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Validating U.S. Earnings Mobility Measures1

Lisa M. Dragoset2 and Gary S. Fields3

Abstract

Earnings mobility has been studied at both the macro level (the amount of mobility in
an economy) and the micro level (the correlates of individuals� income changes). While
measurement error is recognized as potentially important at both these levels, very little is
known about the degree to which earnings mobility estimates are a¤ected by measurement
error. We compare micro and macro earnings mobility estimates for the U.S. during the
1990s using both survey-based earnings and administrative-based earnings. We �nd that
measurement error in survey-based earnings has little qualitative e¤ect on mobility estimates,
but often has a large quantitative e¤ect.

1This document reports the results of research and analysis undertaken by the U.S. Census Bureau sta¤.
It has undergone a Census Bureau review more limited in scope than that given to o¢ cial Census Bureau
publications. This document is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. This research is a part of the U.S. Census Bureau�s Longitudinal Employer-
Household Dynamics Program (LEHD), which is partially supported by the National Science Foundation
Grants SES-9978093 and SES-0427889 to Cornell University (Cornell Institute for Social and Economic
Research), the National Institute on Aging Grant R01~AG018854-02, and the Alfred P. Sloan Foundation.
The views expressed on statistical and methodological issues are those of the author(s) and not necessarily
those of the U.S. Census Bureau, its program sponsors or data providers. Some or all of the data used
in this paper are con�dential data from the LEHD Program. The U.S. Census Bureau supports external
researchers� use of these data through the Research Data Centers (see www.ces.census.gov). For other
questions regarding the data, please contact Jeremy S. Wu, Program Manager, U.S. Census Bureau, LEHD
Program, Demographic Surveys Division, FOB 3, Room 2138, 4700 Silver Hill Rd., Suitland, MD 20233,
USA. (Jeremy.S.Wu@census.gov http://lehd.dsd.census.gov). We thank Peter Gottschalk, Erica Groshen,
George Jakubson, and John Abowd for their helpful comments, as well as the members of the Cornell
University Research Seminar on Labor Markets in Comparative Perspective and participants at the 2006
Society of Labor Economists annual meeting.

2 lmd49@cornell.edu, Cornell University.
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1 Introduction

Income mobility is de�ned as the change in income from one period to another for the same

individual; compensation mobility concerns the change in incomes from the labor market

(labor earnings plus bene�ts). Earnings mobility concerns only the change in labor earnings,

excluding all bene�ts such as employer contributions to 401(k) plans and health insurance

plans. The empirical literature on income and earnings mobility in various countries around

the world is voluminous; see Atkinson, Bourguignon, and Morrisson (1992), Baulch and

Hoddinott (2000), and Chronic Poverty Research Centre (2004) for surveys.

It is widely recognized that incomes and earnings are measured with error, the existence

of which casts doubt on two main conclusions in the mobility literature (Duncan and Hill,

1985; Deaton, 1997; Bound, Brown, and Mathiowetz, 2001; Fields et al., 2003 (ii)). One is

measuring the amount of mobility in a country over time ("macro mobility") �for example,

gauging the extent of movement between income groups such as quintiles or calculating the

correlation between initial income and �nal income. Mistakenly interpreting movements in

measured earnings that are purely due to measurement error as movements in actual earnings

would produce more apparent changes between income groups than in fact took place and

likewise a lower correlation between initial and �nal income than truly occurred. A second

potentially problematical area has been that of determining the correlates of individual mo-

bility within the income distribution ("micro mobility"), or which income groups experience

the most positive or negative income changes. Measurement error in initial income produces

a spurious link between income change and initial income level, producing the appearance

of convergent mobility, i.e. high-income people gaining less in dollars or percentages than

low-income people.

Researchers have responded to the concern about measurement error in several ways.

One is to note the concern and proceed to use measured incomes despite it. This is by far

the most common approach to the measurement error issue. A second response is to use

administrative records rather than survey reports. This approach has dominated research

on income mobility in France, in which a whole series of studies have been conducted using

administrative data; see, for example, Bigard, Guillotin, and Lucifora (1998), Buchinsky,

Fougère, and Kramarz (1998), and Buchinsky, Fields, Fougère, and Kramarz (2003), among

others. A third response, found in the U.S. literature, is to measure the di¤erences be-

tween results obtained using survey data compared with the results using administrative

records. Such studies are called "validation studies" and are surveyed in Bound, Brown,

and Mathiowetz (2001).

In this paper, we conduct a more comprehensive validation study than heretofore, ad-
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dressing the speci�c issues cited above as well as many others. We gauge the e¤ect of

measurement error in survey-based earnings on mobility estimates for the United States by

comparing the estimates of macro and micro mobility obtained when using earnings reported

by respondents in household surveys with the estimates obtained using an independent ad-

ministrative measure of earnings. We use a new dataset that contains individually reported

total annual labor earnings from the Survey of Income and Program Participation (SIPP)

linked to employer-reported total annual labor earnings from the Social Security Adminis-

tration�s Detailed Earnings Record (DER). Treating the administrative DER earnings as

equal to �true� latent earnings, we ask how much mobility estimates are a¤ected by mea-

surement error in survey-based earnings. The speci�c research questions are as follows: For

the United States in the 1990s, how much are macro mobility estimates, micro mobility pro-

�le estimates, and micro mobility regressions a¤ected by measurement error in survey-based

earnings? Do those individuals who do best (worst) in the univariate pro�le results also

do best (worst) when holding other things equal in the regression results? We use several

di¤erent concepts and measures of macro mobility and use mobility pro�les and regression

models to analyze micro mobility.

Our general �ndings are twofold. The �rst is that measurement error in survey-based

earnings has little qualitative e¤ect on mobility estimates. The great majority of qualitative

results hold when administrative records are used instead of survey responses. In particular,

we �nd evidence of convergent mobility using both survey-based and administrative-based

data, and using both unconditional (univariate) analysis and conditional (multiple regres-

sion) models. The second is that in several cases, measurement error in survey-based earn-

ings has a large e¤ect on the quantitative magnitudes of mobility estimates, though not in a

systematic direction. It is impossible to know how typical the U.S. results are compared to

what would be found in other countries. Nonetheless, from these two �ndings we conclude

that analysts should continue doing research using survey data when only survey data are

available.

The balance of the paper is organized as follows. We review the previous literature in

Section 2, describe the data in Section 3, discuss the empirical methodology and results in

Sections 4 and 5 respectively, and conclude in Section 6.

2 Previous Evidence

A great many measures have been used to gauge how much mobility there is in an economy.

These measures include the correlation between initial income and �nal income, the elasticity

of �nal income with respect to initial income, the proportion of income recipients who change
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income quintile, the average change in log-income, the average absolute value of income

change, the chi-squared value in a contingency table, the average number of dollars gained

by the winners and lost by the losers, and many others.

It is now understood that these measures gauge di¤erent mobility concepts. These six

concepts are: time dependence, which measures the degree to which individuals�earnings in

one year are determined by their earnings in the previous year; positional movement, which

is measured by observing individuals�changes in economic positions in earnings distributions

(either ranks, centiles, deciles, or quintiles); share movement, which happens when individu-

als�shares of total earnings in the population change; earnings �ux, which concerns the size

of changes in individual�s earnings levels but not their sign; directional earnings movement,

which measures how many people move up or down the earnings distribution and by how

much; and mobility as an equalizer of longer-term earnings, which compares the inequality of

earnings at a point in time with the inequality of earnings over a longer time period (Fields

2001, 2004).

There is very little evidence concerning how much estimates of these six di¤erent macro

mobility concepts may be a¤ected by measurement error. A very large literature uses only

survey-based data to study macro and micro mobility in the U.S. See Atkinson, Bourguignon,

and Morrisson (1992) for an excellent review of the earlier literature. Later studies include

Gottschalk and Mo¢ tt (1994), Gittleman and Joyce (1995, 1996), Buchinsky and Hunt

(1996), Burkhauser, Holtz-Eakin, and Rhody (1997), Fields and Ok (1999), and Hisnanick

and Walker (2004).

A much smaller literature uses only administrative-based data to study mobility. In an

attempt to work with an error-free measure of earnings, a number of researchers working on

France have used administrative-based earnings measures rather than survey-based earnings

measures. This data set, the DADS (Declarations Annuelles de Données Sociales) from the

French national statistical o¢ ce INSEE, was used for example by Buchinsky et al. (2003) to

study income mobility in France. The French data set is administrative only and does not

include a survey-based measure of earnings. Therefore, researchers working on France have

not been able to examine how mobility estimates change when using survey-based versus

administrative-based earnings data.

The previous literature o¤ers a small number of studies that make selective comparisons

of survey-based versus administrative-based results, but no previous study has made such

comparisons as comprehensively as we do in this paper; see Bound, Brown, and Mathiowetz

(2001) for a complete survey of this literature through the 1990s and Abowd and Stinson

(2005) and Gottschalk and Huynh (2006) for more recent contributions. A few of these val-

idation studies also look at measurement error in earnings changes, de�ned as the di¤erence
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between survey-based earnings changes and administrative-based earning changes. Duncan

and Hill (1985) �nd no statistically signi�cant di¤erence between mean earnings changes

based on the individual survey reports versus the employer records for a single large U.S.

manufacturing �rm. However, these earnings changes are obtained by di¤erencing reports

of earnings in two calendar years from the same interview, rather than di¤erencing reports

of annual earnings from two di¤erent interviews in a longitudinal study.

Duncan and Hill (1985), Bound and Krueger (1991), Bound et al. (1994), and Pis-

chke (1995) all �nd evidence of "mean-reverting measurement error," de�ned as low earners

tending to overstate earnings in surveys relative to administrative reports and high earners

tending to understate them. Bound and Krueger (1991) report that for men nearly 65% of

the observed variation in earnings changes is true variation, while for women the correspond-

ing percentage is 80%. These four studies also �nd that measurement error is positively

correlated over time.

Pischke (1995) was the �rst to establish the relationship between measurement error and

earnings dynamics. Pischke proposed a simple model in which annual earnings are composed

of a permanent (random-walk) component and a transitory (white noise) component and

measurement error is composed of a person-speci�c component which is constant over time,

a component which is correlated with the transitory component of earnings, and white noise.

When this model was applied to the Panel Study of Income Dynamics Validation Study

(PSIDVS) data, he found that the white-noise error more than o¤set the underreporting

of transitory earnings, resulting in a slight understatement of the permanence in earnings

changes in the survey-based data, relative to the administrative-based data. The PSIDVS

sample was small and not representative. Our study builds on Pischke�s work by using

a larger and nationally representative sample to study the e¤ect of measurement error on

earnings changes estimates.

