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Abstract: The problem of parametric estimation in single-phase transformers is addressed in this
research from the point of view of metaheuristic optimization. The parameters of interest are the
series resistance and reactance as well as the magnetization resistance and reactance. To obtain
these parameters considering only the voltage and the currents measured in the terminals of the
transformer, a nonlinear optimization model that deals with the minimization of the mean square
error among the measured and calculated voltage and current variables is formulated. The nonlinear
programming model is solved through the implementation of a simple but efficient metaheuristic
optimization technique known as the black-hole optimizer. Numerical simulations demonstrate
that the proposed optimization method allows for the reduction in the estimation error among
the measured and calculated variables when compared with methods that are well established in
the literature such as particle swarm optimization and genetic algorithms, among others. All the
simulations were carried out in the MATLAB programming environment.

Keywords: black-hole optimization; parameter estimation; single-phase transformers; square error
minimization; nonlinear programming model

1. Introduction

Electrical transformers are essential devices in the whole electric sector since these
devices help with interconnected generation and demand points through transmission
lines by increasing the voltage levels from medium-to-high voltage levels [1]. When the
transmission lines arrive at the subtramission and distribution substations, the voltage
magnitude is again reduced to medium voltage levels to guarantee a secure electricity
distribution service [2]; finally, at the load connection points, the voltage is reduced from
medium-to-low voltage magnitudes in the final distribution stage [3]. Since the electrical
transformers in the transmission and distribution sectors of the electricity service are vitally
important, these devices play an important role in the dynamic and static behavior of the
whole power system. In the case of static behavior of the grid, one of the main aspects
that must be studied corresponds to the number of power losses of the distribution system,
since these are an indicator of the grid efficiency, especially in the distribution sector where
power losses can vary from 6% to 18% [4], and the transformers can have more than 60% of
the total power losses caused mainly by low loadability levels [2]. However, to know the
percentage of power losses with a high level of precision, participation of the transformers
in the distribution sector is required to reveal the electrical parameters of the transformers.
This is not an easy task, since these vary with respect to the nominal values which are
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influenced by the time of usage, level of loadability, and the weather conditions, among
other factors.

Some classical approaches to obtain the electrical parameters of a transformer include
laboratory tests such as short-circuit and open-circuit proofs; however, these tests are only
possible with transformers that are not being used in the grid, since these tests imply the
disconnection of the users to move the transformer from the load point to the laboratory site.
This practice is not recommended, as distribution systems can have hundreds of transformers,
which implies high expenses as well as affectation of the reliability indexes [5].

To have correct parameters in transformers along distribution test feeders is fundamen-
tal for distribution companies, since these parameters help to improve their grid models
in order to propose maintaining planes as a function of the grid performance indicators,
such as energy losses or transformer loadabilities and efficiencies [6]. To estimate the
electrical parameters in transformers without laboratory tests, the literature has proposed
multiple approaches that use voltage and current measures to feed an optimization model
that determines the best combination of these parameters to reduce the mean square error
between the calculated and measured voltages and currents [5]. Some of these literature
reports are summarized in Table 1.

Table 1. Main approaches reported in the specialized literature.

Algorithm Title Date

Least Squares The use of the Least Squares Method to estimate the model parameters of a
transformer [7] September 2009

Bacterial foraging Parameter estimation of single-phase core type transformer using bacterial foraging
algorithm [8] June 2010

Genetic algorithm Transformer parameters estimation from nameplate data using evolutionary
programming techniques [9] October 2014

Imperialist competitive Estimation of transformer parameters from nameplate data by imperialist competitive
and gravitational search algorithms [10] October 2016

Gravitational search Estimation of transformer parameters from nameplate data by imperialist competitive
and gravitational search algorithms [10] October 2016

Particle swarm
optimization

Estimation of equivalent circuit parameters of transformer and induction motor using
particle swarm optimization [11] December 2016

Artificial bee colony Multi-objective artificial bee colony algorithm to estimate transformer equivalent circuits
parameters [12] November 2017

Chaotic optimization Estimation of equivalent circuit parameters of single-phase transformer by using chaotic
optimization approach [13] April 2019

Coyote optimization Parameter estimation of electric power transformers using coyote optimization
algorithm with experimental verification [6] March 2020

Non lineal programming Parameter estimation in singe-phase transformers employing voltage and current
measures [5] May 2020

Jellyfish Search Parameter estimation of single-phase transformer using jellyfish search optimizer
algorithm [14] July 2021

The main characteristics of the optimization methods listed in Table 1 for solving the
parametric estimation in single-phase transformers are as follows:

X All of the optimization methods are all from the family of combinatorial optimization
approaches, except the work reported in [5] where a large-scale nonlinear solver in the
GAMS software was used to solve the model; however, metaheuristic optimization
techniques are preferred, since these allow for dealing with the non-convexities of
the problem while maintaining the solution space feasible, being implementable in
multiple programming languages.

