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Ĺınea de Investigación:

Applied Computing

Grupo de Investigación:

Mindlab

Universidad Nacional de Colombia
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Abstract

T́ıtulo en inglés: Scalable kernel methods using randomized numerical linear

algebra

Kernel methods are a set of machine learning algorithms that make use of a kernel function

in order to represent data in an implicit high dimensional space, where linear optimization

systems lead to non-linear relationships in the data original space and therefore finding com-

plex patterns in the data. The main disadvantage of these methods is their poor scalability,

as most kernel based algorithms need to calculate a matrix of quadratic order regarding the

number of data samples. This limitation has caused kernel methods to be avoided for large

scale datasets and use approaches such as deep learning instead. However, kernel methods

are still relevant to better understand deep learning methods and can improve them through

hybrid settings that combine the best of both worlds.

The main goal of this thesis is to explore efficient ways to use kernel methods without a big

loss in accuracy performance. In order to do this, different approaches are presented and

formulated, from which, we propose the learning-on-a-budget strategy, which is presented in

detail from a theoretical perspective, including a novel procedure of budget selection. This

strategy shows, in the experimental evaluation competitive performance and improvements

to the standard learning-on-a-budget method, especially when selecting smaller approxima-

tions, which are the most useful in large scale environments.

Keywords: Machine learning, Kernel methods, Budget method, Randomized numeri-

cal linear algebra, Distance based hashing, Approximated methods
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Resumen

T́ıtulo en español: Métodos de kernel escalables utilizando álgebra lineal

numérica aleatorizada

Los métodos de kernel corresponden a un grupo de algoritmos de aprendizaje maquinal que

hacen uso de una función de kernel para representar implicitamente datos en un espacio de

alta dimensionalidad, donde sistemas de optimización lineal gúıen a relaciones no lineales en

el espacio original de los datos y por lo tanto encontrando patrones complejos dento de los

datos. La mayor desventaja que tienen estos métodos es su pobre capacidad de escalamiento,

pues muchos algoritmos basados en kernel requiren calcular una matriz de orden cuadrática

respecto al numero de ejemplos en los datos, esta limitación ha provocado que los metodos de

kernel sean evitados en configuraciones de datos a gran escala y utilicen en su lugar tecnicas

como el aprendizaje profundo. Sin embargo, los metodos de kernel todav́ıa son relevantes para

entender mejor los métodos de aprendizaje profundo y ademas pueden mejorarlos haciendo

uso de estrategias h́ıbridas que combinen lo mejor de ambos mundos.

El principal objetivo de esta tesis es explorar maneras eficientes de utilizar métodos de kernel

sin una gran pérdida en precisión. Para realizar esto, diferentes enfoque son presentados y

formulados, dentro de los cuales, nosotros proponemos la estrateǵıa de aprendizaje utilizando

budget, la cual es presentada en detalle desde una perspectiva teórica, incluyendo un pro-

cedimiento novedoso para la selección del budget, esta estrategia muestra en la evaluación

experimental un rendimiento competitivo y mejoras respecto al método estandar de aprendi-

zaje utilizando budget, especialmente cuando se seleccionan aproximaciones mas pequeñas,

las cuales son las mas útiles en ambientes de gran escala.

Palabras clave: Aprendizaje maquinal, Metodos de kernel, Método de budget, Álgebra

lineal numérica aleatorizada, Hashing basado en distancias, Métodos aproximados
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1 Introduction

1.1. Motivation

Machine learning is a field of computer science which consists mainly in automatically finding

relations, patterns, regularities or some kind of structure from data sources, so that, from

the obtained patterns we can make predictions or assertions over new data from the same

sources. Currently, this field has become important to solve various problems with outstan-

ding results in different domains such as: speech recognition, automatic text translations,

identification of medical pathologies and many others [Ahuja and Angra, 2017].

Many of these applications need to be applied in a matter of seconds and within limited

computational systems, i.g. mobile devices [Wang et al., 2018], IoT [Kumar et al., 2017] and

others. Those restrictions may also apply for the time and memory resources needed to train

any learning model to solve these problems. Because of this, it is important for machine

learning methods to not only provide accurate results, but also to be efficient in terms of

time and memory. In fact, for many of those cases it is more desirable to have high efficiency

with a small loss in terms of prediction performance than improve accuracy at the expense

of a very high computational cost.

There are many different techniques to approach machine learning applications. One of them

are kernel machines, which are based on finding patterns depending on a similarity function

of the data, however this approach has drawbacks in the computational cost during the

training process for big datasets, which limits its application for current large scale pro-

blems [Bengio et al., 2005]. Another approach are deep learning methods, which are based

on learning through neural networks using multiple layers, the success of some deep learning

architectures to solve different problems and the ease of training using GPU, which has made

this approach very popular for different applications [Kamilaris and Prenafeta-Boldú, 2018,

Litjens et al., 2017].

In recent years, deep learning methods have increased their popularity over kernel methods

to solve diverse machine learning problems, this is because the experimentally deep learning

has outperformed other methods (including kernel methods) in many different applications

[Baveye et al., 2015]. However, there are multiple reasons why kernel methods can still con-

tribute to the solution of different machine learning issues. One of the main reasons is the
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ease of the understanding of kernel methods, particularly optimization using kernel methods

is very well acknowledged due to its strong mathematical development, contrasted to deep

learning methods which to this day remain poorly understood [Belkin et al., 2018]. This can

be even more important in view of recent works which claim that any method using gra-

dient descent, such as deep learning, can be seen as kernel machines with specific types of

kernel function [Domingos, 2020], which is very useful considering that most kernel learning

algorithms do not have restrictions over the type of kernel being used as long as it is a valid

kernel. Therefore, deeper analysis over kernel methods may even impact our understanding

of deep learning.

Another reason to still studying kernel methods is their employment in different hybrid

methods. Currently there are various approaches combining both kernel and neural net-

works capabilities, which have been shown to perform significantly well solving different

learning tasks [Mehrkanoon and Suykens, 2018, Wang et al., 2017]. In that regard, it is al-

ways desirable to understand better how to improve kernel methods, particularly how to

solve their efficiency and scalability issues.

1.2. Problem identification

Kernel methods in machine learning have been used broadly to solve a large number of pro-

blems, because these methods can find explicit non-linear relations between data through the

use of a similarity function, i.e. the kernel. Nevertheless, in general these methods use the

so-called kernel matrix [Shawe-Taylor and Cristianini, 2004], which is a matrix containing

the kernel measure between every pair of elements in the dataset; therefore, it has quadratic

size in regard to the number of training samples. The use of this matrix is very problematic

when applying the kernel methods for big datasets, because it needs extensive time and

memory resources.

There are various ways to optimize the time and memory performance of kernel methods

using different approximations. One of the most relevant in this context is the Nyström

Method [Drineas and Mahoney, 2005], which is based on a numerical approximation of the

matrix kernel, and even though this method has a strong theoretical background, the experi-

mental accuracy is similar to other simpler methods like the Budget Method [Wang et al., 2012],

which, instead of the full kernel matrix, makes formulations from a submatrix of the kernel

matrix. However, even though this method works in practice, it is not very well developed

theoretically. There is also the random Fourier features technique, which aims to approxi-

mate the kernel function instead of the kernel matrix through properties of shift invariant

kernels. [Chitta et al., 2012]
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Additionally, there is a recent area of applied mathematics consisting in the development

of algorithms to resolve large-scale linear algebra problems named Randomized Numerical

Linear Algebra [Drineas and Mahoney, 2016], which could be exploited considerably to solve

efficiency issues in kernel methods. This thesis addresses the problem of developing efficient

kernel methods using randomized numerical linear algebra ideas. To make this, we explo-

re different current kernel approximated methods together with their formulations, and we

connect that to the formal theory of randomized numerical linear algebra; according to this

the research questions are:

How to use algorithms inspired in randomized numerical linear algebra to formulate

efficient kernel methods to solve machine learning problems?

Which error bounds for approximated kernel methods can be improved according to

randomized linear algebra theory?

How to select a probability distribution to improve approximated kernel methods ac-

curacy?

What should be the size of the random sampling for approximated methods to make

them efficient and accurate for large scale datasets?

1.3. Objectives

The main objective of this thesis is to design a strategy for implementing scalable kernel

methods using ideas from randomized numerical linear algebra and apply it to the develop-

ment of concrete kernel methods for both supervised and unsupervised learning.

The specific objectives of this thesis are:

To design a general strategy to formulate approximated kernel methods using theory

and algorithms from randomized numerical linear algebra

To implement the designed strategy for at least one supervised learning algorithm and

one unsupervised learning algorithm

To test the developed methods with large scale datasets and compare them with the

current approximated kernel methods
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1.4. Contribution

This work presents several contributions to solve the problems described above about the

scalability and efficiency of kernel methods with the following outline:

1.4.1. Approximated kernel methods

Relevant theoretical results regarding kernel approximations are presented in the first part

of this thesis. Particularly, an analysis and comparison of different approximated kernel

methods is shown in detail, as well as important remarks about the use of these methods.

Parts of this work were published in:

Castellanos Martinez, I. Y., Toledo Cortés, S. & Gonzalez, F. A., Large Scale Learning

Techniques for Least Squares Support Vector Machines, Progress in Pattern Recogni-

tion, Image Analysis, Computer Vision, and Applications, 2019, pages 3–11, ISBN:978-

3-030-13469-3

1.4.2. Budget formulation

An extensive theoretical formulation of the budget approximation method is presented with

various considerations regarding the selection of the budget including some error bounds

obtained from randomized numerical linear algebra theory. Particularly the expected accu-

racy performance from the budget method is shown for random budgets considering any

probability distribution.

Also, different strategies to select the budget were analyzed and formulated considering, not

only the accuracy performance, but also the time and memory efficiency impact.

1.4.3. Machine learning implementations

Within the framework of this thesis, two supervised methods, one semi-supervised method

and one unsupervised method using the budget approximation were formulated and imple-

mented using Python 3 programming language and IPython notebooks. It also includes the

different strategies to select the budget; the code can be found at https://github.com/

iycastellanosm/BudgetMethods.

Experimentation setup and corresponding results over these implementations are also pre-

sented as part of this thesis.

https://github.com/iycastellanosm/BudgetMethods
https://github.com/iycastellanosm/BudgetMethods
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1.5. Thesis structure

The next chapters are organized as follows: Chapter 2 provides the general background on

kernel methods and some of the most relevant approaches to do approximations on these

kind of methods. Then, in Chapter 3 the budget strategy to approximate kernel methods is

described in detail, and different techniques to select the budget are presented. Chapter 4

describes how the budget strategy can be applied to different learning algorithms in super-

vised and unsupervised manners, including various experimental results. Finally, Chapter 5

discuses some conclusions and future work related to this research.



2 Background

In this chapter we present some motivational topics and relevant ideas that were used in the

development of this thesis.

2.1. Kernel methods

Kernel methods are a set of data pattern analysis algorithms that makes use of a ker-

nel function, which is a function k : X × X → R, such that for any given xi, xj ∈ X
samples of data k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩, where ϕ(x) is a mapping to a feature space H
[Shawe-Taylor and Cristianini, 2004]. These methods are beneficial as the mapping ϕ(x) may

be to any arbitrary Hilbert space with higher (possibly infinite) dimension than the original

space of the data, leading to complex non-linear representation of that data. Moreover, the

most common use of kernel methods is for learning algorithms based on the dot product

of the data; therefore, using a kernel function k and avoiding the explicit mapping to the

feature space H: this is called kernel trick [Scholkopf, 2001].

