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A mis padres.

And the most beautiful mansion, the one that

best reflects the love of the true workman,

is not the one that is bigger or higher than

all the others. The most beautiful man-

sion is that which is a faithful reflection of

the structure and beauty concealed within things.

Alexander Grothendieck
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Abstract

In this work, we study and present in detail some ground ideas of anabelian geometry, from

its origin in number field and arithmetic results to the statements proposed by Grothendieck,

studying theory of fundamental groups in algebraic geometry. We do emphasis in study of

section conjecture.

Keywords: Anabelian geometry, Section conjecture, Galois theory, Fundamental groups,

Arithmetic geometry.

Resumen

En este trabajo estudiamos y presentamos en detalle algunas ideas de geometŕıa anabeliana,

desde su origen en teoŕıa de cuerpos y aritmética a los enunciados propuestos Grothendieck,

estudiando la teoŕıa de grupos fundamentales en geometŕıa algebraica. Hacemos énfasis en

estudiar la conjetura de secciones.

Palabras clave: Geometŕıa anabeliana, Conjetura de secciones, Teoŕıa de Galois, grupos

fundamentales, Geometŕıa aritmética.
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1 Introduction

Galois theory begins with the study of solubility of polynomial equations in one variable

using permutations, in modern language, provides a relation between field theory and group

theory, we can study some properties of a field extension by looking at their associated

Galois group. Galois theory has proven to be a common point of several theories, have

analogues and applications in many areas of mathematics, for example, it gives powerful

connections between algebra and arithmetic, specially in algebraic number theory. Alexander

Grothendieck in [9] gave a geometric character to Galois theory in a deep extension of it to

algebraic geometry. The heart of this extensions are étale morphisms, they build a common

scene where topology, arithmetic and geometry have a conversation.

Nowadays Galois theory still alive in a variety of mathematical contexts, for example, Es-

quisse d’un programme [8] is a research program proposed by Alexander Grothendieck in

1984 in which he suggests some relations between arithmetic and geometry, as a plan of future

research in mathematics, most of these themes are active research topics to this day. One

part of this program is devoted to develop connections between Galois theory and geometry,

for example, Dessins d’enfants, Grothendieck-teichmuller theory and anabelian geometry.

In this text we focus on anabelian geometry, roughly speaking, this theory tries to make

a picture of schemes characterized by its fundamental group. Anabelian geometry has its

roots in three big theorems, historically, the first one is Artin-Schreier theorem which gives

a Galois description of the real closed fields, the second one is Neukirch theorem which

can be understood as a p-adic analogue to Artin-Schreier theorem and it has the following

nice implication: every isomorphism between the absolute Galois groups of two number

fields implies a local correspondence between its primes and this correspondence gives rise

to a Galois characterization of number fields, this is the third theorem due to Neukirch

and Uchida. In the framework of Esquisse d’un programme the last theorem can be re

stament saying that the spectrum of a number field is an example of an anabelian scheme.

Grothendieck proposed other examples of anabelian schemes, namely , finitely generated

fields over the rational numbers and hyperbolic curves defined over finitely generated fields,

and it was only conjectures until works by Pop, Tamagawa, Mochizuki and many others,

prove most of this conjectures.

Not all of Grothendieck’s conjectural picture of Anabelian geometry has been full explain,

remains open one mysterious conjecture, namely the section conjecture, its first appearance

in literature was in a letter from Grothendieck to Faltings [7] and predicts a correspondence

between k-rational points of hyperbolic curves over a finitely generated fields and sections of
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the exact homotopy sequence of this curves, however, it is not too much known about this

conjecture. Some experts expects that it has relation with Mordell’s conjeture (now Faltings

theorem).

Most ideas and results of anabelian geometry are fragmented in literature. One aim of

this text is to present and unify notions of this program in a coherent way, with emphasis

on the section conjecture. We divide this work in three chapters: In chapter 1 we study

with some detail the proof of Artin-Schreier theorem following [13], this proof only involves

basic language of fields, then we study some basic concepts and results of algebraic number

theory without proofs, the main references for this part are [22] ,[23] and [21]. Following [38]

we present consequences of Chebotarev’s density theorem, specially, a description of finite

Galois extensions of a number field in terms of factorisation of primes. A similar treatment

of Neukirch’s theorem,we do not present its proof, which requires cohomology of number

fields, instead, we deduce the local correspondence theorem and, using these ideas, we study

the proof of Galois characterizations of number fields, the main reference of this part is [37].

In chapter 2, we recall some concepts of algebraic topology about fundamental groups and

covering spaces, in particular, we state a characterisation of the fundamental group of some

spaces, as the automorphism group of certain functor, this gives us an idea of how define

an analogue to fundamental groups in algebraic geometry. Following [24] we introduce étale

morphisms, examples and properties are given. Also, in this chapter we study finite étale

coverings of a scheme and we present useful results that are quite similar to properties of

covering spaces. We present the definition of the étale fundamental group of a scheme, as

the automorphism group of certain functor, we present examples and theorems. To conclude

this chapter, we study Grothendieck’s geometrization of Galois theory and we deduce as a

corollary the main theorem of Grothendieck-Galois theory, the main reference is [55].

Finally, in chapter 3, we introduce concrete definitions and theorems in Anabelian geom-

etry and we mention some ideas of its proofs. We should mention that only the original

Anabelian program of Grothendieck is covered here, we do not mention variants of this

program like sub p-adic variant, mono-anabelian geometry, etc. In order to prove the exact-

ness of the homotopy sequence, we present characterisations of surjectivity and injectivity

of homomorphisms induced by étale fundamental group functors, our main reference is [55]

but some proofs are modified in this text. Finally, following [54] we state Grothendieck’s

section conjecture, we study descriptions of sections of exact sequences of groups in terms

of non-abelian cohomology and torsors, we use this characterisation and results of abelian

varieties to derive the injectivity of the profinite Kummer map for projective curves of genus

at least zero over finitely generated fields.
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In this chapter we introduce the absolute Galois group of a field. We investigate what kind

of information a field are codified in its absolute Galois group, first for real closed fields and

then for number fields. We study some arithmetic properties of number fields codified in

the Galois absolute group of these fields, we study how a p-adic variant to Artin-Schreier

theorem, namely the Neukirch, implies a local correspondence between primes and finally

the Galois characterization of number fields. We finally this chapter with a characterization

of the automorphism group of the rational numbers.

2.1 The Artin-Schreier theorem

Let k be a field, we fix an algebraic closure k of k, and we denote by ksep the separable

closure of k inside k.

For an extension L of k, we denote by Aut(L|k) the group of automorphisms of L that fixes

pointwise k. If in addition, L is a Galois extension of k, the group Aut(L|k) is denoted by

Gal(L|k). k is not, in general, a Galois extension of k, while ksep is always a Galois extension

of k, but the automorphisms groups associated to this two extensions are isomorphic. Indeed,

the inclusion ksep → k induces an isomorphism Aut(k|k)→ Aut(ksep|k) = Gal(ksep|k).

Definition 2.1.1. The absolute Galois group of k is the group Gal(ksep|k), we denote

this group by Galk.

Let L be Galois extension of k (not necessary a finite extension of k). The Galois group

Gal(L|k) can be approximated by the finite finite Galois extensions intermediate to L and

k. To be precise, denote by GL
k be the directed set of intermediate extension of k and L,

that are finite and Galois over k. Then we have the next isomorphism

Gal(L|k) ' lim←−
M∈GLl

Gal(M |k).

As M is a finite extension of k, then Gal(M |k) is a finite group and therefore Gal(L|k) is a

profinite group. In particular, the absolute Galois group of every field is profinite.

What kind of information Galk codifies about k?
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Galois theory states that the closed subgroups of Galk (with the profinite topology) are in

bijection with the separable extensions of k. Then, Galk codifies the lattice of separable

extensions of k as the lattice of his closed subgroups.

Unfortunately, Galk does not codifies the isomorphy type of k. For example, if k is a finite

field and M is finite extension of k, then Gal(M |k) is a cyclic finite group generated by the

Frobenius automorphism, and therefore Gal(M |k) ' Z/nZ, where n is the degree of M over

k. Reciprocally, if n ∈ Z+, then there exists a finite extension M of degree n over k and

therefore Z/nZ occurs as the Galois group of some finite extension of k. Thus,

Galk ' lim←−
n∈Z+

Z/nZ = Ẑ,

where Ẑ is the group of profinite integers. This example shows that every two finite fields

have isomorphic absolute Galois groups. In particular, the absolute Galois group of a field

does not codifies the isomorphy type of k.

Recall that an algebraic closure of the field of real number R is the quadratic extension of

the complex numbers C, and therefore absolute Galois group of R is a group of order two

(thus isomorphic to Z/2Z), generated by the complex conjugation. As we seen before, there

at least two non isomorphic fields with absolute Galois group isomorphic to the group of

profinite integers, is the same true for Z/2Z?

To answer, consider the algebraic closure Q of the rational numbers, embedded in the field of

the complex numbers. The field of real algebraic numbers is the field defined by Ralg = Q∩R
(this intersection is a subset of C). Consider the subfield of the complex numbers, defined

by

l = {a+ ib|a, b ∈ Ralg}.

We want to show that l = Ralg.

It is clear that l is an quadratic extension of Ralg, then l ⊆ Ralg.

If p(x) is a non constant polynomial over Ralg (in particular, its coefficients are real numbers),

then by the fundamental theorem of the algebra there exists a complex number α = a+ ib,

where a, b ∈ R, such that p(a+ ib) = 0. Consider the finite field extension Ralg(α), it is not

difficult to show that a, b ∈ Ralg(α), and therefore a, b are real algebraic numbers (Ralg(α) is

an algebraic extension of Q). Therefore, every zeroes of a non constant polynomial of Ralg

is an element of l, i.e., Ralg ⊆ l.

Then, the algebraic closure of the field of the real algebraic numbers is a quadratic extension,

therefore GalRalg has order two, in other words, it is isomorphic to Z/2Z, but Ralg is not

isomorphic to R, because Ralg is countable.

Definition 2.1.2. A field k is said to be real closed if k is not algebraically closed, but

k(i) := k[x]/ 〈x2 + 1〉 is an algebraic closure of k.
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By definition, the algebraic closure of every real closed field is a quadratic extension, therefore

the absolute Galois group of every real closed field is isomorphic to Z/2Z. This special types

of fields has a interesting property in terms of his absolute Galois group, they are finite.

There exists other type of fields with a finite absolute Galois group? The answer to this

question is yes, for example, the absolute Galois group of every algebraically closed field is

trivial. So, by the moment we know that the finite groups being the absolute Galois groups

of some field are two, the trivial group and Z/2Z. Which are the finite groups that are the

absolute Galois group of some field? Before we ask this question, we study the Galois group

of some cyclotomic extensions of the prime fields, first for the finite fields Fp and then for

the field of rational numbers Q.

Proposition 2.1.1. Let m ∈ Z+ and denote by Fp(ζ) m-th cyclotomic field over Fp. The

group Gal(Fp(ζ)|Fp) is cyclic.

Proof. The field Fp(ζ) is finite extension of Fp, then Fp(ζ) is a finite field and therefore

Gal(Fp(ζ)|Fp) is generated by the Frobenius automorphism of this field.

Proposition 2.1.2. Let e ∈ Z+ and m = pe with p a prime number and let Q(ζ) be the

m − th cyclotomic field over Q. The group Gal(Q(ζ)|Q) is cyclic if, and only if p 6= 2 and

e < 3.

Proof. We sketch the proof of this theorem. Gal(Q(ζ)|Q) is isomorphic to the group (Z/mZ)∗,

this group is always cyclic when m is odd (when p is odd) and for m even (when p = 2) is

cyclic if and only if e = 1 or e = 2.

Theorem 2.1.1. (Artin-Schreier) Let k be a field. If Galk is finite and no trivial, then

k is a real closed field. In particular, Galk ' Z/2Z.

Proof. We divide the proof in several steps. Let k1 = k(i), we want to show that k = k1.

(i) As k1 is algebraic over k, then we can suppose that k1 ≤ k (if not, then we can find a

ring homomorphism k1 → k, and the image of this ring homomorphism is a subfield

of k isomorphic to k1). So, we have the next tower of fields

k

k1

k
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(ii) k1 is perfect (that is every algebraic extension of k1 is separable): If l is an algebraic

extension of k, then we can suppose that (as in the previous step) that l ≤ k, then by

considering the tower of fields

k

l

k

we have that [k : k] = [k : l][l : k], in particular, [l : k] ≤ [k : k]. In other words,

[k : k] is a bound for the degree of every algebraic extension of k. Suppose that k1 is

not perfect, then char(k1) = p > 0 and there exists β ∈ k1, such that β 6∈ Im(Frobp),

where

Frobp : k1 → k1

x → xp

is the frobenius endomorphism of k1. For every e ∈ Z+, consider the irreducible

polynomial ϕe(x) = xp
e − β (this polynomial is irreducible, since β 6∈ Im(Frobp)).

Therefore, for every e ∈ Z+, we can construct the finite extension of k, k[x]/ 〈ϕe(x)〉 of

degree pe over k, which contradicts the fact that the degree of every algebraic extension

is bounded by the natural number [k : k] (the degree of k over k is finite, because Galk
is a finite group). Thus, k1 is perfect.

As k1 is perfect, then k is a Galois extension of k1 (an algebraically closed field is always a

normal extension of any field). In the next steps we show that Gal(k|k1) is the trivial group,

this is equivalent to show that k = k1. Assume that |Gal(k|k1)| > 1.

(iii) Since |Gal(k|k1)| > 1, then there exists a prime number q and a subgroup H of

Gal(k|k1), of order q. By Galois theory, there exists an extension E of k1, such that

[k : E] = q. Therefore we have the next tower of fields

k

E

k1

k
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as the degree of k over E is a prime number, there no exists intermediate extension

between E and k.

(iv) char(k) 6= q: If char(k) = q, thus we have that char(E) = q. Therefore, for every

m ∈ Z∗, exists Em a finite extensions of E of degree qm , in particular Em are algebraic

extensions of k with degree at least qm, this contradicts the fact that there exists a

bound for the degree of every algebraic extension (as we shown in the second step).

(v) k contains exactly q distinct q-roots of the unity: Let f(x) = xq − 1, as char(k) 6= q,

then the polynomial f(x) is separable (provided that if α is a zero of f , then f
′
(α) =

q(α)q−1 6= 0) and the coefficients of f are in k, then every root of f is in k.

(vi) k = E( q
√
α): Consider the polynomial f(x) = xq − 1, f has a root in E (the root

1), in particular f is not irreducible over E. If g(x) is an irreducible factor of f in

E, then E
′

= E[x]/ 〈g(x)〉 is an intermediate extension between E and k, therefore

E
′

= E or E
′

= k. If E
′

= k, in particular, [E
′

: k] = q, but this contradicts the fact

that deg(g) < deg(f) = q. Therefore E
′

= E, i. e., deg(g) = 1 this means that the

polynomial f splits completely in E. Thus by k = E( q
√
α), for some α ∈ E.

Let ρ ∈ k such that ρq
2

= α and consider the polynomial

g(x) =

q2∏
i=1

(x− ζ iρ),

where ζ is a primitive q2- root of the unity. Note that g(x) = xp
2 − α, therefore g is a

polynomial in E[x].

(vii) For every i ∈ 1, ..., q2, ζ iρ 6∈ E. Because if ζ iρ ∈ E, then β = (ζ iρ)q ∈ E. But

βq = ((ζ iρ)q)q

= (ζqiρq
2

)

= 1.α

= α

i.e. β, a q-root of α, is an element of E. Thus, E = k, a contradiction.

(viii) As the roots of the polynomial g are not elements of E, then the irreducible components

of g over E are of degree q. Let γ be the constant element of one of the irreducible

components of g. We can write γ = ρqη, where η is a power of ζ. ρq 6∈ E (because

(ρq)q = α), then we can write k = E(ρq), but as γ ∈ E ,then we have

k = E(ρq) = E(γρ−q) = E(η),
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in particular this implies that η 6∈ E, since η is a q2-root of the unity and E contains

all the q − root of the unity, then η is a primitive q2-root of the unity.

(ix) Let k0 be the prime field of k (is the same prime field of k). If we consider the field

k0(η), we have the next diagram of fields and inclusions

k = E(η)

E

k0

k0(η)k1

k

is possible find a natural number r and a primitive qr+1-root of the unity ε such that

ε ∈ k \ k0(η). Indeed,

(a) If k0 = Q, then for every s ∈ Z+ the field extension ks of qs-roots of the unity has

degree ϕ(qs) over Q (here ϕ is the Euler function).

(b) If k0 = Fp, for a prime number p 6= q, then the field extension ks of qs-roots of

the unity has degree at least qs.

In any case lim
s→∞

[ks : k0] = ∞, as k0(η) is a finite extension of k0, then the assertion

follows.

Let ε be a primitive qr+1-root of unity such that ε ∈ k \ k0(η) (In particular, r ≥ 2).

(x) ε 6∈ E. Indeed, as ε is a primitive pr+1-root of the unity, then there exists n ∈ Z+,

such that εn = η (η is a q2-root of the unity, in particular, a qr+1-root of the unity),

so is impossible that ε ∈ E. Let h(x) be the irreducible polynomial of ε over E, as

[k : E] = q with q prime and ε 6∈ E, then h has degree q. Is clear that h(x) is a factor

of the polynomial xq
r+1 − 1 =

qr+1∏
i=1

(x− εi), then all the coefficients of h are powers of ε,

in particular, h(x) ∈ k0(η)[x].

If we denote by Γ = E ∩ k0(ε). We have the next diagram of fields and inclusions
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k = E(η)

E

k0

k0(ε)

k1

k k0(η)

Γ

(xi) [k0(ε) : Γ] = q: As we seen before h has coefficients in k0(ε) and by definition has

coefficients in E (is the irreducible polynomial of ε over E), then h has coefficients in

Γ. h(x) is irreducible in Γ (if not, h is not irreducible in E), consider the field extension

Γ
′

= Γ[x]/ 〈h(x)〉. As the roots of h are powers of ε and ε is a primitive root of the

unity, then k0(ε) ≤ Γ
′
. Γ

′
is a extension of degree q over Γ (because the degree of

h is q), then [k0(ε) : Γ] divides q (k0(ε) is an intermediate extension between Γ and

Γ
′
), as q is a prime number then [k0(ε) : Γ] is equal to 1 or q , but [k0(ε) : Γ] cannot

be 1, because this implies that k0(ε) = Γ, this implies that ε ∈ E, imposible. Then

[k0(ε) : Γ] = q, as we want.

Let γ = εq and consider the field k0(γ), clearly k0(γ) is a subfield of the field k0(ε).

(xii) The field k0(γ) contains all the q-roots of unity, since ε is a primitive qr+1-root and

therefore γ is a qr-root of the unity. Clearly, we have that k0(γ)(ε) = k0(ε). Since

εq = γ, then we have two cases k0(ε) = k0(γ) or [k0(ε) : k0(γ)] = q. But the first case

is impossible, indeed, k0(ε) = k0(γ) ⊆ k0(η), this is a contradiction, since ε ∈ k \ k0(η).

Therefore [k0(ε) : k0(γ)] = q.

(xiii) The field k0(ε) contains two different subfields, namely γ and k0(η). In fact this

subfields are different because if k0(η) = Γ, we have that k0(η) ⊆ E and therefore

k = E(η) = E, a contradiction with our hypothesis.

(xiv) Gal(k0(η)|k0) is not cyclic: In a cyclic group there no exists two subgroups of the

same order. Since k0(ε) have two subfields of degree q, by Galois theory, we have that

Gal(k0(η)|k0) have two subgroups of order q.

To summarize, under the hypothesis that Gal(k|k1) > 1, we find a cyclotomic extension

k0(ε), with η a qr-th root of unity, such that Gal(k0(η)|k0) is not cyclic. By proposition

2.1.1 and proposition 2.1.2, this implies that char(k0) = 0, q = 2 and r = 2 (the case when

r = 1 is not possible, we see before that r ≥ 2) and by (iii) we know that [k : E] = 2. In
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other words, we know that η is 4-th root of unity, but i ∈ k1 ⊆ E (i =
√
−1). Therefore

the primitive 4-th root of unity i is an element of E, this implies that η is an element of E,

this is a contradiction, contradicts that E ( E(η) = k. Therefore is false to assume that

Gal(k|k1) > 1 and therefore Gal(k|k1) = 1, equivalently k = k1 = k(i), in other words, k is

a real closed field.

An equivalent formulation of the Artin-Schereier theorem (equivalent via Galois theory) says

that there only two types of fields with a finite algebraic closure are algebraically closed fields

and real closed fields.

Now, we want to restrict this discussion over algebraic extensions of the field of rational

numbers. For this purposes we have to describe the relation between Q, Ralg and Q.

The real closed fields can be characterized using order properties. In a real closed field,

every element is either a square or the negative of a square. The set of non-zero square

elements is a set of positive numbers, in other words, every real closed field is an ordered

field. Furthermore, a real closed field is characterized as an ordered field such that its order

can not be extended in any algebraic extension. The details of these facts are available in

[Jacobson, 1964].

Definition 2.1.3. Let k be an ordered field. An algebraic extension L|k is called an real

closure of k, if L is a real closed field and the order of L is an extension of the order of k.

Every ordered field have a real closure and every two real closures of a field k are isomorphic.

Similarly when we want to prove this properties for algebraic closure of a field, we use the

Zorn lemma to guaranties the existence of real closures, by taking a maximal algebraic

ordered extension (that extends the order) and we use extensions of order-isomorphisms, to

guaranties the uniqueness under isomorphisms.

In particular, the real closure of the rational numbers Q is (under isomorphism) the field of

the real algebraic numbers Ralg, and the algebraic closure of the real algebraic numbers is

(under isomorphism) the field of the algebraic numbers Q. This is the relation of these three

fields and furthermore the Artin-Schreier theorem have a the next interpretation when we

work in the category of algebraic extensions of Q.

Theorem 2.1.2. Let k be an algebraic extension of Q. If Galk is finite, then either k is

isomorphic to Q or k is isomorphic to Ralg

Proof. If Galk is trivial, then k is algebraically closed and therefore k is isomorphic to Q.

If Galk is finite and no-trivial, then by the Artin-Schreier theorem k is real closed. In every

closed field the element 1 is in the set of positive numbers (recall that in a real closed field

every element is a square or the negative of an element is a square and the set of nonzero

squares are the positive elements of the field, then there are only two possibilities either 1 is

in the set of the positive elements or −1 is in the set of the positive numbers, but −1 cannot

be, if −1 is in this set, then 1 = (−1)(−1) is an element of this set, a contradiction).Then
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every positive integer is a positive element of k and therefore every rational number is a

positive element of k. In other words, thus k is a real closed field that extends the order of

Q, k is a real closure of Q. As we seen before, this implies that k is isomorphic to Ralg

In the category of the algebraic extensions of Q, the condition of finiteness on the absolute

Galois group is too restrictive and characterizes the isomorphy type of the fields with this

property. In the next sections, this property is an example of an anabelian property.

2.2 Interlude in factorization of ideals

Definition 2.2.1. Let k be a number field. The ring of integers of k is the integral closure

of Z, under the inclusion homomorphism Z→ k. This ring is denoted by Ok.

Definition 2.2.2. A domain A is called a Dedekind domain, if A is Noetherian, integrally

closed and its krull dimension is one (equivalently, every non zero prime ideal is maximal).

The Dedekind domains appeared naturally in algebraic number theory, the ring of integers

of a number field is a Dedekind domain. One interesting properties about Dedekind domains

is the unique factorization in the set of non-zero ideals (except in the order of the factors)

as a products of distinct prime ideals.

Let k and l be number fields, such that l is an extension of k and P be a non-zero prime

ideal of Ok. By definition is clear that Ok ⊆ Ol, if we consider the extension of P in Ol, POl
this ideal maybe fails to be a prime ideal. However, Ol is a Dedekind domain, then there

exists n1, ..., ns positive integers and P1, ..., Ps distinct prime ideals of Ol such that,

POl = P n1
1 ...P ns

s .

Definition 2.2.3. Let k, l and P as above. If POl is factorized in Ol as the product

POl = P n1
1 ...P ns

s ,

we say that a prime ideal Q of Ol is lying over P if Q = Pi, for some i ∈ {1, ..., s}, in

other words, if Q appears in the factorization of POl. This situation is denoted by Q|P .

The ramification index of a prime ideal Q lying over P is the exponent of Q that ap-

pears in the factorization, i.e., if Q = Pi the ramification index of Q is ni. This positive

integer is denoted by e(Q|P ).