X The preferred objective function corresponds to the minimization of the mean square
error between the measured and calculated voltages and currents, since this objective
function allows for identifying sensitivities among the parameters of the transformers
with the main advantage that the transformer is represented using a black-box model,
which is internally represented through Kirchoff’s laws.

X The main advantage of the metaheuristic optimizers corresponds to their ease of
implementation and their low processing times since they only take a few minutes



Computers 2021, 10, 124 3 of 17

to evaluate a million parameter combinations and possess the ability to explore the
whole solution space and exploit some promissory solution regions.

Based on the revision of the state-of-the-art about parametric estimation in transform-
ers, this research identifies the possibility of implementing a new combinatorial optimizer
known in the scientific literature as the black-hole optimizer (BHO); this method has not
been applied to the problem of parametric estimation in single-phase transformers. The
main advantage of this algorithm corresponds to the simple but efficient rules for exploring
and exploiting the solution space, which requires the adjusting of only a few parameters.

The main contributions of this research are summarized as follows:

X The application of BHO to the parametric estimation in single-phase transformers
minimizes the mean square error between the measured and calculated current and
voltage variable, with the main advantage that BHO finds minimum errors between
the measured and calculated voltage and current variables when compared with clas-
sical optimization methods, such as the genetic algorithms, the imperialist competitive
algorithm, the particle swarm optimizer, and the gravitational search algorithm.

X The reduced computational requirements for the implementation of BHO since the
solution of the optimization problem takes about 111.30 s per test system. This is due
to its simple evolution rules and the global exploration and exploitation properties of
this optimizer, which helps to identify promissory solution regions in a few iterations.

It is worth mentioning that the application of the BHO approach to the problem of
parametric estimation in single-phase transformers assumes that the measurements taken
in the transformer sizes have been carefully revised and filtered; in addition, the proposed
optimization model does not consider additional losses in the transformers due to material
deterioration or induced currents in the transformer’s metallic components or three-phase
connections. On the other hand, the evaluation of the methodology only covers the
fundamental frequency analysis based on the main reports of the specialized literature that
accepts the optimization model by considering only the fundamental frequency component
to define the electrical parameters of the transformer. Note that these aspects are out of this
research’s scope; however, some of these can be considered in future works.

An additional important fact of our research is that we only considers single-phase
transformers in the analysis. We selected this type of transformer for two main reasons:
(i) in the Colombian context, the vast majority of transformers in medium voltage levels are
with single-phase connection with voltages among the primary side in the order of 11 kV
to 13.8 kV, which helps with providing electrical service to end users with magnitudes
of 120 V or 240 V, depending on the client needs in the secondary side; (ii) most of the
research in the literature focus on single-phase transformers, which implies that most of
the combinatorial methodologies that are used in this research as comparative methods
have previously been validated with high-quality publications.

The remainder of this paper is structured as follows: Section 2 presents the transformer
model and the optimization model development; Section 3 presents the main characteristics
associated with the implementation of BHO to any optimization problem; Section 4 presents the
application of the BHO approach to solve the optimization model defined by Equations (1)–(11);
Section 5 presents the implementation of the proposed optimizer to three test systems composed
of transformers with nominal powers of 4 kVA, 10 kVA, and 15 kVA, respectively, with their
complete analysis and discussions; finally, in Section 6, the main concluding remarks are drawn.

2. Equivalent Transformer Circuit and Optimization Model

The representation of an electrical distribution transformer with an electric circuit
depends on the depth of the study [1]; however, two alternatives for representing trans-
formers are widely accepted in the current literature, namely, (i) a circuit equivalent with
a magnetization branch in parallel with the voltage source [1]; (ii) the model T of the
transformer, i.e., the magnetization branch in the middle in of the series branches [13].
Here, we adopt the second model since this presents a better approximation of the elec-
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trical performance of the transformer regarding steady-state studies. Figure 1 depicts the
equivalent circuit of the transformer analysed in this research.

+

−

v1

+

−

v′2

i1 i′2
i0

ic im

R1 R′2jX1 jX′2

Rc jXm

Figure 1. Transformer equivalent circuit referred to the primary side.

From the electrical circuit presented in Figure 1, we can observe the following: R1
and X1 represents the resistance and reactance parameters of the primary side of the
transformer, while R′2 and X′2 correspond to the resistance and reactance parameters in
the secondary side of the transformer referred to the primary side; Xm and Rc are the
magnetization reactance and resistance that models the energy dissipation effects in the
core of the transformer; Rload represents the equivalent resistance associated with the load
connected to the transformer in its secondary side. Note that the electrical variables in
Figure 1 are the primary current i1 and the secondary current referred to the primary side
i′2 as well as the secondary voltage in the primary side, i.e., v′2. It is important to mention
that the primary voltage v1 is considered as an input, which implies that it is a parameter
for the problem parametric estimation in transformers [5].

