149

packet, at a distance Zo from the surface, is governed by150

the collimation of the incident beam as given by the Van151

Cittert–Zernike theorem [24]. By considering a rectangular152

collimating aperture placed a long distance L from the surface,153

the coherence size of the incident beam on the Zo plane, which154

is located parallel to the surface at a distance Zo from it,155

is defined by the complex grade of coherence, μ(Xo,Yo). It156

reads [24]157

|μ(Xo,Yo)|2 = j 2
0

(
πdx

λ⊥L′ Xo

)
j 2

0

(
πdy

λL′ Yo

)
, (9)

where j0(x) is the spherical Bessel function and dx and dy158

denote the lengths of the sides of the rectangular aperture,159

which form angles θx = π/2 − θi and θy = 0, respectively,160

with the surface plane, and θi being the glancing incidence161

angle [see Figs. 1(a) and 1(b)]. In Eq. (9) the de Broglie162

wavelengths λ and λ⊥ are defined as163

λ = 2π/Ki and λ⊥ = λ/ sin θi, (10)

respectively, this last one being associated with the initial164

motion normal to the surface plane, while L′ = L − Zo/ sin θi .165

For most of the collision systems, Zo can be chosen as equal166

to the lattice constant of the crystal, leading to L′ ∼= L.167

According Eq. (9) the spatial profile of the initial wave168

packet can be approximated by a product of Gaussian169

functions,170

G(ω,x) = [2/(πω2)]1/4 exp(−x2/ω2), (11)

as follows:171

fi(
−→
R os) = G(σx,Xo)G(σy,Yo), (12)

where the parameters σx and σy were derived by fitting the172

complex grade of coherence, i.e., |μ(Xo,Yo)|2 
 |fi(
−→
R os)|2,173

reading174

σx = λ⊥√
2

L

dx

, σy = λ√
2

L

dy

. (13)

The lengths σx and σy represent the effective widths of175

the |G(σx,Xo)|2 and |G(σy,Yo)|2 distributions, respectively,176

being defined as the corresponding root-mean-square devi-177

ations [25]. Notice that these widths are associated with178

the transversal coherence size of the initial wave packet,179

a magnitude that is crucial in matter-wave interferometry180

[26–28].181

On the other hand, concerning the momentum profile of182

the initial wave packet, as we are dealing with an incident183

beam with a well-defined energy, i.e., 
E/E � 1 [16], the184

longitudinal coherence length does not play any role [26].185

Consequently, the starting momentum
−→
K o satisfies energy186

conservation, with K0 = | �K0| = √
2mP E, and the integration187

on
−→
K 0 can be solved by making use of the change of variables188 −→

K o = Ko(cos θo cos ϕo, cos θo sin ϕo, − sin θo), with θo and189

ϕo varying around the incidence angles θi and ϕi = 0,190

respectively. The shape of the corresponding angular wave191

packet is described again in terms of Gaussian functions,192

reading193

gi(
−→
K o) 
 gi(�o) = G(σθ ,θo − θi)G(σϕ,ϕo), (14)

where �o ≡ (θo,ϕo) is the solid angle corresponding to the
−→
K o 194

direction and the angular widths of the θo and ϕo distributions 195

were derived from the uncertainty principle as [25] 196

σθ = λ⊥
2σx

and σϕ = λ

2σy

, (15)

respectively. 197

Replacing Eqs. (12) and (14) in Eq. (5), the extended 198

version of the SIVR transition amplitude, including explicitly 199

the proper shape of the incident wave packet, is expressed as 200

A
(SIVR)
if = α

S

∫
S

d
−→
R osfi(

−→
R os)

∫
d�ogi(�o)a(SIVR)

if (
−→
R o,

−→
K o),

(16)