If Q|P , then the next homomorphism of fields

ϕ : Ok/P → Ol/Q
x+ P 7→ x+Q

is well defined, in other words, Ol/Q is field extension of Ok/P . The inertia degree of

Q|P , denoted by f(Q|P ), is the degree [Ol/Q : Ok/P ].
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In geometric language the situation as above, can be reinterpreted: if ϕ : Spec(Ol) →
Spec(Ok) is the morphism of schemes induced by the inclusion map Ok → Ol, then a point

Q ∈ Spec(Ol) is above a point P ∈ Spec(Ok) if Q is an element of the fiber of P under ϕ,

and the inertia degree is the degree of the extension of residual fields k(Q)|k(P ).

For Galois extension of number fields the rammification index and the inertial degree of a

point does not change in elements of the same fiber. To be precise, we have the next theorem.

Theorem 2.2.1. Let k and l be number fields, such that l is a (finite) Galois extension of k.

If P is a non-zero prime ideal of Ok, then for every two prime ideals of Q1, Q2 of Ol lying

over P , we have that

e(Q1|P ) = e(Q2|P ) and f(Q1|P ) = f(Q2|P ).

The relation between the ramification index and the inertia degree is summarized in the next

beautiful equation.

Theorem 2.2.2. Let k be a number field and l a finite extension of k. If P is nonzero prime

ideal of Ok and the factorization of P as a product of prime ideals in Ol is

POl = P n1
1 ...P ns

s ,

then, if n = [l : k], we have that

s∑
i=1

e(Pi|P )f(Pi|P ) = n.

In in addition, l is a Galois extension of k and e = e(Pi|P ), f = f(Pi|P ), for some i ∈
{1, ..., s}, then

sef = n.

Definition 2.2.4. Let k be a number field and l a finite Galois extension of k. If P is a

non-zero prime ideal of Ok and Q if prime of Ol lying over P , the decomposition group

of Q over P , denoted by D(Q|P ), is defined by

D(Q|P ) := {σ ∈ Gal(l|k)| σ(Q) = Q},

and the inertia group of Q|P , denoted by I(Q|P ), is defined by

I(Q|P ) = {σ ∈ Gal(l|k)| σ(x) +Q = x+Q for all x ∈ Ol}.

If k, l, P and Q are as in the above definition. The decomposition group and the inertia

group of a ideal Q lying over P are subgroups of Gal(l|k). Also, I(Q|P ) is a subgroup of

D(Q|P ). Indeed, if σ ∈ I(Q|P ), then for all x ∈ Q, we have that

σ(x) +Q = x+Q = 0 +Q = Q,
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thus, σ(x) ∈ Q, this proves that σ(Q) ⊆ Q. Reciprocally, if x ∈ Q, then as σ is an

automorphism of L, then there exists y ∈ L, such that σ(y) = x, as x is integral over Q,

then the same is true for y, in other words, y ∈ Ol. As σ ∈ I(Q|P ), we have that

y +Q = σ(y) +Q = x+Q = 0 +Q = Q,

therefore, y ∈ Q, then we have that Q ⊆ σ(Q). This completes the proof of I(Q|P ) <

D(Q|P ).

In the same situation, define

F : D(Q|P ) → Gal(Ol/Q|Ok/P )

σ 7→ F (σ),

here F (σ) is the Ol/Q-automorphism, defined by

F (σ) : Ol/Q → Ol/Q
x+Q 7→ σ(x) +Q,

note that F (σ) is well defined because σ(Q) = Q and F (σ) leave Ok/P fixes, because σ leave

k fixes (Ok ⊆ k). The kernel of F is the inertia group I(Q|P ). Indeed,

σ ∈ ker(F ) ⇔ F (σ) = idOl/Q,

⇔ (∀x ∈ Ol/Q)(F (σ)(x) = idOl/Q(x+Q)),

⇔ (∀x ∈ Ol/Q)(σ(x) +Q = x+Q),

⇔ σ ∈ I(Q|P ).

Then, we have the next exact sequence of groups,

1→ I(Q|P )→ D(Q|P )→ Gal(Ol/Q|Ok/P ).

In particular, we know that I(Q|P ) is a normal subgroup of D(Q|P ) and by the first iso-

morphism theorem of groups, we obtain an injection

D(Q|P )/I(Q|P ) ↪→ Gal(Ol/Q|Ok/P ).

Let l and k be number fields, with l be a Galois extension of k. For every subgroup H of

Gal(l|k), we denote by lH be the subfield of l fixed by the elements of H, concisely

lH = {x ∈ L|σ(x) = x for all σ ∈ H}.

For every subset X of l we denote by XH the set X ∩ lH . For example (Ol)H is equal to OlH ,

the ring of integers of lH . If Q is a prime ideal of Ol, then QH is a prime ideal of (Ol)H . If

Q is a non-zero prime ideal, then Q is a prime ideal lying over the non-zero prime ideal QH

and moreover Q is the unique prime ideal lying over QH . Indeed, if Q1 is a prime of Ol lying
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over QH and Q1 6= Q, then Ol = Q1 +Q (recall that, in a Dedekind domain every non-zero

prime ideal is maximal). Therefore

(Ol)
H = (Q1 +Q) ∩ lH

= Q1 ∩ lH +Q ∩ lH

= QH +QH

= QH ,

a contradiction, thus Q is the unique ideal in Ol lying over QH . If P is a prime ideal of k

and Q is a prime ideal of Ol lying over P then, under the canonical maps, OHl /QH is an

intermediate extension between Ok/P and Ol/Q.

Summarizing, let l be a finite Galois extension of a number field k. Every subgroup H of

Gal(l|k), produces the next objects

Group Number field Ring Ideal Residual field

H lH (Ol)H QH (Ol)H/QH

Definition 2.2.5. Let k be a number field and l be a finite Galois extension, P be a prime

ideal of Ok and Q be a prime ideal of Ol lying over P . The decomposition field of Q|P ,

denoted by LD is lD(Q|P ), the subfield of l fixed pointwise by the elements of the decomposition

group D(Q|P ). Similarly, the inertia field of Q|P denoted by LI , is the field lI(Q|P ), fixed

pointwise by the elements of the inertia group of Q|P .

Theorem 2.2.3. Let l be a finite Galois extension of a number field k, P be a prime ideal

of Ok and Q be a prime ideal of Ol lying over P . If e is the ramification index of Q|P and

f is the inertia degree of Q|P , then

(i) [l : lI ] = e.

(ii) lI is an extension of lD and [lE : lD] = f .

(iii) If QI = QI(P |Q), then e(Q|QI) = e and f(Q|QI) = 1.

(iv) If QD = QD(P |Q), then QI lies over QD, e(QI |QD) = 1 and f(QI |QD) = f .

(v) The degree [l : lD] is equal to the number of prime ideals in Ol lying over P .

In some sense, the previous theorem states that if l is a finite Galois extension of a number

field k, then for a prime ideal P of Ok the factorization of P in Ol occurs in levels. In the

first level, associated to the decomposition field lD, the ideal P is factorized in OlI , as the

product

POlD = Q1...Qs,
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the ramification index and the inertia degree of any of this prime ideals in the decomposition

is equal to 1. In the second level, associated to the inertia field, we obtain a factorization

POlI = P
′
1...P

′
s,

we have the same number of prime ideals as in the first level, the difference between this

factorization and the previous one is that, the inertia degree of the prime ideals in this

factorization change and is equal to f , but the ramification index remains equal to 1. Finally,

in Ol we obtain the factorization

POlI = P e
1 ...P

e
s ,

for some positive integer e, in other word, in this level the ramification appears, the inertia

degree of any prime ideal in this factorization remains equal to f .

Corollary 2.2.1. Let k be a number field and l be a Galois extension of k, P be a prime ideal

of Ok and Q be a prime ideal of Ol lying over P . The sequence of groups and homomorphisms

1→ I(Q|P )→ D(Q|P )→ Gal(Ol/Q|Ok/P )→ 1,

is exact.

Proof. The left exactness of this sequence has proved below. Only we need to prove the

surjectivity of the homomorphism

F : D(Q|P ) → Gal(Ol/Q|Ok/P )

σ 7→ F (σ)

this is equivalent to prove that the canonical group injection induced in the quotientD(Q|P )/I(Q|P ) ↪→
Gal(Ol/Q|Ok/P ) is an isomorphism. . Then, using Galois theory and the part (ii) of the

previous theorem we have

D(Q|P )/I(Q|P ) = [lI : lD]

= [Ol/Q : Ok/P ]

= Gal(Ol/Q|Ok/P )

therefore, D(Q|P )/I(Q|P ) ↪→ Gal(Ol/Q|Ok/P ) is an isomorphism.

2.3 Chebotarev’s density theorem and its consequences

In order to understand the characterization via Galois groups of the number fields, we study

consequences of the Chebotarev density theorem, we not focus our attention in the proof,

which involves class field theory and other methods not discussed here, instead, we study

the consequences of this theorem, in particular, the characterization of Galois extensions in

terms of prime ideals that split completely.
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Definition 2.3.1. Let l be a finite extension of a number field k and let P be prime ideal of

Ok

(i) We say that P splits completely in L, if for every prime ideal Q of Ol lying over P

we have that e(Q|P ) = f(Q|P ) = 1.

(ii) We say that P have a factor of degree one in if there exists a prime ideal Q of Ol
lying over P such that f(Q|P ) = 1.

(iii) We say that P is unramified in L if for every prime ideal Q of Ol lying over P we

have that e(Q|P ) = 1.

We denote by Spl(l|k) the set of prime ideals of OK that split completely in L and by Spl1(l|k)

the set prime ideals of Ok unramified in L with a factor of degree one.

Suppose that l is a Galois extension of k and e(Q|P ) = 1. Theorem 2.2.3 implies that l is

equal to the inertia field of Q|P . Therefore, Galois theory implies that

I(Q|P ) = Gal(L|LI)
= Gal(L|L)

= {1}.

Since I(Q|P ) is the kernel of the surjective homomorphism

F : D(Q|P ) → Gal(Ol/Q|Ok/P )

σ 7→ F (σ)

where F (σ)(x+Q) = σ(x) +Q. Therefore F is an ismorphism. Since Ol/Q|Ok/P is a finite

extension of finite fields, then Gal(Ol/Q|Ok/P ) is cyclic, generated by the frobenius auto-

morphism. Therefore, we can find a unique element FrobQP ∈ D(Q|P ) such that F (FrobQP )

is the Frobenius automorphism of Ol/Q|Ok/P .

Definition 2.3.2. Let l be a finite Galois extension of a number field k, P be a prime

ideal of Ok, Q be a prime ideal of Ol such that Q lying over P and e(Q|P ) = 1. The

frobenius element of Q|P , denoted by FrobQP , is the unique element of D(Q|P ), such that

FrobQP (x) +Q = xq +Q, where q = |Ok/P |.

Let l be a finite extension of a number field k, P be a prime ideal of Ok and P be the set of

prime ideals of Ol lying over P , define the action

. : Aut(l|k)× P → P
(σ,Q) 7→ σ(Q)

If Q ∈ P , then the stabilizer of Q is precisely the decomposition group D(Q|P ). If σ ∈
Gal(l|k), then
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D(σ(Q)|P ) = σD(Q|P )σ−1,

in other words, if two elements of P are in the same orbit, then their decomposition groups

are Aut(l|k)-conjugates.

If in addition l is a Galois extension of k, then this action is transitive (in particular all

the decomposition groups of elements of P are Gal(l|k)-conjugates). Assume that P is

unramified, therefore for every Q ∈ P , FrobQP is defined, and we have that σ−1 ◦FrobQP ◦σ =

Frob
σ(Q)
P . Indeed, if q = |Ok/P |, then

F (σ−1 ◦ FrobQP ◦ σ)(x) = σ−1 ◦ FrobQP ◦ σ(x) + σ(Q)

= σ−1(FrobQP (σ(x))) + σ(Q)

= σ−1((σ(x))q) + σ(Q)

= (σ−1(σ(x)) + σ(Q)

= xq + σ(Q).

Thus, under the hypothesis of that P is unramified, for every Q ∈ P , we have that

CQ = {σ−1 ◦ FrobQP ◦ σ|σ ∈ Gal(l|k)}
= {FrobRP |R ∈ P}.

In other words, the conjugancy class CQ of Q consist of the frobenius elements associated to

the elements of P .

Definition 2.3.3. Let l be a finite Galois extension of a number field k and P be a prime

ideal of Ok unramified in l. The frobenius element of P in l is the conjugancy class (as

below) CQ for some (and thus for all) Q ∈ P, this is class by FroblP .

Let I be a non-zero ideal of Ok. The absolute norm of I, denoted by N(I), is the natural

number |Ok/I|. Let S be a set of nonzero prime ideals of Ok.

(i) The natural density of S is defined by

δ(S) = lim
N→∞

|{P ∈ S|N(P ) ≤ N}|
|{P ∈ Spec(Ok) \ {0}|N(P ) ≤ N}|

,

if this limit exists.

(ii) The Dirichlet density of S is defined by

d(S) = lim
s→1+

∑
P∈S

1

N(p)s∑
P∈Spec(Ok)\{0}

1

N(p)s



18 2 Pre-anabelian geometry

if this limit exists

If the natural density exists, then the Dirichlet density exists and they are equal.

Let l be a finite Galois extension of a number field k. Denote by U l
k the set of primes of k

unramified in l. For every σ ∈ Gal(l|k), let

Pl|k(σ) = {P ∈ U l
k| exists a prime ideal Q of Ol such that, σ = FrobQP},

Chebotarev’s density theorem says how to compute the density of the set Pl|k(σ), for every

σ ∈ Gal(l|k).

Theorem 2.3.1. (Chebotarev density theorem)

Let l be finite Galois extension of a number field k. For every σ ∈ Gal(l|k), the Dirichlet

density of Pl|k(σ) exists and moreover,

dl|k(σ) =
| 〈σ〉 |
|Gal(l|k)|

where 〈σ〉 is the conjugancy class of σ.

Let k be a number field, S and T two sets of prime ideals of k. We denote by S⊆̂T if there

exists S0 a finite subset of S such that S \ S0 ⊆ T , and by S=̂T if S⊆̂T and T ⊆̂S. For

example, if l is a finite extension of k and N is a finite Galois extension of k containing l,

then

Spl1(l|k)=̂
⊔
σ∈H

PN |k(σ)

where

H = {σ ∈ Gal(N |k)| 〈σ〉 ∩Gal(N |l) 6= ∅}.

Proposition 2.3.1. If l is a finite extension of a number field k, then

d(Spl1(l|k)) ≥ 1

[l : k]
.

Moreover, we have that,

d(Spl1(l|k)) =
1

[l : k]
if and only if l is a Galois extension of k.

Proof. Let N be a finite Galois extension of k containing l (for example the Galois closure

of l|k), then

Spl1(l|k)=̂
⊔
σ∈H

PN |k(σ)

where
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H = {σ ∈ Gal(N |k)| 〈σ〉 ∩Gal(N |l) 6= ∅}.

Therefore

d(Spl1(l|k)) = d(
⊔
σ∈H

PN |k(σ))

=
∑
σ∈H

d(PN |k(σ))

=
∑
σ∈H

| 〈σ〉 |
|Gal(N |k)|

=
1

|Gal(N |k)|
∑
σ∈H

| 〈σ〉 |

=
1

|Gal(N |k)|
|
⊔
σ∈H

〈σ〉 |.

If σ ∈ Gal(N |l), then σ ∩Gal(N |l) 6= ∅. In other words, σ ∈ H, this implies that

Gal(N |l) ⊆
⊔
σ∈H

〈σ〉,

and therefore,

|Gal(N |l)| ≤ |
⊔
σ∈H

〈σ〉 |,

Thus,

d(Spl1(l|k) ≥ |Gal(N |l)|
|Gal(N |k)|

=
1

|Gal(N |l)|
|Gal(N |k)|

=
1

(Gal(N |k) : Gal(N |l)

=
1

[k : l]

This proves the first part, the second part is deduced from Galois theory. Indeed,

l|k is Galois ⇔ Gal(N |L) is a normal subgroup of Gal(N |k)

⇔ (∀σ∈Gal(N |k))(〈σ〉 ∩Gal(N |l) 6= ∅ ⇒ σ ⊆ Gal(N |l))
⇔ Gal(N |L) =

⊔
σ∈H

〈σ〉

⇔ d(Spl1(l|k)) =
1

n
,

the last equivalence is a consequence of the finiteness of Gal(N |l).
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Recall that if l and l
′

are finite extension of a number field k, then a prime ideal P of Ok
splits completely in l ∨ l′ (the composition of l and l

′
) if, and only if P splits completely in

l and l
′
. This implies that if l if a finite extension of a number field k and N is the Galois

closure of l|k, then a prime ideal of k splits completely in l if and only if splits completely

in N (N is a finite composition of finite extensions of l).

Proposition 2.3.2. Let l be a finite extension of a number field k. If almost all prime ideal

of Ok splits completely (except for a finite set), then l = k.

Proof. Notice that the Dirichlet density of a finite set of primes is 0. Therefore, d(Spl(l|k)) =

d(Spec(Ok\{0}) = 1, by hypothesis. Let N be the Galois closure of l|k, therefore Spl(N |k) =

Spl(l|k), and we have that

1 = d(Spl(l|k)

= d(Spl(N |k)

=
1

[N : k]

therefore [N : k] = 1. In other words, N = l = k.

Corollary 2.3.1. Let l be a finite extension of k. l is Galois if and only if Spl1(l|k) =

Spl(l|k).

Proof. If l|k is Galois then theorem 2.2.1 implies that Spl1(l|k) = Spl(l|k).

Assume that Spl1(l|k) = Spl(l|k), let N be the Galois closure of l|k. Then,

Spl1(l|k) = Spl(l|k)

= Spl(N |k)

= Spl1(N |K),

therefore d(Spl1(l|k)) = d(Spl1(N |k)), thus

1

[N : k]
= d(Spl1(N |k))

= d(Spl1(L|k))

≥ 1

[l : k]
,

therefore [l : k] = [N : k], in other words l = N , in other words, l is a Galois extension of

k.

Surprisingly the Chebotarev’s density theorem has a strong implication namely the Brauer

theorem which characterized the finite Galois extensions over a number field in terms of the

set of primes that splits completely. To be precise.
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Theorem 2.3.2. (Brauer) Let l be a Galois extension of a number field k and M be a

finite extension of k.

L ⊆M if, and only if Spl1(M) ⊆ Spl1(l).

Proof. Suppose that L ⊆M . If P ∈ Spl1(M) there exists a prime idealQ ofOM lying over P ,

such that e(Q|P ) = f(Q|P ) = 1. The prime ideal Q1 = Q∩Ol of Ol lies over P and e(Q1|P ),

f(Q1|P ) divides e(Q|P ) and f(Q|P ), respectively. Therefore, e(Q1|P ) = f(Q1|P ) = 1 and

this implies that P ∈ Spl1(l).

Suppose that Spl1(M) ⊆ Spl1(l). Let N be a finite Galois extension of k containing M

and l (for example the Galois closure of M ∨ l|k). Let

H = {σ ∈ Gal(N |k)| 〈σ〉 ∩Gal(N |M) 6= ∅},

and

H
′
= {σ ∈ Gal(N |k)| 〈σ〉 ∩Gal(N |l) 6= ∅}.

By assumption we have that ⊔
σ∈H

PN |k(σ) =̂ Spl1(M |k)

⊆ Spl1(L|k)

=̂
⊔
σ∈H′

PN |k(σ)

Let σ ∈ Gal(N |M) and consider the set of primes PN |k(σ), this set of primes have finite

Dirichlet density, then it is infinite and in particular a non-empty set, let P ∈ PN |k(σ), then

P ∈
⊔
σ∈H

PN |k(σ) and therefore P ∈
⊔
σ∈H′

PN |k(σ), i.e., there exists a unique τ ∈ H
′
, such

that P ∈ PN |k(τ). In particular, P ∈ PN |k(τ) ∩ PM |k, which implies that 〈σ〉 and 〈τ〉 are

the frobenius element of P , therefore 〈σ〉 = 〈τ〉, but 〈τ〉 ∩ Gal(N |l) 6= ∅ and Gal(N |l) is a

normal subgroup of Gal(N |k) (l is a Galois extension of k), therefore σ ∈ Gal(N |l). We just

prove that Gal(N |M) ⊆ Gal(N |l), by Galois theory we have that l ⊆M .

Corollary 2.3.2. Let l and l
′

be two finite Galois extension of a number field k.

l = l
′

if, and only if Spl(l|k) = Spl(l
′|k).

2.4 Neukirch theorems

In this section we study the characterization of some closed subgroups of the absolute Galois

group of the rational numbers GalQ.
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By Galois theory every closed subgroup H of GalQ, is equal to Gal(Q|k) for some subfield

k of Q, in particular, k is algebraic over Q, then we can identify k with Q. We have that

H = Gal(Q|k) = Gal(k|k) = Galk. In other words, the closed subgroups of GalQ are

absolute Galois groups of some algebraic extension of Q.

First, we characterizes the finite subgroups of GalQ. The trivial subgroup of GalQ is equal

to the absolute Galois group GalQ. If H is a finite and non-trivial subgroup of GalQ, in

particular, H is closed (GalQ have profinite topology) then H is equal to Galk, for some

subfield k of Q, therefore theorem 2.1.2 implies that k is isomorphic to Ralg, without lose of

generality lets suppose that Ralg is a subfield of Q. Let ϕ : k → Ralg be an isomorphism,

clearly this isomorphism is a Q-isomorphism. We can extend ϕ to an automorphism ϕ̂ :

Q → Q, ϕ̂ produces an conjugation-isomorphism between the absolute Galois groups of k

and Ralg. Concisely,

ϕ̂ : Galk → GalRalg

σ 7→ ϕ̂ ◦ σ ◦ ϕ̂−1

is an isomorphism, we just prove the following.

Theorem 2.4.1. (Characterization of finite subgroups of GalQ )

Let H be a finite subgroup of GalQ. We have the next two possibilities

(i) H is trivial, in this case H = GalQ. Or,

(ii) H has order two, in this case there exists a subfield k of Q and an element ϕ̂ ∈ GalQ,

such that H = Galk, ϕ̂ restricted to k is an isomorphism with Ralg and

ψ : Galk → GalRalg

σ 7→ ϕ̂ ◦ σ ◦ ϕ̂−1

is a group isomorphism.

In order to characterize another closed subgroups of GalQ, recall that the field of real numbers

R is only one of the completions of the rational number Q, the completion with respect to the

euclidean norm. We obtain a similar result if we repeat this process with all the completions

of Q? This is the question behind the Neukirch’s results. Let p a prime number, choose an

algebraic closure Q of Q embedded in an algebraic closure of Qp. The field of algebraic p-adic

numbers Qalg
p , is the field Q ∩Qp (this intersection is taken in Qp). The idea of Neukirch is

try to characterize the albebraic fields k over Q, such that Galk ' GalQalgp .

Theorem 2.4.2. (Neukirch’s theorem) Let k be a number field, l be a p-adic field (a

finite extension of Qp. If Galk has a closed subgroup H isomorphic to Gall, then there exists

a prime P of k lying over 〈p〉, and a prime Q of ksep lying over P , such that H ⊆ D(Q|P ),

and [l : Qp] ≥ [kP : Qp].
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Recall that, the non-zero primes of the ring of integers of a number field are in correspondence

with finite places of the number field. The primes in a infinite field extension are finite places,

and the relation of lye over is the relation of extend in the sense of valuations.

The proof of Neukirch’s theorem involves cohomology of number fields and other techniques

not discussed here. Instead, we discuss some consequences of this theorem. For details about

the proof see ??.

Corollary 2.4.1. Let k be a number field, p be a prime number and P be a prime ideal of

Ok lying over 〈p〉. A subgroup of Galk is the decomposition subgroup of some prime lying

over P if and only it is maximal with respect to the closed subgroups of Galk isomorphic to

Gall, for some p-adic field l.

Let k1 and k2 be two number fields and

σ : Galk1 → Galk2

be a continuous isomorphism. Let P be a prime of k1 and Q be a prime of ksep1 lying over

P . Consider the decomposition group D(Q|P ), then σ(D(Q|P )) is a subgroup of Galk2 , and

moreover σ restricts to an isomorphism between D(Q|P ) and σ(D(Q|P )), by the previous

corollary we know that the closed subgroup D(Q|P ) of Galk1 is isomorphic to Gall for some

p-adic field l (p is the prime number generating the ideal P ∩ Z) and D(Q|P ) is maximal

in the closed groups of Galk1 with this property, then the same is true for the subgroup

σ(D(Q|P )), therefore by the previous corollary, there exists a prime P
′

of k1, a prime Q
′

of

ksep lying over P
′
, such that σ(D(Q|P )) = D(Q

′|P ′
), thus σ induces a function between the

primes of ksep2 and the primes of ksep1 . Before we study the behavior of this function first we

introduce some definitions.