To obtain the equivalent impedance of the transformers at the input terminals, the
equivalent resistance load is connected in the V′2 terminals is considered, which produces
the following equivalent impedance.

Z = Z1 +
Z0(Z′2 + Rload)

Z0 + Z′2 + R′load
(1)

where Z1 = R1 + jX1 represents the primary equivalent impedance, Z′2 = R′2 + jX′2
corresponds to the secondary impedance referred to the primary side, and Z0 = j RcXm

Rc+jXm
is

the magnetization impedance.
Once the equivalent transformer impedance is calculated, then, the primary current

can be calculated as follows:
i1 =

v1

Z
. (2)

Now, using the divisor current concept, the secondary current referred to the primary
side is defined as presented below:

i′2 =
Z0

Z0 + Z′2 + Rload

v1

Z
, (3)

Finally, the value of the secondary voltage referred to the primary side is calculated
as follows:

V′2 = Rload I′2. (4)
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To formulate the problem of the parametric estimation in single-phase transformers, a
quadratic function that determines the average error between the measured and calculated
electric variables is considered, which takes the following form:

min z =
1
2

( Ī1 − i1
Ī2
1

)2

+

(
Ī′2 − i′2

Ī′2

)2

+

(
V̄′2 − v′2

V̄′2

)2
, (5)

where z corresponds to the average mean square error. It is important to highlight that
Ī1, Ī′2 and V̄′2 correspond to the primary and secondary measured currents as well as the
secondary measured voltage, respectively.

The set of constraints of the parametric estimation problems in transformers is com-
plete with the equality constraints (1)–(4) and the upper and lower bounds of the decision
variables presented below:

Rmin
1 ≤ R1 ≤ Rmax

1 , (6)

R′,min
2 ≤ R′2 ≤ Rmax,′

2 , (7)

Rmin
c ≤ Rc ≤ Rmax

c , (8)

Xmin
1 ≤ X1 ≤ Xmax

1 , (9)

X′,min
2 ≤ X′2 ≤ Xmax,′

2 , (10)

Xmin
m ≤ Xm ≤ Xmax

c . (11)

where ymin and ymax represent the minimum and maximum limits of the decision variables.

Remark 1. The complete optimization model composed for the objective function (5) and the set of
constraints (1)–(4) in conjunction with constraints (6)–(11) represents the problem of the parametric
estimation problem in single-phase transformers [13]; it has a nonlinear non-convex structure due
to the fractions and products among the variables in the calculated voltage and current variables.
This situation implies that efficient optimization techniques are required as is the case of the black-
hole optimizer presented in this research, which is simple to implement, but is efficient in solving
nonlinear continuous optimization problems [15].

3. Black-Hole Optimization Algorithm

The black-hole optimizer (BHO) is a metaheuristic optimization technique from the
family of the nature-inspired optimization algorithms [16], which adapt physical behaviors
in evolution rules to solve multiple engineering optimization problems [17,18].

The BHO algorithm works by formulating the interaction among stars and black holes
in the center of galaxies with some simple mathematical rules that allows exploring and
exploiting the solution space in engineering problems; its main characteristic is that it
is a population-based optimization algorithm, where the stars are the individuals in the
population and the black hole represents the best current solution [15].

The main steps in the implementation of the BHO algorithm are described below.

3.1. Stars’ Birth

As with most population-based optimization algorithms, the BH optimizer starts its
exploration and exploitation of the solution space with an initial population (stars uniformly
distributed along the solution space), which is randomly generated. The initial population
is set with ni individuals on it, where each one of the rows represents a potential solution
of the problem under study [19]. Note that in the case of the parametric estimation in
single-phase transformers, the dimension of the initial population is a matrix with ni rows
and Nv columns, where nv represents the number of variables, i.e., 6 in our study case.
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The initial population is generated with the following rule:

Pt = xmino(ni, nv) +
(

xmax − xmin
)

r(ni, nv), (12)

where Pt represents the initial population when t = 0, being t the iterative counter; O(ni, nv)
is a matrix filled by ones with ni rows and nv columns; r(ni, nv) is a random matrix filled
by numbers between 0 and 1 with a normal distribution; in addition, xmin and xmax are
vectors with dimensions 1× nv that contains all the lower and upper bounds of the decision
variables, i.e.,

xmin =
[

Rmin
1 Rmin

2 Rmin
c Xmin

1 Xmin
2 Xmin

m

]T
,

xmax = [Rmax
1 Rmax

2 Rmax
c Xmax

1 Xmax
2 Xmax

m ]T .

Note that the main advantage of the generation of the initial population, i.e., Pt with
Equation (12), is that it generates feasible solutions, since each individual is inside of its
lower and upper bounds.

3.2. Stars’ Movement

Owing to the intense gravitational force that black holes have, all the stars in the
neighborhood of a black hole is affected, as can be observed in Figure 2.