Abowd and Stinson (2005) used the same SIPP-SSA public use �le that we use in this

study. They created a person-job level dataset from the SIPP-SSA �le by matching each

SIPP respondent�s reported jobs to his/her jobs from the Detailed Earnings Record (taken

from Box 1 on the W-2 form) by employer name. They assumed that neither survey-based

nor administrative-based earnings equal "true" earnings, but that both are measured with

error, and estimated the ratio of error to total variance to be 0.67 for survey-based earnings

changes and 0.71 for administrative-based earnings changes.

As stated above, several studies �nd evidence of "mean-reverting" measurement error, or

a negative correlation between the measurement error and the value of earnings as given by

the employer-recorded or administrative earnings. To formalize how this �nding will a¤ect

estimates of micro mobility, we follow Kim and Solon (2005) and consider the textbook
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model of errors-in-variables:

(1) yit = y
�
it + wit;

where yit is observed earnings, y�it is true earnings, and the measurement error wit is assumed

to have zero mean and to be orthogonal to y�it. This model can be viewed as a restricted

version of a more general model of measurement error:

(2) yit = ni + �y
�
it + wit;

where ni is an individual-speci�c e¤ect for reporting error and wit is again uncorrelated with

yit and each of its determinants. The textbook model of measurement error is the case

where ni = 0 and � = 1. The evidence of "mean-reverting" measurement error found in the

literature corresponds to a value of � that falls between 0 and 1. Di¤erencing equation (2)

leads to

(3) �y = ��y� +�w:

Now suppose the earnings mobility equation we wish to estimate takes the following uncon-

ditional form:

(4) �y� = ��x+ ";

where x is a vector of determinants and " is independently and identically distributed and

orthogonal to �x. What the researcher is actually able to estimate is the following:

(5) �y = �1�x+ "2:

Least squares will provide a consistent estimate of �1since both components of the error term

("2 and �w) are orthogonal to the regressors. But if 0 < � < 1, then least squares provides

estimates of � that are biased downward by � (i.e., plim �̂1 = ��). Bound et al. (1994)

estimate equation (3) and obtain a value for � of 0.779 (with standard error 0.041) using

least squares.

Many earnings mobility studies in the United States and elsewhere also seek to estimate

the following type of conditional model which includes lagged earnings as an explanatory

variable:

(6) �y� � y�it � y�it�1 = �x+ �y�it�1 + ".

What the researcher is actually able to estimate is the following:

(7) �y = �1x+ �1yit�1 + ";
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where plim �̂1 = �� and

(8) plim �̂1 =
�V ar(y�it�1)

V ar(y�it�1) + (1=�
2)V ar(wit�1)

:4

See the appendix for the derivation of (8). It is easy to see that certain types of measurement

error will cause biased estimates of micro mobility.

Gottschalk and Huynh (2006) derive the analytical link between mean-reverting measure-

ment error and two measures of macro mobility - the elasticity of log earnings with respect

to lagged earnings and the correlation between current log earnings and lagged log earnings

- and show that the various biases from mean-reverting measurement error act in o¤setting

directions. Speci�cally, their decomposition equation is of the form

(9) �̂yy�1 = �yy�1(1 + f(�wy� � �w�1y��1)
var(y��1)

var(y�1)
g) +

f(�wy� � �w")
var(")

�yy�1var(y�1)
g+ f[�ww�1 + �"w�1 � �]

var(w�1)

var(y�1)
g;

where �yy�1 is the slope coe¢ cient from a regression of log earnings on lagged log earnings

(10) yit = �yy�1yit�1 + ";

and the measurement error in log earnings and lagged log earnings takes the following text-

book model form:

(11) yit = y
�
it + wit and

(12) yit�1 = y
�
it�1 + wit�1:

Using the SIPP-SSA linked data, which is what we also use, Gottschalk and Huynh �nd

that the mean-reverting measurement error in SIPP earnings almost completely o¤sets the

bias of classical measurement error, resulting in very similar macro mobility estimates using

survey-based and administrative-based earnings.

Next, let us turn to the previous evidence on the comparison of univariate pro�le results

with multivariate regression results. Previous work on mobility in several other countries,

namely Argentina, Mexico, Venezuela, Indonesia, Spain, and South Africa, found that the

e¤ect of certain variables on mobility was reversed when moving from univariate mobility

pro�les to multivariate mobility regressions using survey-based earnings (Fields et al. 2003

i, ii, and iii, Fields et al. 2005). Therefore, one might expect to �nd that for the U.S., the

4We estimate equation (7) in the empirical work where x includes dummies for gender, race, age, and
education.
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signs of some variables may change in the univariate versus the multivariate results, at least

when using survey-based earnings. As will be shown in Section 5, we do not �nd this to be

the case for either survey-based or administrative-based earnings.

Before concluding this literature review, we would note that previous studies have at-

tempted to correct in other ways for the possible bias introduced into mobility estimates by

measurement error. Fields et al. (2003 i, ii, and iii) and Fields et al. (2005) studied income

mobility in Indonesia, South Africa, Spain, and Venezuela and in Argentina, Mexico, and

Venezuela respectively. They note that the problem of measurement error in the income

variable could lead to overstatements of the income gains of the poor relative to the rich.

To correct for measurement error in income, they ran earnings change regressions which use

period t-1 predicted income in place of period t-1 reported income as an explanatory vari-

able. In some countries, the estimates using predicted income con�rm the results obtained

when using reported income, while in others statistically signi�cant results using initial re-

ported earnings become insigni�cant when predicted earnings are used instead. Antman

and McKenzie (2005) also attempted to correct for the possible measurement error bias in

mobility estimates when studying earnings mobility in Mexico using the Encuesta Nacional

de Empleo Urbano (ENEU). They used a pseudo-panel approach to obtain a consistent

estimate of macro mobility, which they measured by the slope coe¢ cient from a regression

of cohort-speci�c mean current earnings on cohort-speci�c mean lagged earnings. Our work

does not employ any of these methods, but rather seeks to compare the mobility estimates

when using administrative-based versus survey-based earnings in an attempt to gauge the

possible measurement error bias in the latter.

In summary, our review of the literature has found scattered evidence concerning how

much estimates of macro and micro mobility may be a¤ected by measurement error. There-

fore, the results presented below are more complete than the existing literature in the sense of

using a larger and nationally representative sample, including more macro mobility concepts

and measures of them, presenting earnings mobility pro�les, and estimating multivariate

earnings mobility functions comparing administrative-based and survey-based earnings mo-

bility estimates.

3 Data Description

In this research, we use a new dataset called the Survey of Income and Program Participation-

Social Security Administration Public Use File (SIPP-SSA PUF), Version 3.1, which was

created by the Longitudinal Employer Household Dynamics (LEHD) program at the U.S.

Census Bureau. The dataset contains individually reported total annual labor earnings from
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the SIPP linked by Social Security Number (SSN) to employer reported total annual labor

earnings subject to income tax from the Social Security Administration�s Detailed Earnings

Record (DER). The SIPP-SSA PUF actually contains two �les, one person-level �le and

one person-job-level �le.

The SIPP-SSA person-level �le contains �ve di¤erent stacked SIPP panels (1990, 1991,

1992, 1993, and 1996). The 1990 and 1991 panels are two years long (e.g., the 1990 panel

includes earnings data for 1990 and 1991), the 1992 and 1993 panels are three years long,

and the 1996 panel is four years long. For this research, the three-year and four-year panels

are divided into two-year-long panels for each set of two consecutive years from 1992-1993

through 1998-1999. Stacked together, these panels include a total of 353,120 individuals.

However, each individual only has reported SIPP earnings for the years covered by the

particular panel in which s/he was interviewed. The dataset also includes several key

variables reported on the SIPP survey (race, age, gender, marital status, etc) and a �ag

variable indicating whether the individual has a validated social security number (SSN) and

was thus able to be matched to his/her record in the SSA data. The method for validating

SSNs for these �ve SIPP panels was as follows: If a SIPP respondent refused to provide an

SSN, then no attempt was made to obtain a match for that person in the administrative

data. For respondents who provided an SSN, a clerk used their name, address, and personal

information to look them up in the SSA master �le of all applications for Social Security

cards (called the Numident �le). If the Numident SSN matched the self-reported SSN, then

the record was labeled as having a validated SSN. In cases where the Numident SSN was

di¤erent from the self-reported SSN, the clerk �lled in the correct SSN from the Numident

�le and the record was labeled as having a validated SSN.

For those individuals who do have a validated SSN, the person-level dataset includes

annual earnings subject to FICA as reported on the Social Security Administration�s Sum-

mary Earnings Record (SER), which are capped at the FICA taxable maximum, and the

annual detailed earnings records (DER) as reported in the Social Security Administration�s

Master Earnings File, which are taken directly from Box 1 on the W-2 form and are not

capped. The person-job-level dataset includes job-level detailed earnings records (DER) for

each worker-employer combination for every year from 1978 through 2003. These job-level

earnings may be summed across employers to obtain total annual DER earnings for each in-

dividual. If an individual does not have a validated SSN, then his/her SSA annual earnings

(both SER and DER) are imputed using a multiple imputation technique for nonresponse

in surveys. We exclude these individuals from our sample.

All of the individuals with validated SSNs have non-missing SER and DER earnings.

However, some of these individuals have missing SIPP data. All SIPP data that were
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originally missing were completed using multiple imputation methods originally proposed by

Rubin (1993) and updated by Raghunathan et al (2003). This imputation resulted in eight

completed datasets which each contain the "true" underlying microdata where they were

available (or non-missing) and imputed missing data. These eight completed datasets are

analyzed by �rst analyzing each completed dataset separately and then combining results

(such as regression coe¢ cients) using formulas presented in Rubin (1987). Because we are

using multiply completed data, we believe that our mobility estimates do not su¤er from

attrition or self-selection biases. We have essentially replaced one type of problem (sample

attrition and item non-response) with another (the quality of the imputed values). This

paper is part of a larger Census Bureau project to assess the analytic validity of the multiply

completed SIPP-SSA �le.

The SIPP interviews respondents at four-month intervals and collects earnings informa-

tion for each of the previous four months. The annual earnings measure used in this study

was created by �rst imputing earnings at a monthly level, and then summing earnings across

twelve months. It should be noted that because the SIPP annual earnings measure ag-

gregates twelve reports of monthly earnings, it could have very di¤erent measurement error

properties from those of PSID or CPS earnings reports, which are directly for annual earn-

ings in the preceding calendar year and could involve reference by respondents to their tax

returns.

To create our �nal sample, we �rst chose the set of individuals aged 25-60 with validated

SSNs who were dual labor force participants in both years for each set of consecutive years.