2.1.1. Formulation

Formally, let X ∈ Rd×n be a dataset of n samples x1, x2, ..., xn of dimension d with label

values y1, y2, ..., yn. For a regression problem or a binary classification problem, we need to

calculate a weight vector w ∈ Rd and a real intercept b ∈ R, such that, for any sample x, the

prediction function pred(x) = wTx+ b is as close as possible as the real value of the sample.

In case of a binary classification problem, the labels are just positive (yi = 1) or negative

(yi = −1), therefore when pred(x) > 0 the sample would be classified as positive and when

pred(x) ≤ 0 the sample would be classified as negative. In this case, finding the best w and

b to solve this is a linear optimization problem.

Furthermore, in a learning algorithm problem, we would obtain w from the data samples

x1, x2, ..., xn, i.e. w =
∑n

i αixi where αi ∈ R, here we can denote α ∈ Rn as the vector

(α1, α2, ..., αn), in this case finding the best w is equivalent to find the best α considering the

previous equality, which is still a linear optimization problem. However, the data may not fit

very well with linear functions and exhibit non-linear patterns instead. A solution for this is to

define a function ϕ : Rd → H which maps the data to a Hilbert high-dimensional space where
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the data would show linear patterns. Thus, w now would be expressed as w =
∑n

i αiϕ(xi)

and the prediction function now would be pred(x) =
∑n

i αiϕ(xi)
Tϕ(x)+b. As we are working

in a Hilbert space we get that ϕ(xi)
Tϕ(x) = ⟨ϕ(xi), ϕ(x)⟩, where ⟨., .⟩ is the inner product

in H. As a consequence pred(x) =
∑n

i αic+ b. Finally, if we have a kernel function k corres-

ponding to ϕ, i.e. k(xi, x) = ⟨ϕ(xi), ϕ(x)⟩, our problem is equivalent to find the best α and

b to model the function pred(x) =
∑n

i αik(xi, x) + b. Note that with the kernel formulation,

all elements xi do not need to be any more elements of Rd, but just elements from a set

X with a valid kernel function, which allows us to apply easily these learning algorithms

to non-numerical data like text [Kudo and Matsumoto, 2003] and graphs [Tian et al., 2019].

Also note that to define the function k it is neither necessary to map the elements explicitly

to H nor to calculate the function ϕ and the formulation is still valid, this property is called

kernel trick.

Finally, considering that in a learning algorithm we are training over the dataset X =

{x1, x2, ..., xn} and that the vector w is a linear combination of all elements from X, then we

would need to eventually calculate k(xi, xj) for all pairs xi, xj ∈ X. This calculation can be

done once and be stored in a matrixK, called kernel matrix [Bousquet and Herrmann, 2003],

which we would use during the corresponding kernel learning algorithm. Nevertheless, note

that the calculation of K has Ω(n2) time complexity and the storage of this matrix has

Ω(n2) space complexity, therefore any algorithm using these matrices has already these lower

bounds by default. Now let the sets X1, X2 ⊆ X of sizes n1 and n2 respectively, we define

k(X1, X2) ∈ Rn1×n2 as the matrix with k(X1, X2)i,j = k(xi, xj) for xi ∈ X1 and xj ∈ X2.

This notation is useful as we can consider the resulting matrix for different sets, in particular

K = k(X,X).

Ridge regression

When looking at a regression learning problem, if we were doing linear regression in the

original space we can obtain an analytical solution of w as w = (XXT )−1Xy and adding a

regularization parameter we get w = (XXT + λI)−1Xy. Also as we stated in the previous

section, this means that w = Xα, a linear combination of elements from X, rearranging the

terms in this case we get that α = (XXT+λI)−1y, this is called ridge regression. Moreover, we

can use the kernel function as previously defined and considering that ϕ(X)ϕ(X)T = k(X,X)

we could have an analytical solution of a regression problem calculating α = (K + λI)−1y,

however this not only forces us to have the full kernel matrix, but also to calculate the inverse

of that matrix, which means this has a time complexity of O(n3) and space complexity of

O(n2), making it suitable just to small datasets.
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2.1.2. Applications

There are many algorithms which can find patterns from data using only the dot product

from the space data is located on. All these algorithms are suitable to be kernelized, i.e.

they can be formulated using kernels. One of the most well known is the support vector ma-

chines [Hearst et al., 1998] which separates data maximizing the gap between two classes.

Over the past two decades kernel methods have managed to be popular in the industry due

to their high flexibility, particularly when choosing the kernel function k. As an example of

this, we may see applications on speech recognition [Ganapathiraju et al., 2004], chemistry

[Li et al., 2009], signal processing [Rojo-Álvarez et al., 2018], face recognition [Yang, 2002],

bioinformatics [Borgwardt, 2011] and many others.

Recently, many machine learning algorithms, including kernel methods, have been outper-

formed by deep learning in various applications [Wang et al., 2018, Min et al., 2017]. Aside

from the experimental gains of accuracy in this methods, another advantage is the ease of

training, as deep learning methods have been improved to be trained over GPUs, it is pos-

sible (and desirable) to train over datasets with millions of samples, as opposed to kernel

methods, where their need of calculating a quadratic matrix limits that possibility. However,

in contrary to kernel methods, deep learning is not very well understood, which has limited

their potential of improvement and the general interpretability of results after training.

These factors have driven many of current works in kernel methods to be focused on

their ability to improve deep learning instead of trying to outperform it. For instance,

[Domingos, 2020] explains how any method based on stochastic gradient descent, like neural

networks, can be formulated as kernel machines using a specific type of kernel, therefore im-

proving knowledge over kernel methods can lead to improvements in deep learning as well.

Other works include ways to combine advantages of deep learning and kernel methods to

obtain the best of both worlds. One example is [Mehrkanoon et al., 2017] which shows how

hybrid architectures using neural networks with some layers of kernel transformations can

be developed to solve large scale learning problems. Another example is [Chen et al., 2020]

which present convolutional kernel methods, which are essentially kernel methods in a mul-

tiple layer architecture instead of a shallow one to solve classification problem for graph

structured data.

Distinctly, some of the recent works on kernel methods strive to explain specific cases whe-

re these methods can perform better or are equivalent to other techniques. For instance,

[Schuld, 2021] presents how quantum machine learning models are essentially kernel methods

using data-encoding quantum states. [Garriga-Alonso et al., 2018] shows how deep convolu-

tional networks with an appropriate prior over the weights behave as a shallow Gaussian

process kernel. As another example, [Pilario et al., 2020] explains how kernel methods can
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be used in feature extraction for nonlinear processes. Finally, other recent works on ker-

nel methods try to reduce their efficiency limitations. [Sheikholeslami and Giannakis, 2017,

Zhang et al., 2017, Chitta et al., 2014] show various approaches of working with kernels for

large scale settings to solve specific problems. These approaches aim to obtain the advanta-

ges of kernel methods avoiding the construction of the kernel matrix.

2.2. Approximated kernel methods

Traditional approaches of kernel methods use the kernel matrix, which has evaluations of

the kernel function for all pairs of samples in the data. Therefore, when we have n samples,

only calculating the kernel matrix is Ω(n2), which is impractical when handling with large

datasets. To solve this, several approaches have been developed to make approximations

for kernel methods avoiding the calculation of the whole kernel matrix, in the literature we

found these approaches:

Low-rank approximation: instead of calculating and using the n× n kernel matrix K,

we could use a low-rank approximation, i.e. a matrix K̂, such that,
∥∥∥K − K̂

∥∥∥ is small

and rank(K̂) < r where r ≪ n. The most common procedure of this approach is the

Nyström Method [Gittens and Mahoney, 2013].

Feature mapping approximation: another common approach to avoid costly calculations

in kernel methods is through an approximation of the kernel mapping to the implicit

high dimensional feature space, i.e. a function ϕ̂(x), such that,
∥∥∥k(xi, xj)− ⟨ϕ̂(xi), ϕ̂(xj)⟩

∥∥∥
is small for all pairs of data samples and ϕ̂(x) is a low dimensional function. There-

fore, the learning algorithms could be used with the explicit approximated function

ϕ̂(x) instead of the kernel function, avoiding the calculation of the kernel matrix.

The most common procedure of this approach is through Random Fourier Features

[Rahimi and Recht, 2007].

Budget restriction: a third approach found in the literature is to include a restriction

in the learning algorithms, in which, a relevant subset of b≪ n samples is considered

to be the basis of the learning space for all data points. Hence, instead of calculating

a kernel matrix of size n× n, we would have a matrix of size n× b. Moreover, as b is

a parameter, it can be tuned for large datasets. This is usually known as learning on

a budget [Wang et al., 2012].
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2.2.1. Nyström method

Let K be a symmetric positive semi-definite matrix, and U∆UT the eigendecomposition of

K, i.e. U is an orthonormal matrix and ∆ = diag(λi), where λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0

are the eigenvalues of K. Given some p ≪ n we can build Up from the first columns of U

and ∆p = diag(λ1, ..., λp), then K = U∆UT ≈ Up∆pU
T
p , this is a p-rank approximation of

K. This decomposition is suitable for kernel matrices, as for any valid kernel function its

corresponding matrix is always symmetric positive semi-definite, however the calculation of

the eigendecomposition is O(n3), which is infeasible for large scale data.

Nevertheless, the Nyström procedure computes an approximation of this eigendecomposition

[Williams and Seeger, 2001, Drineas and Mahoney, 2005]. Given m, with p ≤ m < n, choose

m indexes j1, ..., jm from 1, ..., n, and build matrix C choosing the columns j1, ..., jm of K

and scaling them, then build matrix W choosing the rows j1, ..., jm of C and scaling them.

Now calculate Wp = Ûp∆̂pÛ
T
p , the p-rank approximation of W , with this eigencomposition

the Moore-Penrose generalized inverse of Wp, noted as W+
p can be built [Courrieu, 2008].

Finally (̂K) = CW+
p CT , is the p-rank Nyström approximation of K, which is calculated in

O(m3 + pmn).

Now for any kernel method that uses the kernel matrix K directly in the training and

prediction formulation it suffixes to replace the matrix K with K̂ = CW+
p CT . Moreo-

ver, when m ≪
√
n then to calculate the Nyström approximation is much better than

the exact θ(n2) calculation of the full matrix, consequently, it is less expensive in time

and additionally, it can be stored using less memory. For this reason, Nyström method has

been used extensively as a way to improve kernel methods in various tasks like clustering

[Choromanska et al., 2013, Wang et al., 2019], classification [Hoi et al., 2013] and regression

[Trokicic and Todorovic, 2020].

Another important remark about this approximation of kernel methods is regarding the se-

lection of the m column-indexes, which corresponds to a sampling of m data points. Selecting

a more appropriate subset of the data, instead of just a uniformly random one, could impro-

ve significantly the accuracy of Nyström in most learning related tasks [Kumar et al., 2012,

Wang and Zhang, 2013]. Finding an optimal selection of these samples is a relevant problem

on its own [Paul et al., 2015].

2.2.2. Random features

Let k : X×X → R be a positive semi-definite function, Mercer’s theorem [Sun, 2005] states

that there is a map ϕ : X → Y where Y is a Hilbert space such that k corresponds to the

dot product in Y , i.e. k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. Furthermore, Y could be a very high, even

possibly infinite dimensional space. Subsequently, often it is not possible to use in practice
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function ϕ explicitly, although we can consider to use a low dimensional approximation of

the function ϕ instead.