Figure 2. Interaction between stars and a black hole.

In this sense, the gravitational force of the black hole makes the stars have dynamic
behavior as a function of their relative position with respect to the black hole [15]. To
formulate this behavior of the stars, their next position can be formulated as follows:

Pi
t+1 = Pi

t +
(

PtBH − Pi
t

)
r(1, nv); i = 1, 2, ..., ni, (13)

where PBH
t represents the relative position of the black hole, i.e., the best current solution in

the population, and Pi
t+1 represents the relative position of the ith star after its interaction

with the black hole. Note that during the star’ movements, the position of the black hole
remains unaltered.

Remark 2. To preserve the feasibility of the solution space once the stars interact with the black
hole, each one of the individuals Pi

t+1 is revised to ensure that it is contained between its upper and
lower bounds using the following rule:
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Pij
t+1 =


Pij

t+1 if xmin
j ≤ Pi

t+1 ≤ xmax
j

[
i = 1, 2, ..., ni
j = 1, 2, ..., nv

]
xmin

j +
(

xmax
j − xmin

j

)
r(1, 1) if Pi

t+1 < xmin
j || Pi

t+1 > xmax
j

[
i = 1, 2, ..., ni
j = 1, 2, ..., nv

] (14)

3.3. Black-Hole Updating

Once the descending population is generated, i.e., Pt+1, the position of the black hole
can be modified if one of the stars in the current population has a better objective function
value. To verify the change in the position of the black-hole, the following rule is applied:

PBH
t+1 =

{
PBH

t if z f
(

PBH
t
)
< z f

(
Pi

t+1
)

i = 1, 2, ..., ni
Pi

t+1 if z f
(

PBH
t
)
> z f

(
Pi

t+1
)

i = 1, 2, ..., ni
(15)

where z f
(

Pi
t+1
)

represents the objective function value associated with the (i + 1)th indi-
vidual in the next population.

It is worth mentioning that z f is calculated by using the objective function formulated
in Equation (5) and/or an adaptation of this.

3.4. Star’s Replacing

The main characteristic of BHO is the strong interaction among stars and the black
hole. The black hole can absorb or eject a star around its neighborhood (see Figure 2). To
emulate this behavior in nature, BHO uses a probability of crossing the horizon of events
(point where any object absorbed by a black hole is destroyed). In the case of a star crossing
the event’s horizon, this will be replacing a new star randomly generated, ensuring the
feasibility of the solution space. The key of this process is the determination of the event’s
horizon radius, i.e., REH , which as recommended in [19] and can be calculated as follows:

REH =
z f
(

PBH
t+1
)

ni

∑
i=1

z f

(
Pi

t+1

) , (16)

To determine if an arbitrary star inside of the population cross the horizon of events,
the norml2 is used [19], where it is widely known in the current literature as the Euclidean
distance, which is calculated as follows:

DBH−i =
∥∥∥PBH

t+1 − Pi
t+1

∥∥∥, i = 1, 2, ..., ni (17)

Note that if REH < DBH−i, the (i + 1)th star will be absorbed (i.e., destroyed) by the
black hole, giving the possibility that a new star born in the solution space. It is worth
mentioning that once a star is destroyed, a new one is created to maintain the number of
individuals inside of the population constant. An important fact associated with the stars’
birth is regarding the ability of BHO to explore and exploit the solution space in a global
manner [20].

3.5. Completion Criteria

To finish the exploration and exploitation of the solution space, BHO uses one of the
following completion criteria:

• If the objective function z f does not vary during kmax consecutive iterations, then, the
optimization process ends, and the optimal solution of the problem corresponds to
the PBH

t+1.
• If the number of iterations tmax is reached, then, the final solution PBH

t+1 is reported and
the optimization process ends.
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4. Application of BHO to the Studied Problem

Unlike the classical approach where short-circuit and open-circuit tests are employed
to determine the electrical parameters of an electrical distribution transformers in a labora-
tory [9], the main idea of this research is to determine the parameters of the transformers
considering only voltage and current measures taken directly from the location of the
transformer without disconnecting its local load.

To applied BHO to the parametric estimation problem in single-phase distribution
transformers, here, we adopt a modification of the objective function (5) using an equivalent
mean square error with the following form:

Z f = ( Ī1 − i1)
2 +

(
Ī′2 − i′2

)2
+
(
V′2 − v′2

)2 (18)

Note that the summation in (18) is only possible if all the values are normalized using
per-unit representation. The application of BHO to the problem of the parametric estimation
in single-phase transformers is presented in Algorithm A1 available in the Appendix A. For
more details about the BHO approach, the following references can be consulted: [15,19].

Remark 3. An important fact previous to the implementation of an optimization strategy to
determine the electrical parameters in transformers is associated with the data analysis of the voltage
and current measured inputs. These data must be filtered and also normalized to avoid spurious
information that can alter the final result of the optimization process.