An individual was de�ned as a labor force participant if he or she either a) had positive

SIPP earnings for the year, b) had positive DER earnings for the year, or c) reported in the

SIPP that s/he was actively looking for work during at least one month of that year. We

next trimmed the sample using the following method; see Chen and Dixon (1972) and Yale

and Forsythe (1976) for details and usage. We �t a mixed e¤ect model for year-speci�c

SIPP earnings with �xed personal characteristics and random person and employer e¤ects

using only SIPP earnings data that were within �ve standard deviations of the year-speci�c

SIPP earnings mean. Then we created a residual for every observation, including those not

used to �t the model. We repeated this process using DER earnings. Using the residual

variances from these two models, we dropped year-individual observations with either the

SIPP residual or the DER residual (or both) greater than �ve residual standard deviations.

Finally, we stacked all the years for 1990-1999. This resulted in a �nal sample size of

229,578 person-year observations. Some individuals appear more than once in our sample

(for example, if they were dual labor force participants in 1996-1997 and in 1997-1998). Note

that all earnings variables are expressed as real earnings in January 1995.
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It is probable that the set of individuals who have a validated social security number

di¤ers systematically from the set of individuals who do not. We feel that the advantage of

having actual (as opposed to imputed) DER earnings that is gained by using only individuals

with a validated social security number far outweighs the disadvantage of having a sample

that is only representative of the population of individuals with validated social security

numbers, as opposed to the entire population. Therefore we use only those individuals

with validated social security numbers and claim that our sample is representative of the

civilian non-institutionalized U.S. population of individuals with validated SSNs. One way

to test this claim is to see whether the percentage of people with validated SSNs is the same

for key personal characteristics as it is for the whole sample. Appendix Table A1 shows

the percentage of observations who have validated SSNs broken into groups by demographic

variables and other key variables in the data. For most groups, the percentage of observations

with validated SSNs is close to 84%, which is the percentage of observations in the whole

sample with validated SSNs. For a few groups (Hispanic, never married, and born outside

the U.S.) the percentage is slightly smaller (around 75%). Because we are including only

those individuals with validated SSNs, our sample probably includes fewer illegal immigrants

than a representative sample would. The fact that there are fewer persons born outside

the U.S. in our sample than in the whole sample supports this view. Appendix Table A2

shows the means and variances of several key variables for both the entire sample and for

our sample. For no variable do we reject the hypothesis that the means are equal for the

two samples. Thus, Tables A1 and A2 together provide evidence that the set of individuals

with validated Social Security numbers is for the most part representative of all individuals

in the sample.

All of the SIPP panels are strati�ed multistage probability samples rather than simple

random samples. The results presented in this paper take into account the SIPP sampling

error resulting from this multistage sampling design by clustering on the primary sampling

unit, which is the �rst-stage cluster in the SIPP sampling design.

4 Empirical Methodologies forMacroMobility andMi-

cro Mobility Estimates

4.1 Methods Used to Analyze Both Macro and Micro Mobility

We de�ne "true" latent earnings as the earnings obtained from the labor market, exclusive of

other compensation such as bene�ts. "True" earnings include pre-tax employee contributions

to deferred compensation plans, such as 401(k) retirement plans, and pre-tax employee-paid

10



health insurance plan premiums. "True" earnings do not include any type of bene�ts, such as

employer contributions to health insurance plans and deferred compensation plans, Medical

Savings Accounts, educational assistance above a certain monetary level, fringe bene�ts,

etc.

We have several reasons to believe that the DER earnings measure is as close to "true"

latent earnings as it is possible to get, and we will assume in this study that it is com-

pletely free of measurement error. First, the DER earnings measure is not capped at the

FICA taxable maximum amount as is the SER earnings measure used in many previous

earnings validation studies. Second, we are able to distinguish between self-employment

DER earnings and employer DER earnings in the job-level dataset. This study will use

only those jobs that represent wage and salary earnings and will exclude self-employment

income. Hence, summing the DER earnings measure across jobs for each individual provides

a measure of total employer-reported annual labor earnings from all jobs. This measure is

directly comparable to the SIPP measured of annual labor earnings constructed by summing

twelve monthly values of wage and salary earnings reported by the SIPP respondent.

There are several circumstances under which DER earnings may not equal "true" earn-

ings. The �rst arises when an employee underreports tips and other earnings to the employer.

We would prefer to drop all occupations which are likely to have large portions of their earn-

ings in the form of tips, but the occupation variable available on the SIPP-SSA public use

�le is too coarse for this, with only �ve categories. Second, there are two items which

may be reported under "gross earnings" on an employee�s pay stub and which we include

in our de�nition of "true" earnings, but which are not included in Box 1 on the W-2 form:

pre-tax health insurance plan premiums and pre-tax contributions to deferred compensation

plans, such as 401(k) retirement plans. Health insurance plan premiums are not likely to

be missing from the DER earnings measure in a way that varies systematically with any of

our explanatory variables, and hence will not bias our macro or micro mobility estimates.

Pre-tax contributions to deferred compensation plans are reported elsewhere on the W-2

form (for example in Box 13 in 1999) and we add them to Box 1 to obtain gross earnings.

Thirdly, DER earnings can include the following items, all of which employers are required to

report as part of taxable income: employer contributions to health insurance plans, Medical

Savings Accounts, educational assistance above a certain monetary level, certain types of

fringe bene�ts, etc.

DER earnings may di¤er from SIPP reported earnings in the following circumstances,

even though these di¤erences are not a result of measurement error in either SIPP or DER

earnings. First, SIPP respondents are only asked to report earnings on at most two jobs in

any given month. If the respondent held more than two jobs in that month, then the DER
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annual earnings measure will include earnings from all employers for that month, while the

SIPP annual earnings measure will not include earnings from the additional jobs. Second,

annual SIPP earnings are topcoded (at $150,000 for the 1996 panel and at $100,000 for

the earlier panels) while DER earnings are not. However, the individuals a¤ected by this

topcoding are not included in our sample as a result of the trimming described above in

section 3.

For a number of reasons - because the DER earnings are not capped, because we are

not including self-employment income, because we can add pre-tax contributions to deferred

compensation plans onto Box 1 earnings, and because health insurance plan premiums miss-

ing from DER earnings are not likely to be correlated with other variables in the dataset -

we believe that the DER earnings measure is as close to "true" earnings as it is possible to

get. Therefore, we will assume in this study that DER earnings are without measurement

error (i.e., they are equal to "true" earnings). We will compare the answers to macro and

micro mobility questions using both SIPP and DER earnings to gauge the possible e¤ect of

measurement error in survey-based earnings on mobility estimates.

We use dollar earnings, rather than log earnings, in all of our main estimations. The

reason for this is as follows. We are particularly interested in whether or not the �nding of

convergent mobility holds in the administrative data. If we �nd convergence using dollar

earnings, it means that the lowest initial earners gained more in dollars than the highest

initial earners. This result (called strong convergence) implies that the lowest initial earners

gained more in percentage terms than the highest initial earners (called weak convergence).

In other words, a �nding of strong convergence using dollar earnings implies a �nding of

weak convergence using log earnings.

4.2 Macro Mobility Methodology

Macro mobility asks the question: how much earnings mobility was there in the United

States during the 1990s? Many papers, including Hungerford (1993), Gittleman and Joyce

(1995, 1996), Sawhill and Condon (1992), Burkhauser, Holtz-Eakin, and Rhody (1997),

Buchinsky and Hunt (1996), and Gottschalk and Huynh (2006), gauge just one or two

mobility concepts, which vary from study to study. However, Buchinsky et al. (2003)

and Fields (2004) examine all six of the concepts of mobility that have been used in the

literature. As stated earlier, the six concepts are: time dependence, which measures the

degree to which individuals�earnings in one year are determined by their earnings in the

previous year; positional movement, which is measured by observing individuals�changes

in economic positions in earnings distributions (either ranks, centiles, deciles, or quintiles);
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share movement, which happens when individuals�shares of total earnings in the population

change; earnings �ux, which concerns the size of changes in individual�s earnings levels but

not their sign; directional earnings movement, which measures how many people move up or

down the earnings distribution and by how much; and mobility as an equalizer of longer-term

earnings, which compares the inequality of earnings at a point in time with the inequality of

earnings over a longer time period (Fields 2004). For the United States from 1970-1995 and

France from 1967-1999, the studies mentioned above �nd that the answers to macro mobility

questions depend dramatically on which mobility concept the researcher chooses to measure.

For France, �ve of six mobility concepts showed that mobility had fallen over time, but the

sixth did not. For the U.S., four of six mobility concepts showed that mobility �rst rose and

then fell back to its previous level, while the remaining two concepts showed that mobility

rose, fell, and then rose again over time.

Given that measures of the di¤erent mobility concepts have been shown to produce

di¤erent time patterns, we too use all six di¤erent concepts of mobility to answer the above

question concerning the extent of mobility in the U.S. in the 1990s. In this paper, we

choose two measures of time-independence: one minus the coe¢ cient from a regression of

current earnings on earnings in the previous year, and the minus chi-squared statistic from

a quintile transition matrix for earnings.5 Each of the remaining �ve concepts is measured

using a single measure: per-capita centile movement to gauge positional movement, the mean

absolute value of share changes to gauge share movement, average absolute value of change

in earnings to measure earnings �ux, average change in earnings to measure directional

movement, and Fields�equalization index to measure mobility as an equalizer of longer-term

income. Their speci�c de�nitions appear in Table 1.

5We use the negative of the chi-squared statistic so that a more positive number represents more mobility,
as it does for the other mobility measures.
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Table 1

Measures of Six Mobility Concepts Used in the Empirical Work

Mobility Concept Measure of that Concept Used in this
Research

Time-Independence �2 =
P

i

P
j
(OBSij�EXPij)2

EXPij
; where OBSij

is the number of individuals observed in a

particular cell of a quintile transition ma-

trix and EXPij is the number that would

be expected in that cell if initial earnings

and �nal earnings are statistically indepen-

dent.

Time-Independence 1� �yy�1 ; the coe¢ cient from a regression

of current earnings on earnings in the pre-

vious year.

Positional Movement (1=n)
P
jc(y2i)�c(y1i)j, where c(:) denotes

i�s centile in the initial or �nal year earn-

ings distribution.

Per-Capita Share Movement (1=n)
P
js(y2i)�s(y1i)j, where s(:) denotes

i�s share of total earnings in the initial or

�nal year.

Per-Capita Earnings Flux (1=n)
P
jy2i � y1ij:

Per-Capita Directional

Movement

(1=n)
P
(y2i � y1i):

Mobility as an Equalizer of

Longer-Term Earnings

E � 1 � (I(a)=I(y1)), where a is the vec-
tor of average earnings, y1 is the vector of

base-year earnings, and I(:) is an inequal-

ity measure (either the Gini coe¢ cient or

the Theil index).

We do not think that one concept or measure of macro mobility is necessarily more

important than another for understanding the amount of mobility taking place in a country

over time. There is no single �best�measure of macro mobility. Each concept measures

something quite di¤erent, and it is important to look at all of them to gain a more complete

understanding of how much mobility there is in any given year and how the amount of

mobility has changed over time.