Let k : Rd × Rd → R be a positive shift-invariant function, i.e. There exists a function

k′ : Rd → R, such that k(x, x′) = k′(x− x′). Bochner’s theorem [Rudin, 1990] states that k

is positive definite if and only if k′(δ) is the Fourier transform of a non-negative measure. As

a result of this theorem, calculating the Fourier transform of a shift-invariant kernel p(w) =
1
2π

∫
e−iw′γk′(γ)d∆ gives a probability function, which can be used to make the Random Fou-

rier Features approximation ϕ̂ of the map ϕ by its Monte-Carlo estimate. In particular, choo-

singm iid samples w1, ..., wm ∈ Rd from p(w) andm iid samples b1, ..., bm ∈ R uniformly from

[0, 2π], we build ϕ̂(x) =
√

1
m
(cos(wT

1 x+b1), ..., cos(w
T
mx+bm), sin(w

T
1 x+b1), ..., sin(w

T
mx+bm)).

Then, k(x, x′) ≈ ⟨ϕ̂(x), ϕ̂(x′)⟩ [Sriperumbudur and Szabo, 2015].

Additionally to Random Fourier Features, there are other ways of approximate ϕ such that

k(x, x′) ≈ ϕ̂(x)T ϕ̂(x′), approximations using this approach are named just Random Featu-

res (RF) [Rudi and Rosasco, 2017]. Other examples of RF are Random Binning Features

[Wu et al., 2018] which partitions the input space using randomly shifted grids with diffe-

rent, randomly chosen resolutions and allocates every point in the input to the bin it falls

using a binary string. Grids are chosen in such a way that the probability of two points x and

x′ being in the same bin is approximately proportional to k(x, x′). There is also orthogonal

Random Features [Yu et al., 2016] which aims to approximate the Gaussian kernel impo-

sing orthogonality on the matrix with a linear transformation randomly generated. Random

Features have shown many capabilities, for instance [Sinha and Duchi, 2016] shows how to

use random features in order to approximate the kernels directly instead of having to define

one as input of the learning algorithm, this is feasible as RF are approximating the kernel

function and therefore they may be capable of modifying it as needed.

Note that using these types of approximations make it possible for learning methods to use

explicitly the mapping function ϕ̂ as this is low dimensional. Hence, the learning algorithms

can be directly evaluated without using the kernel trick, mapping the data to the feature spa-

ce generated by ϕ̂ and finding patterns there directly to solve different tasks like regression

[Huang et al., 2013] and classification [Li and Marlin, 2015]. Furthermore, it is important to

consider that Random Features are limited only to a particular set of kernels, which limits

its potential applications.

2.2.3. Budget approximation

Learning on a budget strategy in kernel methods is motivated by support vector machines

algorithm, which solves an optimization problem through the calculation of some support
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vectors. These vectors are a subset of the training data which is typically found during the

learning process. The budget strategy basically consists in an a priori restriction on the

number of support vectors in order to make the learning process much faster. In particular,

we would restrict the algorithm to have m < n support vectors [Wang et al., 2012].

Even though the budget notion is based on the support vector machines algorithm, it is pos-

sible to extend this strategy to other kernel algorithms, where the restriction corresponds to a

representation of the data using only the subset defined by the budget, but we can still train

the model using the whole dataset. Formally, let x ∈ X be a training data sample and B ⊂ X

the budget subset of size m, we define the restriction over the learning algorithms such that

the optimization problem is defined in terms of x and B, i.e. we have a loss function L(x,B)

instead of the traditional L(x,X) in our training process. This approach in not only found

in different versions of support vector machines [Jian et al., 2017, Schölkopf et al., 2007] but

also in not supervised kernel-based algorithms [Vanegas et al., 2018].

It is important to remark about the budget strategy that it is very efficient in large scale

datasets when 2 conditions are held: first,m should be very small compared to n, otherwise it

would be close to the O(n2) traditional kernel matrix calculation, and second, the method to

select the budget is also efficient in comparison to the training procedure. Nevertheless, those

conditions are opposite to good results in the learning algorithms. The selection of the budget

size and its elements is then a relevant problem on its own [Glasmachers and Qaadan, 2018].
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In this chapter we present theoretical bounds regarding the formulation of budget approach

for support vector machines and different budget selection strategies using randomized nu-

merical linear algebra theory.

3.1. Budget formulation

Many learning algorithms are based on the kernel method formulation shown in chapter 2,

notably the support vector machines (SVM). However, that formulation corresponds to a

quadratic optimization problem, because evaluating pred(x) has linear time complexity re-

garding n, therefore just the evaluation over all n samples in the dataset has Θ(n2) compu-

tational time complexity. In particular, given α ∈ Rn evaluating the prediction function

for the whole dataset corresponds to calculate f(α) = k(X,X)α + b(n) where b(n) ∈ Rn is

a vector consisting of n times the value b and k(X,X) is the kernel matrix, in this case

f(α) is a vector of size n, such that f(α)i is the predicted value for the i-th sample. This

formulation is not scalable for big datasets, in order to solve this we add the budget res-

triction, which approximates w to be a combination of a subset of B ⊆ X instead of a

combination of the whole dataset, i.e. Let B = {xi1 , xi2 , ..., xic}, then ŵ =
∑c

k=1 α̂kxik , and

we would have that f̂(α̂) = k(X,B)α̂ + b(n), in this case α̂ ∈ Rc and k(X,B) is the kernel

matrix between elements of X and elements of B, therefore the computational complexity

is now O(nc) which is much better than the original formulation when c ≪ n. However

this may be a constraint where the methods are formulated with the full kernel matrix, such

as the ridge regression, which just by definition in the dual uses always the full kernel matrix.

When using the budget method, the quality of the learned patterns depends on the budget

selection, in particular, for methods like SVM, the optimal budget corresponds to the set

of support vectors obtained in the optimal solution in the SVM. However, this would imply

calculating the optimization problem with the original quadratic formulation, which is in-

feasible for large datasets and thus we need to avoid it. Therefore, it is necessary to consider

more efficient strategies to select the budget, but then our solution could be sub-optimal in

comparison to the solution with the exact formulation. Consequently, we have here a trade-

off between efficiency and accuracy. Considering this, we want to focus only on strategies to

select the budget with computational complexity close or better than O(nc), which is what

we would need in any case to calculate the kernel matrix between the budget and the full
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dataset.

3.1.1. Randomized numerical linear algebra

There are various approaches to select the budget, however considering the limitations we

have to select this subset of the dataset in order to be efficient, i.e. avoiding to calcula-

te the full kernel matrix, meaning that these strategies should be heuristic at some point.

In this regard, a common approach to be considered is randomization, probabilistic algo-

rithms have held a central role in scientific computing for many decades now, which ha-

ve been useful to give competitive suboptimal solutions to different problems in computer

science that treated otherwise could have been infeasible to solve. Particularly, there has

been some recent work in the area of randomized numerical lineal algebra (RNLA) which

consists in the development of randomized algorithms to solve traditional numerical linear

algebra problem such as: singular value decomposition, calculation of eigenvalues and ei-

genvectors, orthogonalization, least squares, solution of sparse and dense linear systems and

others [Martinsson and Tropp, 2021].

RNLA has gained relevance in machine learning applications as the algorithms and strate-

gies from this field have shown outstanding results in applications like matrix factorization

[Witten and Candes, 2015], embeddings [Mineiro and Karampatziakis, 2015] and matrix ap-

proximation [Cohen et al., 2015] and other algorithms used to solve very important learning

related issues. In this regard, RNLA encapsulates a set of methods with the same idea of sol-

ving problems in a randomized manner, with some probability distribution, and obtaining

from it different theoretical error bounds and mathematical guarantees about the perfor-

mance of the algorithms. In the case of the budget selection, the problem of finding a good

subset of the data to be used in the approximation kernel method falls within the category

of numerical linear algebra algorithms we need to solve in an efficient manner. Moreover in

the best of our knowledge, this has not been explored yet from a theoretical point of view

using other RNLA approaches.

3.2. Random budget

The first approach can be considered is a naive approach consisting in selecting the budget

as a random subset of the elements in the dataset using a uniform distribution. In this sec-

tion we will show that selecting the budget in this random manner gives in average already

acceptable results when used in learning algorithms based on kernel methods. Also, we show

how the budget size impacts the performance of the approximation from a theoretical point

of view. Finally, some experimental results applied to a support vector machines algorithm
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are presented.

3.2.1. Theoretical results

We will show that, when selecting the values of B randomly, in average the values of the

approximated prediction function f̂(α̂) are not far from the values in the original predic-

tion function f(α), consequently obtaining a theoretically good approximation. To show

this we need the following lemmas from Randomized Numerical Linear Algebra theory

[Drineas and Mahoney, 2017]:

Lemma 3.2.1. Let A ∈ Rm×n and B ∈ Rn×q and a probability distribution {pi}ni=1. Choose

c > 0 elements from {1, ..., n} randomly from the distribution, let S ∈ Rp×c be a matrix with

Si,t =
1√
cpit

if it is chosen in the t-th trial, and 0 otherwise, then:

E[(ASSTB)i,j] = (AB)i,j

V ar[(ASSTB)i,j] =
∑n

k=1

A2
i,kB

2
k,j

cpk
− (AB)2i,j

c

Proof. Fix i and j and consider Xt =
(

A∗,itBit,∗
cpit

)
i,j

=
Ai,itBit,j

cpit
for t = 1, ..., c.

Now, E[Xt] =
∑n

k=1 pkXk =
∑n

k=1 pk
Ai,kBk,j

cpk
= 1

c
(AB)i,j.

Note that (ASSTB)i,j =
∑c

t=1Xt. Thus E[(ASSTB)i,j] = E[
∑c

t=1Xt] =
∑c

t=1E[Xt] =

(AB)i,j.

Additionally, E[X2
t ] =

∑n
k=1

A2
i,kB

2
k,j

c2pk
, then V ar[Xt] = E[X2

t ] − E[Xt]
2 =

∑n
k=1

A2
i,kB

2
k,j

c2pk
−

1
c2
(AB)2i,j.

Finally V ar[(ASSTB)i,j] = V ar[
∑c

t=1Xt], as the samples are independent, then V ar[
∑c

t=1Xt] =∑c
t=1 V ar[Xt] =

∑c
t=1

(∑n
k=1

A2
i,kB

2
k,j

c2pk
− 1

c2
(AB)2i,j

)
=

∑c
t=1

1
c2

(∑n
k=1

A2
i,kB

2
k,j

pk
− (AB)2i,j

)
=∑n

k=1

A2
i,kB

2
k,j

cpk
− (AB)2i,j

c

An important remark about the previous lemma is that the result holds for any probability

distribution. Moreover, for a uniform distribution, we have the following corollary:

Corollary 3.2.1.1. Let A ∈ Rm×n and B ∈ Rn×q. Choose c > 0 elements from {1, ..., n}
randomly from an uniform distribution, let D ∈ Rn×c be a matrix with Di,j = 1 if ij is chosen

in the j-th trial, and 0 otherwise, then:

E[(ADDTB)i,j] =
c
n
(AB)i,j and E[n

c
(ADDTB)i,j] = (AB)i,j
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V ar[(ADDTB)i,j] =
c
n

(∑n
k=1(Ai,kBk,j)

2 − (AB)2i,j
n

)
and

V ar[n
c
(ADDTB)i,j] =

n
c

(∑n
k=1(Ai,kBk,j)

2 − (AB)2i,j
n

)
Proof. Using a uniform probability distribution on the lemma we get that S = 1√

c 1
n

D,

then D =
√

c
n
S and therefore ADDTB = c

n
ASSTB. Applying that E[aX] = aE[X] and

V ar[aX] = a2V ar[X] we have the result.