5. Results and Discussion

This section presents the analysis of the results and their discussion when the pro-
posed BHO is applied to solve the problem of the parametric estimation in single-phase
transformers with nominal rates of 4 kVA, 10 kVA, and 15 kVA. The parametric information
of these transformers was taken from references [9,10]. Different optimization methods
reported in the specialized literature were used as comparative methodologies were con-
sidered, which includes particle swarm optimization (PSO) [9], genetic algorithms (GA) [9],
imperialist competitive algorithm (ICA) [10], and gravitational search algorithm (GSA) [10].
In addition, to determine the average processing times taken by the proposed BHO to
solve the studied optimization problem, three consecutive evaluations are made for each
test system. All the numerical implementations were carried out in a personal computer
AMD Ryzen 5 3500U processor 2.10 GHz. RAM 8 Gb, with a Windows 10 operating
system, single language, 64 bits. In the computational evaluation, we have considered 100
consecutive evaluations of the BH optimizer in order to determine the standard deviation
of the objective function and the average processing time per execution.

5.1. First Test System: 4 kVA, 50 Hz, 250/125 V Transformer

This is a low-voltage/low-voltage single-phase transformer with a nominal power
transference capability of 4 kVA, operated with 50 Hz, with a voltage relation of 250/125 V. For
this transformer, all the measures are assumed with full resistive load, i.e., Rload = 15.625 Ω [9].
It is worth mentioning that the real values associated with the electrical parameters of this
transformer were taken from [9], which are named in Table 2 as the actual data.

Numerical results in Table 2 shows that the lowest mean error is provided by the
GSA method with a value of 6.168%, followed by the ICA with a value of 10.278% and
in third place is located the proposed BHO with an average error about 11.3234%; Note
that this error is highly influenced by the errors introduced with the parameters with
small magnitudes such as series resistance and inductance parameters. However, when is
analyzed the level of precision of the proposed BHO to find the error between the calculated
and the measured variables our approach presents the best numerical performance as can
be seen in Table 3.
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Table 2. Numerical comparison among the parameters in the first test system.

Parameter R1 (Ω) X1 (Ω) R′
2 (Ω) X′

2 (Ω) Rc (Ω) Xm (Ω) Average Error (%)

Actual [9] 0.4 0.2 0.4 2 1500 750 -

PSO[9] 0.587 0.2554 0.209 1.602 1476 738 -
PSO error (%) 46.750 27.700 47.7500 19.900 1.600 1.600 24.218

GA [9] 0.598 0.226 0.336 1.957 1410 707 -
GA error (%) 49.500 13.0000 16.000 2.150 6.000 5.733 15.397

ICA[10] 0.430 0.202 0.394 2.500 1200.00 700.00 -
ICA error (%) 7.500 1.000 1.500 25.000 20.000 6.667 10.278

GSA[10] 0.425 0.203 0.415 2.399 1426.00 745.30 -
GSA error (%) 6.2500 1.500 3.7500 19.950 4.933 0.627 6.168

BHO 0.4512 0.2492 0.3780 1.7016 1478.7763 684.8906 -
BHO error (%) 12.8199 24.6172 5.4908 14.9163 1.4149 8.6812 11.3234

Numerical results in Table 3 show that BHO has an average error about 2.0× 10−4%
among the measured and calculated voltage and current variables, followed by the PSO
approach with an average error of 0.2440%; which implies that the precision of the proposed
approach is at least 1000 times better than the PSO approach.

Table 3. Comparison among measured and calculated variables for the first test system.

Transformer Data I1 (A) I′2 (A) V ′
2 (V) Average Error (%)

Actual (Measured) 15.2825 15.0782 235.5967 -

PSO 15.3153 15.1172 236.2065 -
PSO error (%) 0.2146 0.2587 0.2588 0.2440

GA 15.1714 14.9574 233.7093 -
GA error (%) 0.7270 0.8012 0.8011 0.7764

ICA 15.2449 14.9881 234.1894 -
ICA error (%) 0.2460 0.5976 0.5973 0.4803

GSA 15.2091 14.9893 234.2083 -
GSA error (%) 0.4803 0.5896 0.5893 0.5531

BHO 15.2826 15.0782 235.5967 -
BHO error (%) 0.0007 0.0000 0.0000 0.0002

The value of the fitness function is 2.05× 10−10; Average execution time per evaluation 108.5061 s; The standard
deviation value is 4.999× 10−8.

An important fact observed from the results in Tables 2 and 3 is that even if BHO is
the third best approach when compared each individual parameter, it is the best when the
difference among measured variables and calculated variables is analyze, which confirms
that the problem of the parametric estimation in single-phase transformers is nonlinear and
non-convex and can have multiple local optimums; however, the value of the average error
among the measured and calculated variables shows that BHO finds a high-quality local
optimum when compared with the remainder optimization techniques. Note that the standard
deviation value for this test system is about 4.999× 10−6%, which demonstrates that BHO
finds solutions inside of a small ball at each execution, which confirms its efficiency in solving
the studied problem by providing the quasi-optimal solutions at each evaluation.