For every number field l be denote by D the set of prime ideals of l, associate to Dl the

discrete topology, then Dl is a locally compact Hausdorff space and denote by Sp(l) be the

Alexandroff compactification (by one point). In other words, Sp(l) is the topological space

Spec(Ol), the point at infinity added in the Alexandroff compactification corresponds to the

generic point of Spec(Ol).
If k1 and k2 are two number fields and k1 ≤ k2, we have a projection πk1,k2 : Sp(k2)→ Sp(k1);

P 7→ P ∩ k1. In particular every number field have canonical projection πk1,Q, denoted by

πk1 . If k is a infinite extension of Q, Sp(l) is the projective limit space of the directed system

{(Sp(l), πl,l′ |l,l′ are number field and l
′
l ≤ k}.

Recall that the projective limit of compact and Hausdorff spaces is compact and Hausdorff

too. Moreover, Sp(k) is a profinite space, in other words, Sp(k) is, in addition, totally

disconnected. As a set Sp(k) is the set of primes of k with a point added and is a generic

point for Sp(k).

Denote by η1 and η2 be the generic points of Sp(k1) and Sp(k2), respectively. Using this

language, we know that every continuous isomorphism
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σ : Galk1 → Galk2

induces a correspondence between the primes of k2 and the primes of k2, if we added to this

correspondence the generic points, then σ induces the correspondence

Sp(σ) : Sp(ksep1 ) → Sp(ksep2 )

P 7→


Q if σ(D(P |P ∩ k1)) = D(Q|Q ∩ k2)

η1 if P = η1

On the other hand, let

H1 = {l1 ≤ ksep1 |l1 is an extension of k1}, and

H2 = {l2 ≤ ksep2 |l2 is an extension of k2}.

By Galois theory, we know that H1 and the closed subgroups of Galk1 are in correspondence,

via the function H1 → CS(Galk1); l1 7→ Gal(ksep1 |l1). Similarly we have a correspondence

between H2 and Galk2 . Since σ induces a correspondence between closed subgroups of

Galk2 and closed subgroups of Galk1 , then σ induces a correspondence between H1 and H2,

concretely

σ̂ : H2 → H1

l2 7→ l1 if σ(Gal(ksep2 |l2)) = Gal(ksep1 |l1)

Using this correspondence and once again corollary 2.4.1, we have that for every l2 ∈ H2, we

have a correspondence

Sp(σ)l2 : Sp(l2)→ Sp(σ̂(l2))

Theorem 2.4.3. (Finite local correspondence) Let k1 and k2 be two number fields. If

σ : Galk2 → Galk1 is an isomorphism, then for every finite extension l2 of k2, with l2 ∈ H2,

we have that Sp(σ)l2 is an homeomorphism.

Proof. l2 and σ̂(l2) are finite number fields, then Sp(l2) and Sp(σ̂(l2)) are Alexandroff com-

pactification of discrete spaces, therefore Sp(σ)l2 is trivially an homeomorphism if we restrict

to such discrete subspaces. Since Sp(σ)l2 send the generic point of Sp(l2) to the generic point

of Sp(l̂2), then the theorem holds.

We omit the proof of the next proposition, which involves techniques of cohomology of

number fields, for details of the proof see [37].
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Proposition 2.4.1. If k1 and k2 are two number fields. If σ : Galk1 → Galk2, for every

finite extension l2 of k2, then the next diagram is commutative

Sp(l2)
Sp(σ)l2 //

πl2 $$

Sp(σ̂(l2))

π ˆσ(l2)yy
Sp(Q)

Theorem 2.4.4. (Local correspondence) Let k1 and k2 be two number fields. If ϕ :

Galk1 → Galk2 is an isomorphism of profinite groups, then for every extension l2 of k2,

Sp(σ)l2 : Sp(l2)→ Sp(σ̂)

is an homeomorphism.

Proof. Sp(σ)l2 is the inverse limit of {Sp(σ)
l2

′}l′2∈Γ, where

Γ = {l′2 ≤ l2|l
′
2 is a finite extension of k2}.

By the previous proposition we know that Sp(σ)l2 commutes with the projection, this and

the finite local correspondence implies the result.

2.5 Galois characterization of number fields.

In this section for every field k, fix an algebraic closure k and we denote by ksep the separable

closure of k inside k.

Let k1 and k2 be two fields denote by Iso(ksep1 |k1, k
sep
2 |k2) the set of isomorphisms ϕ : ksep1 →

ksep2 such that ϕ(k1) = k2. ϕ ∈ Iso(ksep1 |k2, k
sep
2 |k2), induces an isomorphism of profinite

groups (with inverse ((ϕ−1)∗)

ϕ∗ : Galk2 → Galk1

σ 7→ ϕ ◦ σ ◦ ϕ−1.

If G and H are profinite groups, denote by Iso(G,H) be the set of continuous isomorphisms

from G to H and by Aut(G) = Iso(G,G). We can define a function

∗ : Iso(ksep1 |k2, k
sep
2 |k2) → Iso(Gal(ksep2 |k2), Gal(ksep1 |k1))

ϕ 7→ ϕ∗,

In this section we study the behavior of this function. Starting with two consequences of

Krasner’s lemma.

Proposition 2.5.1. Let k be a number field. If P and Q are two different primes of ksep,

then D(P |P ∩Q) ∩D(Q|Q ∩Q) = 1.
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Proposition 2.5.2. If k1 is a Galois finite extension of k2, then the homomorphism

F : Galk2 → Aut(Galk1)

σ 7→ Fσ

is inyective. where,

Fσ : Galk1 → Galk1

θ 7→ σ ◦ θ ◦ σ−1.

Proof. Without losing generality, suppose that ksep1 = ksep2 . Since k2 ≤ k1, then Galk1 ⊆
Galk2 , then Fσ make sense for every σ ∈ Galk2 . Let σ be elements of Galk2 such that

Fσ1 = idGalk1
, then for every prime P of ksep2 , we have that

Fσ(D(P |P ∩ k2) ∩Galk1)) = D(P |P ∩ k2) ∩Galk1 .

But Fσ(D(P |P ∩ k2) ∩Galk1)) = D(σ(P )|σ(P ) ∩ k2) ∩Galk1 :

(⊆) If θ ∈ D(P |P ∩ k2) ∩Galk1 , then θ(P ) = P and therefore

Fσ(θ)(σ(P )) = σ ◦ θ ◦ σ−1(σ(P ))

= σ ◦ θ(P )

= σ(P ).

(⊇) If θ ∈ D(σ(P )|σ(P ) ∩ k2) ∩Galk1 , we have that θ(σ(P )) = σ(P ). Let θ1 = σ−1 ◦ θ ◦ σ,

then Fσ(θ1) = θ and

θ1(P ) = σ−1 ◦ θ ◦ σ(P )

= σ−1(θ(σ(P ))

= σ−1(σ(P ))

= P.

Thus, D(P |P ∩ k2) ∩Galk1 = D(σ(P )|σ(P ) ∩ k2) ∩Galk1 . Therefore,

1 6= D(P |P ∩ k2) ∩Galk1

= D(P |P ∩ k2) ∩D(σ(P )|σ(P ) ∩ k2) ∩Galk1

⊆ D(P |P ∩ k2) ∩D(σ(P )|σ(P ) ∩ k2)

implies that P = σ(P ) for every prime P of ksep2 . Take two different primes P and Q of ksep2 ,

then σ = 1, since σ ∈ D(P |P ∩ k2) ∩D(Q|Q ∩ k2) = {1}.
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Corollary 2.5.1. If k1 and k2 are two number fields then the function

∗ : Iso(ksep1 |k2, k
sep
2 |k2) → Iso(Gal(ksep2 |k2), Gal(ksep1 |k1))

ϕ 7→ ϕ∗,

is injective.

Proof. Let N be the Galois closure of k1∨k2 over Q, without losing generality, suppose that

N sep = ksep1 = ksep2 = Q. Let ϕ1, ϕ2 ∈ Iso(ksep2 |k2, k
sep
1 |k1), such that ϕ∗1 = ϕ∗2, in particular

we have that

ϕ∗1|Gal(ksep1 |N) = ϕ∗2|Gal(ksep1 |N),

Consider the homomorphism

F : GalQ → Aut(GalN)

as we defined in the previous proposition. Then, Fϕ1 = Fϕ2 , indeed if σ ∈ GalN , then

Fϕ1(σ) = ϕ1 ◦ σ ◦ ϕ−1
1

= ϕ∗1(σ)

= ϕ∗1|(σ)

= ϕ∗2|GalN (σ)

= ϕ2 ◦ σ ◦ ϕ−1
2

= Fϕ2(σ)

therefore, ϕ1 = ϕ2.

Corollary 2.5.2. If k is a number field, then Galk has trivial center.

Proof. If σ is an element in the center of Galk, then σ is in the kernel of the homomorphism

F : Galk → Aut(Galk) and thus σ = 1.

In order to understand the next theorem we make some remarks first. Let σ ∈ Iso(Galk1 , Galk2),

then we know that σ induces a function between the algebraic extensions of k1 and the alge-

braic extensions of k2, this correspondence is denoted by σ̂, as in the previous section. For

every algebraic extension l1 of k1, σ induces an homeomorphism Sp(σ)l1 : Sp(l1)→ Sp(σ̂(l1)),

the local correspondence shows too that

Spl1(l1) = Spl1(σ̂(l1)) and Spl(l) = Spl(σ̂(l)).

In particular, if l is a Galois extension of Q, Brauer theorem implies that σ̂(l) = l,
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Theorem 2.5.1. (Neukirch-Uchida) Let k1, k2 be two number fields. The function

∗ : Iso(ksep1 |k2, k
sep
2 |k2) → Iso(Gal(ksep2 |k2), Gal(ksep1 |k1))

ϕ 7→ ϕ∗,

is biyective. In particular, two number fields are isomorphic if, and only if their absolute

Galois groups are isomorphic (as profinite groups).

Proof. Without loosing of generality suppose that ksep1 = ksep2 = Q. We already show the

injectivity of this function.

Let N be finite Galois extension of Q containing k1 and k2, then σ̂(N) = N , or equivalently

σ restricts to an automorphism of Gal(Q|N) and moreover σ induces the next isomorphism

σN : Gal(N |k1) → Gal(N |k2)

θ ◦Gal(Q|N) 7→ σ(θ) ◦Gal(Q|N)

(Gal(Q|k1)/Gal(Q|N) ' Gal(N |k1)).

Every α ∈ Iso(Q|k2,Q|k1), induces an isomorphism

α∗ : Gal(Q|k1) → Gal(Q|k2)

θ 7→ α ◦ θ ◦ α−1

and, since α(N) = N (N is normal over Q), α∗ induces an isomorphism

(α∗)N : Gal(N |k1) → Gal(N |k2)

θ ◦Gal(Q|N) 7→ α∗(θ) ◦Gal(Q|N)

First, we show that there exists α ∈ Iso(Q|k1,Q|k2) such that (α∗)N = σN , for every Galois

extension of Q containing k1 ∨ k2. We divide the proof of this statement in two cases.

(i) Gal(N |k2) is cyclic:

Consider the canonical quotient homomorphism

f : Gal(Q|k2)→ Gal(N |k2),

and let β be a generator of Gal(N |k2). By Chebotarev’s density theorem we know

that dN,k2(β) is non-empty, therefore there exists a prime P
′

of N , such that P
′ ∩ k2 is

unramified in N , D(P
′|P ′ ∩Q) ⊆ Gal(N |k2) and

FrobP
′

P ′∩k2
= β,

let P be a prime of Q lying over P
′
. Then, D(P |P ∩Q) ⊆ Gal(Q|k2) and
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f(FrobPP∩k2
) = FrobP

′

P ′∩k2
= β,

in other words, FrobPP∩k2
≡ β (mod Gal(Q|N)).

Neukirch’s theorem implies that σ−1(D(P |P ∩ Q)) = D(Q|Q ∩ Q), for some prime Q

of Q with P ∩Q = Q ∩Q. Since Q is a Galois extension of Q, then there exists α an

automorphism of Q such that α(P ) = Q and therefore α−1D(P |P∩Q)α = D(Q|Q∩Q),

this implies that

Gal(Q|N)D(P |P ∩Q) = α∗(Gal(Q|N)D(Q|Q ∩Q)).

Now, note thatGal(Q|k2) = Gal(Q|N)D(P |P∩Q). Indeed, it is clear thatGal(Q|N)D(P |P∩
Q) ⊆ Gal(Q|k2). Reciprocally, if θ ∈ Gal(Q|k2), consider the cannonical quotient ho-

momorphism

f : Gal(Q|k2)→ Gal(N |k2),

since Gal(N |k2) = 〈β〉, then F (θ) = βn, for some n ∈ Z, in other words θ ◦ β−n ∈
Gal(Q|N), therefore exists θ1 ∈ Gal(Q|N), such that θ = θ1 ◦ βn ∈ Gal(Q|k2) ⊆
Gal(Q|N)D(P |P ∩Q) (βn ∈ D(P |P ∩Q)). Thus

α∗(Gal(Q|k1)) ⊆ Gal(Q|k2)

= Gal(Q|N)D(P |P ∩Q)

= α∗(Gal(Q|N)D(Q|P ∩Q))

⊆ α∗(Gal(Q|k1)),

and therefore

Gal(Q|k2) = α∗(Gal(Q|k1))

The fixed field by the group on the left side of previous equation is k2 and the field

fixed by the group on the right side is α(k1), by Galois theory, α(k1) = k2. Thus,

α ∈ Iso(Q|k1,Q|k2).

Now, we have to show that (α∗)N = σN . Since Gal(N |k1) is cyclic with generator β,

this is equivalent to show that (α∗)N(β) = σN(β). Let

F : D(Q|Q ∩ k1) → Gal(Ol/Q|Ok/P )

σ 7→ F (σ),

here F (σ) is the Ol/Q-automorphism, defined by

F (σ) : Ol/Q → Ol/Q
x+Q 7→ σ(x) +Q,
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be the homomorphism defined in the section 2 of this chapter. It is clear that (α∗)N(FrobPP∩k2)

and σN(FrobPP∩k2) are frobenius elements to, in other words F ((α∗)N(β)) = F (σN(β)),

but Q is unramified (since P is unramified), then F is injective, therefore (α∗)N = σN .

(ii) Gal(N |k2) is not cyclic:

Let p be a prime greater than the order of Gal(N |Q). Consider the group ring

Fp(Gal(N |Q)). There exists a finite Galois M extension of Q, containing N , such

that there exists an exact sequence

1→ Fp(Gal(N |Q))→ Gal(Q|M)→ Gal(N |Q)→ 1,

in the rest of this proof we suppose that Fp(Gal(N |Q)) ⊆ Gal(Q|M). In particular,

we have the next isomorphism

Fp(Gal(N |k2)) ' Gal(M |N),

(see [Neu-Uchi] for details). Since M is a Galois extension of Q, then σ induces an

isomorphism

σM : Gal(M |k1)→ Gal(M |k2),

in particular, identifying Fp(Gal(N |Q)) with the subgroup Gal(M |N) of Gal(M |k2)

and using the fact that N is a Galois extension of Q, σM reestricst to an automorphism

of Fp(Gal(N |Q)), we note this restriction by σMN .

Let λ ∈ Fp(Gal(Q)) \ {0}, let L1 be the field, contained in M , fixed by the cyclic

subgroup of Fp(Gal(N |Q)), generated by λ and let L2 be the field, contained in M ,

fixed by the cyclic subgroup σM(〈λ〉) of Fp(Gal(N |Q)). In particular ,we know that

σ̂(L1) = L2. Therefore σ restricts to an isomorphism

σ : Gal(Q|L1)→ Gal(Q|L2).

Note that M is a cyclic extension of L1 and L2 (its Galois group is clearly cyclic). Then

by (i) there exists an automorphism α of Q, such that α(L1) = L2 and (α∗)M = σM .

We want to know how (α∗)M is defined; recall that α induces an automorphism

α∗ : Gal(Q|k2) → Gal(Q|k2)

θ 7→ α ◦ θ ◦ α−1,

In particular, we know that α∗ induces an automorphism (α∗)MN of Gal(M |N), iden-

tifying Gal(M |N) with Fp(Gal(N |Q)), (α∗)MN is then a left multiplication by h =
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α−1(mod(Gal(M |N)). In other words, with the structure of Fp(Gal(N |Q)) ofGal(N |k2)-

module, then

(α∗)MN : Fp(Gal(N |Q)) → Fp(Gal(N |Q))

g 7→ h.g

For each g ∈ Gal(N |Q), consider the subgroups

Ug = {λ ∈ Fp(Gal(N |Q))|σM(λ) = gλ}

Using the cyclic case in each element of Fp(Gal(N |Q)), we can prove that
⋃

g∈Gal(N |Q)

Ug =

Fp(Gal(N |Q)). Let g0 ∈ Gal(N |Q), such that |Ug0| is maximal in {|Ug| |g ∈ Gal(N |Q)}.
Ug0 = Fp(Gal(N |k2)), indeed, suppose that Ug0 ( Fp(Gal(N |Q)), since |Fp(Gal(N |Q))| =
pk, for some k ∈ Z+, then |Ug0| ≤ pk−1, then we have the next

pk = |Fp(Gal(N |Q))|

=

∣∣∣∣∣∣
⋃

g∈Gal(N |Q)

Ug

∣∣∣∣∣∣
≤

∑
g∈Gal(N |Q)

|Ug|

≤ |Gal(N |Q)||Ug0|
< |Gal(N |Q)|pk−1

a contradiction, since |Gal(N |Q)| < p. Then, we can characterize σMN in the next way

σMN : Fp(Gal(N |Q)) → Fp(Gal(N |Q))

λ 7→ g0λ

SinceGal(N |k1) ⊆ Gal(N |Q), we can identifyGal(N |k1) with a subset of Fp(Gal(N |Q)),

under this identification clearly we have that for each g1 ∈ Gal(N |k1), σMN (g1) =

σN(g1)σMN (1). Following the next equality’s

g0g1 = σMN (g1) = σN(g1)σMN (1) = σN(g1)g0,

we deduce that

σN(g1) = g0g1(g0)−1,

or equivalently σN = (α∗)N .
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Thus, in any case we can prove that for every isomorphism σ : Gal(Q|k1)→ Gal(Q|k2) and

for every normal extension N of k1 ∨ k2, there exists an automorphism αN of Q, such that

σN = (α∗N)N , then the set

{(α∗N)N |N is a normal extension of k1 ∨ k2}

is non-empty and is clearly a projective system whose limit is non-empty. Their limit is

the required α ∈ Iso(Q|k2,Q|k1), such that α = σ (coincides in every normal extension of

k1 ∨ k2). This completes the proof.

We finish this chapter with a structure result about the absolute Galois groups of the rational

numbers Gal(Q|Q).

For number fields k1 and k2, define the action

. : Galk2 × Iso(k
sep
2 |k2, k

sep
1 |k1) → Iso(ksep2 |k2, k

sep
1 |k1)

(σ, ϕ) 7→ ϕ ◦ σ−1,

The coset of this action is Iso(k2, k1). Indeed, consider the function

f : Iso(ksep2 |k2, k
sep
1 |k1) → Iso(k2, k1)

ϕ 7→ ϕ|k2 ,

Let ϕ1, ϕ2 ∈ Iso(ksep2 |k2, k
sep
1 |k1), satisfying that f(ϕ1) = f(ϕ2). Then ϕ−1

2 ◦ ϕ1 ∈ Galk2

and we have that ϕ1 ◦ (ϕ−1
2 ◦ ϕ1)−1 = ϕ2, in other words, ϕ1 and ϕ2 are in the same orbit,

reciprocally is trivial that if ϕ1 and ϕ2 are in the same orbit then f(ϕ1) = f(ϕ2). Finally,

by the isomorphism extension theorem then f is surjective and the assertion follows.

We introduce a previous definition in order to state and prove an ”outer” version of Neukirch-

Uchida theorem. Let G be a profinite group and let Aut(G) be the group of continuous

automorphisms of G. The function

Inn : G → Aut(G)

g 7→ Inn(g)

is a continuous group homomorphism, where Inn(g)(x) = g−1xg, for every x ∈ G. ϕg is

called the inner automorphism of G, induced by g. The subgroup Inn(G) of Aut(G) is

called the group of inner automorphisms of G.

Let G1 and G2 be profinite groups, denote by Iso(G1, G2) to be the set of continuous group

isomorphisms from G1 to G2, then Inn(G2) acts on this set, define the continuous action

. : Inn(G2)× Iso(G1, G2) → Iso(G1, G2)

(ϕ, σ) 7→ σ ◦ ϕ,

Definition 2.5.1. Let G1 and G2 be profinite groups the set of exterior isomorphisms

of G1 to G2 is the quotient set Iso(G1, G2)/Inn(G2), this set is denoted by OutI(G1, G2).

An element of Out(G1, G2) is called an exterior isomorphism from G1 to G2.
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Corollary 2.5.3. Let k1 and k2 be number fields. There exists a bijection

Iso(k2, k1) ' Out(Galk1 , Galk2).

Proof. Let σ ∈ Galk2 and ϕ ∈ Iso(k2|k2, k1|k1)

.(σ, ϕ)∗ = (ϕ ◦ σ−1)∗

= ϕ∗ ◦ Inn(σ), (2-1)

or equivalently, the next diagram is commutative

Galk2 × Iso(k2|k2, k1|k1) //

Inn× ∗

��

Iso(k2|k2, k1|k1)

∗

��
Inn(Galk2)× Iso(Galk1 , Galk2) // Iso(Galk1 , Galk2)

By Neukirch-Uchida theorem the vertical arrows are bijective. Thus,

Iso(k2|k2, k1|k1)/Galk2 ' Iso(Galk1 , Galk2)/Inn(Galk2).

Or equivalently,

Iso(k2, k1) ' Out(Galk1 , Galk2).

Corollary 2.5.4. All continuous automorphisms of GalQ are inner.

Out(GalQ, GalQ) ' Iso(Q,Q), but Iso(Q,Q) is the trivial group. Then Out(GalQ, GalQ) is

trivial and therefore Aut(GalQ) = Inn(GalQ).



3 Étale fundamental group

In this chapter we introduce the definition of the étale fundamental group, properties and

consequences. First, we study some characterizations of the first fundamental group for some

topological spaces with certain properties, in this situation, the first fundamental group can

be described in three different ways. We introduce étale morphisms between schemes, we

give examples and some descriptions, using this type of morphisms we introduce finite étale

coverings of a scheme and we construct with this covers finite étale groups.

3.1 The topological fundamental group

Let X be a topological space and x ∈ X.

Definition 3.1.1. The first fundamental group of X based in x, denoted by π1(X, x), is the

set of homotopy classes of loops in X based at x.

π1(X, x) is a group with the concatenation operation in homotopy classes of loops. If x, y ∈
X, then a path from x to y, produces a group isomorphism from π1(X, x) to π1(X, y).

Therefore, for a path connected space X we can associate an algebraic invariant, denoted by

π1(X), defined as the first fundamental group of some point x ∈ X. X is said to be simply

connected if it is path connected and π1(X) = 0, and semilocally simply connected if for

every x ∈ X, there exists an open simply connected subset containing x.

The theory of the fundamental group are related with the theory of covering spaces. Recall,

a covering space p : Y → X is a continuous function, such that for every x ∈ X, there exists

an open set U of X, containing x, open subsets Vi of Y

p−1(U) =
∐
i∈I

Vi,

and the restriction p|Vi : Vi → U is an homeomorphism. We denote by CovX the category

of covering spaces over X.

Let p : Y → X be a covering space. If we fix an element y ∈ p−1(x), then every loop γ

can be lifted to a unique path γy in Y , such that γ(0) = y. Moreover, if γ and η are two

homotopic loops of X based at x, their lifts (with initial point y) γy, ηy are homotopic, in

particular, γy and ηy have the same end point. This allow us, to define the next action

. : π1(X, x)× p−1(x) → p−1(x)

([γ], y) → γy(1)
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This action is called the monodromy action. We denote by π1(X, x)−sets the category of

sets with an action of the fundamental group and morphisms functions compatible with this

actions.

Theorem 3.1.1. (Classification of covering spaces) Let X be a path-connected, locally

path-connected and semi-locally simply-connected topological space. The functor

Fibx : CovX → π1(X, x)− sets
(q : Y → X) 7→ q−1(x)

is an equivalence of categories.

In the rest of this section we suppose that X is path connected, locally path connect and

semi-locally simply-connected. The previous theorem classifies covering spaces over X in

terms of the monodromy action of π1(X, x), in particular, we have that the group Aut(Fibx)

of natural automorphisms of Fibx is isomorphic to π1(X, x).

There exists a covering space q : X̃ → X, such that for every covering space p : Y → X,

with Y connected, there exists a covering f : X̃ → Y , such that q = p ◦ f . This covering

space is called the universal covering space of X and is determined up to isomorphisms of

covering spaces.

Theorem 3.1.2. Let X be a path-connected, locally path-connected and semi-locally simply

connected topological space. The functor

Fibx : CovX → π1(X, x),

is representable, represented by the universal covering of X. In other words, if X̃ is the

universal covering of X, then we have a natural isomorphism Hom(X̃, ) ' Fibx.