Example 3.2.1. To ilustrate the previous corollary lets consider matrices A =

3 8 5

5 1 8

2 6 7


and B =

2 5 1

4 8 9

8 9 3

, with multiplication AB =

78 124 90

78 105 38

84 121 77

.
let’s consider the case when we get just 1 sample (c = 1), then we have 3 possible matrices

D with 1
3
probability each, that is D = D1 =

10
0

, D = D2 =

01
0

 or D = D3

00
1

, and we

have the following possibilities:

3
1
AD1D

T
1 B = 3

3 8 5

5 1 8

2 6 7

10
0

 [
1 0 0

] 2 5 1

4 8 9

8 9 3

 = 3

 6 15 3

10 25 5

4 10 2

 =

18 45 9

30 75 15

12 30 6



3
1
AD2D

T
2 B = 3

3 8 5

5 1 8

2 6 7

01
0

 [
0 1 0

] 2 5 1

4 8 9

8 9 3

 = 3

32 64 72

4 8 9

24 48 54

 =

96 192 216

12 24 27

72 144 162



3
1
AD3D

T
3 B = 3

3 8 5

5 1 8

2 6 7

00
1

 [
0 0 1

] 2 5 1

4 8 9

8 9 3

 = 3

40 45 15

64 72 24

56 63 21

 =

120 135 45

196 216 72

168 189 63


therefore

E[
n

c
ADDTB] =

1

3

18 45 9

30 75 15

12 30 6

+
1

3

96 192 216

12 24 27

72 144 162

+
1

3

120 135 45

196 216 72

168 189 63


=

78 124 90

78 105 38

84 121 77


= AB
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.

Let’s suppose now that we have c = n = 3 samples, in that case we could have matrices like

D =

0 0 1

1 0 0

0 1 0

 where n
c
ADDTB = AB, but as we are allowing repetition we could have also

matrices like D =

0 0 0

0 0 0

1 1 1

 where not necessarily n
c
ADDTB = AB, therefore we would get

that variance may be greater than 0. However, if we add the restriction of sampling without

repetition, we can check that variance would be 0, as in this particular case the matrix D

would be an orthogonal matrix and then ADDTB = AIB = AB.

Now, when selecting c elements {i1, i2, ..., ic} from {1, ..., n} randomly from an uniform dis-

tribution we construct the budget B as B = [xi1 , xi2 , ..., xic ]. Let D ∈ Rn×c be a matrix with

Di,j = 1 if ij is chosen in the j-th trial and 0 otherwise, then note that k(X,B) = k(X,X)D.

Finally, if we fix α ∈ Rn we can calculate f̂(DTα) = k(X,B)DTα + b(n), and using the

previous observation, we have that f̂(DTα) = k(X,X)DDTα + b(n), which corresponds to

the approximation described in the previous corollary, meaning that the budgeted prediction

function f̂(α̂) gives us a randomized numerical linear approximation of the original prediction

function f(α), multiplied by a constant, with the corresponding properties. In particular,

the expected value of the approximated function is the same as the original function mul-

tiplying by a constant. For classification this means that the expected predicted class using

the budgeted function is equal to the predicted class with the original function. However,

note that the variance depends on the ratio between the original size and the budget size, so

that when the budget is extremely small the result could be very far from the expectation.

3.2.2. Experimentation

In this section we compare experimentally the budget method with a random budget to the

non-approximated version and the Nyström approximation for standard binary SVM classi-

fication applied to two datasets. We evaluate the performance of the algorithms calculating

the classification accuracy and training time for all datasets, in tables 3-1, 3-2, 3-3 and

3-4 we used kernels linear, polynomial, RBF and Chi-square respectively for two classes of

the MNIST [LeCun and Cortes, 2010], while in tables 3-5, 3-6, 3-7 and 3-8 we used same

kernels applied to two classes of the Fashion-MNIST dataset [Xiao et al., 2017]. For all ker-

nels we have a regularization parameter c and for RBF and Chi-square we have a parameter

γ, these parameters were fine-tuned for all algorithms. As the approximations are random

the presented results correspond to the mean and standard deviation of 10 runs for each

configuration.
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Size Method Accuracy Time

Nyström 74,535± 3,112 42.958
16

Budget 77,822± 1,597 30.205

Nyström 80,214± 1,889 87.304
64

Budget 83,522± 1,038 62.107

Nyström 86,55± 0,479 190.894
256

Budget 88,171± 0,515 126.457

Nyström 89,417± 0,339 368.620
1024

Budget 90,802± 0,714 242.626

Nyström 92,390± 0,246 887.915
4096

Budget 92,301± 0,433 648.331

full dataset 95,824 5782.805

Table 3-1: SVM Approximations using

linear kernel for MNIST

Size Method Accuracy Time

Nyström 71,835± 4,112 46.900
16

Budget 74,257± 2,732 31.205

Nyström 76,563± 2,374 90.621
64

Budget 79,544± 1,857 64.009

Nyström 79,653± 0,754 200.489
256

Budget 81,574± 0,945 130.788

Nyström 83,683± 0,584 412.285
1024

Budget 85,288± 1,013 298.833

Nyström 88,457± 0,463 928.729
4096

Budget 88,564± 0,735 687.915

full dataset 92,484 6182.735

Table 3-2: SVM Approximations using

polynomial kernel for MNIST

Size Method Accuracy Time

Nyström 78,882± 2,527 56.993
16

Budget 80,927± 1,263 40.002

Nyström 83,583± 1,634 96.162
64

Budget 84,184± 1,185 81.904

Nyström 86,286± 0,463 218.142
256

Budget 87,376± 0,542 187.391

Nyström 90,285± 0,285 462.282
1024

Budget 90,142± 0,653 328.208

Nyström 94,274± 0,372 968.331
4096

Budget 93,194± 0,475 717.522

full dataset 96,733 6821.752

Table 3-3: SVM Approximations using

RBF kernel for MNIST

Size Method Accuracy Time

Nyström 73,185± 2,464 59.205
16

Budget 76,046± 1,383 42.900

Nyström 79,173± 1,935 98.009
64

Budget 80,683± 1,258 83.384

Nyström 83,573± 0,583 220.489
256

Budget 84,568± 0,654 189.475

Nyström 87,342± 0,472 468.117
1024

Budget 87,566± 0,735 332.520

Nyström 91,734± 0,582 973.211
4096

Budget 90,246± 0,834 720.911

full dataset 94,282 6973.543

Table 3-4: SVM Approximations using

Chi-square kernel for MNIST
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Size Method Accuracy Time

Nyström 72,535± 3,573 42.958
16

Budget 73,822± 1,735 30.205

Nyström 74,214± 1,835 87.304
64

Budget 76,522± 1,584 62.107

Nyström 78,55± 0,856 190.894
256

Budget 79,171± 0,573 126.457

Nyström 81,417± 0,586 368.620
1024

Budget 81,802± 0,634 242.626

Nyström 83,390± 0,573 887.915
4096

Budget 83,301± 0,434 648.331

full dataset 85,372 5782.805

Table 3-5: SVM Approximations using

linear kernel for Fashion

Size Method Accuracy Time

Nyström 72,645± 4,457 46.900
16

Budget 73,554± 2,865 31.205

Nyström 77,272± 2,784 90.621
64

Budget 79,352± 1,567 64.009

Nyström 80,255± 1,346 200.489
256

Budget 81,245± 1,235 130.788

Nyström 83,457± 0,357 412.285
1024

Budget 83,856± 1,568 298.833

Nyström 86,354± 0,632 928.729
4096

Budget 86,356± 0,234 687.915

full dataset 87,331 6182.735

Table 3-6: SVM Approximations using

polynomial kernel for Fashion

Size Method Accuracy Time

Nyström 68,5355± 2,433 56.993
16

Budget 70,822± 1,835 40.002

Nyström 73,214± 1,860 96.162
64

Budget 74,5225± 1,434 81.904

Nyström 76,55± 1,481 218.142
256

Budget 77,171± 1,234 187.391

Nyström 80,417± 1,185 462.282
1024

Budget 80,8025± 1,246 328.208

Nyström 84,3905± 0,635 968.331
4096

Budget 83,301± 0,865 717.522

full dataset 86,925 6821.752

Table 3-7: SVM Approximations using

RBF kernel for Fashion

Size Method Accuracy Time

Nyström 65,657± 2,573 59.205
16

Budget 69,683± 1,352 42.900

Nyström 67,547± 1,572 98.009
64

Budget 70,546± 1,786 83.384

Nyström 71,146± 1,325 220.489
256

Budget 72,171± 0,482 189.475

Nyström 73,774± 0,754 468.117
1024

Budget 73,8025± 0,564 332.520

Nyström 85,346± 0,693 973.211
4096

Budget 85,301± 0,583 720.911

full dataset 87,236 6973.543

Table 3-8: SVM Approximations using

Chi-square kernel for Fashion
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3.3. Budged based on landmarks

We showed that a random budget is good enough in average comparing it to the original

kernel formulation, and it actually gets very close to the original function when the budget

gets larger in size. However, for big datasets, and in order to have scalability, it is important to

have a budget selection method for small budgets, which could improve the results compared

to the random method, but also considering that this selection method should avoid the

calculation of the full kernel matrix.

3.3.1. Column selection

In RNLA theory the problem described before is the column subset selection problem (CSSP)

[Wang et al., 2016] which, for a matrix A ∈ Rm×n, consists in finding a matrix X ∈ Rm×c

containing c columns of A for which A−XX+A is small.

For kernel matrix methods, we aim to approximateK with a low dimensional approximation,

exactly the role that X does in the CSSP. However, the original CSSP algorithm relies on

having the original approximate matrix, therefore if applied directly to kernel matrix K, we

would need to calculate that matrix beforehand, which could be too expensive. A strategy

to solve this is to make a random presampling on the columns, approximating that matrix

instead of the full matrix K [Boutsidis et al., 2009].

Note that XX+A is the best possible reconstruction of A by projection into the space

spanned by the columns of X [Paul et al., 2015], so with this approach we would be able to

get good columns for which the span of X may contain similar information as the original

matrix A. For our learning algorithms, we would use the subset obtained by the aproximated

CSSP as the budget.

3.3.2. Locality sensitive hashing

Another approach to select representative points which maximizes the information about a

dataset i.e. the budget, is to obtain different points distributed evenly along the whole space,

this could be done by clustering and selecting a relevant point by each calculated cluster.

However, we need to consider that the budget selection process should be computationally

efficient, in other words, this process will not be using traditional clustering methods like

kernel K-means which would need to calculate the whole kernel matrix.

In this context we can use Locality-Sensitive Hashing (LSH) which is a fast technique to find

landmarks in a space through the use of fast hash functions, these hash functions are locality-

sensitive in the sense that two similar objects in the space have high probability of collision,

while two very different objects have low probability of collision [Dasgupta et al., 2011].
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LSH, for instance, has been used as a tool to find nearest neighbors in an efficient way

[Slaney and Casey, 2008] through random projections using dot products, in this RNLA ap-

proach the main idea is to select randomly x such that when calculating h(v) = ⌊v·x+b
w
⌋,

the hash function, such that for any two points p, q close to each other, there is a high pro-

bability the fall into the same bucket, this is PH [h(p) = h(q)] ≥ P1 for ∥p − q∥ ≤ R1 and

when p and q are very far from each other the probability of falling into the same bucket

is low, this is PH [h(p) = h(q)] ≤ P2 for ∥p − q∥ ≥ cR1 = R2, where R2 > R1 and ∥∥ is

the norm associated to the dot product. Also, as the dot product is a linear operator, the

difference between the two image points ∥h(p)−h(q)∥ is proportional to ∥p−q∥ then P1 > P2.