5.2. Second Test System: 10 kVA, 50 Hz, 500/125 V Transformer

This test system corresponds to a low-voltage/low-voltage transformer with a nominal
power transference capability of 10 kVA, operated with 50 Hz, and a voltage relation of
500/125 V [10]. The nominal restive load for this transformer is equivalent to Rload = 25 Ω.
Table 4 presents the comparison among the actual (i.e., real) data for each optimization approach.
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Table 4. Numerical comparison among the parameters in the second test system.

Parameter R1 (Ω) X1 (Ω) R′
2 (Ω) X ′

2 (Ω) Rc (Ω) Xm (Ω) Average Error (%)

Actual [9] 0.9 0.94 1.6 0.44 700 250 -

PSO[9] 0.811 0.8608 1.678 0.7540 713 314.2 -
PSO error (%) 9.8889 8.4255 4.8750 71.3636 1.8571 25.6800 20.3484

GA [9] 1.025 0.8 1.507 0.493 651.5 204.4 -
GA error (%) 13.8889 14.8936 5.8125 12.0455 6.9286 18.2400 11.9682

ICA[10] 0.8 0.8 1.5 0.4259 692.48 255 -
ICA error (%) 11.1111 14.8936 6.2500 3.2045 1.0743 2.0000 6.4223

GSA[10] 0.8001 0.8119 1.5004 0.4236 695.54 251.35 -
GSA error (%) 11.1000 13.6277 6.2250 3.7273 0.6371 0.5400 5.9762

BHO 0.943 1.034 1.535 0.624 698.676 263.512 -
BHO error (%) 4.7778 10.0000 4.0625 41.8182 0.1891 5.4048 11.0421

It is worth mentioning that as has happened for the the first test system, in this simulation
case, the GSA approach has the lowest average error per parameter with a value of 5.9762%,
followed by the ICA with a value of 6.4223%, and in the third place is the proposed BHO
with an error about 11.0421%; however, when the error is observed among the measured and
calculated variables (see Table 5), BHO is the best methodology to find a solution.

Table 5. Comparison among measured and calculated variables for the second test system

Transformer Data I1 (A) I′2 (A) V ′
2 (V) Average Error (%)

Actual 18.8877 18.0722 451.8047 -

PSO 18.8719 18.0906 452.2639 -
PSO error (%) 0.0837 0.1018 0.1016 0.0957

GA 18.9683 18.0472 451.1802 -
GA error (%) 0.4267 0.1383 0.1382 0.2344

ICA 19.0427 18.2217 455.5431 -
ICA error (%) 0.8206 0.8272 0.8274 0.8251

GSA 19.0405 18.2196 455.4897 -
GSA error (%) 0.8090 0.8156 0.8156 0.8134

BHO 18.8877 18.0722 451.8047 -
BHO error (%) 0.0000 0.0000 0.0000 0.0000

The value of the fitness function is 3.4064× 10−10; Average execution time per evaluation 116.0146 s; The standard
deviation value is 2.1398× 10−9.

Results in Table 5 demonstrate that BHO is the best optimization method regarding
the minimization of the error among the measured and calculated voltage and current
variables with an error of 0.0%, which implies that the number of decimals considered in the
measurement the coincidence with the calculated variables is perfect. When the objective
function value is observed, the BHO approach reaches a value lower than 1.44× 10−10,
which can be considered as zero for any practical implementation purposes, which is
confirmed by a standard deviation of 2.1398× 10−7%.

5.3. Third Test System: 15 kVA, 50 Hz, 2400/240 V Transformer

The third transformer corresponds to a medium-voltage/low voltage transformer
with a nominal power transference capability of 15 kVA, which is operated with 50 Hz,
and a voltage relation of 2400/240 V [10]. The nominal equivalent resistive load for this
transformer is Rload = 384 Ω. Comparative results among parameters are reported in
Table 6 for the literature reports and the proposed BHO with respect to the actual data.
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Table 6. Numerical comparison among the parameters in the third test system.