In particular, the previous theorem implies that π1(X, x) = Aut(X̃|X), where Aut(X̃|X) is

the groups of deck transformation of the universal covering X̃ over X.

In one hand, since Fibx is an equivalence of categories, we have one description of the

fundamental group using natural automorphisms of the fiber functor Fibx, in the other hand

we have a description of the fundamental group using deck transformations of the universal

cover. In the next chapter we will see how this descriptions allow us to define the fundamental

group in the algebro-geometric setting.

A covering space f : X → Y the cardinality of the fibers does not change point by point, to

be precise if x, y ∈ Y , then —f−1(x)| = |f−1(y)|. This allow us to define the notion of finite

covering space, to be a covering space such that the one fiber is a finite set (and therefore

all fiber is a finite set). Denote by FCovX be the category of finite covering space and for a

point x ∈ X, define the next fiber functor

Gx : FCovX → Sets

(q : Y → X) 7→ q−1(x).
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For X path-connected, locally path-connected and semi-locally simply-connected we have

the next relation between Aut(Gx) and the first fundamental group

Gx ' ˆπ1(X, x),

where ˆπ1(X, x) means the profinite completion of π1(X, x) (the inverse limit of the finite

quoutients of π1(X, x))

3.2 Étale morphisms

étale morphisms unifying several concepts coming from algebra, geometry, topology, number

theory and so on, some examples are given in this section. This definition was introduced by

Grothendieck in [9] to study a cohomology theory of varieties over finite fields that satisfies

de Wéil axioms, called étale cohomology. In this text we do not discuss this theory, we are

only interested in the fundamental-group theory of the étale morphisms and his relation with

arithmetic. étale cohomology theory can be studied in [24].

In the previous section we see that for a special-type of topological spaces X, we have

isomorphisms between the next three groups

(i) π1(X, x) or the group of loops based at x, up to homotopy.

(ii) Aut(Fibx) or the group of natural isomorphisms of the fiber functor Fibx.

(iii) Aut(X̃|X) or the group of deck transformations of some universal covering X̃ of X.

We want to define an analogue to the fundamental group in algebraic geometry that bring us

results that coincides with our algebro-geometric intuition. We have three possible choices

to do this, corresponding to the three previous description of the same group. So we have

to clarify the requirements of each definition

(i) The usual definition of the fundamental group requires the notion of loops.

(ii) The second definition requires the notion of covering space in the algebro-geometric

setting.

(iii) The last definition requires the notion of covering space and the existence of a universal

covering space.

We have three natural questions corresponding to this three requirements

The loops of an algebraic variety or a scheme are good enough?

What it means a covering space in algebraic geometry?

There exists a universal covering space over any scheme?
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The loops in an algebraic variety does not correspond in many cases to a subvariety, we refer

to the cases when the dimension of this object is 1/2. We abandon this approach to the

fundamental group.

One idea to understand how to define covering spaces in algebraic geometry is to see one

place where algebraic geometry and topology meets: the case of complex varieties, intuitively

we want that if f : X → Y is a morphism between non-singular complex algebraic varieties,

then f is an ”algebraic covering space” if, and only if the analytification fan of f is a covering

space in the usual sense.

For example, consider the morphisms of algebraic varieties

fk : A1
C → A1

C

z 7→ zk,

for every k ∈ Z+. The analytification of the previous morphism is the map between complex

manifolds

gk : C → C
z 7→ zk

this maps are not covering spaces, because they have a ramification point, namely 0. There-

fore, fk does not deserves the name of ”algebraic covering space”. But the map

hk : C \ {0} → C \ {0}
z 7→ zk,

is a covering space of C \ {0}. Then

fk : A1
C \ {0} → A1

C \ {0}
z 7→ zk,

deserves the name of ”algebraic covering space”. But the universal cover space of C \ {0} is

the exponential map

g : C → C \ {0}
x 7→ ex.

But, g is not the analytification of any morphism from A1
C to A1

C \ {0} (intuitively: is not

algebraic). Therefore, the algebraic variety A1
C \ {0} does not have an universal covering.

Then in general, we do not have existence of ”universal algebraic covering maps”. This shows

that the unique reasonable way to define the fundamental group in the algebro-geometric

sense is to make sense what precisely means ”algebraic covering space”. The key ingredients

of this definition are three: flat, finite-type and unramified.
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Definition 3.2.1. Let ϕ : X → Y be a morphism of schemes. We say that ϕ is flat at

x ∈ X is the induced morphism in stalks ϕ∗x : OY,ϕ(x) → OX,x is a flat map of rings (i.e.,

with the structure induced by ϕ∗x, OX,x is a flat OY,ϕ(x)-module). We say that ϕ is flat if it

is flat at every point of X.

The notion of flat morphism is related with the idea of a family of geometric objects variously

in a continuous way.

Definition 3.2.2. Let ϕ : X → Y be a morphisms of schemes. We say that ϕ is of finite

type if there exists an affine open cover {Spec(Ai)}i∈I of Y , such that for every i ∈ I, there

exists an affine open cover {Spec(Bi,j)}j∈Ji of ϕ−1(Spec(Ai)), such that the induced map of

rings Ai → Bi,j is of finite type (i.e., Bi,j is a finitely generated Ai-algebra).

Notice that the finite type condition on a morphism ϕ is an example of a affine communication

property, i.e., is ϕ is a morphism of finite type then for every affine open cover {Spec(Ai)}i∈I
of Y and for every open cover {Spec(Bi,j)}j∈Ji of ϕ−1(Spec(Ai)), the infuced maps of rings

Ai → Bi,j is of finite type.

Definition 3.2.3. Let ϕ : X → Y be a morphism of schemes. We say that ϕ is unramified

at x ∈ X if

(i) mx = ϕ∗x(mϕ(x))OX,x, i.e., the ideal generated by ϕ∗x(mϕ(x)) in Ox is equal to the maximal

ideal of Ox, where mϕ(x) is the maximal ideal of OY,ϕ(x).

(ii) OX,x/mx is a separable extension of OY,ϕ(x)/mϕ(x).

We say that ϕ is unramified if it is unramified at every point of X.

Definition 3.2.4. Let ϕ : X → Y be a morphism of schemes. We say that ϕ is étale at

x ∈ X is if it is flat at x, of finite type and unramified at x. We say that ϕ is étale if it is

étale at every point of X.

Let k be an algebraically closed field. The étale morphisms between non-singular algebraic

varieties have an equivalent condition, related with the hypothesis of the theorem of the

inverse function map of vector calculus. For general algebraic varieties (with singular points

or not), we have an equivalent notion in terms of the m-adic completion of stalks, in the two

cases the étale morphisms incarnate the idea of preserve local analytic information. To be

precise:

Let ϕ : X → Y be a morphism betweeen non-singular algebraic varieties, then ϕ is étale if and

only if for every point x ∈ X the application between tangent spaces dfx : Tx(X)→ Tϕ(x)(Y )

is a linear isomorphism.

For example, for every j ∈ Z+ with j 6= char(k), the map

fj : A1
C → A1

C

z 7→ zj,
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is étale at every point non-zero point z. Because for every z ∈ A1
C

d(fk)z : Tz(A1
C) → Tzk(A1

C)

v 7→ (jzj−1)v

is a linear isomorphism, unless z = 0.

Recall that the condition of isomorphisms on the tangent spaces are equivalent to local

diffeomorphisms in differential geometry.

For general varieties we have that a morphism ϕ : X → Y is étale at x ∈ X if and only if

the induced morphism ⊕
i∈N

mn
ϕ(x)/m

n+1
ϕ(x) →

⊕
i∈N

mn
x/m

n+1
x

is an isomorphism. Notice that, this is equivalent to the inducen morphism between the

m-adic completions of the rings OY,ϕ(x) and OX,x is an isomorphism. In particular, there no

exists étale morphisms between algebraic varieties of different dimension.

We give another example coming from algebraic number theory. Let k be a number field ,

then the inclusion Z ↪→ Ok, induces an scheme morphisms

ϕ : Spec(Ok)→ Spec(Z),

ϕ is of finite type and flat because Ok is a free finitely generated Z−module, and for every

prime ideal P of Ok, the residue field Ok,P/mP is a separable extension of Zϕ(P )/mϕ(P ).

Indeed, if P 6= 0, then is just a extension of finite fields and thus separable, if P = 0, then

this extension is k|Q which is separable. Thus, ϕ : Spec(Ok)→ Spec(Z) is étale if and only

if mP = ϕ∗P (mϕ(P ))Ok,P . Let Q = ϕ(P ) = P ∩Z, or equivalently, if the next two localization

of ideals in P are equal PP = (ϕ(P )Ok)P . Let

ϕ(P )Ok = Qe1
1 ...Q

er
r ,

be the factorization of Q as a product of prime ideals in Ok, as ϕ(P ) = Q, then P is lying

over Q (ϕ is induced by the inclusion map of rings), therefore P = Qi for some i ∈ {1, ..., r}.
If the ramification index e(P |ϕ(P )) > 1, then we have the next strict inclusion of localized

ideals

(ϕ(P )Ok)P = (P e(P |Q))P ( PP ,

and reciprocally if (QOk)P = PP , then e(P |Q) = 1. Therefore ϕ is étale at P if and only if

ϕ(P |ϕ(P )) = 1, in other words, if and only if P is unramified over ϕ(P ).

Another example given, this time coming from geometry, if f : Y → X is a holomorphic

map between connected and compact riemann surfaces OY , OX are the sheaf of holomorphic

functions of Y,X, respectively, and M(Y ),M(X) are the field of meromorphic functions of

Y,X, respectively. Let x ∈ X, we have that OX,x is a subring ofM(X) andM(Y ) is a finite
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extension of M(X). Let B be the integral closure of OX(X) in M(Y ), B is a Dedekind

domain provided that the stalk at a point x of X, OX,x is a discrete valuation ring (the

valuation is the order of zero or pole of a meromorphic function at x). The unique non-zero

prime ideal of OX,x is

mx = {〈ϕ,U〉 ∈ OX,x|ϕ(x) = 0},

then the next three properties are equivalent

(i) f is unramified at x (in the sense of Riemann surfaces).

(ii) mx is unramified in B (in the sense of algebraic number theory).

(iii) The induced map Spec(B)→ Spec(OX,x) is étale at mx.

One special case where we study the étale condition is in the case of a field. Let ϕ :

Spec(A) → Spec(k) be a étale morphism with k be a field and A be any ring. Let P ∈
Spec(A), therefore ϕ(P ) = (0) ∈ Spec(k), as ϕ is unramified, then

PP = ϕ∗P ((0))AP = (0)

therefore, no prime ideal is contained in P , in other words, Spec(A) is a discrete space and by

compactness it is a finite discrete space, since A is a finitely generated k-algebra by Hilbert’s

basis theorem we have that A is Noetherian, thus A is Artinian and therefore

A '
∏

P∈Spec(A)

AP

'
∏

P∈Spec(A)

AP/PP ,

since ϕ is unramified, then AP/PP is a separable field extension of k.

Reciprocally, is clear that ifA is an étale k-algebra then the induced morphism ϕ : Spec(A)→
Spec(k) is étale. Therefore, makes sense the next definition.

Definition 3.2.5. Let k be a field. A k-algebra A is étale is A is isomorphic to a finite

product of separable field extensions of k.

For example, let f : X → P1
C be a holomorphic non constant function, where X is a compact

Riemann surface and P1
C is the Riemann sphere, then the ring of meromorphic functions of X

is an étale C(t)-algebra. The pullback f ∗ : C(t) =M(P1
C)→M(X) is a ring homomorphism

and if {Yi}ni=1 are the connected components of X, the next two rings are isomorphic:

M(X) '
n∏
i=1

M(Yi),
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for each i ∈ {1, ..., n}, Yi are compact and connected Riemann surfaces, thereforeM(Yi) are

fields of characteristic zero, thus separable extensions of C(t).

The proof of the next two statements are routine and will not be discussed here, for details

see, for example, [24].

Proposition 3.2.1. (i) Open immersions are étale.

(ii) The composition of two étale morphisms is étale.

(iii) étale morphisms are stable under base change.

Proposition 3.2.2. Let ϕ : X → Y , ψ : Y → Z. If ψ is étale and ψ ◦ ϕ is étale, then ϕ is

étale.

3.3 Finite étale coverings

In this section we define the correct algebro-geometric analogue to the notion of covering

space, the called finite étale coverings we explore some topological consequences and finally

the Galois theory of this coverings, not all the theory of this coverings is discussed here, for

more on this coverings see [49].

Definition 3.3.1. A morphism ϕ : X → Y of schemes is called finite if for every affine

open subset Spec(A) of Y , we have that ϕ−1(Spec(A)) = Spec(B) is an affine open subset

of X and the induced morphism A → B is finite, i.e., B is a finitely generated A-module.

We say that ϕ is finitely presented if A → B is finitely presented, i.e., B is a finitely

presented A-module.

The composition of two finite (respectively finitely presented) morphisms is a finite (respec-

tively finitely presented) morphism and the change base of every finite morphisms (respec-

tively finitely presented) is finite (respectively finitely presented). As every finitely presented

module is, in particular, a finitely generated module, then every finitely presented morphism

between schemes is finite. The converse holds for morphisms between locally noetherian

schemes.

As an example of finite morphisms we have that any closed immersion is a finite morphism,

and every finite morphism is closed (for details in the proofs see [24]).

Definition 3.3.2. A morphism ϕ : Y → X of schemes is a finite étale covering of X,

is a finitely presented, étale and surjective morphism of schemes.

Of course, if we only work with locally noetherian schemes, then a finite étale covering is the

same as a surjective finite and étale morphism, in the general case, we have to work with

this extra assumption.
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For a scheme X, let FÉtX be the category of finite étale coverings of X, i.e., an object

in FÉtX is a finite étale covering ϕ : Y → X, a morphism in FÉtX from ϕ1 : Y1 → X to

ϕ2 : Y2 → X is an scheme morphism ψ : Y1 → Y2, such that the next diagram is commutative

Y1
ψ //

ϕ1   

Y2

ϕ2~~
X

A finite étale covering is in particular affine. Then if ϕ : X → Spec(k) is a finite étale

covering of X, then X is affine, let X = Spec(A), since ϕ is in particular étale, we know

that A is a k-algebra étale, equivalently A '
∏ n

i=1
ki, where ki is a separable extension

of k. As ϕ is in particular finite, then ki is a finite k-module, or equivalently a ki finite

separable extension of k. We say than a k-algebra A is finite étale if A '
∏ n

i=1
ki, where ki

are finite and separable extensions of k. Reciprocally if A is a finite étale k-algebra, then

Spec(A)→ Spec(k) is a finite étale covering. Denote by FÉtk be the category of finite étale

k-algebras. Restricting the equivalence Spec we have the next result.

Theorem 3.3.1. The functor Spec : FÉtk → FÉtSpec(k) is an equivalence of categories.

For any scheme X and any field k, we denote by X(k) the set of k-rational points of X, i.e.,

X(k) = Hom(Spec(k), X). For example, if X is a non-singular C-variety, then X(C) is a

complex manifold.

The next beautiful theorem show us a deep connection between finite étale coverings and

finite cover spaces in the complex case and his proof can be found in [9].

Theorem 3.3.2. (Grothendieck-Riemann existence theorem)

If X is a C-variety, then for every finite étale covering ϕ : Y → X, the map ϕ(C) : Y (C)→
X(C) is a finite covering space. Moreover, the functor

Hom(Spec(C), ) : FÉtX → FCovX(C),

is an equivalence of categories.

First, we explore some properties of finite étale coverings, then the notion of geometric point

and some topological relations with finite étale covers.

Definition 3.3.3. A morphisms ϕ : X → Y is said to be separated if the induced morphism

∆ : X → X ×Y X is a closed immersion.

We know that the Zariski topology in some schemes, for example varieties, is too coarse to

have good separation properties in the usual sense of topology, like the Hausdorff axiom of

separation. Again, in the case of varieties over a closed field rarely a variety is Hausdorff

(only the finite points), however they satisfies that the structure morphism over its ground

field its separated, separated morphisms play the role of the Hausdorff axiom in schemes and

reflects the intuitive idea that the varieties satisfies a separation property of points, not in

the classical topological sense but in the algebraic geometric sense.
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Proposition 3.3.1. Let ϕ : Y → X and ψ : X → Z be morphisms of schemes. If ψ ◦ ϕ is

fnite and ψ is separated, then ϕ is finite.

Proof. Since ψ is separated, then the induced morphism ∆ : X → X ×Z X is a closed

immersion. In particular, it is finite, then the base change

∆×X idY : X ×X Y → (X ×Z X)×X Y ,

is finite too. But the previous morphism is isomorphic to the graph morphism

Γϕ : Y → Y ×Z X

and therefore Γ is finite. On the other hand, considering the next tensor product

Y ×Z X

p1

��

p2 // X

ψ

��
Y

ψ ◦ ϕ
// Z

by hypothesis ψ ◦ ϕ is finite and therefore p2 is finite. But ϕ = p2 ◦ Γϕ and therefore ϕ is

finite.

Proposition 3.3.2. Let ϕ : Y → X be a finite étale covering of X. If s : X → Y is section

of ϕ, then s is an isomorphism between X and some closed and open subscheme of Y . In

particular, if X is connected, then ϕ is an isomorphism of X with some connected component

of Y .

Proof. Since ϕ and ϕ ◦ s = idX are finite étale, then s is finite étale. Then the image of s is

open because s is étale and since s is a finitely presented morphism, then the image of s is

closed. Let Z = s(X) be the open and closed subscheme of S (with its canonical structure

as an open subscheme), then ϕ : X → Z is an isomorphism, with inverse s|Z : Z → X.

Definition 3.3.4. Let X be an scheme. A geometric point of X is a morphism x :

Spec(k)→ X, where k is an algebraically closed field.

The geometric points of an scheme X can not identified with points of X, but also identified

with points x ∈ X and inclusion of the residual field k(x) of x into k, an algebraically closed

field. For details see [Hartshorne Exercise]. Once we introduce this class of points we have

to justify the reason of their introduction and define how to evaluate in this points, what it

mean the fiber on a geometric point, etc.

If ϕ : Y → X is a morphism of schemes and y : Spec(l)→ Y is a geometric point, then the

evaluation of ϕ in y, denoted by ϕ(y), is the composition of morphisms ϕ ◦ y.
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Proposition 3.3.3. Let Z be a X-connected scheme and ϕ1, ϕ2 : Z → Y be finite étale

X-morphisms. If ϕ1(z) = ϕ2(z), for some geometric point z : Spec(k)→ Z, then ϕ1 = ϕ2.

Proof. We can assume that Z = X, otherwise we can take the change base of all the

morphisms involved by Z and the resultant morphisms satisifies the same hypothesis, since

finite étale morphisms are stable under base change. Under this assusmption ϕ1, ϕ2 are two

Z-morphisms, then they are sections of the structure morphism Y → Z, therefore they are

isomorphisms between Z and a connected component of Y , since Z is connected. But by

hypothesis they coincide at least in one point and therefore ϕ1(Z) = ϕ2(Z). Thus, the

composition ϕ−1
1 ◦ϕ2 : Z → Z makes sense and moreover is an Z-automorphism of Z, hence

it is the identity automorphism of Z, in other words, ϕ−1
1 ◦ϕ2 = idS and finally ϕ1 = ϕ2

Definition 3.3.5. Let ϕ : Y → X be a morphism of schemes and x : Spec(k) → X be

a geometric point of X. The geometric fiber of x in Y , denoted by Yx, is the scheme

Y ×X Spec(k).

In the same situation of the last definition if (0) is the unique point of Spec(k) and x =

x(0), the geometric fiber Y ×X Spec(k) has underlying topological space homeomorphic to

ϕ−1(x). Some topological properties of the geometric fiber Yx can be thinking in terms of

the topological fiber ϕ−1(x).

Let X be a S-scheme, we denote by Aut(X|S) be the group of S- automorphisms of X. The

natural action of Aut(X|S) can be carried to any geometric fiber. For every geometric point

s : Spec(k)→ S of S, define the action

. : Aut(X|S)×Xs → Xs

(σ, y) 7→ σs(y),

where σs : Xs → Xs is the base change of the automorphism σ. If ϕ : X → S is the structure

morphism of X and s = s((0)), then this action identifies with

. : Aut(X|S)× ϕ−1(s) → ϕ−1(s)

(σ, y) 7→ σ(y).

Note the similarity of the action define below and the natural action of the Galois group in

a separable extension of fields, and the similarity with this action with the action of decks

transformations in a covering space.

Proposition 3.3.4. If ϕ : X → S is a connected finite étale covering then Aut(X|S) acts

freely in geometric fibers, i.e., the unique element of Aut(X|S) that fixes one point in the

geometric fiber is the identity element.

Proof. Let s : Spec(k) → S be a geometric point, and s be the associated point in S. If

σ ∈ Aut(X|S) satisfies that σ(y) = y, for some y ∈ ϕ−1(s) then consider the algebraic closure

k(y) of the residual field of y. We can construct the geometric point y : Spec(k(y) → X of

X and note that ϕ(y) = idX(y), therefore ϕ = idX .
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Corollary 3.3.1. If ϕ : X → S is a connected, finite étale covering, then Aut(X|S) is finite.

Proof. Let s : Spec(k) → S be a geometric point of S and s be the associated point of S.

Fixing a point x ∈ ϕ−1(s), consider the function

f : Aut(X|S) → ϕ−1(s)

σ 7→ σ(x),

the previous proposition implies that f is injective and as ϕ−1(s) is finite (since ϕ is finite

and therefore quasi-finite), then the assertion follows.

Following the similarity between the finite étale coverings of a scheme and the separable

extension of a field (or even the similarity with covering spaces), we define Galois objects in

the category of FÉtX , we will see how deep is this similarity and some beautiful consequences

of this connections.

Definition 3.3.6. A connected finite étale covering ϕ : X → S is called a Galois covering

of S if Aut(X|S) acts transitively in each geometric fiber.

The next theorem justify why introduce geometric points, instead of work with classical

points: The fiber in geometric points does not change point by point. This remind us a

similar situation in algebraic topology.

Proposition 3.3.5. Let ϕ : X → S be a connected finite étale covering of S. If s1 :

Spec(k1)→ S and s2 : Spec(k2)→ S are two geometric points, then the cardinal numbers of

the geometric fibers Xs1 and Xs2 are equal.

Definition 3.3.7. The index of a connected, finite, étale covering is the cardinal number of

one (all) geometric fiber.

Note that the index of a connected, finite, étale covering is always a natural number because

the cardinal number of the fiber is always a natural number. Also, if ϕ : X → S is a

connected, finite and étale covering of S, then X is a Galois covering of S if and only if

Aut(X|S) acts transitively in one geometric fiber. Indeed, one direction is trivial, for the

other one if we suppose that Aut(X|S) acts transitively in one geometric fiber, for example

in Xs, for some geometric point s : Spec(k)→ S, fixing a point x ∈ Xs, then the function

f : Aut(X|S) → ϕ−1(s)

σ 7→ σ(x)

is not only injective, in addition it is surjective, therefore Aut(X|S) have cardinal number

equal to the index of ϕ and therefore X is Galois (in any case ϕ acts freely in fibers).

Recall that any separable extension of a fields have a Galois closure, in the sense that is the

minimal Galois extension containing a separable extension. The same is true in the case of

scheme theory.
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Proposition 3.3.6. If ϕ : X → S is connected, finite and étale covering of S, then there

exists ψ : Y → X a Galois covering of X, such that ϕ ◦ ψ : Y → S is a Galois covering

of S and the next universal property holds: For every connected, finite and étale covering

φ : Z → X of X if ϕ ◦ φ : Z → S is a Galois covering of S, then there exists a unique finite

étale morphisms α : Z → Y such that the next diagram is commutative

Z α //

φ   

Y

ϕ~~
X

Y is unique up to isomorphisms and is called the Galois closure of ϕ : X → S.

Proof. Let s : Spec(k)→ S be a geometric point of S, as ϕ : X → S is, in particular finite,

then it is quasi-finite and therefore the geometric fiber X ×S Spec(k) has a finite number of

elements. Let x1, ...xn, be such elements, in other words, for every i ∈ {1, ..., n} we have a

geometric point

xi : Spec(k)→ X,

and denote by xi = xi(0) be its corresponding points of X. By universal property of the

fiber product, we have a morphism x : Spec(k)→ Xn, where Xn = X ×S ...×sX (n-times),

such that pi ◦ x = xi, where pi : Xn → X is the canonical i-th projection. Let P be

the connected component of Xn such that the image of x is contained in P . Consider the

inclusion morphism i : P → X, then the morphism ψ := p1 ◦ i : P → X is finite étale (since

p1 is a change of base of a finite étale morphism).