For each of the six mobility concepts, we calculate mobility from one year to the next
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for the relevant individuals from 1990-1991 through 1998-1999. (Note: it is not possible

to calculate mobility between 1995 and 1996 because none of the SIPP panels interviewed

individuals in both of those years; the last full year of interviews for the 1993 panel was 1995

and the �rst full year of interviews for the 1996 panel was 1996).6

4.3 Micro Mobility Methodology

Micro mobility focuses on mobility of the individual and answers the question: which in-

dividuals moved up/down in the earnings distribution over time and by how much? As

stated in Section 4.1, we exclude self-employment income from our analysis and instead look

only at changes in wage and salary earnings.7 To begin answering this question, we �rst

present a mobility pro�le which shows the mean and standard deviation of one-year earnings

changes for di¤erent subgroups of individuals. We present these statistics for individuals

broken down by initial earnings quintile, gender, age, race, and education. We then use

multivariate regression models to study the correlates of earnings changes while holding

other variables constant. The regression model we focus on in this study speci�es earnings

changes as a function of initial earnings in steps and a linear function of gender, race, age,

and education. We estimate equation (7) where yit-1 is lagged (or initial) earnings broken

into �ve dummy variables for earnings quintile and x includes dummies for gender, race, age,

and education. We do not interpret this as a causal model of earnings changes, but rather

a way of answering the question of which individuals experience the most positive earnings

changes, holding other things equal.

5 Results

Overall, the tables presented below produce two major results. First, qualitatively, measure-

ment error in survey-based earnings has little e¤ect on macro and micro mobility estimates.

Second, quantitatively, measurement error in survey-based earnings often has a large e¤ect

on mobility estimates, although in some cases, the e¤ects are minor. Moreover, measure-

ment error does not a¤ect mobility estimates in a systematic direction. In other words, the

administrative-based results are neither systematically larger nor systematically smaller than

the survey-based ones. We also �nd that the same groups have better earnings changes, both

6Actually, twelve months of SIPP data were collected for only two of the four rotation groups in the year
1996. One month (Jan.) for rotation group 3 and two months (Jan. and Feb.) for rotation group 4 were
treated as missing data and were multiply imputed.

7It would have been possible to look also at individuals�changes in positions or shares, but we have not
done so.
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in the univariate micro mobility pro�le results and in the multivariate regression results. We

will now discuss in turn the results for macro mobility rates, micro mobility pro�les, micro

mobility regressions, comparisons of pro�les and regressions, and robustness tests.

5.1 Macro Mobility Results

Qualitatively, measurement error in survey-based earnings does have some e¤ect on macro

mobility estimates. Table 2 shows mobility estimates for six di¤erent mobility concepts,

with two measures calculated for time-independence and one measure calculated for each

of the other �ve concepts. Note that the measures of positional movement, share move-

ment, and earnings �ux are positive by de�nition and that the chi-squared statistic for

time-independence is negative by de�nition, so there will be no qualitative (sign) di¤erences

for these measures. The remaining three measures of macro mobility can be either positive

or negative. Table 2 shows that for the sixth concept (mobility as an equalizer of longer-term

earnings), the administrative-based estimate is positive while the survey-based estimate is

negative. That is, mobility had an equalizing e¤ect on earnings in the administrative-based

data, but a disequalizing e¤ect on earnings in the survey-based data. There are no other

qualitative di¤erences when using administrative-based versus survey-based earnings.

Quantitatively, we see that the administrative-based results are neither systematically

larger nor systematically smaller than the survey-based ones. In other words, measurement

error does not a¤ect macro mobility estimates in a systematic direction. Administrative-

based estimates of macro mobility are smaller than survey-based estimates for four out of six

mobility concepts (time independence, positional movement, share movement, and earnings

�ux) For these four concepts, administrative-based estimates are on average 64% of survey-

based estimates. For a �fth concept (directional earnings movement), the administrative-

based estimate is 54 times as large as the survey-based estimate.

5.2 Micro Mobility Pro�le Results

Qualitatively, we �nd that measurement error in survey-based earnings has little e¤ect on

micro mobility pro�les. Table 3 shows the means and standard deviations of one-year

earnings changes for �fteen groups within �ve di¤erent categories: initial earnings quintile

(5 groups), gender (2 groups), race (2 groups), age (3 groups), and education (3 groups).

The following qualitative results arise in both the administrative-based data and the survey-

based data: 1) The hypothesis that mean earnings changes are equal for di¤erent groups

within categories (for example, for the two racial groups within the category "race") is

rejected at the 1% signi�cance level for all �ve categories. 2) One might expect that it is
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always the most advantaged individuals who do better, perhaps as a result of human capital

accumulation and the theory of comparative advantage. On the contrary, we �nd that

neither the most-advantaged nor the least-advantaged workers (in terms of initial average

earnings) experience the most positive earnings changes. The more advantaged do better in

the case of race (non-blacks) and education (the better-educated). The less advantaged do

better in the case of initial earnings (the lowest earnings groups) and age (the young). Using

both earnings measures, we �nd convergent mobility, i.e., those in the lowest initial earnings

quintile experience the most positive earnings changes while those in the highest initial

quintile experience the least positive (or most negative) earnings changes. 3) Mean earnings

changes are monotonically decreasing by initial earnings quintiles using both data sources.

We �nd only one qualitative di¤erence between administrative-based data and survey-based

data: men do better on average than women in the administrative-based data, while women

do better on average than men in the survey-based data. Overall, the micro mobility pro�le

results agree qualitatively across the two data sets for four of the �ve categories (initial

earnings quintile, race, age, and education) and disagree qualitatively for one (gender).

Quantitatively, we �nd that measurement error in survey-based earnings has a large e¤ect

on mean earnings changes and on the inequality of earnings changes. The mean earnings

change for a particular population group (such as blacks) is de�ned as the average earnings

change for that group. The inequality of earnings changes for a particular demographic

category (such as �race�) is de�ned as the standard deviation of mean earnings changes

across groups (e.g., blacks and non-blacks) within that demographic category.

Table 3 shows that for 13 out of 15 groups, we reject the hypothesis that mean earnings

changes are equal when using administrative-based earnings versus survey-based earnings.

Regarding magnitudes, administrative-based estimates of mean earnings changes are more

positive than survey-based estimates for 12 out of 15 groups (the exceptions are the lowest

three quintiles). On average, the administrative-based mean earnings changes are 766 dollars

greater than the survey-based mean earnings changes.

Table 4 compares the inequality of mean earnings changes across groups within �ve cate-

gories when using administrative-based versus survey-based earnings. We use the standard

deviation of mean earnings changes across groups within each category to measure inequality

of earnings changes for that category. We �nd that the inequality of earnings changes is

neither systematically larger nor systematically smaller in one data set than in the other.

Speci�cally, the inequality of earnings changes within the initial quintile, race, and age cat-

egories is smaller in the administrative-based data than in the survey-based data, while the

inequality of earnings changes within the gender and education categories is larger in the

administrative-based data than in the survey-based data.
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Tables 5 and 6 repeat the analysis in tables 3 and 4 using log earnings changes. When

measuring the inequality of earnings changes across groups within each category, using log

earnings allows the earnings changes across groups (such as black and non-blacks) to be

compared in the same percentage terms. Table 6 shows that the inequality of earnings

changes is neither systematically larger nor systematically smaller in one data set than

in the other. Speci�cally, the inequality of earnings changes within the gender and race

categories is smaller in the administrative-based data than in the survey-based data, while

the inequality of earnings changes within the initial quintile, age, and education categories

is larger in the administrative-based data than in the survey-based data.

Overall, Tables 3 through 6 provide evidence that measurement error in survey-based

earnings often has a large quantitative e¤ect on micro mobility pro�le estimates, though not

in any systematic direction.

5.3 Micro Mobility Regression Results

Qualitatively, we �nd that measurement error in survey-based earnings has no e¤ect on

micro mobility regressions. Table 7 presents a regression which speci�es earnings changes as

a function of initial earnings, age, and education entered in steps and gender and race entered

as dummies. There are no qualitative di¤erences between using survey-based earnings and

administrative-based earnings in this multiple regression. All 11 regression coe¢ cients have

the same sign using the two di¤erent earnings measures. Using both survey-based and

administrative-based earnings, we �nd that other things equal, individuals in the lowest

earnings quintiles do better than those in higher earnings quintiles, men do better than

women, non-blacks do better than blacks, the youngest workers do better than the oldest

workers, and more educated workers do better than less educated workers.

Quantitatively, though, we �nd that measurement error in survey-based earnings has a

large e¤ect on micro mobility regressions. For most of the regression variables, we reject the

hypothesis that the two sets of coe¢ cients are equal. Regarding magnitudes, administrative-

based estimates are smaller (in absolute value) than survey-based estimates for 8 out of 10

regression variables (the exceptions are the two age dummies, which are not statistically

signi�cantly di¤erent from each other). On average, the administrative-based estimates are

64% of the survey-based estimates.

In summary, we have found for the regressions that a) qualitatively, measurement error

in survey-based earnings has no e¤ect on mobility estimates, b) quantitatively, measurement

error in survey-based earnings has a large e¤ect on mobility estimates, but not in a systematic

direction.
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We turn next to comparing the univariate mobility pro�le results with the multivariate

regression results.

5.4 Comparing Univariate and Multivariate Results

Previous work on mobility in other countries (Fields et al. 2003 i, ii, and iii, Fields et al.

2005) found that the e¤ect of certain variables on mobility was reversed when moving from

univariate mobility pro�les to multivariate mobility regressions. This is not the case for

the United States. For four out of �ve categories (initial earnings quintile, race, age, and

education), the univariate results are qualitatively the same as the multivariate regression

results. For both the survey-based earnings data and the administrative-based earnings

data, we �nd that both unconditionally and when holding other things equal, individuals in

the lowest earnings quintiles do better than those in higher earnings quintiles, non-blacks

do better than blacks, the youngest workers do better than the oldest workers, and more

educated workers do better than less educated workers. However, the univariate results

by gender are mixed (men do better than women in the administrative-based data while

women do better than men in the survey-based data), but the regression results show that,

other things equal, men do better than women in both the administrative-based and the

survey-based data.

One result is particularly noteworthy. The U.S. Census Bureau reports constant earnings

inequality in the U.S. for the early part of the 1990s and again in the later 1990s (U.S.

Census Bureau, 2005).8 However, from 1992 to 1993, earnings inequality jumped by three

Gini points, the very same time when new methods were used to collect earnings data (U.S.