Parameter R1 (Ω) X1 (Ω) R′
2 (Ω) X ′

2 (Ω) Rc (Ω) Xm (Ω) Average Error (%)

Actual [9] 2.45 3.14 2 2.2294 105000 9106 -

PSO[9] 2.25 4.082 2.2 1.8526 99517 9009 -
PSO error (%) 8.1633 30.0000 10.0000 16.9014 5.2219 1.0652 11.8920

GA [9] 2.76 3.414 1.68 1.846 97001 8951 -
GA error (%) 12.6531 8.7261 16.0000 17.1975 7.6181 1.7022 10.6495

ICA[10] 2 3 1.80 2 120000 9200 -
ICA error (%) 18.3673 4.4586 10.0000 10.2898 14.2857 1.0323 9.7390

GSA[10] 2 3.11 1.81 2.26 104281 9094.87 -
GSA error (%) 18.3673 0.9554 9.5000 1.3726 0.6848 0.1222 5.1671

BHO 2.4268 3.915 1.9807 2.670 103891.266 9473.402 -
BHO error (%) 0.9469 24.6815 0.9650 19.7632 1.0559 4.0347 8.5745

The comparison between the average error with respect to the transformer parame-
ters shows once again that the GSA is the better optimization approach with a value of
5.1671%; however, for this test system, the proposed BHO falls in the second place with an
average error of 8.5745%, followed by the third place by the ICA with a value of 9.7390%.
Notwithstanding, when Table 7 is observed, it is possible to confirm that as had happened
in the previous test systems as well, the proposed BHO reaches the minimum error among
the measured and calculated variables with an error of 5× 10−4; this is at least 19 times
better than the GA, which has an average error of 9.70× 10−3. In addition, the effectiveness
of the BH optimizer to obtain quasi-optimal solutions at each evaluation is confirmed
with a standard deviation value of about 5.5668× 10−8% that allows ensuring that all the
solutions are contained inside a ball with a pretty small radius.

Table 7. Comparison among measured and calculated variables for the third test system.

Transformer Data I1 (A) I′2 (A) V ′
2 (V) Average Error (%)

Actual 6.2053 6.1756 2371.4 -
PSO 6.2056 6.1748 2371.1 -

PSO error (%) 0.0048 0.0130 0.0127 0.0101
GA 6.2070 6.1755 2371.4 -

GA error (%) 0.0274 0.0016 0.0000 0.0097
ICA 6.2128 6.1861 2375.5 -

ICA error (%) 0.1209 0.1700 0.1729 0.1546
GSA 6.2157 6.1858 2375.3 -

GSA error (%) 0.1676 0.1652 0.1645 0.1657
BHO 6.2053 6.1755 2371.4 -

BHO error (%) 0.0000 0.0016 0.0000 0.0005

The value of the fitness function is 6.5670× 10−9; Average execution time per evaluation 109.3800 s; The standard
deviation value is 5.5668× 10−10.

5.4. Complementary Analysis

This section shows the effectiveness of the proposed estimation method for the electri-
cal parameters of single-phase transformers with primary and secondary windings and
the magnetization branch. To demonstrate that the actual parameters of the transformer
and the estimation provided by our proposed BHO have negligible errors, we vary the
constant resistive load in its terminals from 50% to 150% of its nominal value, and we plot
the per-unit power input calculated with the real and estimated transformer parameters,
using the following formula:

Pi =
Real

{
v1i?1

}
Sn

, (19)

where Pi represents the input power in the primary terminals of the transformer, and Sn is
defined as the nominal power rate of the transformer.
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The behavior of the input power for each of the test systems is depicted in Figures 3–5,
respectively.
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Figure 3. Behavior of the input power for the first test system.
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Figure 4. Behavior of the input power for the second test system.
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Figure 5. Behavior of the input power for the third test system.

From these plots, we can observe the following:

X An equivalent resistance value of 50% of its nominal value implies different power
inputs at each transformer, these being 1.7713 pu, 1.6908 pu, and 1.9578 pu, for the first,
second, and third transformer, respectively. This behavior is explained in the power
input of any transformer, since if the input voltage is constant, and the resistance load
is reduced, then, the amount of current absorbed by the transformer increases.
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X The minimum power input for each transformer is caused when the equivalent resistive
load is 150% of its nominal value, in this case, the first, second, and third transformers
consume 0.6539 pu, 0.6645 pu, and 0.6660 pu, respectively. These values imply that
the loadabilities of these transformers are between 65% and 67%. Note that the effect
of equivalent loads higher than 100% implies that the consumed currents are reduced
(Ohm’s law), which is directly connected with the reduction in the power input.

X The most important fact in Figures 3–5 is that the estimated parameters and the actual
data provide overlapped curves, which implies that from the circuital point of view
(e.g., voltage, current and power calculations), the BHO approach is an adequate
method to solve the problem of parametric estimation in single-phase transformers
with errors lower than 1× 10−3%.

On the other hand, Figure 6 presents the numerical behaviour of the objective function
when the proposed BHO is applied to estimate the electric parameters of the third transformer.
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Figure 6. Behaviour of the objective function when BHO is applied to the third test system.

From Figure 6, we can note that the objective function is lower than 0.020 after
Iteration 2, which shows that the algorithm rapidly converges to an adequate function
value lower than 6.5670× 10−9 in this test system.