P is a Galois covering of X: Indeed, for every i, j ∈ {1, ..., n} consider the proyection

pi,j : Xn → X ×S X in the i-th and j-th coordinate. As ϕ : X → S is finite étale, then we

have that the diagonal morphisms ∆ : X → X×SX is open and closed. If P∩p−1
i,j (∆(X)) 6= ∅,

then by the connectedness of P , we have that P ⊆ p−1
i,j (∆(X)) (otherwise P ∩p−1

i,j (∆(X)) and

P ∩ (p−1
i,j (∆(X)))c is a disconnection of P ), this is a contradiction, since x ∈ P \ p−1

i,j (∆(X))

(the i-th and j-th coordinates of x are different). Thus P ∩ π−1
i,j (∆(X)) = ∅ therefore for

every i, j ∈ {1, ..., n}. Thus all the points in P have different coordinates.

Note that

Xn
s = Xn ×S Spec(k)

= X ×S ...×S X ×S Spec(k)

= X ×S Spec(k)×S ....×S X ×S Spec(k)

= Xs ×S ...×S Xs,

and therefore Ps is a subset of {x1, ..., xn}n, but we prove that the points in P have different

coordinates, therefore there exists a subgroup A of the group Sn of the permutations in

n-words, such that
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Ps = {(xσ(1), ..., xσ(n)) ∈ Xn|σ ∈ A}.

An element σ ∈ A, induces an automorphism σ̂ : Xn → Xn, such that σ̂((xi)) = (xσ(i))

(induced by the identity morphism X → X where the left X corresponds to the i-th element

of the product Xn and the right X corresponds to the σ(i)-th element of the product Xn).

Furthermore, σ̂ restricts to an automorphism of P , since σ̂(x) ∈ P (see the description of the

geometric fiber Ps), and σ̂(P ), P are component connected components containing x, then

σ̂(P ) = P . Thus, the element σ̂|P ∈ Aut(P |S) send the geometric point (xi) in the geometric

point (xσ(i)), since A is a subgroup of Sn, this implies that Aut(P |S) acts transitively in one

geometric fiber and therefore, P is a Galois covering of S.

It remains to prove the universal property, let φ : Z → X, be a connected finite étale covering

of X, such that ψ ◦ φ : Z → S is a Galois covering. Let z ∈ Zx, note that z ∈ Zs, since Z is

a Galois covering of S, there exists automorphisms pi ∈ Aut(Z|S), such that φ ◦ pi(z) = xi.

The universal property of the fiber product implies that there exists a unique morphism

α : Z → Xn, such that pi ◦ α = φ ◦ pi. In particular we know that x ∈ α(Z) and since Z is

connected, this implies that Z ⊆ P , therefore ϕ factors through α and ψ

Before we state one of the principal theorems about Galois coverings, we have to study

quotients by certain group actions. Let X be an S-scheme and G be a subgroup of Aut(X|S).

G acts on X if we define the next action

G×X → X

(σ, x) 7→ σ(x),

at level of topological spaces, we know what it means the quotient of X by G. But, what

it means the quotient of a scheme by a group action? The next definition is a categorical

view of this question, but next to this definition we give an idea of how to construct this

quotients.

Definition 3.3.8. Let f : X → S be an affine morphism of schemes and G is a subgroups

of Aut(X|S). A morphism π : X → Z is called the quotient of X by G, if

(i) π is affine and surjective.

(ii) π is constant in orbits, i.e., if x, y ∈ X, satisfies that Orbx = Orby, then π(x) = π(y).

(iii) If λ : X → Y is an affine, surjective and constant in orbits morphism, then there exists

a unique morphism β : Z → Y , such that the next diagram is commutative

X λ //

π
  

Y

Z
β

??

in this case we denote Z by X/G.
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Proposition 3.3.7. If ϕ : X → S is an affine, surjective morphism and G is a subgroup of

Aut(X|S), then exists a quotient of X by G.

We give an sketch of this prove, the idea is to construct a locally ringed space X/G and a

morphism of locally ringed spaces π : X → X/G, then prove that X/G is an scheme. The

underlying topological space of X/G is the topological quotient of the space of X by the

action of G. The sheaf OX/G is defined in every open subset U of X, by

OX/G(U) = π∗(OX)(U)G

= {g ∈ π∗(OX)(U)|σ(g) = g, for every σ ∈ G},

where π∗(OX), denotes the pullback via π.

We want to prove that (X/G,OX/G) is a scheme. We can reduce it to the affine case, i.e.,

where X = Spec(B), S = Spec(A) and ϕ is induced by a ring homomorphim f : A → B.

Let BG be the subring of B of G-invariants, the inclusion map B → BG, produces a

scheme morphism p : Spec(B) → Spec(BG), using that BG is integral over B, we can

prove that p is surjective. Now, the idea is construct an isomorphism of locally ringed spaces

ψ : X/G→ Spec(BG), such that the next diagram is commutative

Spec(B)

π

zz

p

&&
X/G ϕ

// Spec(BG)

and this prove that X/G is an affine scheme. For every x ∈ Spec(B), we define ϕ([x]) = p(x),

where [x] denotes the class of x in X/G, this is a well-defined isomorphism as a consequence of

the chinese remainder theorem. And finally to prove isomorphism of the associated sheaves,

consider the next morphism of sheaves

φ : π∗OX →
⊕
σ∈G

π∗OX

s 7→ (σ(s)− s)σ∈G,

then ker(ϕ) = OX/G, in particular, OX/G if a quasi-coherent sheaf, therefore it is sufficent to

prove that the global sections of OX/G and OSpec(BG) are isomorphic rings, which is trivial.

This completes the proof.

Proposition 3.3.8. Let ϕ : X → S be a connected étale finite cover of S. If G is a subgroup

of Aut(X|S), then π : X → X/G is a finite étale cover of X/G and the induced morphism

ψ : X/G→ S is a finite étale cover of S.

Proof. Note that ϕ is in particular an affine surjective morphism, then there exists the

quotien π : X → X/G. We first prove that the induced morphism ψ : X → S is a finite

étale covering of S. By the local behaviour of finite étale coverings, there exists a locally

free morphism F : Y → S, such that
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X ×S Y ' F × Y ,

where F is a finite set. The action of G in X, can be extended to an action of G in X ×S Y ,

if we define

G× (X ×S Y ) → X ×S Y
(σ, y) 7→ fσ(y),

where fσ = σ × idY (doing the base change of the automorphism σ : X → X by Y ). This

action, in particular, induces a natural action on F and we have the next isomorphism

(X ×S Y )/G ' (F/G)×S Y .

Consider the natural morphism

X ×S Y → (X/G)×S Y ,

this morphism is constant in G-orbits and therefore can be factorized in the quotient (X ×S
Y )/G. In other words, there exists a morphism

(X ×S Y )/G→ (X/G)×S Y ,

we want to show that this morphism is actually an isomorphism. We want to prove it

locally and using cocycle conditions we can glue this isomorphism to check that the previous

morphism is an isomorphism. Let Spec(A) be an affine open subset of S sufficiently small

such that ϕ−1(Spec(A)) = Spec(B) is an affine open subset of X, F−1(Spec(A)) = Spec(C)

is an affine open subset of Y , with C a free A-module (F : Y → S is locally free). Then we

have to prove that

BG
⊗

AC ' (B ⊗A C)G,

this is trivially true because the action on Y is trivial. Therefore,

(X ×S Y )/G ' (X/G)× Y
' (F/G)× Y,

and therefore, (X ×S Y )/G is a finite étale covering, using again the local behaviour of the

étale morphisms.

Using that the next diagram is commutative

X π //

ϕ
��

X/G

ψ
}}

S

and that ϕ, ψ are finite étale coverings, then the same is true for π.
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Let ϕ : X → S be a Galois covering of S, we denote by FÉtXS the set of classes of S-

isomorphisms of finite étale coverings ψ : Y → S of S, such that there exists a finite étale

morphism α : X → Y , such that, the next diagram is commutative

X
α //

ϕ
��

Y

ψ��
S

Theorem 3.3.3. Let ϕ : X → Y be a Galois covering. The function

G : FÉtXS → Sub(Aut(X|S))

[Y ] 7→ Aut(X|Y ),

is a bijection, where Sub(Aut(X|S)) is the set of subgroups of Aut(X|S). The inverse func-

tion of G is

F : Sub(Aut(X|S)) → FÉtXS

H 7→ [X/H].

Moreover, we have that an element [Y ] ∈ FÉtXS is represented by a Galois covering Y → S

if, and only if, Aut(X|Y ) is a normal subgroup of Aut(X|S).

3.4 Étale fundamental group

In this section we introduce and discuss some examples of the étale fundamental group,

we explore the Grothendieck’s main theorem of étale fundamental group theory and we see

some consequences in field theory. With the idea that finite é covers of a scheme are like the

covering spaces of a topological space, it is clear how to construct a correct analogue to the

fundamental group.

Let X be a scheme and x : Spec(k)→ X be a geometric point and x the associated point of

x in X. The fiber functor of X at x is defined to be

Fibx : FÉtX → Sets

(ϕ : Y → X) 7→ ϕ−1(x)

As we mentioned before, as a set ϕ−1(X) is the same as Y ×X Spec(k), in some cases we use

the functor Fibx in the form of geometric fibers, instead as a usual set-theoretic fibers.

Definition 3.4.1. Let X be a scheme and x : Spec(k)→ X be a geometric point. The étale

fundamental group of X at x, denoted by π1(X, x), is the group of natural automorphisms

of Fibx.
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The definition of the étale fundamental group, is not too good for make computations: it is

necessary to classify all the finite étale coverings of a scheme and then compute the group

of natural isomorphisms of the fiber functor.

Let X be a complex variety and x : Spec(C) → X be a geometric point and x be the

associated point in X. Consider the next commutative diagram

FÉtX
Hom(Spec(C), ))

//

Fibx
""

FCovX(C)

Fibx
{{

Sets

where Fibx is the topological fiber functor as is defined in the first section of this chapter.

By Grothendieck-Riemann generalized existence theorem we have that Hom(Spec(C), ) is

an equivalence of categories, denote by R be its dual functor. The function

G : π1(X, x) → Aut(Fibx)

σ → F (σ)

such that, F (σ) is the natural automorphism of the functor FibX defined in every finite

covering space f : Y → X(C), in the next diagram, where the vertical arrows are the

isomorphisms associated to the equivalence R

Fibx(Y )
F (σ)Y //

��

Fibx(Y )

��
Fibx(Hom(Spec(C), R(Y )))

��

Fibx(Hom(Spec(C), R(Y )))

��
Fibx(R(Y ))

FR(Y )

// Fibx(R(Y ))

Crearly, under this definition G is a biyection. But, as we see in the section one of this

chapter, Aut(Fibx) is the profinite completion of the fundamental group π1(X(C), x). For

a group G, we denote by Ĝ the profinite completion of G. We have the next beautiful

connection between the étale fundamental group and the usual fundamental group in the

complex-case.

Theorem 3.4.1. If X is a complex variety, then πét1 (X, x) ' ̂π1(X(C), x).

In the next three examples x is a C-rational point (in particular a geometric point). Using

the previous theorem we have that
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(i) πét1 (A1
C,x) = 0,

(ii) πét1 (A1
C \ {0}, x) = Ẑ,

(iii) πét1 (P1
C \ {0, 1,∞}, x) = F̂ (x, y), where F (x, y) is the free group in the two generators

x and y.

The first example return us the intuitive idea of that A1
C is a simply connected space. Another

example, but this time coming from arithmetic is the computation of πét1 (Spec(Z, x), for some

geometric point x of Spec(Z). A finite étale covering ϕ : Y → Spec(Z) , the surjectivity of

ϕ implies that there exists y ∈ Y such that ϕ(y) = 0, the generic point of Spec(Z) since ϕ is

étale, in particular, is étale at y, then we can produce a finite unramified extension field on

the rational numbers (unramified in the sense of algebraic number theory), but this is not

posible since the absolute value of the discriminant of every number field k (other than Q
itself) is greater than 1 and therefore a prime number divides it, this prime number ramifies

in k (see [24] for details). Thus, the category of finite étale coverings of Spec(Z) is reduced

to one object Spec(Z) itself. And thus, the πét1 (Spec(Z)) = 0

Definition 3.4.2. Let X be a connected scheme. We say that X is simply connected if

πét1 (X, x) is the trivial group.

If ϕ : X → Y is a morphism and x : Spec(k) → X is a geometric point of X, then

y := ϕ(x) : Spec(k)→ Y is a geometric point of Y . Consider the change of base functor

×Y X : FÉtY → FÉtX

Z 7→ Z ×Y X,

then the next diagram is commutative

FÉtY
×Y X //

Fiby
""

FÉtY

Fibx
||

Sets

indeed, if Z is an object of FÉtY , then

Fibx ◦ ( ×Y X)(Z) = Fibx(Z ×Y X)

= Z ×Y X ×X Spec(k)

= Z ×Y Spec(k)

= Fiby(Z).
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Therefore, for every σ ∈ πét1 (X, x), we can define

F (σ) : Fiby → Fiby

such that F (σ)Z = σZ×YX , for every object Z of FÉtY . F (σ) ∈ πét1 (Y, y) (it is a natural

automorphism of Fiby with inverse F (σ−1)), and therefore we define a function

πét1 (ϕ) : πét1 (X, x) → πét1 (Y, y)

σ 7→ F (σ),

moreover, πét(ϕ) is a group homomorphism , indeed for σ, θ ∈ πét1 (X, x),

F (σ ◦ θ)Z = (σ ◦ θ)Z×YX
= σZ×YX ◦ θZ×YX
= F (σ)Z ◦ F (σ)Z .

Let X be a scheme. We say that (X, x) is a pointed scheme with a k-valued point if k is

an algebraically closed field and x : Spec(k) → X is a geometric point of X. A morphism

of a pointed schemes ϕ : (X, x) → (Y, y) is a morphism of schemes ϕ : X → Y , such that

ϕ(x) = y. Let Schk be the category of pointed schemes with a k-valued point. Moreover,

we have that.

Theorem 3.4.2.

πét1 : Schk → Grp

(X, x) 7→ πét1 (X, x),

is a (covariant) functor, where Grp is the category of groups.

We saw in the section 1 of this chapter under some hypothesis over a topological space X,

the (topological) fiber functor Fibx, for a point x ∈ X, is representable, i.e., there exists a

covering space X̃ → X, we have a natural isomorphism Fibx ' Hom(X̃, ), and moreover,

we know that X̃ is the universal covering space. In the section 2 of this chapter, we see how

the existence of universal finite étale covering may fail with an example, therefore we dont

have faith in that the (étale) fiber functor Fibx be a representable functor. But, there is a

similar property in the étale case?

Definition 3.4.3. Let F : C → Set be a funtor. We say that F is prorepresentable is

there exists an inverse system (Pα, φα,β) of objects in C, such that the next two functors are

naturally isormorphic lim−→Hom(Pα, ) ' F .

In the category of Sets we have the next characterization of limits. Let (Xi, fij)i,j∈I be a

directed system of sets, then the directed limit is a quotient of the disjoint union,
⊔
i∈I

Xi,

where x ∈ Xi is identified with y ∈ Xj if, and only if there exists k ∈ I, with k ≥ i, j, such

that fk,i(x) = fk,j(y).
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Proposition 3.4.1. If X is a connected scheme and x : Spec(k)→ X is a geometric point

of X, then the functor Fibx : FÉt : X → Sets is prorepresentable.

Proof. Let Λ be the set of Galois coverings of X. For every Pα ∈ Λ we fix a point

pα ∈ Fibx(Pα). With this fixed points in every element of Λ, we can define the next or-

der for Pα, Pβ ∈ Λ, we say that Pα ≤ Pβ if there exists a X-morphism φα,β : Pβ → Pα,

such that φα,β(pβ) = pα. Notice that if Pα ≤ Pβ, then there exists a unique X-morphism

φα,β : Pβ → Pα, such that φα,β(pβ) = pα, indeed, if ϕ : Pβα is a X-morphism such that

ϕ(pβ) = pα, then we have that ϕ(pβ) = φα,β(pα). Let l be the residual field of pβ, taking

and algebraic closure l of l, the inclusion map l ↪→ l (after composing with an appropriate

X-morphism of schemes Spec(l) → Pβ) induces a geometric point pβ : Spec(l) → Pβ, with

associated point pβ. Moreover we have that ϕ(pβ) = φα,β(pβ), and therefore we have that

ϕ = φα,β, by Proposition 3.3.3. In the rest of this proof, we denote by πα,β this morphism,

when exists.

There is an equivalent way to understand the same order in Λ: Pα ≤ Pβ if and only if

there exists a X-morphism φ : Pβ → Pα, One direction of the previous equivalence is trivial.

For the other one, let φ : Pβ → Pα be a X-morphism. Note that φ is surjective (Pα, Pβ are

Galois coverings of X), let c ∈ φ−1(pα), since φ is a X morphism, we have that c ∈ Fibx(Pβ).

Then we have two points pβ, c in the fiber Fibx(Pβ) and Pβ is a Galois covering of X,

therefore the action of Aut(Pβ|X) in Fibx(Pβ) is transitive, thus there (a unique) exists

σ ∈ Aut(Pβ|X) such that σ(pβ) = c, let ϕα,β = φ ◦ σ, then ϕ : Pβ → Pα is a X-morphism,

such that ϕ(pβ) = pα, this by definition is that Pα ≤ Pβ.

Let Pα, Pβ ∈ Λ, then Pα×X Pβ is a finite étale covering of X. Let Z be a connected compo-

nent of Pα×X Pβ, Z is a finite étale covering of X too. By Proposition 3.3.6 it is possible to

find a Galois closure of Z, equivalently, it is possible to find Pγ ∈ Λ, with an X-morphism

PΓ → Z, therefore we have the next diagram of X-schemes

Pγ

��
Z // Pα ×X Pβ

��

// Pβ

Pα

in particular, we have X-morphisms Pγ → Pα and Pγ → Pβ, equivalently as we saw,

Pα ≤ Pγ and Pβ ≤ Pγ, therefore there exists a unique X-morphisms φα,γ : Pγ → Pα
and φβ,γ : Pγ → Pβ, such that φα,γ(pγ) = pα and φβ,γ(pγ) = pβ. Thus, (Pα, φα,β) is a inverse

system of objects in FÉtX .
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For every Pα ∈ Λ and every finite étale cover Y of X, let

fα : Hom(Pα, Y ) → Fibx(Y )

ϕ 7→ Fibx(ϕ)(pα).

If Pβ ∈ Λ, such that Pα ≤ Pβ, we have a function

φ̃α,β : Hom(Pβ, Y ) → Hom(Pα, Y )

ϕ 7→ ϕ ◦ φα,β,

and the next diagram is commutative

Hom(Pβ, Y )

fβ
!!

φ̃α,β // Hom(Pα, Y )

fα
}}

Fibx(Y )

Indeed if ϕ ∈ Hom(Pβ, Y ), then

fα ◦ φ̃α,β(ϕ) = fα(ϕ ◦ φα,β)

= Fibx(ϕ ◦ φα,β)(pα)

= Fibx(ϕ) ◦ Fibx(φα,β)(pα)

= Fibx(ϕ)(Fibx(φα,β)(pα))

= Fibx(ϕ)(pβ)

= fβ(ϕ)

Thus, the function fα, induces a function fY : lim−→
Pα∈λ

Hom(Pα, Y )→ Fibx(Y ), for every finite

étale cover Y of X. Explicitly,

fY : lim−→
Pα∈λ

Hom(Pα, Y ) → Fibx(Y )

[ϕ] 7→ fα(ϕ), if ϕ ∈ Hom(Pα, Y )

this is a well defined function and moreover f = {fY |Y ∈ Obj(FÉtx)} is a natural trans-

formation. Furthermore f is a natural isomorphism, only we have to construct an inverse

function gY of fY , for every finite étale cover of X. Without lose of generality we can sup-

pose that Y is a connected scheme (otherwise take the connected components of Y ). Let

y ∈ Y , then by Proposition 3.3.6, there exists a Galois closure f : Pγ → Y of Y , in particular

Pγ ∈ Λ, let c ∈ f−1(y). Using the fact that Pγ is Galois over X and that c, pγ ∈ Fibx(Pγ),
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there exists a (unique) automorphism σ ∈ Aut(Pγ|X), such that σ(pβ) = c, therefore we

have that the X-morphism F = f ◦ σ : Pγ → Y , satisfies that F (pβ) = y. Define

gY : Fibx(Y ) → lim−→
Pα∈λ

Hom(Pα, Y )

y 7→ [F ]

as constructed below. We want to prove that fY and gY are inverse one of each other.

Indeed, let y ∈ Fibx(Y ),

fY ◦ gY (y) = fY (gY (y))

= fY ([F ])

= fY ([f ◦ σ])

= fγ(f ◦ σ)

= Fibx(f ◦ σ)(pγ)

= y

as we seen before. If [ϕ] ∈ lim−→
Pα∈λ

Hom(Pα, Y ), with ϕ ∈ Hom(Pα, Y ), then

gY ◦ fY ([ϕ]) = gY (fY ([ϕ]))

= gY (fα(ϕ))

= gY (Fibx(ϕ)(pα))

= [F ]

where F : Pγ → Y , is a X-morphism, such that F (Fibx(ϕ)(pα)) = y. Since ϕ : Pα → Y is a

X-morphism, then there exists a unique morphism θ : Pα → Pγ, such that the next diagram

is commutative

Pα
θ //

ϕ
  

Pγ

F��
Y

(Pγ is the Galois closure of Y ). Since F ◦ φγ,α(pα) = y, then we have F ◦ φγ,α(pα) = y for

suitable geometric points of Pα and Y , respectively. Thus by Proposition 3.3.3, we have

that F ◦ φγ,α = ϕ, and by the uniqueness of θ we have that θ = φγ,α. Equivalentely, via the

function

φ̃γ,α : Hom(Pγ, Y )→ Hom(Pα, Y ),

we have that φ̃γ,α(F ) = ϕ = α̃,α(ϕ), this means, in particular that [F ] = [ϕ], and therefore

gY ◦ fY ([ϕ]) = [ϕ]. Finally, we conclude that f is a natural biyection and therefore Fibx is

a pro-representable functor.



3.4 Étale fundamental group 57

Definition 3.4.4. Let (Pα, φα,β)α,β∈Λ be a inverse system of objects in a category C. An

automorphism of this system is a collection of automorphisms φα : Pα → Pα for each

α ∈ Λ, such that for every α, β ∈ Λ with α ≤ β, the next diagram is commutative

Pβ
φα,β //

φβ
��

Pα

φα
��

Pβ
φα,β

// Pα

we denote by (φα)α∈Λ (or simply (φα), when Λ) is clear) to such automorphism.

For a inverse system of objects (Pα, φα,β), we denote by Aut(Pα, φα,β) the set of automor-

phisms of this inverse system. Aut(Pα, φα,β) is a group under compostion, i. e., is a group

with the operation (φα) ◦ (φβ) = (φα ◦ φβ).

Let X be a connected scheme and x be a geometric point of X. In the rest of this section

we use the notation and conventions of the proof in the previous proposition. If (φα) is an

automorphism of (Pα, φα,β), then it is clear that the asociated bijections φ̃α : Hom(Pα, X)→
Hom(Pα, X), are compatible with φ̃α,β. Therefore, φ̃α induces a bijection

lim−→
Pα∈λ

φα : lim−→
Pα∈λ

Hom(Pα, Y )→ lim−→
Pα∈λ

Hom(Pα, Y ),

for every finite étale cover Y ofX, which is characterized for ϕ ∈ Hom(Pα, X), by lim−→
Pα∈λ

φα([ϕ]) =

[ϕ ◦ φα].

Proposition 3.4.2. If X is a connected scheme and x is a geometric point of X, the function

F : Aut(Pα, φα,β) → πét1 (X, x)

(φα) 7→ f ◦ lim−→
α∈λ

φ̃α ◦ f−1

is bijective. Where,

f : lim−→
Pα∈λ

Hom(Pα, )→ Fibx

is the natural isomorphism described in the proof of the previous proposition.

Proof. First, we prove that F is surjective.

For every Pα ∈ Λ, we have an automorphism

σPα : Fibx(Pα)→ Fibx(Pα),
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for every α, let qα = σPα(pα). Since Pα is a Galois covering of X, then there exists (a

unique) φα ∈ Aut(Pα|X), such that φα(pα) = qα. First, we want to prove that (φα) is an

automorphism of the inverse system (Pα, φα,β). Since σ is a natural automorphism of Fibx,

then we know that the next diagram is commutative

Fibx(Pα)

Fibx(φα,β)

��

σPα // Fibx(Pα)

Fibx(φα,β)

��
Fibx(Pβ) σPβ

// Fibx(Pβ)

In particular, we know that

Fibx(φα,β)(qα) = Fibx(φα,β)(σPα(pα))

= σPβ(pβ)

= qβ,

Therefore, we have that φα,β(qα) = qβ, or equivalently, that φβ ◦φα,β(pα) = φα,β ◦φα(pα) and

after taking a suitable geometric point of Pα, we can conclude that φβ ◦ φα,β = φα,β ◦ φα,

using Proposition 3.3.3. Then (φα) is an automorphism of (Pα, φα,β).