Census Bureau, 2004). Though it is impossible to tell whether using the old methods

would have produced constant or rising earnings inequality, there is no evidence whatsoever

suggesting that earnings inequality fell in the United States over the period of our analysis;

the Census Bureau evidence suggests that inequality either rose or remained constant. The

1990s was also a period of growth for the U.S.: real GDP per capita rose from $28,000

to $34,000 (Johnston and Williamson, 2006). The combination of growth with constant

or rising inequality might lead one to expect that persons in the most advantaged groups

would always be the ones who experienced the most positive earnings changes in dollars

from one year to the next. However, this is not what we �nd. The groups who were the

most advantaged to begin with were the most-educated, men, non-blacks, the non-young,

and (of course) those in the highest initial earnings quintile. Using both survey-based

8These earnings inequality estimates were produced by the U.S. Census Bureau using cross-sectional data
from the Current Population Survey, Annual Social and Economic Supplement (formerly known as the March
Supplement), rather than from the SIPP panels.
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and administrative-based earnings data and estimating both conditional and unconditional

models for both data sets, we �nd that those in the lowest initial earnings quintile (the

least advantaged group in terms of initial earnings) and the young (the least advantaged

group in terms of age) experienced the most positive earnings changes while those in the

highest quintile (the most advantaged group in terms of initial earnings) and the non-young

(the most advantaged group in terms of age) experienced the least positive earnings changes.

Thus, for initial earnings quintile and age, mobility in the U.S. was convergent, not divergent,

in the 1990s (i.e., those who were initially least advantaged did the best and those who were

initially most advantaged did the worst).

5.5 Robustness Checks

To check the robustness of our core results, we ran several checks. First, we restricted

the sample to only the set of workers with positive survey-based earnings and positive

administrative-based earnings in both years. Tables 8 through 11 repeat the analysis of Ta-

bles 2, 3, 4 and 7 using only dual positive earners, rather than dual labor force participants.

The major results are essentially unchanged. Qualitatively, we �nd that measurement error

in survey-based earnings has little e¤ect on mobility estimates. Quantitatively, we �nd

that the average e¤ect of measurement error on mobility estimates is similar in magnitude

to the average e¤ect when using dual labor force participants. Once again, we �nd that

measurement error in survey-based earnings often has a large quantitative e¤ect on mobility

estimates, but not in a systematic direction.

For four out of six macro mobility concepts, administrative-based estimates are on average

67% of survey-based estimates, which compares with an average of 64% using dual labor force

participants. For the other two mobility concepts, administrative-based estimates are larger

than survey-based estimates. For micro mobility, we again �nd that for both earnings

measures and in both the univariate and the multivariate analysis, the less advantaged do

better in terms of initial earnings and age and the most advantaged do better in terms

of race and education. However, the results by gender are again mixed: administrative-

based data show that unconditionally, men do better on average than women while survey-

based data show the opposite, but the regression results show that, other things equal,

men do better than women in both the administrative-based and the survey-based data.

Concerning magnitudes, we �nd that the administrative-based mean earnings changes are

on average 783 dollars greater than the survey-based mean earnings changes in the mobility

pro�le, but that administrative-based coe¢ cients are on average 92% of the survey-based

coe¢ cients in the mobility regression. The corresponding numbers using dual labor force
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participants were that the administrative-based mean earnings changes were on average 766

dollars greater than the survey-based mean earnings changes, and the administrative-based

regression coe¢ cients were on average 64% of the survey-based coe¢ cients. In summary,

the results using dual positive earners agree both qualitatively and quantitatively with those

using dual labor force participants.

Second, we tried several di¤erent speci�cations for the multivariate model: entering initial

earnings using di¤erent functional forms, checking the signs of demographic variables with

initial earnings excluded, and estimating the model for each race/gender group separately.

Our key results regarding the e¤ect of measurement error on survey-based mobility estimates

are unchanged. We �nd that qualitatively, measurement error in survey-based earnings has

little e¤ect on mobility estimates. Quantitatively, we �nd yet again that measurement error

in survey-based earnings does not a¤ect mobility estimates in a systematic direction. The

average quantitative e¤ects of measurement error are of similar magnitudes in each new

regression model that includes initial earnings as they were in the base model. Table 12

shows a mobility regression model with initial earnings entered linearly, rather than in steps

by quintiles. Our major qualitative result is unchanged: all of the regression coe¢ cients

are statistically signi�cant and have the same signs in both data sources. Concerning mag-

nitudes, on average, administrative-based coe¢ cients are 62% of survey-based coe¢ cients

in absolute value. (In the base model, the corresponding number was 64%). Table 13

shows a mobility model with initial earnings entered as a spline function by initial earnings

quintile. Our core qualitative result is again the same: in both data sets, we �nd that the

least advantaged do better in terms of initial earnings and age, while the most advantaged do

better in terms of gender, race, and education. Quantitatively, administrative-based coe¢ -

cients are on average 94% of survey-based coe¢ cients. Table 14 shows a model of earnings

changes as a function of only demographic variables (gender, race, age, and education). We

�nd that not all the regression coe¢ cients are statistically signi�cant, but where they are

signi�cant, all of the regression variables retain the same sign as in our core results: men

do better than women, non-blacks do better than blacks, the young do better than the old,

and the more educated do better than the less educated. Finally, Tables 15 through 18

show our main micro mobility regression speci�cation (from Table 7) estimated separately

for each race/gender group. Here, not all the regression coe¢ cients are always statistically

signi�cant, but when they are signi�cant, the regression variables follow the same patterns

as before for all four race/gender groups. Quantitatively, administrative-based coe¢ cients

range on average from 68% of survey-based coe¢ cients to 1.2 times the survey-based co-

e¢ cients. (In the base model, the corresponding number was 64%). We �nd evidence

of convergent mobility in every race/gender group: that is, the individuals in the highest
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initial quintile experienced smaller earnings changes than the individuals in the lowest initial

quintile.

Third, because there is some speculation on the validity of multiply imputed data, we

ran all of our analyses using only those individuals for whom all 24 months of SIPP earnings

were available (i.e., non-imputed) for each set of two consecutive years. All of our major

results hold using this sample of non-imputed earnings data. We do not include these results

here, but they may be obtained from the authors on request.

In summary, our main results are robust to using dual positive earners rather than dual

labor force participants and to using only the set of individuals with non-imputed SIPP

earnings. Furthermore, all of our multiple regression results are robust qualitatively and

quantitatively to entering initial earnings using di¤erent functional forms, excluding initial

earnings, and estimating the model separately for each race/gender group.

5.6 On the Compatibility Between the Mobility Results and In-

equality Patterns

We have found evidence of convergent mobility in every micro mobility pro�le and every

micro mobility regression using both administrative-based and survey-based earnings for the

United States in the 1990s. We also know that earnings inequality in the United States was

either constant or rising and that real GDP per capita was rising over this same period of

time. Before concluding, we wish to remark on how the two sets of results can be reconciled.

Table 19 presents the calculations of mean earnings by anonymous quintiles using our

data. (The anonymous quintiles treat the initial year earnings and the �nal year earnings as

variables from two di¤erent cross-sections.) The combination of growth with constant or ris-

ing inequality might lead one to expect that the anonymous persons in the most advantaged

groups (such as the highest earnings quintile) would be the ones who experienced the most

positive earnings changes in dollars from one year to the next. We see that when treating

our data as a cross-section rather than a panel, we �nd exactly this: using both earnings

measures, the mean earnings of the highest quintile rose the most while the mean earnings

of the lowest quintile rose the least (or fell the most). However, we know from the results

above that when we employ the panel aspect of the data to look at mean earnings changes

for named individuals whom we follow over time, it is those in the lowest quintile who ex-

perienced the most positive earnings changes while those in the highest quintile experienced

the least positive earnings changes.

Two things were happening at the same time. One is that the dollar di¤erences between

di¤erent percentiles of the earnings distribution were widening. The other is that the places
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in the di¤erent parts of the earnings distribution were being occupied by di¤erent individuals.

This �nding highlights the importance of conducting mobility studies alongside inequality

studies for obtaining a more accurate picture of what individuals actually experienced during

a given time period.

6 Conclusion

In this study, we have shown that for the U.S., measurement error in survey-based earnings

makes some di¤erence to mobility estimates, both qualitatively and quantitatively, but not

a huge one. Most of the results obtained hold when administrative-based earnings are used

instead of survey-based earnings. In particular: 1) Of the six macro mobility concepts

studied, four are of similar magnitude for the two sets of data. 2) Regarding the micro

mobility pro�les, for four of the categories (initial earnings, race, age, and education), those

groups that are found to be more mobile in one data set are also found to be more mobile

in the other. 3) For the micro mobility regressions, all of the variables had the same sign

and were statistically signi�cant in the two data sets. 4) We �nd evidence of convergent

mobility (high-income people gaining less in dollars than low-income people) using both

data sources, both unconditionally and conditionally. However, there are a small number

of di¤erences between the survey-based and administrative-based results: 1) Two of the

macro mobility measures produced di¤erent results: a) The average earnings change was

much larger using administrative data than survey data, and b) The mobility that took place

equalized longer-term earnings relative to initial earnings using one data set but disequalized

using the other. 2) Survey-based data show that unconditionally, women did better on

average than men, while administrative-based data show the opposite. Stated di¤erently,

the gender gap of average earnings decreased in the 1990s according to survey-based earnings,

while the administrative-based earnings show that the gender gap increased during this

period. 3) There are often large di¤erences between administrative-based estimates and

survey-based estimates, but the administrative-based results are neither systematically larger

nor systematically smaller than the survey-based ones.

Some of our �ndings might be considered unexpected. First, it might have been expected

that the income category with the best (worst) earnings changes would also be the education

category with the best (worst) earnings changes. Therefore, given that individuals in the

highest initial earnings quintile did the worst, it might be expected that the individuals in

the highest education category did the worst. This is not what we �nd, though. Instead,

we �nd that individuals in the highest education category experienced the most positive

earnings changes. Second, one might expect the unconditional mobility pro�le results to
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di¤er from the conditional mobility regression results, since this has been found to be true

in other countries. This is not the case for the U.S., though. Rather, we �nd in the

administrative data that those groups of individuals who do best in the univariate pro�le

results (non-blacks, men, the young, and the best educated) also do best when holding other

things equal in the regression results.

As we see it, analysts can go on doing research using survey data when survey data

are all that is available, but should be aware that the results one obtains from survey data

are not necessarily the results one would obtain if one had access to administrative data.