Within this technique, one of the most common approaches is the Distance Based Hashing

(DBH) which is a type of LSH for metric spaces, where the main idea is to use exclu-

sively a distance function d between the data in order to create the buckets from the

hash function, but with the same approach from all LSH methods of having two closer

points with higher probability of being in the same bucket and 2 far points with lower

probability of being in distinct buckets [Wang et al., 2014]. This strategy has been used

before in order to index image collections using the hashing as a tool for feature combi-

nation [Hassan et al., 2012]. This has also been one approach to do fast similarity search

[Zhang et al., 2010]. The way DBH strategy solves these problems is by using projections of

the form f(x, a1, a2) = d2(x,a1)+d2(a1,a2)−d2(x,a2)
2d(a1,a2)

, which basically are projecting x to the line

formed by points a1 and a2, in this projection closer points are expected to have similar

values, while distant points are expected to have different values. Finally, in order to make a

hash function out the projections DBH uses randomization selecting different pairs of points

and from the projections use binarization in order to separate the points and create the

buckets, i.e. for each pair of points projecting all samples x ∈ X and selecting a threshold

t1, t2 such that h(x, a1, a2) = 1 if f(x, a1, a2) ∈ [t1, t2] and h(x, a1, a2) = 0 otherwise.

Mercer’s theorem states that that for any valid kernel function there is a Hilbert spaceH asso-

ciated to it, where that function corresponds to the dot product inH [Dostanic, 1993]. There-

fore, we can use directly the DBHmethod with a kernel function, using the distance generated

by the kernel function, i.e. let x1, x2 ∈ X, then d(x1, x2) =
√
⟨ϕ(x1)− ϕ(x2), ϕ(x1)− ϕ(x2)⟩ =√

⟨ϕ(x1), ϕ(x1)⟩ − 2⟨ϕ(x1), ϕ(x2)⟩+ ⟨ϕ(x2), ϕ(x2)⟩ =
√

k(x1, x1)− 2k(x1, x2) + k(x2, x2). No-

te that here we are using the distance in the feature space, which allows us to get the complex

non-linear relationships of the data when selecting these landmarks. This approach to select

the budget is shown in algorithm 1
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Algorithm 1: Kernelized Distance Based Budget

Input : Training set X and size of budget b

Output : Budget B

1 Select m = log2(b) pairs of elements from X, (x1,1, x1,2), (x2,1, x2,2), ..., (xm,1, xm,2)

2 hashcodes[x] = 0 for all x ∈ X

3 for i = 1 to m do

4 proj = {}
5 for x in X do

6 proj[x] = k(x, xi,1)− k(x, xi,2)

7 end for

8 Choose the median from proj and split the data in halves

9 Append 0 to hashcodes of the first half and 1 to hashcodes of the second half

10 end for

11 Budget = {}
12 for hash in hashcodes do

13 Let Xhash ⊂ X the subset of elements with hashcode[x] = hash

14 Let X̂hash be w random samples from Xhash

15 Calculate the medoid xhash of X̂hash

16 Budget = Budget ∪ xhash

17 end for

18 return Budget
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This chapter presents a budget approximation strategy for kernel methods. The strategy

is evaluated on different learning algorithms. In particular, in this chapter we present the

formulation of this approximation for the support vector machines and least squares support

vector machines, the semi-supervised online kernel matrix factorization and an unsupervised

kernel k-medoids.

4.1. Supervised methods

In this section we present the budget formulation for supervised kernel methods: support

vector machines (SVM) [Hearst et al., 1998] and least squares support vector machines

(LSSVM) [Suykens and Vandewalle, 1999], both are kernel methods with a similar training

approach for classification and regression problems, but with differences in their loss fun-

ctions, therefore in their formulation and optimization derivation.

4.1.1. Support vector machines

Loss formulation

Let X ∈ Rd×n be a dataset of n samples x1, x2, ..., xn of dimension d with labels y1, y2, ..., yn
respectively, consider the primal formulation for classification in the SVM:

mı́n
w
||w||2 + C

n∑
i=1

ξi subject to yi(w
Txi + b) ≥ 1− ξi (4-1)

We can reformulate (4-1) to:

mı́n
w

L(w) where L(w) = ||w||2 + C
n∑

i=1

máx (0, 1− yi(w
Txi + b)) (4-2)

Then, we add a restriction over w, forming it as a linear combination of elements in X, i.e.

w =
∑

xj∈X αjxj, considering this over (4-2) we get;

L(w) = L′(α) = ||
∑
xj∈X

αjxj||2 + C
n∑

i=1

máx (0, 1− yi(
∑
xj∈X

αjx
T
j xi + b))
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Now, consider a mapping ϕ : Rd → RD if we map the data through a function ϕ(x) we have:

L′(α) = ||
∑
xj∈X

αjϕ(xj)||2 + C

n∑
i=1

máx (0, 1− yi(
∑
xj∈X

αjϕ(xj)
Tϕ(xi) + b)) (4-3)

As RD is a Hilbert space we can use the dot product in (4-3) in the following form:

L′(α) =<
∑
xj∈X

αjϕ(xj),
∑
xj∈X

αjϕ(xj) > +C
n∑

i=1

máx (0, 1− yi(
∑
xj∈X

αj < ϕ(xj), ϕ(xi) > +b))

=
∑

xi,xj∈X

αiαj < ϕ(xi), ϕ(xj) > +C
n∑

i=1

máx (0, 1− yi(
∑
xj∈X

αj < ϕ(xj), ϕ(xi) > +b))

Finally, using the kernel trick:

L′(α) =
∑

xi,xj∈X

αiαjk(xi, xj) + C
n∑

i=1

máx (0, 1− yi(
∑
xj∈X

αjk(xj, xi) + b))

= αTK(X,X)α + C
n∑

i=1

máx (0, 1− yi(α
TK(X, xi) + b))

(4-4)

Now, let’s consider the budgetB, which is a subset of samples fromX, i.e.B = [xa1 , xa2 , ..., xab ]

for a1, a2, ..., ab ∈ {1, 2, ..., n}. For a budgeted version of SVM we make our restriction over w

to be a linear combination of B instead of a linear combination of X, i.e. w =
∑

xj∈B αjxj,

with this restriction we get an approximation L̃′(α) of the loss function L′(α) for the SVM.

With the same procedure we used to get to equation (4-4) we obtain the following equation:

L̃′(α̂) = α̂TK(B,B)α̂ + C
n∑

i=1

máx (0, 1− yi(α̂
TK(B, xi) + b)) (4-5)

We have to consider also the prediction function, let x ∈ Rd, in order to classify x in a

class using binary original SVM given w we calculate f(w, x) = wTx, and pred(w, x) ={
-1, if f(w, x) < 0

1, otherwise.
. With the budget restrictions we have then that w =

∑
xj∈B αjxj,

therefore f(w, x) = f̂(α, x) =
∑

xj∈B αjx
T
j x =

∑
xj∈B αjk(xj, x), and the prediction function

would remain the same using f̂ instead of f . Note that f̂ is a randomized numerical linear

algebra approximation of f as showed in section 3.
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Optimization

Equation (4-5) is the loss function budget formulation for SVM, this is the function we

should try to minimize. However, only calculating this function would imply to calculate the

prediction function for all points in the dataset, doing this is computationally very expen-

sive considering that it would be done for each epoch in the training phase. Our approach

to avoid this is to formulate the loss with regard to a single data point, if this function is

differentiable respecting α and b, then we can apply a stochastic gradient descent algorithm

in order to do the optimization procedure without the extensive cost of having to evaluate

the complete loss function, i.e. avoiding to predict all points in every epoch of the algorithm.

Lets consider L̃′(α) as stated in equation (4-5), and a given training sample xi. Considering

just that sample from L̃′(α), we get L̃i(α) =
1
n
αTK(B,B)α+C máx (0, 1− yi(α

TK(B, xi) + b)),

in particular note that L̃′(α) =
∑n

i=1 L̃i(α). Observe that L̃i is differentiable everywhere ex-

cept when the second summand of the equation is exactly 0, however this unlikely case can

be solved by using a subgradient, obtaining the following:

dL̃i/dα =
2

n
αTK(B,B)− CyiK(B, xi)δ(xi) (4-6)

In equation (4-6), δ(xi) is a piecewise function, which is equal to 0 when 1−yi(α
TK(B, xi) ≤

−b and 1 otherwise. We also have to consider the intercept b, which we find doing the

same optimization procedure, i.e. we calculate the subgradient and apply stochastic gradient

descent at the same time that α, with this we obtain the following:

dL̃i/d=
¯
− Cyiδ(xi) (4-7)

With equations (4-6) and (4-7) we can apply directly a stochastic gradient descent algorithm

to minimize (4-5) and therefore solving the classification problem with the SVM formula-

tion. Note that from the problem formulation to the optimization process we never needed

to calculate the kernel of all points against all points, but only the kernel of all points

against the budget, depending on the size of the budget we can do this calculation once and

store it in matrices where the calculations described above can be done efficiently using GPU.

Additionally, we can consider calculating the gradient for a small batch of points in the

same epoch, summing (4-6) and (4-7) calculated for those points, this is known as mini-

batch stochastic gradient descent and it has been shown to speed up optimization processes

[Khirirat et al., 2017]. The full training procedure is shown in algorithm 2.
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Algorithm 2: Budgeted SVM with mini-batch gradient descent

Input : Training set X with labels Y , budget B, step training size η, batch

size m

Output : α vector and b intercept for which the loss function is expected to be

minimum

1 Let n← |X|
2 Randomize initizalize values for α and b

3 Compute matrix K(B,X)

4 while an approximate minimum is not reached do

5 /* We could define the number of epochs apriori */

6 Select a random batch X̂ from X of size m

7 for xi in X̂ do

8 Let yi be the label of xi

9 δ(xi)← sign(máx (0, 1− yi(α
TK(B, xi) + b)))

10 end for

11 α← α− η
(
2m
n
αTK(B,B)− C

∑
xi∈X̂ yiK(B, xi)δ(xi)

)
12 b← b+ ηC

∑
xi∈X̂ yiδ(xi)

13 Decrease the step size η for next batch

14 end while

15 return α and b
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4.1.2. Least squares support vector machines

Loss formulation

Let X ∈ Rd×n be a dataset of n samples x1, x2, ..., xn of dimension d with labels y1, y2, ..., yn
respectively, consider the primal formulation for classification in the LSSVM:

mı́n
w

1

2
(||w||2 + C

n∑
i=1

ξ2i ) subject to yi(w
Txi + b) = 1− ξi (4-8)

Once the Lagrangian is defined subject to Kuhn-Tucker conditions, the dual problem arises

as a system of equations

[
K + In/γ 1n

1Tn 0

] [
α

b

]
=

[
y

0

]
(4-9)

where Kij = k (xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ is the kernel matrix, 1n ∈ R1×n is a matrix containing

only ones, α = [α1, . . . , αn] is the vector of Lagrange multipliers, y = [y1, . . . , yn], and In is

the n× n identity matrix. Once the system is solved for α and b, the model is given by:

y (x) = wTϕ (x) + b, (4-10)

where w =
∑n

i=1 αiyiϕ(xi).