Let Y be a finite étale covering of X, we have to prove that

fY ◦ lim−→
α∈λ

φα ◦ f−1
Y = σY ,

or equivalently that

fY ◦ lim−→
Pα∈λ

φα = σY ◦ fY

Let ϕ ∈ Hom(Pα, Y ), then considering the commutative diagram

Pα

ϕ

��

σPα // Pα

ϕ

��
Y σY

// Y

we have that, ϕ ◦ σpα(pα) = σy ◦ ϕ(pα), equivalently, fY ◦ φα(ϕ) = σY ◦ fY (ϕ), then the

assertion follows.
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Unfortunately, the function F described in the previous corollary is not an isomorphism of

groups. Indeed if (φα), (λα) ∈ Aut(Pα, φα,β), then

F (φα ◦ λα) = f ◦ lim−→
α∈λ

φ̃α ◦ λα ◦ f−1

= f ◦ lim−→
α∈λ

λ̃α ◦ φ̃α ◦ f−1

= f ◦ lim−→
α∈λ

λ̃α ◦ lim−→
α∈λ

φ̃α ◦ f−1

= f ◦ lim−→
α∈λ

λ̃α ◦ f−1 ◦ f ◦ lim−→
α∈λ

φ̃α ◦ f−1

= F (λα) ◦ F (φα)

but, the previous computation show that if we take the opposite group Aut(Pα, φα,β)op (the

same set but reversing the operation) of Aut(Pα, φα,β), then we have the next isomorphism

πét1 (X, x) ' Aut(Pα, φα,β)op

for every geometric point x of a connected scheme X. Note that this isomorphism not

implies that the étale fundamental group dooes not depend on a geometric point x, because

the morphisms φα,β depends on x.

Now, if we study the group Aut(Pα, φα,β), then we can see new properties of πét1 (X, x). For

every β ∈ λ let

Fβ : Aut(Pα, φα,β) → Aut(Pβ|X)

(φα) 7→ φβ.

Fβ is surjective. Indeed, let φβ ∈ Aut(Pβ|X), for every α ∈ Λ, there exists γ ∈ Λ with

α ≤ γ and β ≤ γ. In particular, we have the next X-morphisms φα,γ : Pγ → Pα and

φβ,γ : Pγ → Pβ. Let qβ = φβ,γ(pβ) and qγ ∈ φ−1
β,γ(qβ), then φα,γ(qγ) ∈ Fibx(Pα), taking a

suitable geometric point and using that Pα is a Galois covering of X, there exists a unique

automorphism φα ∈ Aut(Pα|X), such that φα(pβ) = qα. (φα) ∈ Aut(Pα, φα,β), indeed, if

β1, β2 ∈ Λ, such that β2 ≤ β1, then there exists γ ∈ Λ, with β1, β2, β ≤ γ, φβ2,γ(qγ) = qβ2

and φβ1,γ(qγ) = qβ1 . Thus,

φβ1,β2(φβ2,γ(qγ)) = φβ1,γ(qγ) ⇔ φβ1,β2(qβ2) = qβ1

⇔ φβ1,β2(φβ2(pβ2)) = φβ1(pβ1)

⇔ φβ1(φβ1,β2(pβ2))

⇔ φβ1 ◦ φβ1,β2(pβ2) = φβ1,β2 ◦ φβ2(pβ2))

⇔ φβ1 ◦ φβ1,β2 = φβ1,β2 ◦ φβ2 ,

the last equivalence holds taking a suitable geometric point and using Proposition 3.3.3.

Therefore, (φα) ∈ Aut(Pα, φα,β) and trivially Fβ((φα)) = φβ. Thus Fβ is surjective, or equiv-

alently, Aut(Pβ|X) is a quotient of Aut(Pα, φα,β). Moreover, we have the next proposition.
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Proposition 3.4.3. If X is a connected scheme, then

Aut(Pα, φα,β) ' lim←−
α∈λ

Aut(Pα|X).

Proof. Recall that in the category of groups lim←−
α∈λ

Aut(Pα|X) is a subgroup of the product

group
∏
α∈Λ

Aut(Pα|X), we denote by
∏
gα an element of this product group. Let

F : Aut(Pα, φα,β) → lim←−
α∈λ

Aut(Pα|X)

(φα) 7→
∏

Fα(φα)

it is clear that F is an isomorphism.

Corollary 3.4.1. If X is a connected scheme and x is a geometric point of X, then πét(X, x)

is a profinite group.

Proof.

πét1 (X, x) ' Aut(Pα, ϕα,β)op

' (lim←−
α∈λ

Aut(Pα|X))op

' lim←−
α∈λ

Aut(Pα|X))op

since Pα is Galois covering, in particular, a finite Galois covering we know that Aut(Pα|X)op

is a finite group, this completes the proof.

The last corollary and its prove allow us to reduce the computation of étale groups to

computations of inverse limits of automorphisms of Galois coverings. For example, let k

be a field, X = Spec(k) and x : Spec(k) → Spec(k), the geometric point induced by the

inclusion map k ↪→ k, where k is an algebraic closure of k. If ϕ : Y → Spec(k) is a Galois

covering of Spec(k), in particular, ϕ is finite étale and then Y = Spec(A), where A is a finite

étale k-algebra and ϕ is induced by the morphism k → A. Therefore, there exists finite

separable extensions k1, ..., kn of k, such that

A ' k1 × ...× kn,

then we have that Spec(A) =
⊔n
i=1 Spec(ki), but Spec(A) is a Galois covering of Spec(k), in

particular, it is a connected scheme therefore n = 1. Reciprocally, if k1 is a finite separable

extension of k, then Spec(k1) is a Galois covering of Spec(k). Thus the Galois coverings of

the spectra of a field are spectra of a finite separable extensions of k. Moreover we have the

next coequivalence of categories.
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Theorem 3.4.3. Spec : FSk → GalSpec(k) is a coequivalence of categories, where FSk is the

category of finite separable extensions of k and GalSpec(k) is the category of Galois coverings

of k

Then in the same situation of that X = Spec(k) and x : Spec(k) → Spec(k), then there

exists Pα Galois coverings of Spec(k) such that

πét1 (Spec(k), x) ' lim←−
α∈λ

Aut(Pα|Spec(k)))op.

since Pα is a Galois covering of Spec(k), then there exists finite separable extensions kα of

k, such that Pα = Spec(kα). Thus

πét1 (Spec(k), x) ' lim←−
α∈λ

Aut(Pα|Spec(k)))op

' lim←−
α∈λ

Aut(Spec(kα)|Spec(k)))op

' lim←−
α∈λ

Aut(kα|k),

the last isomorphism is true using the coequivalence Spec. But lim←−
α∈λ

Aut(kα|k) is isomorphic

to Gal(k|k). Finally, we get the next beautiful isomorphism

πét1 (Spec(k), k) ' Gal(k|k).

In one hand for spectra of a field the étale fundamental group is a incarnation of the absolute

Galois group of this field, on the other hand for a complex algebraic variety the étale fun-

damental group is a incarnation of the profinite completion of the usual fundamental group

of his complex points. In some sense, the étale fundamental group is a unifying both Galois

groups and (topological) fundamental groups.

3.5 Grothendieck’s geometrization of Galois theory

One of advantages of the definition of the étale fundamental group on scheme X (with a

geometric point x) is that πét1 (X, x) have an easy-to-define action on the (geometric) fibers

of every finite étale cover. Indeed, if ϕ : Y → X is a finite étale morphism, then we can

define the next action

πét1 (X, x)× Fibx(Y ) → Fibx(Y )

(σ, y) → Fibx(σY )(y),

(σY is the automorphism of Fibx(Y ), associated to the natural transformation σ). In this

section we study the behaviour of this actions, and connection with Galois theory.
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Definition 3.5.1. If ϕ : Y → X is a finite étale covering of X and x is a geometric point

of X. The action of πét1 (X, x) in Fibx(Y ) defined above is called monodromy action.

This name became from the usual topological case, we can think this action as associating

the ”final point” of a ”loop” (element of the étale fundamental group). A priori, this is only

a way of think and is not actually how its defined.

Proposition 3.5.1. Let ϕ : Y → X be a finite étale cover of X and x : Spec(k)→ X be a

geometric point of X. The monodromy action of πét1 (X, x) on Fibx(Y ) is continuous, where

Fibx(Y ) is doted with the discrete topology (which coincides with the topology of the scheme

Y ×X Spec(k)).

Proof. Since Fibx(Y ) has discrete topology, then show that the monodromy action is con-

tinuous is equivalent to show that for every y ∈ Fibx(Y ), the function

gy : πét(X, x) → Fibx(Y )

σ 7→ σY (y),

is a continuous function. Using that Fibx(Y ) ' lim−→
Pα∈λ

Hom(Pα, Y ) (see the section below

to avoid confusion about notation and our conventions), then there exists Pα ∈ Λ and

ϕ ∈ Hom(Pα, Y ) such that y is identified with [ϕ] (see the section below for details). Let

fα : πét(X, x) → Aut(Pα|X)op

σ 7→ σPα

hy : Aut(Pα|X)op → Fibx(Y )

θ 7→ Fibx(ϕ ◦ θ)(pα);

fα and hy are clearly continuous functions. Since ϕ(σPα)(pα) = y ([ϕ] is the morphism

identified with the point y!), then the next diagram is commutative

πét1 (X, x)
gy //

fα
��

Fibx(Y )

Aut(Pα|X)op
hy

77

Thus, gY is continuous.

Definition 3.5.2. Let G a profinite group. A G-finite set is a finite set X with a continuous

action of G on X, where G have the profinite topology and X have the discrete topology.

Morphism between G-finite sets are G-invariant maps. We denote by G−finsets the category

of G-finite sets.
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Let X be a scheme and x be a geometric point of X. The previous proposition show that

for every finite étale cover Y of X, Fibx(Y ) is a πét1 (X, x)-finite sets. Then, we can redefine

the functor Fibx by changing its target category

Fibx : FÉtX → πét1 (X, x)− finsets.

Theorem 3.5.1. (Grothendieck’s geometrization of Galois theory) Let X be a con-

nected scheme and x be a geometric point of X. The functor

Fibx : FÉtX → πét1 (X, x)− finsets,

is an equivalence of categories.

Proof. Only we need to prove that Fibx is essentially surjective. Let E be a πét1 (X, x)-finite

set, we can suppose that the action of πét1 (X, x) on E is transitive (otherwise in this proof

take the partition of E in orbits). Let x ∈ E and let

Stab(x) = {σ ∈ πét(X, x)|σ.x = x},

be the stabilizer of x. If we denote by G the action of πét1 (X, x) on E, then we have that

Stab(x) = πét1 (X, x)× {x} ∩G−1({x}),

then, using that E have discrete topology and G is a continuous function, then we have that

Stab(x) is an open subgroup of πét1 (X, x). Since πét1 (X, x) is a profinite group isomorphic to

lim←−
α∈λ

Aut(Pα|X)op. Let , for every α ∈ Λ, be the surjective function

fα : πét1 (X, x) → Aut(Pα|X)op

σ 7→ σPα

then ker(fα)α∈Λ is a system of fundamental open neighborhoods of 1. Then there exists

α ∈ Λ, such that ker(fα) ⊆ Stab(x). Let U = fα(Stab(x)), clearly U is an open subgroup of

Aut(Pα|X)op, since Aut(Pα|X)op is a discrete group. Let Y = Pα/U be the quotient of Pα
by the group U , in previous sections we see that Y is a finite étale cover of X.

Fibx(Y ) ' E: Since Y = Pα/U , then the monodromy action of πét1 (X, x) on Fibx(Y ) can

be factorized as the natural action of Pα on Aut(Pα|X)op/U , in particular, the monodromy

action is transitive and therefore we have a bijection Aut(Y |X) ' Fibx(Y ). Thus

Fibx(Y ) ' Aut(Y |X)

' Aut(Pα|X)op/U

' πét1 (X, x)/Stab(x)

' E

the last bijection is a consequence of the Stabilizer-Orbit theorem and the hypothesis that

the action on E is transitive.
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The next theorem is a deep Grothendieck’s and beautiful generalization of Galois theory and

justifies the name of the previous theorem.

Corollary 3.5.1. (Grothendieck-Galois theorem) Let k be a field and ksep be a separable

closure inside of a algebraic closure k. The functor,

Homk( , k
sep) : FÉtk → Gal(ksep|k)− finsets

is a coequivalence of categories.

Proof. Homk( , k
sep) and Fibx ◦ Spec( ) are natural isomorphic, the last functor is the

composition of an equivalence with a coequivalence and combine this with the fact that

πét1 (Spec(k), x) ' Gal(ksep|k) and the assertion follows.

At the beginning of this text was not clear what it mean exactly by a correct definition of

a path or a loop in a scheme. Now, we know that the elements of the étale fundamental

group are automorphisms of the fiber functor of a geometric point. Therefore, a loop in a

scheme X with a base (geometric) point x can be understood by a natural isomorphism of

Fibx. This is particular give us a notion of what a path in the algebro-geometric context

will mean.

Definition 3.5.3. Let X be a scheme and x1, x2 be geometric points of X. An étale path

from x1 to x2 (or simply a path) is a natural isomorphism F : Fibx1 → Fibx2. In this

section, as in the previous one, we conserve the notation and conventions about the étale

fundamental group and the fiber functor.

Proposition 3.5.2. Let X be a connected scheme. If x1 and x2 are geometric points of X,

then there exists an étale path from x1 to x2.

Proof. Fibx1 and Fibx2 are pro-represented by the same objects only the morphisms be-

tween them can change. Explicitely, let (Pα, φα,β) and (Pα, ψα,β) be inverse system of Galois

coverings of X, representing Fibx1 and Fibx2 , respectively. We want to construct a natural

isomorphism from Fibx1 to Fibx2 , thus it is sufficient to construct φα ∈ Aut(Pα|X), for every

α ∈ Λ, such that if α, β ∈ Λ with α ≤ β, then the next diagram is commutative

Pβ
φβ //

φα,β

��

Pβ

ψα,β

��
Pα

φα
// Pα

We can reduce it to prove that if α ≤ β and we have φβ ∈ Aut(Pβ|X), then we can construct

φα ∈ Aut(Pα|X), with the desired property. Let qα = ψα,β(φβ(pβ)). Since Pα is a Galois
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covering of X, then there exists a (unique) automorphism φα ∈ Aut(Pα, |X), such that

φα(pα) = qα (taking suitable geometric points of X).Therefore

ψα,β(φβ(pβ)) = qα

= φα(pα)

= φα(φα,β(pβ))

thus ψα,β ◦ φβ = φα ◦ φα,β. This completes the proof.

Similarly to the case of topological spaces an étale path from x1 to x2 induces a continuous

isomorphism πét1 (X, x1)→ πét1 (X, x2). Indeed

Let F be an étale path from x1 to x2. The function

F̃ : πét1 (X, x1) → πét1 (X, x2)

σ 7→ F ◦ σ ◦ F−1,

is clearly an isomorphism of groups. Since F̃ can be factorized through

F̃α : Aut(Pα|X)op → Aut(Pα|X)op

σFibx(Pα) 7→ FFibx(Pα) ◦ σFibx(Pα) ◦ F−1
Fibx(Pα),

then F̃ is continuous. In particular, we have the next corollary.

Corollary 3.5.2. (Independence of geometric points) If X is a connected scheme, x1

and x2 are geometric points of X, then πét1 (X, x1) and πét1 (X, x2) are isomorphic as profinite

groups.

Therefore, if X is a connected scheme, then we can associate to X the following invariant

(up to isomorphisms) πét1 (X), where πét1 (X) := πét1 (X, x), for some geometric point x of

X. Notice that, the isomorphism defined below between étale fundamental groups of the

same connected scheme with different geometric points is not natural (in the sense of category

theory). For non-connected schemes we can associate an invariant too, the étale fundamental

groupoid.

Definition 3.5.4. Let X be an scheme. The étale fundamental groupoid is the category

πét1 (X) with objects Fibx, for every geometric point x of X and a morphism in πét1 (X) is a

natural isomorphism between this functors.
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The process of thought, which feels and discov-

ers, often blindly in the shadows, with sudden

flashes of light when some tenacious false or

simply inadequate image is finally shown for

what it is, and things which seemed all crooked

fall into place, with that mutual harmony which

is their own.

Alexander Grothendieck

4.1 Anabelian geometry

In this section we revisited the first chapter of this text, adding geometric flavor to the

main theorems of the first chapter and we use as a intuition to state the main conjectures

in anabelian geometry. In the last chapter we see how étale fundamental groups are a vast

generalization of Galois groups of fields and at the same time how are the correct analogue

to fundamental groups in Algebraic geometry. We begin this geometric interpretation with

the Artin-Schreier theorem

Theorem 4.1.1. (Artin-Schreier theorem) Let k be a field. If πét1 (Spec(k), x) is a finite

group for some geometric point x of Spec(k), then we have only two options

(i) πét1 (Spec(k), x) is trivial and k is algebraically closed, or

(ii) πet1 (Spec(k), x) ' Z/2Z and k is real closed.

Thus Artin-Schreier theorem is now a theorem of rigidity of étale fundamental groups of

fields: The finiteness condition on étale fundamental groups of a field is too rigid and impose

field-theoretic conditions on how this field must be. This is an example of how group the-

oretic conditions on étale fundamental groups implies algebraic conditions (or equivalently

geometric conditions) and this is part of the philosophy of the Anabelian geometry program.

Another stronger result in this direction is the Neukirch-Uchida theorem that now can be

restate as



4.1 Anabelian geometry 67

Theorem 4.1.2. (Neuckirch-Uchida) Let k and l be number fields, x, y be geometric

points of Spec(k) and Spec(l), respectively. k and l are isomorphic as fields if and only if

πét1 (Spec(k), x) and πét1 (Spec(l), y) are isomorphic as profinite groups.

In this case, we see that the isomorphy type of a number field is fully encoded in their étale

fundamental group.

To finish this section we discuss and introduce basic ideas behind Anabelian geometry pro-

gram. This program was introduced by Grothendieck in [8] and predicts the existence of

some schemes for which their geometry and arithmetic are codified in their étale fundamental

group. We present the conjectures of Grothendieck and some comments on its proofs.

The first anabelian conjecture proposed by Grothendieck and proved in full generality by

Pop is the next theorem.

Theorem 4.1.3. (Grothendieck’s birrational anabelian conjecture, Pop) Let K

and L be fields finitely generated over Q. The function

Iso(K,L) → Out(GalL, GalK)

α 7→ α ◦ ◦ α−1,

is a bijection.

Note the similarity of this conjecture with the Galois characterization of number fields studied

in the chapter 1 of this text. The Grothendieck’s birrational anabelian conjecture remained

open until Pop in [Pop] proves it. As well as the number field case the idea behind the proof

is first establish a local correspondence. Of course, is not the same local correspondence

that the number field case. Explicitly the idea is to take X and Y models of K and L,

respectively and construct a birational invariants X1
K , Y1

L of X and Y , respectively, in the

following way

(i) First construct XK , taking the projective limit of proper models of K. Similarly

construct YK .

(ii) In this new spaces Pop give sense of what points of codimension k (for k ∈ Z) means

and take X1
K the points of XK of codimension 1.

(iii) The birational interpretation of X1
K is the set of valuations v ofK, such thatKr.dim(k(v)) =

Kr.dim(K)− 1 (here Kr− dim( ) is the Kronecker dimension, or equivalently the co-

homological dimension minus one).

Now if [σ] ∈ Out(GalL, GalK), then σ induces a correspondence

ϕσ : X1
K → Y1

L
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The next in Pop’s term is take back the geometry to this correspondence. To do that, a

subset D of Zariski prime divisors of K is said geometric if there exists a quasi-projective,

normal model X such that D is a subset of Wéil divisors of X, denote by GeoDiv(K)

be the set of geometric Zariski prime divisors of K. By Hironaka resolution of singual-

ities theorem (recall that we are working in zero-characteristic) ϕσ induces a bijection

ϕ : GeoDiv(K) → GeoDiv(L). And finally using induction on dimensions and Kummer

theory we obtain the field isomorphism required from K → L. Of course this is a not fair

summary of Pop’s prove, we strong recommend read the original prove in [43].

The previous Pop’s theorem is also know as the zero-dimensional Grothendieck’s anabelian

conjecture before we state the next conjecture we need to introduce the next central defini-

tion.

Definition 4.1.1. Let k be a perfect field. Let X be a smooth connected curve and X̃ be a

smooth completion of X. We say that X is a hyperbolic curve if 2g − 2− r < 0, where g

is the genus of X̃ and r is the cardinal of closed points of X̃ \X.

This curves are the objects that appears in the one dimensional Grothendieck’s section

conjecture. The next result makes sense to the name Anabelian

Proposition 4.1.1. Let X be a curve over a field of characteristic zero. X is an hyperbolic

curve if and only if πét1 (Xk, x) is not abelian, for some geometric point x of Xk.

A vague idea behind Grothendieck’s anabelian program is that for a scheme X if πét1 (Xk, x)

is less abelian, then more information about X is contained in this group and an anabelian

scheme is a scheme that πét1 (Xk,x) the sufficiently not abelian to capture all the arithmetic

and geometric information about X.

Theorem 4.1.4. (Grothendieck’s curves anabelian conjecture, Tamagawa- Mochizuki)

Let X and Y be hyperbolic curves over field k, finitely generated over Q. Then, the natural

function (induced by functoriality of πét1 )

Iso(X, Y )→ Out(πét1 (X, x), πét1 (Y, y)),

is a bijection.

This theorem has proved first in the affine case by Tamagawa in [55] and the general result

proved by Mochizuki [? ], and is much more difficult to understand than the case proved

by Tamagawa, uses result in p-adic fields and then using methods of p-adic Hodge theory

to complete the proof. But, as well as the previous cases one fundamental step is this two

proofs is try to construct local correspondence, each one requires to develop a local theory

and use different results to construct the desired isomorphism. If the reader wants to consult

a great introduction to anabelian geometry, we recommend [44].
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4.2 The exact homotopy sequence

In this section we study a exact sequence which is fundamental to state and study Grothendieck’s

section conjecture. The exact homotopy sequence is a bridge between arithmetic and geome-

try, because this sequence involves Galois groups (coming from arithmetic) and fundamental

groups coming from schemes over an algebraically closed fields. Before to state and prove the

exactness of the homotopy sequence, we have to study some properties of πét1 as a functor.

Recall that if ϕ : X → Y is morphism of schemes x, y are geometric points of X, Y

respectively and ϕ(x) = y, then the next diagram is commutative

FÉtY
×Y X //

Fiby
""

FÉtY

Fibx
||

Sets

Thus, the next homomorphism of groups is well-defined

πét1 (ϕ) : πét1 (X, x) → πét1 (Y, y)

σ 7→ πét1 (σ),

where πét1 (σ) is the natural automorphism of Fiby, defined in a finite étale cover Z of Y as

πét1 (σ)Fiby(Z) = σFibx(X×Y Z). Moreover, this homomorphism of groups commutes with the

monodromy action, i.e., the next diagram is commutative

πét1 (X, x)× Fibx(X ×Y Z)

$$
πét1 (ϕ)× id

��

Fiby(Z) = Fibx(X ×Y Z)

πét1 (Y, y)× Fiby(Z)

::

Definition 4.2.1. Let X be an scheme. A finite étale covering Y of X is trivial if Y is

isomorphic as X-scheme to
n⊔
i=1

X, for some n ∈ Z+ (the structure morphism of
n⊔
i=1

X is⊔n
i=1 idX).

It is clear that the only X-automorphism of
n⊔
i=1

X is the identity and therefore the same is

true for every trivial finite étale cover of X.

First, we study some geometric conditions on X are reflected as group properties of πét1 (X, x)

or group properties of homomorphisms of fundamental groups.
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Proposition 4.2.1. Let X be a connected scheme and x be a geometric point of X. A finite

étale covering Y of X is trivial if and only if the action of πét1 (X, x) on Fibx(Y ) is trivial.

Proof. If Y is a trivial étale covering of X, the action of monodromy on Fib : x(Y ) is defined

by

πét1 (X, x)× Fibx(Y ) → Fibx(Y )

(σ, y) 7→ σY (y),

but σY is an X-automorphism of Y , as we see before it is the identity of Y . Therefore, the

monodromy action in this case is trivial.