Furthermore, because we cannot conclude anything from our work on the U.S. about possible

measurement error in surveys from other countries, it would also be worthwhile for this

kind of validation study to be conducted for other countries that have matched survey-

administrative earnings records.
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Table 2: One­year Macro Mobility During the Period 1990­1999
Wage and Salary Earnings Only

Using survey­ Using admin­ Ratio of admin­based to
Mobility concept Mobility measure based real earnings based real earnings survey­based

Time Independence One minus the coefficient from regression of current real
earnings on real earnings in the previous year 0.20 0.08 0.40

Time Independence Minus chi­squared statistic from transition matrix ­1.36 ­1.66 0.82
Positional Movement Per­capita centile movement 11.49 7.2 0.63
Share Movement Per­capita change in real earnings share 0.32 0.21 0.66
Earnings Flux Per­capita change in dollar real earnings (absolute value) 8190.15 5563.76 0.68
Directional Earnings Movement Per­capita change in dollar real earnings 13.74 744.71 54.20
Equalizer of Longer­Term Earnings Fields' Equalization Index ­0.042 0.064 opposite in sign

Notes: The total sample size is 229578 and corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force participants in both years for each set of two consecutive years from 1990­
1999.  All calculations are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All calculations are averaged across eight completed datasets using Rubin's (1987) formulas for
computing statistics from multiply imputed data.  All earnings are expressed as real earnings in January 1995.
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Table 3: Micro Mobility Profile for One­year Real Earnings Changes from 1990­1999
Means and standard deviations of one­year real earnings changes
Wage and salary earnings only

Using Survey­ Using Admin­ Obs. Test of H2 Admin­based minus
based real earnings based real earnings Survey­based

Total sample 13.74 744.71 229578 H2: ** 730.97
(172.40) (40.36)

By Initial Real
Earnings Quintile H1: ** H1: **

Lowest Quintile 2999.34 2490.65 45918 H2: ** ­508.69
(165.36) (62.26)

Quintile 2 1264.02 1257.54 45916 H2: ­6.48
(83.85) (54.02)

Quintile 3 634.78 554.81 45915 H2: ­79.97
(161.49) (47.06)

Quintile 4 ­181.36 440.87 45916 H2: ** 622.23
(335.30) (61.81)

Highest Quintile ­4364.61 ­891.23 45913 H2: ** 3473.38
(502.56) (141.80)

By Gender H1: ** H1: **

Men ­20.61 850.11 119061 H2: ** 870.72
(151.43) (55.94)

Women 50.88 630.71 110517 H2: ** 579.83
(224.12) (40.00)

By Race H1: ** H1: **

Black ­1102.99 636.20 24404 H2: ** 1739.19
(299.06) (62.94)

Non black 149.71 757.95 205174 H2: ** 608.24
(203.93) (42.97)

By Age H1: ** H1: **

25­36 yrs 800.33 1308.88 94236 H2: ** 508.55
(213.01) (56.94)

37­48 yrs ­169.18 762.28 86765 H2: ** 931.46
(191.87) (53.09)

49­60 yrs ­1117.02 ­330.30 48577 H2: ** 786.72
(135.49) (68.43)

By Education H1: ** H1: **

Primary or less ­141.06 34.33 25642 H2: ** 175.39
(90.56) (51.76)

Secondary ­42.08 491.49 141727 H2: ** 533.57
(117.70) (38.13)

Higher 196.78 1458.88 62209 H2: ** 1262.10
(396.83) (79.58)

Average ratio: 766.42

Notes: The total sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor
force participants in both years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the
corresponding Decennial Census population on April 1st, 2000.  All means and variances are averaged across eight completed
datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All earnings are expressed as real
earnings in January 1995. Hypothesis 1, equality of means within categories, is rejected at the 1% significance level for all five
categories (initial real earnings quintile, gender, race, age, education) using both earnings measures. Hypothesis 2: Means are
equal when using survey­based versus administrative­based real earnings.  * H2 rejected at 5% significance level; ** H2 rejected at
1% significance level.
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Table 4: Inequality of Mean Real Earnings Changes Across Groups Within Categories
Wage and Salary Earnings Only

Ratio of Admin­based to
Survey­based Admin­based Survey­based

Initial quintile 2452.35 1105.98 0.45
Gender 35.72 109.62 3.07
Race 386.12 37.53 0.10
Age 732.91 612.61 0.84
Education 116.96 483.89 4.14

Notes: The inequality measures reported are weighted standard deviations of mean real earnings changes across groups
within each category.  These numbers are calculated from Table 3.  Example calculation: for initial quintile using survey­
based real earnings, 2452.35 is the weighted standard deviation (weighted by sample sizes) of the following five numbers
from Table 3: 2999.34, 1264.02, 634.78, ­181.36, ­4364.61.  This is a measure of the inequality of mean real earnings
changes across groups (quintiles) within that category.
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Table 5: Micro Mobility Profile for One­year Log Real Earnings Changes from 1990­1999
Means and standard deviations of one­year log real earnings changes
Wage and salary earnings only

Using Survey­based Using Admin­based Obs. Test of H2 Admin­based minus
log real earnings log real earnings Survey­based

Total sample ­0.01 0.03 229578 H2: ** 0.04

By Initial Log Real
Earnings Quintile H1: ** H1: **

Lowest Quintile 0.35 0.61 45918 H2: ** 0.26

Quintile 2 ­0.03 ­0.03 45916 H2: 0.00

Quintile 3 ­0.06 ­0.04 45915 H2: 0.02

Quintile 4 ­0.08 ­0.03 45916 H2: ** 0.05

Highest Quintile ­0.13 ­0.05 45913 H2: ** 0.08

By Gender H1: ** H1: **

Men ­0.02 0.02 119061 H2: ** 0.04

Women ­0.01 0.03 110517 H2: ** 0.04

By Race H1: ** H1: **

Black ­0.06 0.05 24404 H2: ** 0.11

Non black ­0.01 0.03 205174 H2: ** 0.04

By Age H1: ** H1: **

25­36 yrs 0.02 0.06 94236 H2: ** 0.04

37­48 yrs ­0.02 0.03 86765 H2: ** 0.05

49­60 yrs ­0.06 ­0.04 48577 H2: ** 0.02

By Education H1: ** H1: **

Primary or less ­0.03 0.03 25642 H2: ** 0.06

Secondary ­0.02 0.02 141727 H2: ** 0.04

Higher ­0.01 0.04 62209 H2: ** 0.05

Average ratio: 0.06

Notes: The total sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force
participants in both years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the
corresponding Decennial Census population on April 1st, 2000.  All means and variances are averaged across eight completed
datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All earnings are expressed as real
earnings in January 1995. Hypothesis 1, equality of means within categories, is rejected at the 1% significance level for all five
categories (initial log real earnings quintile, gender, race, age, education) using both earnings measures. Hypothesis 2: Means are
equal when using survey­based versus administrative­based log real earnings.  * H2 rejected at 5% significance level;  ** H2 rejected
at 1% significance level.
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Table 6: Inequality of Mean Log Real Earnings Changes Across Groups Within Categories
Wage and Salary Earnings Only

Ratio of Admin­based to
Survey­based Admin­based Survey­based

Initial quintile 0.18 0.27 1.53
Gender 0.01 0.01 0.92
Race 0.02 0.01 0.38
Age 0.03 0.03 1.16
Education 0.01 0.01 1.12

Notes: The inequality measures reported are weighted standard deviations of mean log real earnings
changes across groups within each category.  These numbers are calculated from Table 5.  Example
calculation: for initial quintile using survey­based log real earnings, 0.18 is the weighted standard
deviation (weighted by sample sizes) of the following five numbers from Table 5: 0.35, ­0.03, ­0.06,
­0.08, ­0.13.  This is a measure of the inequality of mean log real earnings changes across groups
(quintiles) within that category.
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Table 7: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­1979.24** ­1136.02** H2: ** 0.57
(200.87) (68.93)

Quintile 3 ­2926.70** ­2013.93** H2: ** 0.69
(288.02) (71.20)

Quintile 4 ­4193.42** ­2415.27** H2: ** 0.58
(460.39) (84.81)

Quintile 5 ­9052.75** ­4164.70** H2: ** 0.46
(624.37) (159.09)

Male 1440.84** 808.74** H2: ** 0.56
(220.71) (56.31)

Black ­1894.55** ­180.71** H2: ** 0.10
(369.85) (69.55)

Ages 37­48 ­260.77* ­269.86** H2: 1.03
(122.31) (64.96)

Ages 49­60 ­1093.69** ­1323.06** H2: 1.21
(199.56) (87.56)

Highschool 1347.94** 702.01** H2: ** 0.52
(120.99) (59.16)

College 3413.25** 2357.33** H2: ** 0.69
(214.44) (87.43)

Constant 1723.39** 1617.00** H2:

(137.23) (85.43)
Observations 229578 229578 Average: 0.64
R­squared 0.04 0.02
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The total sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated
SSNs who were labor force participants in both years for each set of two consecutive years from 1990­1999.  All calculations
are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are
averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.
All earnings are expressed as real earnings in January 1995. Hypothesis 1: equality of coefficients across quintiles.
Hypothesis 2: equality of coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; **
rejected at 1%.
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Table 8: One­year Macro Mobility During the Period 1990­1999: Dual Positive Earners
Wage and Salary Earnings Only

Using survey­ Using admin­ Ratio of admin­based to
Mobility concept Mobility measure based real earnings based real earnings survey­based

Time Independence
One minus the coefficient from regression of current real
earnings on real earnings in the previous year 0.19 0.08 0.42

Time Independence Minus chi­squared statistic from transition matrix ­1.37 ­1.63 0.84
Positional Movement Per­capita centile movement 11.34 7.51 0.66
Share Movement Per­capita change in real earnings share 0.31 0.22 0.71
Earnings Flux Per­capita change in dollar real earnings (absolute value) 8065.08 5828.32 0.72
Directional Earnings Movement Per­capita change in dollar real earnings 250.79 976.49 3.89
Equalizer of Longer­Term Earnings Fields' Equalization Index 0.32 0.50 1.56

Notes: The total sample size is 229578 and corresponds to the set of individuals ages 25 to 60 with validated SSNs who had positive real earnings in both years for each set of two consecutive years from 1990­1999.
All calculations are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All calculations are averaged across eight completed datasets using Rubin's (1987) formulas for computing
statistics from multiply imputed data.  All earnings are expressed as real earnings in January 1995.
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Table 9: Micro Mobility Profile for One­year Real Earnings Changes from 1990­1999: Dual Positive Earners
Means and standard deviations of one­year real earnings changes
Wage and salary earnings only

Using Survey­ Using Admin­ Obs. Test of H2 Admin­based minus
based real earnings based real earnings Survey­based

Total sample 250.79 976.49 186732 H2: ** 725.70
(253.40) (46.61)

By Initial Real
Earnings Quintile H1: ** H1: **

Lowest Quintile 2709.66 2898.19 37347 H2: * 188.53
(91.40) (60.22)

Quintile 2 1645.78 1203.15 34347 H2: ** ­442.63
(200.02) (55.72)

Quintile 3 962.31 809.44 34346 H2: ­152.87
(266.60) (58.41)