For the dual version, we take the Lagrangian of the original LS-SVM problem 4-8

L (w, b, e, α) = J (w, b, e)−
n∑

k=1

αk

(
yk

[
wTφ (xk) + b

]
− 1 + ek

)
(4-11)

subject to w =
∑n

k=1 αkykφ (xi),
∑n

k=1 αkyk = 0, and αk = γek, yk
[
wTφ (xk) + b

]
− 1 +

ek = 0 for k = 1, . . . n. Plugging this into equation 4-11, we get the dual problem

L (w, b, e, α) = −1

2
(αy)T k (X,X) (αy) +

n∑
k=1

αk −
C

2

n∑
k=1

(
1− yk

[
(αy)Tk (X, xk) + b

])2

(4-12)

where (αy) represents a pairwise product of α and y, and must be maximized for αk, k =

1, . . . , n, and b.

Budget strategy can be implemented in LS-SVM as follows: instead of computing the entire

kernel matrix, a selection of β ≪ n instances will be made, selecting a sub-matrix B from
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the input data matrix X to train the machine. From 4-12 we get that the loss function will

be

mı́n
α,b
L′ =

1

2
(αy)T k (B,B) (αy)−

β∑
k=1

αk +
C

2

n∑
k=1

(
1− yk

[
(αy)Tk (B, xk) + b

])2

(4-13)

Optimization

SGD permits an online implementation as it updates the solution using a single training

sample at a time, which alleviates even more the memory requirements. Following this,

given the derivatives

∂L′

∂αi

=

β∑
k=1

αkykyik (xi, xk)− 1− C
n∑

k=1

(
1− yk

[
(αy)Tk (B, xk) + b

])
ykyik (xi, xk) (4-14)

the update rule is given by

αm = αm−ηym(αy)Tk (B, xm) + η

+ ηCn
(
1− yj

[
(αy)Tk (B, xj) + b

])
yjymk (xj, xm)

(4-15)

where (xj, yj) is a randomly chosen instance of X. The entire procedure of the Online Bud-

geted LS-SVM is described in algorithm 3.

4.2. Semi-supervised methods

In this section we present the budget formulation for the SSOKMF [Vanegas et al., 2018],

which is a method to perform semantic embedding trained in a semi-supervised fashion,

therefore it does not need to have labels for all inputs but only for some in order to perform

a classification task.

4.2.1. SSOKMF

Loss formulation

For a dataset X ∈ Rn×m we can find a low-level semantic representation by factorization,

i.e. finding matrices F ∈ Rn×r and H ∈ Rr×m with r ≪ n such that X ≈ FH. In order to

find non-linear relationships let ϕ : Rn → F a high dimensional mapping with inner product

⟨, ⟩F , moreover with kernel k, now we would have ϕ(X) ≈ FϕH, which may be unfortunately

infeasible to calculate due to the high dimensionality of ϕ. Therefore, instead of calculating

Fϕ, let’s add the restriction that Fϕ is composed by linear combination of the points of X in

the feature space, i.e. Fϕ = ϕ(X)Wx, then ϕ(X) ≈ ϕ(X)WxH [Vanegas et al., 2018].



30 4 Budget on machine learning methods

Algorithm 3: Online budgeted LS-SVM

Input : Training set X with labels Y , budget B, step training size η, batch

size m

Output : α vector and b intercept for which the loss function is expected to be

minimum

1 Let n← |X|
2 Randomize initizalize values for α and b

3 Compute matrix K(B,X)

4 while an approximate minimum is not reached do

5 /* We could define the number of epochs apriori */

6 Randomly shuffle X

7 for j in {1, ..., n} do
8 for m = 1 to β do

9

αm = αm−ηym(αy)Tk (B, xm) + η

+ ηCn
(
1− yj

[
(αy)Tk (B, xj) + b

])
yjymk (xj, xm) ,

10 end for

11 b = b− ηCn
(
1− yj

[
(αy)Tk(B, xj) + b

]
(−yj)

)
12 end for

13 Decrease the step size η for next batch

14 end while

15 return α and b
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In this setup we can use representative points from the basis matrix, i.e. a budget B ∈ Rb×m

instead of the full matrix. Therefore, the formulation of the budgeted matrix factorization

algorithm is to find matrices Wx and H such that ϕ(X) ≈ ϕ(B)WxH.

Additionally, we have only t annotated instances, let Y ∈ Rc×t be the one hot encoding of the

t annotated examples into the c corresponding classes, this leads us to a second factorization

problem, finding Wy ∈ Rc×r and Ht ∈ Rr×t such that Y ≈ WyHt, where Ht is the subset of H

composed from the annotated instances of the dataset. Considering all previous conditions,

the general problem is to minimize the following loss function:

J(Wx,Wy, H) =
α

2
∥ϕ(X)−ϕ(B)WxH∥2+

β

2
∥Y −WyHt∥2+

λ1

2
∥Wx∥2+

λ2

2
∥Wy∥2+

λ3

2
∥H∥2

(4-16)

Optimization

In order to calculate the optimal values in an efficient way for large datasets, an online SGD

can be formulated from equation 4-16 taking only single points as follows:

J(Wx,Wy, hi) =
α

2
∥ϕ(xi)− ϕ(B)Wxhi∥2 +

β

2
∥Y −Wyhi∥2 +

λ1

2
∥Wx∥2 +

λ2

2
∥Wy∥2 +

λ3

2
∥hi∥2

(4-17)

and the corresponding gradients:

δJi(Wx,Wy, hi)

δWx

= αϕ(B)Tϕ(xi)h
T
i + αϕ(B)Tϕ(B)Wxhih

T
i + λ1Wx (4-18)

δJi(Wx,Wy, hi)

δWy

= βyih
T
i − βWyhih

T
i + λ2Wy (4-19)

Although evaluating directly 4-18 may be infeasible, because ϕ may be a very high or even

infinite dimensional mapping. However, using kernel trick we have that:

δJi(Wx,Wy, hi)

δWx

= αk(B, xi)h
T
i + αk(B,B)Wxhih

T
i + λ1Wx (4-20)

4.3. Unsupervised methods

In this section we present the budget formulation of a kernel K-Medoids algorithm for clus-

tering, this is an adaptation of classic K-Means algorithm, which defines clusters depending
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on the distance of each data sample to a representative point for each cluster, which in this

case is a medoid. For this algorithm we used the notion of distance inherited by the ker-

nel function and therefore by the high dimensional feature space, data does not need to be

labeled for this, thus it is an unsupervised method.

4.3.1. Kernel k-medoids

Formulation

Let X be a dataset, and k a kernel function for X. Due to Mercer’s theorem we know that

there is a reproducing kernel hilbert space H and a map ϕ such that for each x1, x2 ∈ X,

k(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩H , thanks to this theorem we get a corresponding distance d in H

as the following:

d(x1, x2) =
√
⟨ϕ(x1)− ϕ(x2), ϕ(x1)− ϕ(x2)⟩H

=
√
⟨ϕ(x1), ϕ(x1)⟩H − 2⟨ϕ(x1), ϕ(x2)⟩H + ⟨ϕ(x2), ϕ(x2)⟩H

=
√

k(x1, x1)− 2k(x1, x2) + k(x2, x2)

(4-21)

Just with the distance defined in 4-21 it is possible to formulate a clustering based on a

subset of points X̃. Formally let X̃ = {x̃1, x̃2, ..., x̃k} ⊂ X be k different samples from the

dataset we can define the i-th cluster as the following:

Ci = {x ∈ X | i = argminj=1,...,kd(x, x̃j)} (4-22)

In this case or clustering method aims to find the best subset of points X̃ such that the

clusters in 4-21 define some relationship on the real data, this has been shown to be a NP-

Hard problem, therefore our approach is to use the Lloyds algorithm heuristic, which consists

in selecting a subset of points randomly and by iterations changing the points calculating

the clusters and the medoid x̃i of each cluster.

x̃i = argminx∈X

∑
y∈Ci

d(x, y) (4-23)

Note that for this exact approach we would need the kernel matrix K as we would have to

calculate the distance between each pair of points in X. Which means the above algorithm

is Ω(n2), which is infeasible. Our budgeted approach for this case consists in restricting the

calculation of the medoid not taking the sum of all distances to the points in the cluster but

also the points in the budget B as shown in 4-24.

x̃i = argminx∈X

∑
y∈Ci,y∈B

d(x, y) (4-24)
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Using the budget formulation here we not only reduce drastically the computational comple-

xity, but even with random budgets we are able to get medoids very close to the medoid we

would get with the exact version [Wang, 2006], therefore obtaining a good approximation.

The entire prodceure of the Budgeted kernel K-medoids is described in algorithm 4.

Algorithm 4: Kernel budgeted k-Medoids

Input : Training set X, budget B and number of clusters k

Output : Clustered dataset

1 Let n← |X|
2 Randomly select k elements from X as the medoids x̂1, ..., x̂k

3 Compute matrix K(B,X) and the diagonal of K(X,X)

4 while new medoids are calculated do

5 /* We could define the number of epochs apriori */

6 for xi in B do

7 Set clusteri = argminj{k(xi, xi)− 2k(xi, x̂j) + k(x̂j, x̂j) | j ∈ {1, 2, ..., k}}
8 end for

9 for j = 1 to k do

10 Set x̂j = argminx∈X{
∑

xi∈B, clusteri=j k(x, x)− 2k(x, xi) + k(ki, ki)}
11 end for

12 end while

13 Y = {yi | yi = argminj{k(xi, xi)−2k(xi, x̂j)+k(x̂j, x̂j) | j ∈ {1, 2, ..., k}} for xi ∈ X}
return Y



5 Experimental evaluation

This chapter presents the experimental evaluation of the algorithms using the learning-on-

a-budget strategy, including the setup of the experiments and some discussion about the

results towards at end of the chapter.

5.1. Experimental setup

For the experimental setup we trained four different algorithms: support vector machines

(SVM), least squares support vector machines (LSSVM), semi-supervised online kernel ma-

trix factorization (SSOKMF) and budgeted kernelized k-medoids. All these algorithms were

first implemented in Python 3 and then were trained 20 times in each of the given confi-

gurations using a processor AMD Ryzen 5 2500U with Radeon Vega Mobile Gfx 2.00 GHz

with 4 gigabytes of RAM. For each of the models we evaluate the performance using bud-

gets corresponding approximately to the 0,015%, 0,03%, 0,06%, 0,12%, 0,25%, 0,5%, 1%

and 2% of the datasets. Larger approximations were not considered because of the current

restrictions of the kernel method for large datasets which would have limited the quantity

of trained models due to time constrains. Also, it is more relevant for this work to eva-

luate the performance when reducing significantly the size of the budget instead of using

something proportionally close to the actual size of the dataset. Finally, we also considered

different kernel functions in each of the configurations: linear, polynomial using a second

grade polynomial, radial basis function (RBF) and chi2 kernels.

5.1.1. Datasets

In the experimental evaluation we considered two datasets: MNIST [LeCun and Cortes, 2010]

and Fashion MNIST [Xiao et al., 2017], which are datasets with 60000 training samples each

and 10000 testing samples. MNIST dataset consists of handwritten digits normalized to

28 × 28 grayscale pixels, meaning for this dataset we have matrices of size 28 × 28 with

values between 0 and 255, for the training setup as none of our models use convolutional

filters we trained over arrays of size 784 instead of matrices and we normalized the values of

each pixel to be between 0 and 1, all data is labeled with one of 10 clases representing the

handwritten digit. Fashion MNIST dataset consists of images of pieces of clothes converted

to grayscale images of 28 × 28 pixels, as their characteristics are similar as the ones from
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MNIST we made the same normalization process, Fashion MNIST data is also labeled in 10

different classes.