If the monodromy action of πét1 (X, x) on Fibx(Y ) is trivial, let n be the cardinal number of

the (finite) set Fibx(Y ), then Fibx(
n⊔
i=1

X) is a set of with n elements and therefore, there

exists a bijection between Fibx(Y ) and Fibx(
n⊔
i=1

X), this bijection clearly preserves the action

of πét1 (X, x) because in each case it is trivial. Thus, Fibx(Y ) and Fibx(
n⊔
i=1

X) are isomorphic

as πét1 (X, x)-finite sets, by Grothendieck’s geometrization of Galois theory, we have that Y

is isomorphic to
n⊔
i=1

X as X-schemes, i.e., Y is a trivial finite étale covering of X.

Proposition 4.2.2. Let ϕ : X → Y be a morphism of connected schemes, x and y be

geometric points of X and Y , respectively such that ϕ(x) = y. πét1 (ϕ) is the trivial group

homomorphism if and only if for every finite étale cover Z of Y , then base change scheme

X ×Y Z is a trivial finite étale cover of X.

Proof. Suppose that πét1 (ϕ) is the trivial group homomorphism. Since πét1 (ϕ) fits in the next

commutative diagram

πét1 (X, x)× Fibx(X ×Y Z)

$$
πét1 (ϕ)× id

��

Fiby(Z) = Fibx(X ×Y Z)

πét1 (Y, y)× Fiby(Z)

::

then, the action of πét1 (X, x) on Fibx(X ×Y Z) is trivial and therefore X ×Y Z is a trivial

cover of X, by the previous proposition.

Reciprocally, suppose that for every finite étale covering Z of Y , the base change scheme

X×Y Z is a trivial cover of X, but πét1 (ϕ) is not the trivial group homomorphism. Considering
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the surjective group homomorphisms

fα : πét1 (Y, y) → Aut(Pα|X)op

σ 7→ σPα ,

we know that {ker(fα)}α∈Λ is a fundamental system of open neighborhoods of 1, which inter-

section is {1} (see chapter 2 for information about notation and our conventions). Therefore,

there exists α ∈ Λ, such that πét(ϕ)(πét1 (X, x)) 6⊆ ker(fα).

The first isomorphism theroem implies that πét1 (Y, y)/ker(fα) is a finite group, since it is

isomorphic to the finite group Aut(Pα|X)op. Moreover, πét1 (Y, y)/ker(fα) is a πét1 (Y, y)-finite

set, where the action on this set is induced by the canonical quotient homomorphism. Us-

ing Grothendieck’s geometrization of Galois theory, there exists a finite étale cover Z of Y ,

such that Fibx(Y ) ' πét1 (Y, y)/ker(fα) as πét1 (Y, y)-finite sets. The action of πét1 (X, x) on

Fibx(X ×Y Z) is not trivial, since there exists σ ∈ πét1 (X, x) such that ϕ(σ) 6∈ ker(fα) and

using that

πét1 (X, x)× Fibx(X ×Y Z)

$$
πét1 (ϕ)× id

��

Fiby(Z) = Fibx(X ×Y Z)

πét1 (Y, y)× Fiby(Z)

::

is a commutative diagram, then σ.1 6= σ (if not ϕ ∈ ker(fα)).

Proposition 4.2.3. Let X be a connected scheme and x be a geometric point of X. A

finite étale covering Y of X is connected if and only if the action of πét1 (X, x) on Fibx(Y ) is

transitive.

Proof. Suppose that Y is a connected finite étale covering of X. Let ϕ : Pα → Y be the

Galois closure of Y over X, then Fibx(ϕ) is surjective. Since the next diagram is commutative

πét1 (X, x)× Fibx(Pα) //

id× Fibx(ϕ)

��

Fibx(Pα)

Fibx(ϕ)

��
πét1 (X, x)× Fibx(Y ) // Fibx(Y )

and the monodromy action on Fibx(Pα) is transitive (Pα is a Galois covering of X), then

the action of πét1 (X, x) on Fibx(Y ) is transitive.

To prove the converse, suppose that Fibs(Y ) is a transitive πét1 (X, x)-finite set.

Let y ∈ Fibx(Y ) and σ ∈ πét1 (X, x), then σFibx(Y )
(y) is in the same connected component (of
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Y ) that y. Indeed, let C be the connected component of Y , of the point y, then C is a étale

finite covering of X, the naturality of σ implies that the next diagram commutes

Fibx(C)
σFibx(C) //

��

Fibx(C)

��
Fibx(Y ) σFibx(Y )

// Fibx(Y )

where the vertical arrows are the natural inclusions. Thus,

σFibx(Y )
(y) = σFibx(C)

(y) ∈ Fibx(C) ⊆ C,

Therefore if the action is transitive every two points must be in the same connected compo-

nent, this completes the proof.

Proposition 4.2.4. Let ϕ : X → Y be a morphism of connected schemes, x and y be

geometric points of X and Y , respectively such that ϕ(x) = y. πét1 (ϕ) is a surjective homo-

morphism group if and only if for every connected finite étale cover Z of Y , the change of

base Z ×Y X is connected too.

Proof. If πét1 is surjective. The commutative diagram

πét1 (X, x)× Fibx(X ×Y Z)

$$
πét1 (ϕ)× id

��

Fiby(Z) = Fibx(X ×Y Z)

πét1 (Y, y)× Fiby(Z)

::

implies that, the action of πét1 (X, x) on Fibx(X ×Y Z) is transitive and therefore, X ×Y Z is

connected.

Reciprocally suppose that for every finite étale cover Z of Y , the change of base Z ×X Y

is a connected finite étale cover of X, but πét1 (ϕ) is not surjective. Recall that πét1 (X, x)

and πét1 (Y, y) are profinite groups, then in particular are compact Hausdorff spaces. Then

Im(πét1 (ϕ) is a closed subgroup of πét1 (Y, y). Considering the surjective group homomorphisms

fα : πét1 (Y, y) → Aut(Pα|X)op

σ 7→ σPα ,

we know that {ker(fα)}α∈Λ is a fundamental system of open neighborhoods of 1. Therefore,

there exists α ∈ Λ such that ker(fα)∩(Im(πét1 (ϕ)))c = ∅, equivalently, ker(fα) ⊆ Im(πét1 (ϕ)).
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Let E = πét1 (Y, y)/Ker(fα) is a πét1 (Y, y)-finite set. Therefore, there exists a finite étale cover

Z of Y , such that Fiby(Z) ' E, the commutativity of the next diagram

πét1 (X, x)× Fibx(X ×Y Z)

$$
πét1 (ϕ)× id

��

Fiby(Z) = Fibx(X ×Y Z)

πét1 (Y, y)× Fiby(Z)

::

implies that, the action of πét1 (X, x) on Fibx(X ×Y Z) is trivial. Therefore X ×Y Z is trivial

but is not isomorphic to X, therefore it is disconnected. A contradiction, thus πét1 (ϕ) is

surjective.

In a profinite group a subgroup is open if and only if it is closed of a finite index. In

particular, if U is an open subgroup of πét1 (X, x) (with X a connected scheme), then the

quotient space πét1 (X, x)/U is a πét1 (X, x)-finite set (the action on this set is induced by the

canonical quotient map), moreover, the action on this set is transitive, we denote by ZU a

correspondent connected étale finite cover of X, i.e., such that Fibx(ZU) ' πét1 (X, x)/U (as

πét1 (X, x)-finite sets).

Proposition 4.2.5. Let ϕ : X → Y be a morphism between connected scheme and let U be

an open subgroup of πét1 (Y, y). Im(πét1 (ϕ)) ⊆ U if, and only if the morphism ZU ×Y X → X

has a section.

Proof. Let [z] ∈ πét1 (Y, y)/U , since the action on this set is transitive, then

πét1 (Y, y)/U = Orb[z],

by Stabilizer-orbit theorem,

πét1 (X, x)/Stab(z) ' (πét1 (Y, y)/U)/(Stab([z])/U) ' Orb[z]

, without lose of generality we can suppose that U = Stab(z). Then

Im(πét1 (ϕ)) ⊆ U ⇔ Im(πét1 (ϕ)) ⊆ Stab(z)

⇔ πét1 (X, x) acts trivially on z

⇔ πét1 (X, x) acts trivially on a connected component C of X ×Y Z
⇔ C is trivial and connected

⇔ C is isomorphic to X, as X-schemes

⇔ there exists an X-isomorphism : X → C

⇔ X ×Y Z → X has a section.

Before continue we need to prove the next lemma about the topology of profinite groups.

Recall that an closed subgroup of a profinite group is profinite too, se for example [17].
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Lemma 4.2.1. Let G be a profinite group and H be a closed subgroup of G.

(i) ∩{H ⊆ K|K is a open subgroup of G} = H.

(ii) If W is a open subgroup of H, then there exists an open subgroup V of G, such that

W = H ∩ V .

Proof. (i) Let g ∈ G\H, {gN |N is an open normal subgroup of G is a fundamental system

of open neighborhoods of g. Therefore, there exists an open normal subgroup N of G,

such that gNHc, or equivalently, gN ∩H = ∅. Recall that N is an open subgroup of

G and therefore is a closed set of finite index. Consider the canonical quotient map

p : G→ G/N ,

the quotient topology of G/N is discrete, since G/N is finite. In particular p(H)

is an open subgroup of G/N , then p−1(p(H)) is a open subgroup of G containing

H. If g ∈ p−1(p(H)), then there exists h ∈ H, such that p(g) = p(h), equivalently

h ∈ gH ∩ H, a contradiction. Therefore we find a open subgroup of G containing H

but not g, this completes the proof.

(ii) W and H are, in particular, closed subgroups of G, therefore

∩{H ⊆ K|K is a open subgroup of G} = H, and

∩{W ⊆ K|K is a open subgroup of G} = W.

Since W ⊆ H, then there exists a subset A of {W ⊆ K|K is a open subgroup of G}
such that

W = ∩{H ⊆ K|K is a open subgroup of G} ∩
⋂
V ∈A

V ;

but H is a profinite group too, therefore W has finite index in H, then A is finite, this

completes the proof.

Proposition 4.2.6. Let ϕ : X → Y be a morphism of connected schemes, x and y be

geometric points of X and Y , respectively such that ϕ(x) = y and let U be an open subgroup

of πét1 (X, x). Then, ker(πét1 (ϕ)) ⊆ U if, and only if there exists a finite étale cover Z → Y

and a X-morphism Zi → ZU , where Zi is a connected component of Z ×Y X.
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Proof. We first prove the only if part of this lemma, because we use it in the if part.

Suppose that there exists a finite étale cover Z → Y and a connected component Zi of

Z×Y X with a X-morphism ψ : Zi → ZU . The morphism ψ commutes with the monodromy

actions, to be precise, the next diagram commutes

πét1 (X, x)× Fibx(Zi) //

id× Fibx(ψ)

��

Fibx(Zi)

id× Fibx(ψ)

��
πét1 (X, x)× Fibx(ZU) // Fibx(ZU),

On one hand the inclusion morphism j : Zi ↪→ Z×YX commutes with the monodromy action,

as well as the homomorphism of groups πét1 (ϕ), i. e., the next diagrams are commutative

πét1 (X, x)× Fibx(Zi) //

id× Fibx(j)

��

Fibx(Zi)

��
πét1 (X, x)× Fibx(Z ×Y X) //

πét1 (ϕ)× id

��

Fiby(Z) = Fibx(Z ×Y X)

πét1 (Y, y)× Fiby(Z)

;;

,

Let zu ∈ Fibx and σ ∈ πét1 (X, x), then there exists zi ∈ Fibx(Zi), such that ψ(zi) = zu.

Using the commutatitivity of the previous diagrams, we have that

σ.zu = σ.ψ(zi)

= ψ(σ.zi)

= ψ(πét1 (ϕ)(σ).zi)

= ψ(1.zi)

= ψ(zi)

= zu

thus σ.zu = zu, equivalently σ ∈ U . Therefore, ker(πét1 (ϕ)) ⊆ U .

Suppose that ker(πét1 (ϕ)) ⊆ U . Let W = πét1 (ϕ)(U), as πét1 (Y, y) is compact and Haus-

dorff, then W is a closed subgroup of πét1 (Y, y). Since W has finite index in Im(πét1 ), then

W is an open subgroup of Im(πét1 ), by the previous lemma there exists an open subgroup
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V of πét1 (Y, y), such that W = V ∩ Im(ϕét1 ). Let Zi be a connected component of ZV ×Y X,

Fibx(Zi) is a transitive πét1 (X, x)-finite set. If z ∈ Fibx(Zi), then Orbz = Fibx(Zi). By

the orbit-stabilizer theorem Fibx(Zi) ' πét1 (X, x)/Stab(x), the stabilizer of x, Stab(x), is

an open subgroup of πét1 (X, x). By the only if part, we know that ker(πét1 (ϕ)) ⊆ Stab(x).

We affirm that Stab(x) ⊆ U , since this two subgroups contains ker(πét1 (ϕ)), the previous

affirmation is equivalent to prove that πét1 (ϕ)(Stab(x)) ⊆ W . Since the homomorphism

πét1 (X, x)/Stab(x) → πét1 (Y, y)/V

[t] 7→ [ϕét1 (t)],

is well-defined (since Zi is a connected component of ZV ×Y X). Then πét1 (ϕ)(Stab(x)) ⊆
V , intersecting on both sides with Im(πét1 (ϕ)), we have that πét1 (ϕ)(Stab(x)) ⊆ W , this

concludes the proof.

The proofs of the previous proposition shows that if Z is a connected finite étale cover of X,

then Fibx(Z) ' πét1 (X, x)/U for some open subgroup U of πét1 (X, x) (indeed U = Stab(z),

for some element z ∈ Fibx(Z)). This remark and the previous proposition implies the next

corollary.

Corollary 4.2.1. With the same hypothesis of the previous proposition. πét1 (ϕ) is injective

if and only if for all connected finite étale cover Z → X, there exists a finite étale cover

Z
′ → Y and a X-morphism Zi → Z, where Zi is a connected component of Z

′ ×Y Z.

Proof. This is a direct consequence of the previous proposition, since the interseccion of all

the open subgroups of πét1 (X, x) is trivial.

Finally, we have a test to prove the exactness of sequences induced by the étale group functor.

Corollary 4.2.2. Let ϕ : X → Y and ψ : Y → Z be morphisms between connected schemes,

x, y and z be geometric points of X, Y and Z, respectively. The sequence of groups homo-

morphisms

πét1 (X, x)
πét1 (ϕ)

// πét1 (Y, y)
πét1 (ψ)

// πét1 (Z, z),

is exact if, and only if the next two conditions are satisfied

(i) For every finite étale cover Z
′

of Z, the finite étale cover Z
′ ×Z X is a trivial cover of

X.

(ii) If Y
′

is a connected finite étale cover of Y , such that the base change morphism Y
′ ×Y

X → X has a section, then there exists a connected finite étale cover Z
′

of Z and a

Y -morphism from a connected component of Z
′ ×Y X to Y

′
.
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Finally we can state and proof the homotopy exact sequence. Only, we need one preliminar

definition. In the rest of this section we fix a field k with an algebraic closure k and a

separable closure ksep.

Definition 4.2.2. Let X be a k-scheme. We say that X is geometrically integral, if

X ×Spec(k) Spec(k
sep) is an integral scheme.

Integral does not imply geometrically integral. For example, let k = Q, X = Spec(Q[x]/x2 +

2), then XQsep = {(x−
√

2), (x+
√

2)} is a discrete space, in particular, not irreducible and

therefore not integral.

If X is a k-scheme, we denote by XL the change of base scheme X ×Spec(k) Spec(L), where

L is a field extension of k. In this text, an scheme is compact if every open covering has a

finite refinement, we do not assume the Hausdorff hypothesis when we say that a scheme is

compact.

Proposition 4.2.7. Let X and Y be a compact and geometrically integral k-schemes. If

ϕ : Yksep → Xksep is a finite étale covering of Xksep, there exists a finite extension l of k,

contained in ksep, and a finite étale cover Y
′

of Xl, such that

Yksep ' Y
′ ×Spec(l) Spec(ksep).

Proof. The compactness of X, implies that we can find a finite, open and affine cover of

X, namely {Spec(Ai)}ni=1. Changing base of each element of this open affine covering we

can construct a finite, open and affine cover of Xksep , to be precise {Spec(Ai ⊗k ksep)}ni=1

is a finite open and affine cover of Xksep . As ϕ is finite étale (in particular affine), then

ϕ−1(Spec(Ai ⊗k ksep)) = Spec(Bi), where Bi is a finitely presented Ai ⊗k ksep- module, then

there exists m, r ∈ Z+, such that

Bi ' Ai ⊗k [x1, ..., xm]/ 〈f1, ..., fr〉,

for some polynomials f1, ..., fr ∈ Bi ' Ai ⊗k [x1, ..., xm]. For every j ∈ {1, ..., r}, let Ci,j be

the finite subset of Ai ⊗k ksep which elements are the coefficients of the polynomial fj. Let

C be the finitely generated ksep algebra generated by
r⋃
j=1

Ci,j. Then

Ci ' ksep[y1, ..., yk]/ 〈g1, ..., gt〉 ,

let Li be the finite extension of k generated by the coefficients of g1, ..., gt (it is finite since

the coefficients of this polynomials belongs to ksep). Then

Bi ' (Ai ⊗k Li[x1, ..., xm]/ 〈f1, ..., fr〉)⊗Li ksep,

varying the index i we can construct a finite extension L of k, sufficiently large such that

the previous isomorphism holds for every i. The proof finish when we prove that this

isomorphisms are coherent, then using cocycles conditions we can contruct Y
′

gluing this

spectra.
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Let X be k-variety and x : Spec(k)→ X be a geometric point of X. x induces a geometric

point (that we denote in the same way) x : Spec(k)→ Xksep in Xksep and the inclusion k ↪→ k,

induces a geometric point on Spec(k) (that we denote in the same way). Fixing this (three)

geometric point x, the natural morphism Xksep → X and the structure morphism X →
Spec(k) combined with the functoriality of πét1 , induces a sequence of groups homomorphism

πét1 (Xksep , x)→ πét1 (X, x)→ πét1 (Spec(k), x),

but, we know that πét1 (Spec(k), x) is isomorphic to the absolute Galois group Galk of k,

identifying this groups, the previous sequence can be rewritten by

πét1 (Xksep , x)→ πét1 (X, x)→ Galk,

we call this sequence the homotopy sequence.

Theorem 4.2.1. (Homotopy exact sequence) Let X be a compact geometrically integral

k-scheme. The homotopy sequence

1→ πét1 (Xksep , x)→ πét1 (X, x)→ Galk → 1

is exact.

Proof. Denote by p : Xksep → X the canonical projection morphism and ϕ : X → k the

structure morphism of X as k-scheme. We divide this proof in three steps

Step 1: πét1 (p) is injective. Let Y → Xksep be a connected finite étale cover of Xk, by

the previous proposition, there exists a finite extension L of k contained in ksep and a finite

étale cover Y
′
of XL, such that Y ' Y

′×Spec(L)Spec(k
sep). Note that XL is a finite étale cover

of X, since XL is the base change (by X) of the finite étale morphism Spec(L)→ Spec(k) (L

is a finite separable extension of k) induced by the inclusion map k ↪→ L. Then, Y
′
is a finite

étale cover of X. Let C be a connected component of Y
′×Spec(L)Spec(k

sep), then there exists

a morphism C → Y (is the composition of the inclusion morphism C ↪→ Y
′×Spec(L)Spec(k

sep)

and an isomorphism Y
′×Spec(L) Spec(k

sep)→ Y ). Thus Proposition 4.2.1 implies that πét1 (p)

is a injective group homomorphism.

Step 2: πét1 (ϕ) is surjective. Let Z → Spec(k) be a connected finite étale cover of Spec(k), we

need to prove that the base change X×Spec(k)Z is connected too. Since Z is a connected finite

étale cover of the spectrum of a field, then Z is isomorphic as Spec(k)-scheme to Spec(L),

where L is a finite separable extension of k, without lose of generality we can suppose that

L is contained in ksep. Then X ×Spec(k) Z ' XL, as X is geometrically integral, then Xksep is

integral, in particular, it is connected, there exists a surjective morphism Xksep → XL, then

XL is connected. Proposition 4.2.4 concludes step 2.

Step 3 Exactness in the middle. Only remains to prove that
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πét1 (Xksep , x)→ πét1 (X, x)→ Galk,

is exact. Via Proposition 4.2.2 we show this by proving the next two conditions.

(i) Let Z → k be a finite étale cover of Spec(k). We need to prove that Z ×S pec(k)Xksep

is a trivial cover of Xksep . Indeed, since Z is a finite étale cover of the spectrum of a

field, then Z is the spectrum of a finite étale k-algebra, therefore there exists k1, ..., kn
finite separable field extensions of k such that Z '

⊔n
i=1 Spec(ki). We can suppose

that kik
sep for every i ∈ {1, ..., n}. Then

Xksep×Spec(k) ' Xksep ×Spec(k)

n⊔
i=1

Spec(ki)

'
n⊔
i=1

Xksep ×Spec(k) Spec(ki)

'
n⊔
i=1

X ×Spec(k) Spec(k
sep)×Spec(k) Spec(ki)

'
n⊔
i=1

X ×Spec(k) Spec(k
sep ⊗k ki)

'
n⊔
i=1

X × Spec(ksep)

'
n⊔
i=1

Xksep ,

This prove this first condition.

(ii) We can reduce the second condition of Proposition 4.2.2 to Galois coverings,i. e., is

we prove the second (ii) of Proposition 4.2.2 then the same is true to connected finite

étale cover, since every connected finite étale cover has a Galois covering.

Let ϕ : Z → X be a Galois covering of X, such that Z×XXksep → Xksep has a section.

Since X is geometrically integral, then X is integral, let η be the generic point of X,

the generic fiber Z ×X Spec(k(η)) (k(η) is the residual field of X at the point η or

equivalently, the function field of X) is a finite étale cover of Spec(k(η)), then it is

the spectrum of a finite Galois extension K of k(η). Thus K ⊗k ksep '
∏

i∈I k
sep(η),

for some finite set I, therefore K ' k(η) ⊗k L, for some finite Galois extension L of

k. The finite étale cover XL of X, is actually a Galois cover of X (since L is Galois

extension of k). The function field of XL is K⊗L, the same as Y , therefore we have an

isomorphism between Y and XL over generic points, equivalently, there exists an open

and dense subset U of X, such that XL ×X U ' Y ×X U , but XL and Y are locally

free over U (since are finite étale covers), thus XL ' Y . This completes this proof.
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Corollary 4.2.3. Let X be a compact and geometrically integral k-scheme. There exists a

continuous homomorphism of groups.

ρX : Galk → Out(πét1 (Xksep , x)).

Proof. We identify πét1 (Xksep , x) with a normal subgroup of πét1 (X, x) using the previous

theorem. Let

ϕ : πét1 (X, x) → Aut(πét1 (Xksep , x))

σ 7→ ϕσ,

where ϕσ(θ) = σ ◦ θ ◦ σ−1. Note that ϕ(πét1 (Xksep , x)) = Inn(πét1 (Xksep , x)). Then ϕ induces

a well defined homomorphism of groups

ϕ̃ : πét1 (X, x)/πét1 (Xksep , x)→ Aut(πét1 (Xksep , x))/Inn(πét1 (Xksep , x)),

using the exactness of the homotopy sequence we know that

πét1 (X, x)/πét1 (Xksep , x) ' Galk.

Then, after compose with this isomorphism we obtain a homomorphism of groups

ρX : Galk → Out(πét1 (Xksep , x)).

Definition 4.2.3. Let X be a compact geometrically connected scheme. The homomorphism

of the previous lemma

ρX : Galk → Out(πét1 (Xksep , x)).

is called the outer Galois action of πét1 (Xksep , x).

As we see in the section 1 the absolute Galois group of the rational numbers Gal(Q|Q) cod-

ifies the arithmetic of number fields, precisely we see how the isomorphy type of a number

field is codified as the isomorphism of some subgroup of Gal(Q|Q). This object is central in

Grothendieck’s Esquisse d’un programme [8], one part of this program is anabelian geom-

etry, but there is other parts of this program that are related between them, for example,

Grothendieck-Teichmuller theory or Dessins D’enfants, then, Grothendieck’s Anabelian ge-

ometry is a part of a much larger plan of understand geometrically Gal(Q|Q). To finish this

section we state Belyi’s theorem whose proof is in [49], we are not focus in the proof, but in a

consequence which connects arithmetic and topology using the outer Galois action and begin

Grothendieck’s Dessins d’enfants whose idea is use combinatorial ideas to describe actions of

Gal(Q|Q) on some Riemann surfaces. For a comprehensible introduction we recomend [5].

Definition 4.2.4. Let X be k-scheme and l be a subfield of k. We say that X can be

defined over l if there exists an l-scheme X0, such that X0 ×Spec(l) Spec(k) ' X.
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Theorem 4.2.2. (Belyi’s theorem) Let X be an integral proper normal curve defined

over an algebraically closed of characteristic 0. X can be defined over Q if and only if there

exists a morphism X → P1
k, étale over P1

k \ {0, 1,∞}.