where a
(SIVR)
if (

−→
R o,

−→
K o) is given by Eq. (6) and α = mP Ki . 201

III. RESULTS 202

We apply the extended SIVR method to 4He atoms 203

elastically scattered from a LiF(001) surface under axial 204

surface channeling conditions since, for this collision system, 205

diffraction patterns for different widths of the collimating slit 206

were reported in Ref. [16]. The SIVR transition amplitude 207

was obtained from Eq. (16) by employing the Monte Carlo 208

technique to evaluate the
−→
R os and �o integrals, considering 209

more than 4 × 105 points in such an integration. For every 210

starting point, the partial transition amplitude a
(SIVR)
if (

−→
R o,

−→
K o) 211

was evaluated numerically from Eq. (6) by employing a 212

potential VSP derived from a pairwise additive hypothesis. 213

The potential model used in this work is the same as the 214

one employed in Ref. [17]. It describes the surface-projectile 215

interaction as the sum of the static and polarization contribu- 216

tions, the first of them evaluated incorporating no local terms 217

of the electronic density in the kinetic and exchange potentials. 218

The potential VSP also takes into account a surface rumpling, 219

with a displacement distance extracted from Ref. [20]. Details 220

of the surface potential will be published elsewhere [29]. 221

In this work we vary the size of the collimating aperture, 222

keeping a fixed incidence condition given by helium projectiles 223

impinging along the 〈110〉 channel with a total energy E = 224

1 keV and an incidence angle θi = 0.99◦. In all the cases, 225

the distance between the collimating aperture and the surface 226

is chosen as L = 25 cm, in agreement with the experimental 227

setup of Ref. [16]. 228

In Figs. 2 and 3 we show two-dimensional projectile 229

distributions, as a function of θf and ϕf , derived within 230

the SIVR approximation by considering collimation slits 231

with the same length—dx = 1.5 mm—but two different 232

widths: dy = 0.2 mm and dy = 1.0 mm, respectively. Both 233

SIVR distributions reproduce quite well the corresponding 234

experimental distributions [16], which are also displayed in the 235

figures. They present the usual banana shape, characteristic of 236

the axial surface scattering [30], with final dispersion angles 237

lying on a thick annulus, whose mean radius is approximately 238

equal to θi . From the comparison of Figs. 2 and 3 it is 239

clearly observed that the width of the collimation slit strongly 240

affects the diffraction patterns, making the well-defined peaks 241

present in the distributions of Fig. 2, for the more narrow slit, 242

completely disappear when the width of the slit is increased, 243
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SIVR approx.

Experiment from Ref. [16]

Collimating slit: dy= 0.2 mm

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

-1.0 -0.5 0.0 0.5 1.0

f (d
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FIG. 2. (Color online) Two-dimensional projectile distribution
as a function of the final dispersion angles θf and ϕf , for 1 keV
4He atoms impinging on LiF(001) along the 〈110〉 direction with the
incidence angle θi = 0.99◦. The incident helium beam is collimated
with a rectangular aperture of sides dx = 1.5 mm and dy =
0.2 mm. Upper panel shows experimental distribution extracted from
Ref. [16]; lower panel shows SIVR distribution.

as happens in Fig. 3. In the experimental and theoretical244

intensity distributions of Fig. 3, only the maxima at the rainbow245

deflection angles ±�rb are visible. As discussed in Ref. [16],246

this behavior is related to the area S of the surface plane that247

is coherently lighted by the incident beam and will be studied248

in detail within the SIVR approach.249

In Eq. (16), by splitting the
−→
R os integral over the area S250

into a collection of integrals over different reduced unit cells, it251

is possible to express A
(SIVR)
if as a product of two factors [17]:252

A
(SIVR)
if 
 A

(SIVR)
if,1 FB, (17)

each of them associated with a different interference mech-253

anism. The factor A
(SIVR)
if,1 , called a unit-cell form factor, is254

derived from Eq. (16) by evaluating the
−→
R os integral over255

only one reduced unit cell, being related to supernumerary256

rainbows [31]. While the factor FB is a crystallographic factor257

associated with Bragg diffraction, which originates from the258

interference of identical trajectories whose initial positions259 −→
R os are separated by a distance equal to the spatial periodicity260

SIVR approx.

Experiment from Ref. [16]

Collimating slit: dy= 1.0 mm
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FIG. 3. (Color online) Similar to Fig. 2 for a collimating aperture
of sides dx = 1.5 mm and dy = 1.0 mm. The radial lines in the upper
panel indicate the positions of the rainbow deflection angles ±�rb.

of the lattice. The factor FB depends on
−→
Q and the area S 261

coherently illuminated by the particle beam, being insensible 262

to the potential model. 263

In Eq. (16) the effective area S coherently lighted by 264

the incident beam can be estimated as S 
 DxDy , where 265

the distances Dj = 2
√

2σj with j = x,y were determined 266

from the (Xo,Yo) values for which the function |μ(Xo,Yo)|2, 267

given by Eq. (9), vanishes. Under typical incidence conditions 268

for FAD, the dependence of FB on the azimuthal angle ϕf 269

becomes completely governed by the number ny of reduced 270

unit cells in the direction transversal to the incidence channel 271

that are coherently illuminated by the initial wave packet, i.e., 272

ny 
 Dy/ay , where ay is the length of the reduced unit cell 273

along the ŷ direction. For ny � 2 the factor FB gives rise 274

to Bragg peaks placed at azimuthal angles that verify the 275

relation sin ϕf = mλ/ay , with m being an integer, as observed 276

in Fig. 2 where ny 
 4. The relative intensities of theses Bragg 277

peaks are modulated by A
(SIVR)
if,1 , which acts as an envelope 278

function that can reduce or even suppress the contribution 279

of a given Bragg order, while the peak width is determined 280

by ny , narrowing as ny increases. But when the coherently 281

illuminated region shrinks to cover around a reduced unit cell 282

in the transversal direction, only the unit-cell factor is present 283
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FIG. 4. (Color online) Azimuthal angular distribution as a func-
tion of ϕf for 1 keV 4He atoms impinging on LiF(001) along the
〈110〉 direction with the incidence angle θi = 0.99◦. The incident
helium beam is collimated with a rectangular aperture of length dx =
1.5 mm and different widths: dy = 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mm,
respectively. Vertical lines indicate the angular positions of Bragg
peaks, as explained in the text.