5.1.2. Hyperparameter tuning

To train all different models various hyperparameters were tuned in order to improve those

corresponding models, for SVM and LSSVM algorithms a hyperparameter C to handle regu-

larization was defined as well as parameters γ for RBF and chi2 kernels, in order to choose

the values for those parameters we used a cross validation approach with one instance of

training, for C the values explored were: 0.001, 0.01, 0.1, 1.0, 10.0 and 100.0, additionally

for the instances with RBF and chi2 the gamma values explored were: 0.001, 0.002, 0.005,

0.01, 0.02, 0.05, 0.1, 0.2 and 0.5. For SSKOMF we have 3 regularization hyperparameters

λ1, λ2 and λ3, and also parameters α and β for trade-off of the supervised and unsupervised

parts of this specific model, in this case we made the cross validation exploring all combina-

tions of parameters considering the values: 0.1, 1.0 and 10.0. Additionally, for RBF and chi2

kernel instances the gamma was tuned in a similar manner to the supervised methods. Our

approach of kernel k-medoids didn’t have any hyperparameters to be tuned. Finally, in all

the models we tuned the η parameter regarding the training step impact, which was cross

validated with the values 0.0001, 0.001, 0.1 and 1.0.

5.1.3. Performance metrics

In the case of the supervised and semi-supervised methods (SVM, LSSVM and SSOKMF)

we trained a multi-class model for a classification task and evaluated the accuracy when

calculating to which class each sample in the test set belongs, having results varying from

0% to 100% of accuracy. Additionally, as all of the methods presented here are randomized

approximations, in order to have strong results statistically, models were trained 20 times

and the mean and standard deviation of the accuracy is presented for each model.

In the case of the unsupervised method (kernel k-medoids), different metrics were evaluated

for the clustering results, in particular we used: Silhouette score, which attempts to describe

the similarity of points with other elements from the same cluster relative to samples not

in that cluster. This metric can range from -1 to 1. Fowlkes score, which uses the geometric

mean between precision and recall using the original labels. This metric is bounded between 0

and 1. Adjusted Rand index, which try to express what proportion of the cluster assignments

are right using the original labels. This metric is bounded between -1 and 2. Calinski Harabaz

index, which is the radio of the variance of a datapoint compared to points in other clusters.

This metric is not bounded. All these metrics were evaluated using from the scikit-learn

library [Pedregosa et al., 2011].
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Kernel Method 10 20 40 80 160 320 640 1280

47.033 ± 69.751 ± 80.885 ± 85.039 ± 86.631 ± 86.988 ± 87.614 ± 86.725 ±
Random

8.44059 8.77415 1.96237 0.67971 0.86826 1.42925 0.73597 2.03073
Linear

53.289 ± 76.078 ± 83.358 ± 85.646 ± 86.691 ± 86.919 ± 86.946 ± 86.589 ±
DBH

6.69605 5.43888 0.92505 0.90593 0.58418 1.26139 1.92266 1.77896

46.032 ± 57.663 ± 67.066 ± 73.256 ± 76.788 ± 78.370 ± 79.277 ± 79.520 ±
Random

4.55359 3.04513 1.93720 1.29606 0.63313 0.53820 0.35560 0.29833
Poly

50.910 ± 61.059 ± 68.757 ± 73.818 ± 76.391 ± 77.793 ± 78.262 ± 78.811 ±
DBH

3.02336 2.11795 1.69689 1.00143 0.94982 0.79505 0.59503 0.52820

58.006 ± 70.170 ± 77.169 ± 81.728 ± 84.321 ± 86.006 ± 87.151 ± 87.801 ±
Random

5.66718 3.37027 1.28402 0.53167 0.35351 0.22201 0.18986 0.15553
RBF

62.042 ± 73.558 ± 78.920 ± 82.193 ± 84.466 ± 85.914 ± 86.959 ± 87.463 ±
DBH

2.77467 1.40058 0.78610 0.48172 0.33751 0.30893 0.26793 0.25890

62.536 ± 67.214 ± 71.550 ± 73.417 ± 75.391 ± 77.369 ± 79.014 ± 80.304 ±
Random

4.11211 1.88904 0.47929 0.33988 0.24631 0.20460 0.15859 0.17376
Chi2

67.822 ± 70.523 ± 72.171 ± 73.803 ± 75.301 ± 77.236 ± 78.936 ± 80.320 ±
DBH

1.59739 1.03870 0.51518 0.71423 0.43378 0.56235 0.27150 0.26102

Table 5-1: Budgeted SVM Algorithm for MNIST

5.2. Results

This section presents the obtained results of the trained models evaluated with the test da-

tasets. The first tables 5-1 and 5-2 and corresponding figures 5-1 and 5-2 show the mean

and standard deviation of accuracy obtained by the SVM for all different kernels and bud-

get sizes for the MNIST and Fashion datasets respectively. The next tables 5-3 and 5-4

and corresponding figures 5-4 and 5-5 show the results of LSSVM for MNIST and Fashion

datasets respectively. As it is a supervised method like SVM, the results are presented in

a similar manner. The following are tables 5-5 and 5-6 and corresponding figures 5-7 and

5-8, which show the results from SSOKMF method for MNIST and Fashion respectively.

Even though this is a semi-supervised method as we used the model for a classification task,

the results are presented in the same way as SVM and LSSVM. Finally, table 5-7 shows the

results obtained by the unsupervised clustering task performed by kernel k-medoids in both

datasets. For this dataset we only considered the linear and polynomial kernels.

Additionally, training times are also reported for all methods: figure 5-3 shows training times

for SVM, figure 5-6 shows training times for LSSVM, figure 5-9 shows times for SSKOMF

and figure 5-10 shows training times for the kernel k-medoids. As both trained datasets have

the exact same data characteristics, we only report the average training time for the MNIST

dataset using linear and polynomial kernel functions.
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Figure 5-1: Budgeted SVM Algorithm for MNIST
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Kernel Method 10 20 40 80 160 320 640 1280

57.577 ± 65.577 ± 71.506 ± 71.568 ± 72.535 ± 70.316 ± 72.410 ± 72.399 ±
Random

8.66467 5.98915 4.12655 4.45038 2.60871 5.39309 5.29541 4.08543
Linear

64.454 ± 70.542 ± 73.300 ± 74.053 ± 74.782 ± 74.958 ± 74.493 ± 73.172 ±
DBH

5.42968 3.61247 2.54681 2.92980 2.47078 2.85269 2.50493 2.75969

50.356 ± 55.935 ± 61.783 ± 66.358 ± 69.583 ± 70.333 ± 70.474 ± 70.063 ±
Random

2.12367 2.64582 1.76181 1.31680 0.55404 0.36570 0.60754 0.79049
Poly

53.056 ± 58.368 ± 62.302 ± 65.904 ± 68.182 ± 69.160 ± 69.214 ± 69.100 ±
DBH

2.05468 1.8819 1.95277 1.75847 0.80219 0.77060 0.67978 0.66704

57.523 ± 65.836 ± 69.832 ± 71.789 ± 73.386 ± 75.203 ± 77.066 ± 78.361 ±
Random

3.91910 1.35847 0.66214 0.30759 0.33878 0.27511 0.19332 0.46449
RBF

63.187 ± 68.275 ± 69.947 ± 71.579 ± 73.041 ± 75.094 ± 76.931 ± 78.246 ±
DBH

4.80881 0.85820 0.74203 0.46720 0.46958 0.49570 0.42412 0.54901

59.511 ± 67.214 ± 71.047 ± 73.434 ± 75.205 ± 77.413 ± 79.056 ± 80.342 ±
Random

2.90397 1.91779 1.01897 0.34260 0.34248 0.22866 0.21167 0.13485
Chi2

62.338 ± 70.756 ± 72.493 ± 73.617 ± 75.475 ± 77.442 ± 79.012 ± 80.142 ±
DBH

1.59739 1.03870 0.51518 0.71423 0.43378 0.56235 0.27150 0.26102

Table 5-2: Budgeted SVM Algorithm for Fashion

Kernel Method 10 20 40 80 160 320 640 1280

57.980 ± 74.123 ± 79.826 ± 81.578 ± 82.461 ± 82.708 ± 82.740 ± 82.795 ±
Random

6.61510 4.69095 2.81704 1.60975 1.48808 1.44367 1.37434 1.28959
Linear

60.986 ± 77.715 ± 79.835 ± 81.338 ± 81.868 ± 82.192 ± 82.455 ± 82.638 ±
DBH

4.84497 3.86827 2.76646 1.42225 1.30632 0.92663 0.86978 0.84875

44.739 ± 50.936 ± 55.822 ± 59.399 ± 66.341 ± 71.150 ± 75.004 ± 77.884 ±
Random

5.38853 4.74669 4.40795 3.34163 3.17897 2.72277 2.33068 2.00109
Poly

48.681 ± 54.278 ± 60.271 ± 65.065 ± 70.884 ± 74.778 ± 77.477 ± 79.738 ±
DBH

3.06171 2.096230 2.733723 3.168820 3.095702 2.68382 1.96580 1.87232

48.774 ± 52.111 ± 55.080 ± 59.005 ± 61.581 ± 63.881 ± 67.492 ± 71.533 ±
Random

5.80612 3.61013 2.97762 2.06814 1.46006 1.03247 0.74602 0.52878
RBF

50.578 ± 54.643 ± 57.002 ± 60.628 ± 62.805 ± 64.066 ± 67.100 ± 71.368 ±
DBH

3.20372 1.96905 1.89325 1.73879 0.989987 0.985902 1.19687 1.36538

59.648 ± 63.182 ± 66.643 ± 67.717 ± 69.240 ± 70.422 ± 72.141 ± 76.646 ±
Random

3.93757 2.52579 1.51689 1.70601 0.90276 0.58853 0.48955 0.336787
Chi2

62.631 ± 65.949 ± 67.280 ± 68.259 ± 70.859 ± 71.955 ± 73.742 ± 77.106 ±
DBH

2.23176 1.70108 1.43601 1.45519 1.94908 1.24660 1.22127 1.20294

Table 5-3: Online Budgeted LSSVM Algorithm for MNIST
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Figure 5-2: Budgeted SVM Algorithm for Fashion
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Figure 5-3: Training times SVM algorithm

Kernel Method 10 20 40 80 160 320 640 1280

57.195 ± 60.624 ± 62.327 ± 63.126 ± 63.617 ± 63.649 ± 63.618 ± 63.753 ±
Random

2.97334 1.24949 1.132345 0.70914 0.42146 0.33304 0.29372 0.15454
Linear

59.933 ± 61.582 ± 62.623 ± 62.985 ± 63.124 ± 63.506 ± 63.772 ± 63.690 ±
DBH

1.37877 1.05770 1.26895 0.70494 0.47813 0.45067 0.41474 0.29510

46.656 ± 55.806 ± 57.947 ± 59.227 ± 60.571 ± 61.499 ± 61.862 ± 62.706 ±
Random

9.99795 2.79922 1.68461 1.32042 0.83247 0.59852 0.48245 0.37504
Poly

54.020 ± 57.011 ± 58.130 ± 59.802 ± 60.619 ± 61.378 ± 62.399 ± 64.145 ±
DBH

2.30761 2.49404 1.85519 1.56119 1.49700 1.44657 1.65191 1.49632

56.172 ± 61.123 ± 62.176 ± 63.663 ± 64.457 ± 64.730 ± 65.517 ± 66.291 ±
Random

3.29632 2.80570 2.45608 1.33115 1.47146 0.69578 0.63754 0.50241
RBF

60.647 ± 62.143 ± 63.939 ± 64.534 ± 65.295 ± 66.123 ± 67.559 ± 68.586 ±
DBH

2.98784 2.40106 1.93008 1.24422 1.31678 0.95803 0.89460 0.47043

59.343 ± 62.683 ± 64.009 ± 68.145 ± 70.547 ± 71.396 ± 72.204 ± 74.753 ±
Random

4.72012 3.00656 1.51823 1.20718 1.15149 0.69208 0.44652 0.31088
Chi2

62.239 ± 65.441 ± 67.929 ± 69.695 ± 70.608 ± 71.347 ± 72.769 ± 74.264 ±
DBH

3.12781 2.79143 2.17742 1.85360 1.30654 1.05140 0.99364 0.68086

Table 5-4: Online Budgeted LSSVM Algorithm for Fashion
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Figure 5-4: Budgeted LSSVM Algorithm for MNIST
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Figure 5-5: Budgeted LSSVM Algorithm for Fashion
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Figure 5-6: Training times LSSVM algorithm