Quintile 4 291.95 755.06 34346 H2: 463.11
(404.95) (76.13)

Highest Quintile ­3953.89 ­600.74 34346 H2: ** 3353.15
(504.76) (157.82)

By Gender H1: ** H1: **

Men 183.38 1143.11 97992 H2: ** 959.73
(220.05) (62.94)

Women 326.35 790.74 88740 H2: ** 464.39
(313.36) (44.79)

By Race H1: ** H1: **

Black ­1122.97 787.70 19395 H2: ** 1910.67
(311.51) (76.39)

Non black 412.33 998.76 167337 H2: ** 586.43
(288.93) (48.70)

By Age H1: ** H1: **

25­36 yrs 1020.42 1528.92 77920 H2: ** 508.50
(288.12) (66.01)

37­48 yrs 6.09 946.15 71162 H2: ** 940.06
(265.93) (57.51)

49­60 yrs ­802.83 ­49.95 37650 H2: ** 752.88
(216.65) (72.61)

By Education H1: ** H1: **

Primary or less 21.82 422.57 17999 H2: ** 400.75
(142.38) (59.82)

Secondary 175.50 663.83 115525 H2: ** 488.33
(202.62) (44.09)

Higher 481.98 1808.31 53208 H2: ** 1326.33
(451.19) (88.63)

Average ratio: 783.16

Notes: The total sample size of 186732 corresponds to the set of individuals ages 25 to 60 with validated SSNs who had positive real
earnings in both years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the corresponding
Decennial Census population on April 1st, 2000.  All means and variances are averaged across eight completed datasets using Rubin's
(1987) formulas for computing statistics from multiply imputed data.  All earnings are expressed as real earnings in January 1995.
Hypothesis 1, equality of means within categories, is rejected at the 1% significance level for all five categories (initial real earnings
quintile, gender, race, age, education) using both earnings measures. Hypothesis 2: Means are equal when using survey­based versus
administrative­based real earnings.  * H2 rejected at 5% significance level; ** H2 rejected at 1% significance level.
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Table 10: Inequality of Mean Real Earnings Changes Across Groups Within Categories:
Wage and Salary Earnings Only
Dual Positive Earners

Ratio of Admin­based to
Survey­based Admin­based Survey­based

Initial quintile 2240.26 1140.14 0.51
Gender 248.08 290.35 1.17
Race 525.91 240.89 0.46
Age 746.55 631.99 0.85
Education 280.48 579.99 2.07

Notes: The inequality measures reported are weighted standard deviations of mean real earnings changes across groups
within each category.  These numbers are calculated from Table 9.  Example calculation: for initial quintile using survey­
based real earnings, 2240.26 is the weighted standard deviation (weighted by sample sizes) of the following five numbers
from Table 9: 2709.66, 1645.78, 962.31, 291.95, ­3953.89.  This is a measure of the inequality of mean real earnings
changes across groups (quintiles) within that category.

36



Table 11: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Wage and Salary Earnings Only
Dual Positive Earners
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­1352.27** ­2172.76** H2: ** 1.61
(111.32) (98.31)

Quintile 3 ­2405.7** ­3309.84** H2: ** 1.38
(191.27) (88.76)

Quintile 4 ­3639.72** ­3847.55** H2: 1.06
(314.60) (109.24)

Quintile 5 ­8048.12** ­5525.75** H2: ** 0.69
(479.61) (183.80)

Male 1176.84** 1171.16** H2: 1.00
(222.15) (67.97)

Black ­2058.73** ­277.71** H2: ** 0.13
(429.61) (84.61)

Ages 37­48 ­293.26* ­129.09* H2: 0.44
(125.48) (71.26)

Ages 49­60 ­781.13** ­992.88** H2: 1.27
(181.92) (90.40)

Highschool 1268.81** 914.92** H2: ** 0.72
(132.01) (70.92)

College 3264.19** 2844.25** H2: ** 0.87
(221.08) (108.77)

Constant 1909.77** 2743.21** H2: **

(249.77) (94.00)
Observations 186732 186732 Average: 0.92
R­squared 0.04 0.02
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The total sample size of 186732 corresponds to the set of individuals ages 25 to 60 with validated
SSNs who had positive real earnings in both years for each set of two consecutive years from 1990­1999.  All calculations are
weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are averaged
across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All earnings
are expressed as real earnings in January 1995. Hypothesis 1: equality of coefficients across quintiles. Hypothesis 2: equality of
coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 12: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Linear in Initial Real Earnings
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H1 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Initial Real Earnings ­0.24** ­0.11** H1: ** 0.46
(0.01) (0.01)

Male 2562.13** 1366.27** H1: ** 0.53
(196.18) (80.63)

Black ­2196.71** ­323.75** H1: ** 0.15
(388.72) (75.53)

Ages 37­48 314.77** 41.11** H1: 0.13
(107.30) (74.02)

Ages 49­60 ­458.02** ­915.86** H1: 2.00
(153.68) (89.57)

Highschool 2082.04** 1005.26** H1: ** 0.48
(245.23) (73.14)

College 5690.99** 3463.21** H1: ** 0.61
(533.17) (134.50)

Constant 2127.21** 1357.54** H1: **

(172.93) (80.68)
Observations 229578 229578 Average: 0.62
R­squared 0.11 0.04

Notes: Robust standard errors in parentheses.  Excluded  age group is 25­36; excluded education category is no high school.  The total
sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force participants in both
years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the corresponding Decennial Census
population on April 1st, 2000.  All means and variances are averaged across eight completed datasets using Rubin's (1987) formulas for
computing statistics from multiply imputed data.  All earnings are expressed as real earnings in January 1995. Hypothesis 1: equality of
coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 13: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Initial Real Earnings Spline by Quintiles
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H3 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Intercept quintile 1 ­983.49** 1889.01** H3: ** 1.92
(308.98) (117.31)

Intercept quintile 2 ­449.30* 877.33** H3: ** 1.95
(189.80) (135.09)

Intercept quintile 3 ­1251.94** ­478.41** H3: ** 0.38
(295.03) (110.35)

Intercept quintile 4 ­2476.49** ­1100.32** H3: ** 0.44
(409.23) (129.70)

Intercept quintile 5 ­259.45 901.61** H3: 3.48
(1249.47) (252.58)

Slope quintile 1 ­0.45** 0.17** H3: ** 0.38
(0.06) (0.02)

Slope quintile 2 ­0.12** ­0.14** H3: 1.17
(0.03) (0.02)

Slope quintile 3 ­0.17** ­0.07** H3: ** 0.41
(0.03) (0.02)

Slope quintile 4 ­0.17** ­0.04** H3: ** 0.24
(0.03) (0.01)

Slope quintile 5 ­0.43** ­0.20** H3: ** 0.47
(0.04) (0.01)

Male 2060.64** 1158.66** H3: ** 0.56
(150.14) (67.19)

Black ­1891.42** ­288.02** H3: ** 0.15
(319.70) (66.55)

Ages 37­48 98.65 ­74.27 H3: 0.75
(106.31) (69.94)

Ages 49­60 ­633.71** ­995.07** H3: ** 1.57
(172.46) (89.45)

Highschool 1381.81** 727.91** H3: ** 0.53
(121.12) (60.17)

College 4584.88** 3044.96** H3: ** 0.66
(256.22) (102.98)

Observations 229578 229578 Average: 0.94
R­squared 0.13 0.06
H1: ** **
H2: ** **

Notes: Robust standard errors in parentheses.  Excluded age group is 25­36; excluded education category is no high school.  The total
sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force participants in both
years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the corresponding Decennial
Census population on April 1st, 2000.  All means and variances are averaged across eight completed datasets using Rubin's (1987)
formulas for computing statistics from multiply imputed data.  All earnings are expressed as real earnings in January 1995.
Hypothesis1: equality of intercept coefficients across quintiles. Hypothesis 2: equality of slope coefficients across quintiles.
Hypothesis 3: equality of coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected
at 1%.

39



Table 14: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Exclude Initial Real Earnings
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Male ­137.73 193.13** H2: * 1.40
(172.18) (55.15)

Black ­1318.52** ­32.67 H2: ** 0.02
(417.25) (67.12)

Ages 37­48 ­1038.61** ­579.14** H2: ** 0.56
(113.77) (60.65)

Ages 49­60 ­1914.33** ­1658.63** H2: 0.87
(177.66) (84.58)

Highschool ­2.44 103.27* H2: 42.32
(149.58) (57.40)

College 171.48 1063.57** H2: 6.20
(384.33) (84.50)

Constant 984.69** 856.30** H2: *

(202.87) (72.31)
Observations 229578 229578 Average: 8.56
R­squared 0.003 0.004
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded age group is 25­36; excluded education category is no high school.  The
total sample size of 229578 corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force
participants in both years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the
corresponding Decennial Census population on April 1st, 2000.  All means and variances are averaged across eight completed
datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All earnings are expressed as real
earnings in January 1995. Hypothesis 2: equality of coefficients when using survey­based versus administrative­based real
earnings.  * rejected at 5%; ** rejected at 1%.
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Table 15: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Black Males
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­2122.43** ­1258.27** H2: 0.59
(478.18) (253.84)

Quintile 3 ­2795.23** ­1820.66** H2: 0.65
(513.10) (274.25)

Quintile 4 ­4716.94** ­2347.4** H2: ** 0.50
(719.95) (308.30)

Quintile 5 ­16305.18** ­4386.67** H2: ** 0.27
(2433.09) (446.03)

Ages 37­48 455.01 ­211.96 H2: 0.47
(395.39) (227.06)

Ages 49­60 195.56 ­1087.71** H2: * 5.56
(570.00) (370.47)

Highschool 957.54* 650.44** H2: 0.68
(509.44) (226.34)

College 3626.13** 1847.68** H2: 0.51
(1097.04) (419.97)

Constant 1591.22** 2004.22** H2:

(626.23) (244.05)
Observations 10571 10571 Average: 1.15
R­squared 0.11 0.02
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The sample size of 10571 corresponds to the set of black, male individuals ages 25 to 60 with validated
SSNs who were labor force participants in both years for each set of two consecutive years from 1990­1999.  All calculations are
weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are averaged across
eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All earnings are
expressed as real earnings in January 1995. Hypothesis 1: equality of coefficients across quintiles. Hypothesis 2: equality of
coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 16: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Nonblack Males
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­2576.79** 956.16** H2: ** 0.37
(319.37) (146.50)

Quintile 3 ­3604.90** 2099.41** H2: ** 0.58
(363.39) (120.42)

Quintile 4 ­4726.32** ­2407.84** H2: ** 0.51
(502.61) (137.09)

Quintile 5 ­9392.73** ­4020.60** H2: ** 0.43
(488.46) (192.10)