After the application of BHO to determine all the electrical parameters of single-
phase transformers considering voltage and current measures, we observe the following
positive aspects of this algorithm: (i) the effectiveness of the exploration and exploitation
of the solution space with simple evolution rules that allows us to identify promissory
solution regions at the beginning of the searching process to be exploited when the iteration
procedure advances; (ii) the easy adjusting process for the BHO parameters, since it only
requires the definition of the population size and the number of iterations. The most
important factor in this tuning is to find an adequate trade-off between the reduction in the
objective function and the total processing time.

It is worth mentioning that after observing the final results regarding each particular
parameter of the transformer and the final objective function value provided by BHO, there
exists a low correlation among these variables since higher differences among the actual
and calculated parameters do not imply high values in the objective function. This low
correlation is explained as follows:

• The nature of the optimization model is indeed nonlinear and non-convex, which
implies that there can exist infinite solutions with similar objective functions dispersed
along with the solution space, as reported by the different methodologies in the
comparative reports.

• The effect of the magnetization branch in the total injected current is minimum since
this branch is in the order of kΩ, which implies that values less than 10% of the
current flow though of it. This implies that higher variations on these parameters
have insignificant effects of the final calculated currents.
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• The equivalent impedance of the transformer is dominated by the load resistance,
which implies that the equivalent effect of the parameters of the transformers are
reduced when the complete circuit is analyzed; this implies that variations in these
parameters does not drastically influence the final objective function value.

To demonstrated that large differences in the transformer parameters do not drastically
affect the calculated variables, i.e., the voltages and the currents, we consider the first test
system where the series inductance (i.e., X1) in the primary side is the parameter that
presents higher variations with respect to the actual data. For variations in this parameter
from 50% to 150% of the value reported by BHO, the behaviours of the calculated primary
and secondary currents as well as the output voltage are reported in Figures 7 and 8.
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Figure 7. Behavior of the calculated currents I1 and I2 with respect to the variations in the parameter X1.
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Figure 8. Behavior of the calculated output voltage V2 with respect to the variations in the parameter X1.

From Figures 7 and 8, it is possible to observe that the slope of the curves is very
small, which allows for the conclusion that for variations from 50% to 150% in the value of
the X1, the estimation error is lower than 0.10% for the calculated currents and voltages.
These results confirm that variation in a single parameter does not drastically influence the
calculated variables, which explains the excellent performance of the proposed BHO to
minimize the mean square error.

6. Conclusions

The problem of the parametric estimation in single-phase transformers considering
voltage and current measures was addressed in this research through the application of
the BHO technique in three different test systems. Numerical results demonstrated that
in all the simulation cases, the objective function (i.e., mean square error) was lower than
1× 10−8, which, for practical purposes, can be considered null or zero. In addition, BHO
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showed the best numerical performance when compared with the measured and calculated
variables with errors lower than 5× 10−4%, which was better than the results reported
with the rest of the comparative metaheuristic techniques.

Regarding the average error with respect to each one of the transformed parameters,
BHO occupied the third place in the first two test systems behind the GSA and the ICA,
while in the third test system, BHO was superior to the ICA in the second place. Even
if the average error with respect to each one of the transformer parameters was higher
than the GSA in all the cases, the calculated voltage and current variables was always
better for the proposed BHO; this confirms that there exists infinity possible combinations
of transformer parameters that minimize the mean square error between the calculated
and measured voltage and currents, which is due to the nonlinear non-convexity of the
optimization model.

In future works, it will be possible to develop the following research: (i) Apply
recently proposed metaheuristic optimizers, such as the vortex search algorithm and the
whale optimization algorithm, to the parametric estimation of transformers considering
additional measures such as the input and output powers; (ii) extend the application of
BHO to parametric estimation problems in photovoltaic panels and induction motors;
and (iii) to propose the application of the combinatorial optimization techniques to three-
phase transformers where the complexity of the optimization problem increases since
the coupling between phases can produce important challenges in the problem of the
parametric estimation.
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Appendix A. Application of BHO to the Study Case

Algorithm A1 summarizes the main aspects of the application of the BHO approach
to the problem of parametric estimation in single-phase transformers considering voltage
and current measures.
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Algorithm A1: Proposed pseudo-code for the parametric estimation in transformer
using the BHO technique.

1: Data Define input data and BHO parameters
2: for t = 1 : tmax do
3: if t == 1 then
4: Generate initial population with Equation (12);
5: Evaluate fitness function with Equation (18);
6: Assign black hole location;
7: else
8: Generate descending population with Equations (13) and (14);
9: Evaluate fitness function with Equation (18);
10: if The criterion for black hole change has been met?
11: Black hole replacement;
12: end if
13: Calculation of the radius of the event horizon with Equation (16);
14: Calculation of Euclidean distances with Equation (17);
15: Star replacement;
16: if Has any stopping criteria been met? then
17: Finish optimization process;
18: Report the final black hole position, i.e., PBH

t+1;
19: BREAK
20: else
21: CONTINUE
22: end if
23: end if
24: end for
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