Kernel Method 10 20 40 80 160 320 640 1280

58.625 ± 73.844 ± 77.362 ± 79.285 ± 79.991 ± 79.943 ± 79.776 ± 79.012 ±
Random

4.16351 1.88951 0.91664 0.61925 0.15936 0.11017 0.13735 0.15897
Linear

62.995 ± 74.662 ± 77.054 ± 77.869 ± 77.938 ± 77.920 ± 77.981 ± 78.072 ±
DBH

2.15931 1.34927 0.62542 0.49104 0.19461 0.15293 0.10017 0.09318

56.261 ± 70.544 ± 76.930 ± 77.413 ± 77.908 ± 77.691 ± 77.083 ± 77.805 ±
Random

3.94501 1.93993 0.89693 0.85116 0.69003 0.70221 0.37333 0.18704
Poly

60.961 ± 75.866 ± 77.809 ± 77.897 ± 78.282 ± 78.594 ± 78.626 ± 78.589 ±
DBH

2.34052 0.68589 0.44547 0.31112 0.12728 0.33941 0.32527 0.70004

55.807 ± 68.502 ± 76.483 ± 80.047 ± 80.937 ± 81.105 ± 81.413 ± 81.523 ±
Random

5.85485 1.86517 1.03019 0.74205 0.56564 0.75660 0.30559 0.26592
RBF

63.913 ± 73.521 ± 78.649 ± 80.228 ± 80.989 ± 81.177 ± 81.337 ± 81.583 ±
DBH

3.92520 1.08187 0.67882 0.31113 0.09192 0.46891 0.29698 0.00707

32.418 ± 41.083 ± 53.390 ± 62.884 ± 70.653 ± 77.796 ± 83.548 ± 87.109 ±
Random

3.88452 4.38922 2.88561 2.81430 2.58641 1.29752 0.61410 0.55168
Chi2

46.752 ± 54.532 ± 60.051 ± 70.756 ± 76.314 ± 80.066 ± 85.397 ± 88.749 ±
DBH

2.68701 1.49422 0.96689 1.02642 0.57796 1.22738 1.03844 0.26870

Table 5-5: SSOKMF Algorithm for MNIST
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Figure 5-7: Budgeted SSOKMF Algorithm for MNIST
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Figure 5-8: Budgeted SSOKMF Algorithm for Fashion
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Kernel Method 10 20 40 80 160 320 640 1280

59.965 ± 67.931 ± 70.424 ± 71.773 ± 71.975 ± 72.145 ± 71.931 ± 71.402 ±
Random

1.81978 3.54892 1.08112 0.45491 0.20169 0.10526 0.96600 0.09670
Linear

64.101 ± 71.318 ± 71.549 ± 71.946 ± 72.028 ± 71.996 ± 71.871 ± 71.616 ±
DBH

1.29974 1.18743 0.85434 0.51249 0.39628 0.20277 0.19634 0.15732

58.838 ± 66.266 ± 70.894 ± 73.266 ± 73.898 ± 73.990 ± 74.113 ± 74.369 ±
Random

5.38262 2.68429 1.02983 0.48489 0.30329 0.24151 0.38797 0.22152
Poly

63.114 ± 68.240 ± 70.399 ± 72.953 ± 73.138 ± 73.598 ± 73.717 ± 73.895 ±
DBH

2.18562 1.59272 0.82658 0.39561 0.28562 0.19635 0.10363 0.09462

57.733 ± 63.385 ± 68.224 ± 71.421 ± 74.263 ± 75.987 ± 76.356 ± 76.432 ±
Random

6.76862 1.91839 1.04595 0.65270 0.44933 0.28588 0.12529 0.18241
RBF

63.120 ± 64.378 ± 68.239 ± 71.664 ± 74.423 ± 75.921 ± 76.191 ± 76.253 ±
DBH

2.17562 1.63930 1.01756 0.57261 0.37562 0.18564 0.11937 0.11299

38.389 ± 47.731 ± 55.972 ± 61.516 ± 66.694 ± 70.768 ± 73.124 ± 74.271 ±
Random

6.20782 5.53423 3.57820 3.43047 1.77674 1.08816 0.87797 0.56690
Chi2

44.911 ± 52.422 ± 56.789 ± 64.680 ± 66.603 ± 69.662 ± 72.638 ± 73.802 ±
DBH

5.03664 1.35057 0.88388 0.53033 1.27799 1.90918 0.86787 0.54856

Table 5-6: SSOKMF Algorithm for Fashion

Figure 5-9: Training times SSOKMF algorithm



5.2 Results 47

Dataset Kernel Method Metric 100 200 400 800 1600

Silhouette 0.054282 0.062761 0.059066 0.055952 0.057852

Fowlkes 0.335933 0.365679 0.320509 0.340059 0.352507
Random

Adjusted 0.265922 0.280658 0.172619 0.256655 0.287336

Calinski 1102.175 1852.812 1709.791 1828.319 1294.055
Linear

Silhouette 0.059749 0.057661 0.061438 0.063496 0.063475

Fowlkes 0.358528 0.381417 0.322452 0.353997 0.356066
DBH

Adjusted 0.250118 0.300170 0.227752 0.270548 0.290987

Calinski 1687.638 1833.704 2629.871 1974.527 1324.711
MNIST

Silhouette 0.052245 0.058438 0.056290 0.057788 0.059002

Fowlkes 0.301699 0.351399 0.353073 0.339468 0.350791
Random

Adjusted 0.185328 0.262706 0.211961 0.252455 0.253440

Calinski 1574.958 1743.086 2623.169 1792.237 1789.763
Poly

Silhouette 0.054533 0.052296 0.058122 0.053423 0.056630

Fowlkes 0.308069 0.315941 0.335699 0.325883 0.308840
DBH

Adjusted 0.214494 0.244728 0.245969 0.186976 0.115783

Calinski 1703.782 1903.076 1799.907 2087.573 2097.498

Silhouette 0.110166 0.133932 0.125616 0.138084 0.137671

Fowlkes 0.377694 0.403035 0.434970 0.425285 0.440913
Random

Adjusted 0.270652 0.330311 0.365857 0.356770 0.372084

Calinski 5445.031 7304.384 6818.497 7353.225 7169.399
Linear

Silhouette 0.130016 0.153168 0.121204 0.132703 0.162670

Fowlkes 0.405900 0.360234 0.436370 0.445159 0.441093
DBH

Adjusted 0.228924 0.217454 0.377957 0.353672 0.328619

Calinski 7083.605 8847.857 9458.409 5172.134 5736.156
Fashion

Silhouette 0.153450 0.151241 0.159755 0.162571 0.171283

Fowlkes 0.392344 0.359553 0.341326 0.361216 0.403808
Random

Adjusted 0.162985 0.195807 0.196765 0.214465 0.256543

Calinski 5332.86 9252.595 9656.249 9942.985 10001.17
Poly

Silhouette 0.163980 0.165223 0.177271 0.182273 0.193934

Fowlkes 0.339741 0.398389 0.386507 0.305613 0.296363
DBH

Adjusted 0.153882 0.246730 0.128922 0.073094 0.051982

Calinski 7462.935 8508.496 12462.34 14847.62 14448.04

Table 5-7: Budgeted Kernel K-Medoids
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Figure 5-10: Training times kernel k-medoids algorithm

5.3. Discussion

The experimentation shows that the learning-on-a-budget method can significantly improve

training times and memory usage in comparison to exact kernel methods where even for

fairly large datasets with thousands of samples calculating a full kernel matrix is infeasible

and very costly. Although this improvement in efficiency had a cost in performance as ex-

pected, we can see that for most of our classification models the accuracy using budgets of

around 2% of the data is still greater than 70% in a multiclass setting, which may be good

enough for some applications where memory and time are more important than an almost

perfect accuracy. In addition to this, we also can see that when training a model with diffe-

rent budget sizes, after the budget starts to increase, in most cases we get to a stable point

where increasing the budget even more does not really increase accuracy. This signifies that

we could use the faster approximation without a loss in the accuracy performance. However,

we see that this stabilization point is not the same in all configurations; it is still an open

question how to find that point before training the models.

Regarding the DBH method to select the budget, we can see that it is indeed a better way

to select a budget for very small approximations, without a significant additional cost in

time, meaning we could use this strategy when memory and time are extremely limited

and get decent accuracy even with such restrictions. Nevertheless, we see that for bigger
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approximations the difference in performance between DBH and selecting a random budget

fades away. This is likely due to the randomness in both methods. As when selecting a bigger

budget in a purely random way, there is more chance to get points evenly distributed through

the feature space and get as relevant samples as if we were using any other method.



6 Conclusions and future work

This thesis presents different scalable versions of kernel methods based on the idea of using

a budget. The main contribution of this work is the analysis of a simple approximation

approach using the concept of budget from a theoretical and experimental perspective as

an alternative to use different kernelized algorithms with lower computational complexity.

Other relevant contributions of this work are the following:

A technical comparison of different approximated kernel methods

A deep exploration of the budget approach considering different alternatives to select

the budget

The formulation and implementation of several learning algorithms (supervised, semi-

supervised and unsupervised) using the budget approach

It was shown that experimentally selecting a good budget increases the accuracy in a sta-

tistically significant manner in comparison to a simple random budget and that it is a very

competitive scalable method for using kernel methods even compared to other traditional

approximated approaches like Nyström.

Our approach to choose a relevant budget shows better improvements when the budget is

actually smaller, which means this is a good approach for large datasets where the approxi-

mation needs to be very small in order to be computationally feasible. Moreover, the results

also show that at some point increasing the budget does not necessarily translate into an

increasing of accuracy.

An additional advantage shown with the budget approach is that it can be formulated for dif-

ferent learning algorithms despite of them being supervised, unsupervised or semi-supervised

with good results in different metrics. Also, unlike other approximation methods, it does not

rely on properties of the specific kernel function as long as it is used just with a valid kernel

function.

Currently, data is growing in an exponential manner and therefore it is important to build

not only robust, but also scalable learning methods. We think that the approach presented

in this work has the potential to make kernel methods usable in large scale settings, particu-

larly combined with neural network methods in hybrid formulations. In which cases, having
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a good budget could have huge impacts on the performance of the learning model. In that

regard, we believe there are still some challenges to be considered for the future:

Can we measure the performance of a budget before training in order to decide whether

it is a good budget or not?

Is it possible to formulate hybrid learning methods combining budgeted kernels with

deep neural network approaches?

Does the kernel function influence how representative a budget is in a dataset or is the

budget relevance the same regardless of the kernel function?

Is distance-based hashing suitable to optimize the performance of other distance-based

learning methods such as neural networks?
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