Ages 37­48 ­473.86* ­619.03** H2: 1.31
(256.74) (109.48)

Ages 49­60 ­1700.03** ­2006.49** H2: 1.18
(439.94) (157.73)

Highschool 1892.35** 752.08** H2: ** 0.40
(266.36) (98.23)

College 3866.82** 2759.83** H2: ** 0.71
(255.07) (152.26)

Constant 3433.69** 2533.04** H2: **

(228.65) (135.75)
Observations 108490 108490 Average: 0.69
R­squared 0.04 0.02
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The sample size of 108490 corresponds to the set of non­black, male individuals ages 25 to 60 with
validated SSNs who were labor force participants in both years for each set of two consecutive years from 1990­1999.  All
calculations are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are
averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All
earnings are expressed as real earnings in January 1995.  Hypothesis 1: equality of coefficients across quintiles. Hypothesis 2:
equality of coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 17: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Black Females
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­2003.10** ­1443.74** H2: 0.72
(372.17) (161.08)

Quintile 3 ­3171.00** ­2188.36** H2: 0.69
(529.75) (240.48)

Quintile 4 ­5617.89** ­2720.07** H2: ** 0.48
(655.71) (275.69)

Quintile 5 ­17363.03** ­5550.61** H2: ** 0.32
(1947.57) (545.77)

Ages 37­48 625.02 253.29 H2: 0.41
(411.75) (210.15)

Ages 49­60 227.08 ­494.61 H2: * 2.18
(350.07) (192.86)

Highschool 873.39** 579.58** H2: 0.66
(307.14) (166.42)

College 4105.23** 2370.99** H2: * 0.58
(868.65) (414.77)

Constant 948.03* 1700.13** H2:

(424.97) (152.53)
Observations 13833 13833 Average: 0.76
R­squared 0.13 0.03
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The sample size of 13833 corresponds to the set of black, female individuals ages 25 to 60 with
validated SSNs who were labor force participants in both years for each set of two consecutive years from 1990­1999.  All
calculations are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are
averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All
earnings are expressed as real earnings in January 1995. Hypothesis 1: equality of coefficients across quintiles. Hypothesis 2:
equality of coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 18: Micro Mobility Multivariate Results for One­Year Real Earnings Changes from 1990­1999:
Nonblack Females
Wage and Salary Earnings Only
Dependent Variable: One­year change in real earnings
* significant at 5%; ** significant at 1%

Using Survey­ Using Admin­ Test of H2 Ratio of Admin­based to
based real earnings based real earnings Survey­based

Quintile 2 ­1624.79** ­1253.79** H2: * 0.77
(168.67) (75.82)

Quintile 3 ­2431.14** ­1972.652** H2: * 0.81
(233.95) (73.65)

Quintile 4 ­3642.30** ­2334.54** H2: ** 0.64
(376.21) (103.38)

Quintile 5 ­7309.36** ­4268.36** H2: 0.58
(1831.38) (291.95)

Ages 37­48 ­180.77 36.91 H2: 0.20
(154.00) (99.54)

Ages 49­60 ­682.12** ­708.32** H2: 1.04
(220.22) (108.72)

Highschool 935.32** 681.82** H2: 0.73
(187.74) (75.15)

College 2880.35** 1959.95** H2: ** 0.68
(251.63) (137.77)

Constant 1440.26** 1474.12** H2:

(269.79) (106.78)
Observations 96684 96684 Average: 0.68
R­squared 0.04 0.02
H1: ** **

Notes: Robust standard errors in parentheses.  Excluded quintile is quintile 1; excluded age group is 25­36; excluded education
category is no high school.  The sample size of 96684 corresponds to the set of nonblack, female individuals ages 25 to 60 with
validated SSNs who were labor force participants in both years for each set of two consecutive years from 1990­1999.  All
calculations are weighted to reflect the corresponding Decennial Census population on April 1st, 2000.  All means and variances are
averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.  All
earnings are expressed as real earnings in January 1995. Hypothesis 1: equality of coefficients across quintiles. Hypothesis 2:
equality of coefficients when using survey­based versus administrative­based real earnings.  * rejected at 5%; ** rejected at 1%.
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Table 19: Mean Real Earnings by Anonymous Quintiles
Wage and Salary Earnings Only

Survey­based real earnings Admin­based real earnings

Initial year Final year Final minus initial Initial year Final year Final minus initial
Lowest Quintile 2861 2458 ­403 1298 1297 ­1

Quintile 2 11744 11218 ­526 10930 11202 272
Quintile 3 20181 19964 ­217 20531 21014 483
Quintile 4 30589 30721 132 31593 32334 741

Highest Quintile 57329 58492 1163 60502 62390 1888

Notes: The total sample size is 229578 and corresponds to the set of individuals ages 25 to 60 with validated SSNs who were labor force participants in
both years for each set of two consecutive years from 1990­1999.  All calculations are weighted to reflect the corresponding Decennial Census population
on April 1st, 2000.  All means are averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed
data.  All earnings are expressed as real earnings in January 1995.
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8 Appendix

Derivation of equation (8) for the univariate case: From equation (6),

(13) � =
Cov(�y�; y�it�1)

V ar(y�it�1)
:

From equation (7),

(14) �̂1 =
Cov(�y; yit�1)

V ar(yit�1)

(15) =
Cov(��y� +�w; ni + �y

�
it�1 + wit�1)

V ar(ni + �y�it�1 + wit�1)
(plugging in from equations 2 and 3)

(16) =
Cov(��y�; �y�it�1)

V ar(�y�it�1) + V ar(wit�1)
=

�2Cov(�y�; y�it�1)

�2V ar(y�it�1) + V ar(wit�1)
�
V ar(y�it�1)

V ar(y�it�1)

(17) =
Cov(�y�; y�it�1)V (y

�
it�1)

[V ar(y�it�1)] � [V ar(y�it�1) + (1=�2)V ar(wit�1)]
=

�V ar(y�it�1)

V ar(y�it�1) + (1=�
2)V ar(wit�1)

:
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Table A1: Representativeness of our sample
Our sample pools the years from 1990 to 1999 and is defined as the set of individuals ages 25­60 who were dual labor force participants for each
set of two consecutive years and who have validated social security numbers.  This table shows the percentage of observations by category who have
validated SSNs out of the entire set of individuals ages 25­60 who were dual labor force participants.

Sample Percentage with Sample Percentage with
Category Size validated SSNs Category Size validated SSNs

Total 273689 83.98 Received welfare payments 22589 82.70
Did not receive welfare payments 251100 84.10

Male 143011 83.40
Female 130678 84.62 Received disability payments 6315 85.53

Did not receive disability payments 267374 83.95
Black 29979 81.18
Non black 243710 84.33 Total net worth below $100,000 69275 85.94

Total net worth at least $100,000 204414 83.32
Hispanic 25585 76.97
Non Hispanic 248104 84.71 Homeowner 176366 85.75

Not homeowner 97323 80.74
25­36 years old 110169 82.14
37­48 years old 102876 85.37 Born in country other than U.S. 29934 74.52
49­60 years old 60644 84.98 Born in U.S. 243755 85.15

By Education Had a defined contribution
Primary or less 30781 83.00   pension plan 63455 85.90
Secondary 170450 83.33 Did not have a defined contribution
Higher 72458 85.93   pension plan 164641 84.00

Married 174623 85.98 Had a defined benefit pension plan 88490 85.43
Widowed 3834 84.03 Did not have a defined benefit
Divorced/Separated 43195 83.78   pension plan 139606 83.96
Never married 52037 77.46

Had health insurance coverage 235359 84.54
Reported job­limiting disability 19643 84.22 Did not have health insurance
Did not report job­limiting disability 246555 84.12   coverage 37650 80.78

By Number of Children
0 138678 82.04
1 53495 85.18
2 52139 86.83
3 20319 86.73
4 6308 85.80
5 or more 2750 81.03

Notes: The total sample size of 273689 corresponds to the set of individuals ages 25 to 60 who were labor force participants in both years for each set of two consecutive
years from 1990­1999.  All calculations are averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from multiply imputed data.
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Table A2: Representativeness of our sample

Our Sample (229578) Entire Sample (273689)
Variable Mean Std Dev Mean Std Dev Test of H1

Male 0.52 0.00 0.52 0.00 H1:

Black 0.11 0.01 0.11 0.01 H1:

Hispanic 0.09 0.01 0.10 0.01 H1:

Age (3 categories) 1.82 0.00 1.81 0.00 H1:

Educ_3cat 2.16 0.01 2.15 0.01 H1:

Marital status 1.90 0.01 1.94 0.01 H1:

Reported job­limiting disability 0.07 0.00 0.07 0.00 H1:

Number of children 0.97 0.01 0.95 0.01 H1:

Received welfare payments 0.09 0.00 0.09 0.00 H1:

Received disability payments 0.02 0.00 0.02 0.00 H1:

Total net worth 99151.00 2575.48 97461.00 2763.66 H1:

Homeowner 0.65 0.01 0.63 0.01 H1:

Born in country other than U.S. 0.11 0.01 0.12 0.01 H1:

Had a defined contribution pension plan 0.28 0.00 0.28 0.00 H1:

Had a defined benefit pension plan 0.39 0.00 0.38 0.00 H1:

Had health insurance coverage 0.86 0.00 0.85 0.00 H1:

Weeks worked with pay 47.39 0.08 46.17 0.09 H1:

Weeks worked part time 6.62 0.09 6.41 0.08 H1:

Total annual work hours 1905.38 11.01 1880.73 11.94 H1:

Total family income 50646.00 731.80 49756.00 768.30 H1:

Total personal income 27926.00 690.32 27303.00 726.18 H1:

Amount of welfare payments 2713.78 102.62 2667.30 109.54 H1:

Amount of disability payments 3157.62 125.38 3109.95 118.94 H1:

Total annual SIPP reported real earnings 24976.00 568.57 24309.00 595.99 H1:

Change in total annual SIPP reported real earnings 13.74 172.40 33.77 165.41 H1:

This table shows the means and variances of several key variables for both the entire sample and for our sample.  The entire sample pools the
years from 1990 to 1999 and includes individuals ages 25­60 who were dual labor force participants for each set of two consecutive years.  Our
sample further restricts the entire sample to include individuals who have validated social security numbers.  H1: Means are equal for the two
samples: ** rejected at 1% level, * rejected at 5% level.

Notes: The total sample size of 273689 corresponds to the set of individuals ages 25 to 60 who were labor force participants in both years for
each set of two consecutive years from 1990­1999. All calculations are weighted to reflect the corresponding Decennial Census population on
April 1st, 2000.  All calculations are averaged across eight completed datasets using Rubin's (1987) formulas for computing statistics from
multiply imputed data.  All earnings are expressed as real earnings in January 1995.
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