in Eq. (17). Consequently, the angular distribution shows284

structures associated with supernumerary rainbow maxima285

exclusively, as it happens in Fig. 3 where ny � 1.286

With the aim of studying more deeply the variation of287

the diffraction patterns with the width of the slit, in Fig. 4288

we display the differential probability dP (SIVR)/dϕf , as a289

function of the azimuthal angle ϕf , for different values of290

dy . As given by Eq. (13), when dy augments, the number291

ny of the coherently illuminated cells decreases while the292

width of the Bragg peaks increases, as observed in Fig. 4293

for dy � 0.4 mm. For wider collimating slits Bragg peaks start294

to blur out, disappearing completely for dy = 0.8 mm, where295

ny 
 1. Therefore, varying dy we can inspect two different296

zoologies: Bragg peaks at small dy values and supernumerary297

rainbow peaks at large dy .298

We also investigate the influence of the length of the299

collimating aperture, dx , on FAD patterns. In Fig. 5 we300

display angular projectile distributions derived from the SIVR301

approach by considering a collimating slit with the same width,302

dy = 0.2 mm, and three different lengths: dx = 0.2, 2.0, and303

4.0 mm. For a small square aperture [Fig. 5(a)], Bragg peaks304

0.0

0.5

1.0

1.5

(b) dx= 2.0 mm

(a) dx= 0.2 mm

0.0

0.5

1.0

f (d
eg

)

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

(c) dx= 4.0 mm

f (deg)

FIG. 5. (Color online) Similar to Fig. 2 for a collimating slit of
width dy = 0.2 mm and different lengths: (a) dx = 0.2 mm, (b) dx =
2.0 mm, and (c) dx = 4.0 mm.

are observed like circular spots lying on a thin ring whose 305

radius is equal to θi , corresponding to an almost ideal elastic 306

rebound �Ki → �Kf . But when the length of the collimating 307

aperture augments up to dx = 2.0 mm [Fig. 5(b)], transforming 308

the square orifice into a slit, Bragg peaks become visible 309

like elongated strips which are placed at slightly different 310

radius. This effect is even more evident in Fig. 5(c) for 311

dx = 4.0 mm, where the projectile distribution resembles the 312

diffraction charts for different normal energies E⊥ = E sin2 θi . 313

The explanation is simple: from Eqs. (13) and (15), if dx is 314

large σθ is also large, enabling a wide spread of the impact 315

momentum normal to the surface plane, |Koz| = Ko sin θo. 316

Such a Koz dispersion gives rise to the structures along the 317

vertical axis of Fig. 5(c). Hence, the intensity oscillations along 318

the θf axis observed for long collimating slits are probing the 319

surface potential for different distances to the topmost atomic 320

plane. They might be a useful tool to explore different distances 321

to the surface without varying the mean value of the normal 322

energy E⊥. 323

The previous analysis was done by keeping the de Broglie 324

wavelengths of Eq. (10) constant. However, the size of the 325

coherently illuminated region is affected by the λ and λ⊥ 326

values, as given by Eq. (13). Then, in FAD experiments, the 327

dimensions of the collimating aperture should be modified for 328

every incidence condition in order to ensure a similar coherent 329
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lighting of the surface in all cases. Additionally, notice that the330

transversal coherence length σx (σy) depends on the ratio L/dx331

(L/dy), so that any change of the collimating conditions that332

keeps this ratio constant would produce the same interference333

patterns. Furthermore, even though the present results were334

obtained by considering rectangular collimating apertures, the335

main outcomes of the work are expected to hold also for336

circular collimating apertures.337

IV. CONCLUSIONS338

We derived an extended version of the SIVR approxi-339

mation [17] that incorporates a realistic description of the340

coherent initial wave function in terms of the collimating341

parameters of the incident beam. The model was applied342

to helium atoms impinging at grazing angles on a LiF(001)343

surface considering a rectangular collimating aperture with344

different sizes. As was found experimentally [16], the SIVR345

interference patterns are strongly affected by the width of the346

collimating slit, which determines the transversal length of347

the surface area that is coherently illuminated by the incident348

wake packet. The number of lighted reduced unit cells in the349

direction transverse to the incidence channel determines the350

azimuthal width of the Bragg peaks, making either Bragg peaks 351

or supernumerary rainbows visible. Therefore, knowledge 352

of the experimental collimating conditions is essential for a 353

meaningful comparison with theoretical distributions. 354

On the other hand, the length of the collimating slit 355

affects the polar θf distribution of scattered projectiles, this 356

effect being related to the dispersion of the component 357

of the initial momentum perpendicular to the surface. As 358

the length of the collimating aperture increases, diffraction 359

maxima are transformed from circular spots into elongated 360

strips, where interference structures along the θf axis arise 361

for the longer slits. These findings suggest that collimating 362

slits with several millimeters of length might be used to 363

probe the projectile-surface interaction for different normal 364

distances. Alternatively, if the usual diffraction charts are 365

employed for surface analysis, sufficiently short collimating 366

apertures are required to ensure a small dispersion of the initial 367

perpendicular energy. 368
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