Corollary 4.2.4. The outer Galois action

ρP1
Q\{0,1,∞} : GalQ → Out(πét1 (P1

Q \ {0, 1∞}, x))

is injective.

Proof. We denote, in this proof, ρP1
Q\{0,1,∞}

by ρ. Since ρ is continuous, then ker(ρ) is a closed

subgroup of Gal(Q|Q). Using Galois infinite theory, there exists a subfield L of Q, such that

Gal(Q|L) = ker(ρ). Thus, ρ|Gal(Q|L) is the trivial homomorphism. Since L is a subfield of Q,

then Gal(Q|L) is the absolute Galois group of L. Moreover, ρ|Gal(Q|L) = ρP1
L\{0,1,∞}, denote

this homomorphism by ρL. Recall that ρL comes from the homotopy exact sequence

1→ πét1 (P1
Q \ {0, 1∞}, x)→ πét1 (P1

L \ {0, 1,∞}, x)→ GalL → 1

Explicitely,

ρL : GalL ' πét1 (P1
L \ {0, 1,∞}, x)/πét1 (P1

Q \ {0, 1∞}, x) → Out(πét1 (P1
Q \ {0, 1∞}, x))

σ 7→ [ρσ],

where ρσ(θ) = σ ◦ θ ◦ σ−1, for every σ ∈ πét1 (P1
L \ {0, 1,∞}, x). Since ρL is trivial, then for

every σ ∈ πét1 (P1
L \ {0, 1,∞}, x), ρσ is a inner automorphism of πét1 (P1

Q \ {0, 1,∞}, x). Let

C = {θ ∈ P1
L \ {0, 1∞}, x)|θ ◦ ϕ = ϕ ◦ θ, for all ϕ ∈ πét1 (P1

Q \ {0, 1∞}, x)}.

Since ρσ is a inner automorphism of πét1 (P1
Q \ {0, 1,∞}, x), then there exists σ1 ∈ πét1 (P1

Q \
{0, 1,∞}, x), such that ρσ = Inn(σ1) (the inner automorphism defined by conjugation by

σ1), or equivalently, σ−1
1 ◦ σ ∈ C. This implies that

πét1 (P1
L \ {0, 1,∞}, x) =

〈
C ∪ πét1 (P1

Q \ {0, 1,∞}, x)
〉

.

On the other hand C ∩ πét1 (P1
Q \ {0, 1,∞}, x) is clearly a subgroup of the center of πét1 (P1

Q \
{0, 1,∞}, x). Now, we use the follow theorem whose proof can be found in [16].

Theorem 4.2.3. Let k → l be a homomorphism between algebraically closed fields of char-

acteritic zero. If X is a normal, quasi-projective k-scheme, then the homomorphism, induced

by change of base, πét1 (Xl, x)→ πét1 (X, x) is an isomorphism of groups.

Then, πét1 (P1
Q\{0, 1,∞}, x) ' πét1 (P1

C\{0, 1,∞}, x). But in a past section we see that πét1 (P1
C\

{0, 1,∞}, x) is the profinite completion of a free group on two generators, in particular,

πét1 (P1
C \ {0, 1,∞}, x) have trivial center. Thus, C ∩ πét1 (P1

C \ {0, 1,∞}, x) = {0}. Therefore,

πét1 (P1
L \ {0, 1,∞}, x) ' C × πét1 (P1

Q \ {0, 1,∞}, x).

Let
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p : πét1 (P1
L \ {0, 1,∞}, x)→ πét1 (P1

Q \ {0, 1,∞}, x).

be the projection on the second factor. We can construct a functor

p∗ : πét1 (P1
L \ {0, 1,∞}, x)− finsets→ πét1 (P1

Q \ {0, 1,∞}, x)− finsets,

in the following way: For every πét1 (P1
L\{0, 1,∞}, x) -finite set E, p∗(E) as a set is just E and

the action on p∗(E) is a retract the action of πét1 (P1
L \ {0, 1,∞}, x) over E by p. Explicitely.

πét1 (P1
Q \ {0, 1,∞}, x)× E → E

(θ, x) 7→ p(θ).x,

(on the right side of the previous function p(ρ).x means the action on E as πét1 (P1
L \

{0, 1,∞}, x)-finite set). Since p is a left inverse of the natural homomorphism

πét1 (P1
Q \ {0, 1,∞}, x) ↪→ πét1 (P1

L \ {0, 1,∞}, x)

then p∗ is essentially surjective.

Clearly, p∗ fits in the next commutative diagram

FÉtP1
L\{0,1,∞}

⊗Spec(L) Spec(Q)
//

Fibx

��

FÉtP1
Q
\{0,1,∞}

Fibx

��
πét1 (P1

L \ {0, 1,∞}, x)− finsets p∗
// πét1 (P1

Q \ {0, 1,∞}, x)− finsets

since the vertical arrows are equivalence of categories. Then the base change functor is

surjective. By Belyi’s theorem this implies that every proper normal curve defined over Q
can be defined over L. If L ( Q, this is false. Indeed let j ∈ Q \L, by [52], we can construct

an elliptic curve E with j as his j-invariant. If E can be defined over L, then there exists a

curve X such that XQ ' E, since E is an elliptic curve, then X must be a curve of genus

1, therefore if F is the Jacobian of X, then F is an elliptic curve defined over L, but the

j-invariant does not change, i.e., j(F ) = j(E) = j. This is a contradiction, since F is defined

over L implies that its j-invariant is an element of L. Thus L = Q and ker(ρ) = Gal(Q|Q),

this concludes the proof.

4.3 Grothendieck’s section conjecture

In this section, k denote a field, k an algebraic closure of k, and ksep the separable extension

of k inside of k.

Definition 4.3.1. Let X be a k−scheme and L be a field. A L-rational point of X is a

k-morphism X : Spec(L)→ X. The set of L-rational points of X is denoted by X(L).
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Let X be a compact, geometrically connected k-scheme. If x : Spec(k)→ X is a k-rational

point of X, then x is a section of the structure morphism ρ : X → Spec(k) of X. The

inclusion map k ↪→ k, induces a morphism f : Spec(k) → Spec(k) and therefore x := x ◦ f
is a geometric point of X. Therefore, x induces a group homomorphism

πét1 (x) : Galk → πét1 (X, x)

which is a section of the exact homotopy sequence

1→ πét1 (Xksep , x)→ πét1 (X, x)→ Galk → 1,

(indeed, πét1 (x) is a section of this sequence, since x is a section of ρ and πét1 is a functor).

We denote by sx the morphism πét1 (x).

For a geometric point y we denote by Sec
πét1 (X|k, y)

be set of group theoretic sections

of the homotopy exact sequence

1→ πét1 (Xksep , y)→ πét1 (X, y)→ Galk → 1.

We want to construct from X(k) to the set Sec
πét1 (X|k, y)

, one first idea is define the next

”function ”

X(k) → Sec
πét1 (X|k, y)

x 7→ sx,

but this is not well defined function, since in the previous construction we see that the geo-

metric point x where the section sx : Galk → πét1 (X, x) is defined depends on x. So we need

to avoid the dependence of the previous morphism on the geometric point x.

Let y be a fixed geometric point of X, if x ∈ X(k), we denote by x be the geometric

point of X constructed above. There exists an étale path ϕ : Fibx → Fiby, which induces a

continuous group isomorphism

ϕ̃ : πét1 (X, x) → πét1 (X, y)

σ 7→ ϕ ◦ σ ◦ ϕ−1,

Notice that πét1 (ρ) ◦ ϕ̃ = πét1 (ρ), where ρ is the structure morphism of X as a k-scheme.

This isomorphism allow us to construct a group section of πét1 (X, y)→ Galk from x, defined

by ϕ̃ ◦ sx and noted by sx,ϕ. Now, this section depends on the choice of the étale path ϕ,

we need to know when two étale path produces the same section. For this purpouses we

defined the next equivalence relation on Sec
πét1 (X|k, y)

; for sections s, t of the homotopy

exact sequence (with basepoint y), we say that s and t are equivalent if and only if there

exists σ ∈ πét(Xksep , x), such that σ ◦ s ◦ σ−1 = t and we denote by Sπét1 (X|k,y) the set of

equivalence classes.
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Proposition 4.3.1. Let X be a compact geometrically connected k-scheme. If x, y are

geometric points of X, then Sec
πét1 (X|k, x)

' Sec
πét1 (X|k, y)

.

Proof. Let ϕ be an étale path from x to y, then

ϕ : S
πét1 (X|k, x)

→ S
πét1 (X|k, y)

[s] 7→ [ϕ̃(s)],

is a well-defined bijection (with inverse ϕ−1).

Proposition 4.3.2. Let X be a compact geometrically connected k-scheme and let y be a

geometric point. If x ∈ X(k) and x is the associated geometric point of x, then for every

two étale paths ϕ, ψ from x to y we have that [ϕ̃(sx)] = [ψ̃(sx)].

Proof. Let σ = ψ ◦ ϕ−1, it is clear that σ ◦ ϕ̃(sx) ◦ σ−1 = ψ̃(sx).

Definition 4.3.2. Let X be a compact geometrically connected k-scheme and let y be a

geometric point. The profinite Kummer map κX of X, is the function defined by

κX : X(k) → S
πét1 (X|k, y)

x 7→ [ϕ̃(sx)],

where ϕ is an étale path from x (the geometric point associated to x) to y.

Finally we have all the tools to enunciate Grothendieck’s section conjecture.

Conjecture 4.3.1. (Grothendieck’s section conjecture) Let X be a smooth, projective

k- curve or genus at least 2 , where k finitely generated over Q. The profinite Kummer map

κX of X is a bijection.

Then, the idea behind the section conjecture is that if we growth our knowledge about

group theoretic sections of exact sequence, then the section conjecture would imply a better

understanding of k-rational points (at least in this special type of curves) that bring back

a new point of view to difficult and old problems in arithmetic, specially in arithmetic

geometry. But Grothendieck’s section conjecture is a big mistery, not much is known about

this conjecture. To finalize this section we summarize some known results around this difficult

and mysterious conjecture.

Definition 4.3.3. Let Γ be a profinite group. A Γ-group is a profinite group N qith a group

homomorphism ρ : Γ→ Aut(N), such that the induced action

Γ×N → N

(g, n) 7→ ρg(n),

is continuous, where ρg = ρ(g). We refer to ρ as the structure homomorphism of N .
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If N is a Γ-group with structure homomorphism ρ, we can construct a new group called the

semidirect product of N and Γ, denoted by N oρ Γ. As a set N oρ Γ is just the cartesian

product N × Γ, but the operation on this set is modified by the rule

(n1, g1)(n2, g2) = (n1ρg2(n2), g1g2),

This groups fits in the exact sequence

1→ N → N oρ Γ→ Γ→ 1,

defined in the canonical way. The previous exact sequence is equipped with a canonical

(continuous) section

c : Γ → N oρ Γ

g → (1, g),

and thus is a split exact sequence. Reciprocally every split exact sequence occurs in this

way. To be explicit, we have the next proposition.

Proposition 4.3.3. Let

1→ N → Π→ Γ→ 1,

be a exact sequence of profinite groups. If s : Γ → Π is a section of Π → Γ, then N is a

Γ-group for some structure homomorphism ρs, such that Π ' N oρs Γ.

Proof. Let s : Γ → Π be a section of j : Π → Γ (the homomorphism appearing in the

exact sequence). Using the previous exact sequence we identify N as a subgroup of Π, this

subgroup is characterized to be ker(j).

Let

ρs : Γ → Aut(N)

g 7→ ρsg,

where ρsg(n) = s(g)ns(g)−1, for every n ∈ N . Note that

j(ρsg(n)) = j(s(g)ns(g)−1)

= j(s(g))j(n)j(s(g)−1)

= g1g−1

= 1,

then j(ρg(n)) = 1, or equivalently, ρsg(n) ∈ N . Thus ρs is well-defined. Now, define

Fs : N oρs Γ → Π

(g, n) → s(g)n,

Is not difficult to prove that Fs is a group isomorphism.
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For the rest of this section we keep the notation of the previous proof. Note that if s is a

section of a exact sequence

1→ N → Π→ Γ→ 1,

then under the (inverse of the) isomorphism Fs : N ×ρs Γ → Π, s is identified with the

canonical section cs : Π→ N ×ρs Γ.

Similar to the homotopy exact sequence we make a equivalence relation of section as follows.

If s, t are sections of a exact sequence

1→ N → Π→ Γ→ 1,

we say that s and t are equivalent sections, denoted by s ≡ t, if there exists n ∈ N such that

ns(g)n−1 = t(g), for every g ∈ Γ. We denote by SΠ→Γ the quotient set of sections under the

equivalence relation ≡. In particular, we have that Sπét1 (X|k,y) = Sπét1 (X,x)→Galk . When we are

working with a exact sequence of the form

1→ N → N oρ Γ→ Γ→ 1,

the set SNoρΓ→Γ in addition to the above, is a pointed set with special element [c], the

canonical section of this exact sequence.

Definition 4.3.4. Let N be a Γ-group, with structure homomorphism ρ. A continuous

function f : Γ → N is called a 1-cocycle of Γ with values in N if f(gh) = ρ(g)f(h), for

every g, h ∈ Γ. The set of 1-cocycles of Γ with values in N is denoted by C1(Γ, N).

Let N be a Γ-group with structure homomorphism ρ. We said that f1, f2 ∈ C1(Γ, N) are

cohomologous, denoted by f1 ∼ f2, if there exists n ∈ N , such that cf1(σ) = f2(σ)ρσ(c).

Definition 4.3.5. Let N be a Γ-group. The first non-abelian cohomology of Γ with

coefficients in N , denoted by H1(Γ, N) is the pointed set (C1(Γ, N)/ ∼, [l]), where l : Γ→ N

is the 1-cocycle such that l(g) = 1, for every g ∈ Γ.

Let

1→ N → Π → Γ→ 1, , (4-1)

be a exact sequence, f : Γ→ N be a continuous function and s : Γ→ Π, be a section of this

exact sequence. We can twist s by f , defining

sf : Γ → N

g 7→ f(g)s(g),
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clearly, sf is a set-theoretical section of the previous exact sequence, but not always a group-

theoretical section, in other words, sf is not always a group homomorphism.

sf is a group homomorphism ⇔ sf (g1g2) = sf (g1)sf (g2), for all g1, g2 ∈ Γ

⇔ f(g1g2)s(g1g2) = f(g1)s(g1)f(g2)s(g2), for all g1, g2 ∈ Γ

⇔ f(g1g2)s(g1) = f(g1)s(g1)f(g2), for all g1, g2 ∈ Γ

⇔ f(g1g2) = f(g1)s(g1)f(g2)s(g1)−1, for all g1, g2 ∈ Γ

⇔ f(g1g2) = f(g1)ρg1(f(g2)), for all g1, g2 ∈ Γ

Thus, sf is a group homomorphism if, and only if f is a 1-cocycle (with the Γ-structure

on N giving by ρs). Now we have a connection between sections of a exact sequence and

1-cocycles, we will explore this relation. Let s be a section of (3.1) and ρs the associated

structure homomorphism, of N as a Γ-group, associated to s and f1, f2 ∈ C1(Γ, N)

f1, f2 are cohomologous ⇔ ∃n∈N∀g∈Γ (nf1(g) = f2(g)ρsg(n))

⇔ ∃n∈N∀g∈Γ (nf1(g) = f2(g)s(g)ns(g)−1)

⇔ ∃n∈N∀g∈Γ (nf1(g)s(g) = f2(g)s(g)n)

⇔ ∃n∈N∀g∈Γ (nsf1(g) = sf2(g)n)

⇔ ∃n∈N∀g∈Γ (nsf1(g)n−1 = sf2(g))

⇔ sf1 , sf2 are equivalent sections.

Thus, fixing a section s of (3.1), the next function is well defined

f : H1(Γ, N) → SΠ→Γ

[f ] 7→
[
sf
]
,

and moreover, the previous argument show that is an injective function. If [t] ∈ SΠ→Γ, let

δ(s, t) : Γ → N

g 7→ t(g)s(g)−1,

clearly f is a continuous function, satisfying that sf = t, and as we seen before this implies

that f ∈ C1(Γ, N). Furthermore this argument now shows that f is bijective. In other

words, we can back-and-forth between sections of an exact sequence and cohomology classes

of 1-cocycles. Note that this is not a canonical isomorphism, because it depends on the

chosen section. Next we need to use use the inverse map of f , briefly we will describe them.

Fixing a section s of (3.1), for every section t of (3.1), consider the 1-cocycle δ(s, t) : Γ→ N

defined as above and the inverse map is then defined by

δ(s, ) : SΠ→Γ → H1(Γ, N)

[t] 7→ [δ(s, t)],
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Then, δ(s, ) is the inverse function of f , and δ(s, t) is called the difference cocycle of the

sections s and t. Again, we know that SΠ→Γ and H1(Γ, N) are in bijection, but this is not

a natural bijection, because it is depends on the section chosen. But, in the case of a exact

sequence of the form

1→ N → N oρ Γ→ Γ→ 1,

thush, it is possible to define a natural bijection given by the canonical split of this sequence

and the trivial cohomology class on coclycles on the other hand. Now we introduce a special

class of torsors in order to give other classification of sections, or equivalently, cohomology

classes of 1-cocycles.

Definition 4.3.6. Let N be a Γ-group. A Γ-equivariant right N-torsor is a profinite

space P with a continuous left action of Γ and a right continuous, free and transitive Γ-

equivariant action of N .

Fixing a section s of (3.1), the every torsor P gives a twist of this section, similarly as the

case of 1-cocycles. Let P be a Γ-equivariant right N -torsor (N has the Γ-structure induced

by the section s) and q ∈ P . Recall that every element of Π can be written in a unique way

as ns(g), for some n ∈ N and g ∈ Γ. Define the next continuous action

P × Π → P

(p, ns(g)) 7→ g−1pn,

then, the stabilizer of q of this action is

Stab(q) = {ns(g) ∈ Π|qn = gq},

let j : Π → Γ be the homomorphism appearing in (3.1). j|Stab(q) is an isomorphism onto Γ.

Indeed, is g ∈ Γ, then s(g) ∈ Π is a preimage of g, then j is surjective and

ns(g) ∈ ker(j) ∩ Stab(q) ⇔ j(ns(g)) = 1 and qn = gq

⇔ j(n)j(s(g)) = 1 and qn = gq

⇔ g = 1 and gn = gq

⇔ g = 1 and n = gq

⇔ g = 1 and g = 1,

the last equivalence is true since the action of N in P is transitive. Therefore j|Stab(q) is an

isomorphism, let sP,q be the inverse homomorphism of j|Stab(q). If we redefine the target group

by sP,q : Γ→ Π, then sP,q is a section of j. sP,q depends on P and q, but it equivalence class

does not depends on q, if r ∈ P , since the action of N on P is transitive, we have that there

exists n ∈ N such that q.n = r, thus Stab(q) = nStab(r)n−1 and therefore sP,q = nsP,rn−1,

in other words [sP,q] = [sP,r]. Then the class of a section constructed in this way, only

dependes on P . Note that, this torsor gives rise to the 1-cocycle defined by δ(s, sP,q), since
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the equivalence class of sP,q only depends on P , then the cohomological class of this δ(s, sP,q)

only depends on P . Trivially, we have that

sδ(s, s
P,q) = sP,q.

Let t be a section of

1→ N → Π→ Γ→ 1,

Consider the coset space

Π/t(Γ),

(the previous space is only considered as a topological group forgetting the natural group

sctructure of this quotient). Π/t(Γ) is naturally a right N -torsor with the right multiplication

by an element of N , as the action defined in this set. The Γ-action on this set is defined by

Γ× Π/t(Γ) → Π/t(Γ)

(g, pt(Γ)) 7→ ps(g−1)t(Γ),

with this action, is not difficult to prove that π/t(Γ) is a Γ-equivariant right N -torsor. This

torsor is called the difference torsor between s and t and we denoted by ∆(s, t), the pointed

torsor (Π/t(Γ), 1t(Γ)). Using the action of Γ defined on the torsor Γ/t(Γ) as before, we have

in this case that

ns(g) ∈ Stab(1) ⇔ 1t(Γ).n = g.1t(Γ)

⇔ nt(Γ) = 1.s(g−1)t(Γ)

⇔ ns(g) ∈ t(Γ),

then, if ns(g) ∈ Stab(1), there exists g
′ ∈ Γ, such that ns(g) = t(g

′
), aplying j of the both

sides of this equation we obtain that g = g
′
, and thus (t ◦ j)(ns(g)) = ns(g), or equivalently

t is a inverse for j|Stab(1t(Γ)), in other words, t = s∆(t,s). The homomorphism

ϕ : Π → N

g 7→ gt(j(g−1)),

Is surjective and is kernel is t(Γ), in particular, as a set Π/t(Γ) is in bijection with N , but

this is not an isomorphism of Γ-equivariant right N -torsors. The equivaelence of sections

are reflected as a isomorphism of torsor, to be precise, Π/t(Γ) ' N as Γ-equivariant right

N -torsors if, and only if s and t are equivalent sections.

Then we have equivalences between N -conjugacy clases of sections, cohomology clases of

1-cocycles and Γ-equivariant right N -torsors. The next proposition summarize the results

proved previously.

Proposition 4.3.4. Let N be a Γ-group and ρ : Γ → Aut(N) be the structure homomor-

phism.
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(i) There exists a natural bijection between the pointed sets SNoρΓ→Γ, H1(Γ, N) and TorsΓ(N).

(ii) After fixing a section s of a exact sequence

1→ N → Π→ Γ→ 1,

there exists bijections between the sets SΠ→Γ, H1(Γ, N) and TorsΓ(N), given by

δ(s, ) : SΠ→Γ → H1(Γ, N),

and

∆(s, ) : SΠ→Γ → TorN(Γ).

Then, if we want to study Grothendieck’s section conjecture we can replace the set of equiv-

alence classes of sections by cohomology or torsors. In the prove of the next theorem we give

an example of the use of this relation. We start with a few definitions.

Definition 4.3.7. Let Γ be a profinite group. The abelianization of Γ, denoted by Γab,

is the quotient of Γ by the closure of its commutator subgroup. The natural quotient map

Γ→ Γab is called abelianization map.

For a scheme Y and a geometric point y of Y , we denote by πab(Y, y) the abelianization of

πét1 (Y, y).

Let k be a field and X be a compact and geometrically integral k-scheme. The abelianization

map

f : πét1 (Xk, x)→ πab1 (X, x)

induces a abelianization of the homotopy exact sequence associated to X. Inded, let Π be

the group given by the pushout of the next diagram of groups

πét1 (Xk, x) //

f
��

πét(X, x)

πab1 (X, x)

the group Π fits in a exact sequence

1→ πab1 (Xk, x)→ Π→ Galk → 1,

we refer to this section as the abelianized homotopy exact sequence and sometimes we

denote them by πab1 (X|k). Moreover, the next diagram is commutative

1 // πét1 (Xk, x) //

f
��

πét1 (X, x) //

g

��

Galk //

id

��

1

1 // πab1 (Xk, x) // Π // Galk // 1
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where g : πét1 (X, x)→ Π is the homomorphism given by pushout. If s : Galk → πét1 (X, x) is

a section of the homotopy exact sequence, then g ◦s is a section of the abelianized homotopy

exact sequence. This section is called the abelianization of s, or more precisely, the well-

defined map

ab : Sπét1 (X|k) → SΠ→Galk

[s] 7→ [g ◦ s],

is called the abelianization map of sections.

Theorem 4.3.1. (Injectivity of the section conjecture) Let X be a smooth, projective

k- curve or genus at least 2 , where k finitely generated over Q. The profinite Kummer map

κX of X is injective.

Grothendieck known that the profinite kummer map κX is injective, we give an sketch of the

proof that involves some techniques of abelian varieties. Let x ∈ X(k) be a rational point

of X and let sx be the sections associated to x. For all m ∈ Z+, define

Fm : X(k) → H1(Galk, π
ab
1 (Xk, x)/mπab1 (Xk, x))

y 7→ jm ◦ δ(ab(sx), ab(sy)),

where jm : πab1 (Xk, x)→ πab1 (Xk, x)/mπab1 (Xk, x) is the canonical quotient homomorphism.

Let J be the jacobian of X, by a theorem due to Serre and Lang (See for example [49]), we

have that

πab1 (Xk, x)/mπab1 (Xk, x) ' (Jk)m

where, (Jk)m is the m-torsion subgroup of the abelian variety Jk. Then we can redefine the

map Fm under this isomorphism to

Fm : X(k)→ H1(Galk, (Jk)m),

by linearity, Fm induces a map

Gm : Div0(X)→ H1(Galk, (Jk)m),

where Div0(X) is the group of divisors of degree 0 of X. From the canonical morphism

X → J , we get a map H : Div0(X) → J(k). Let j : Spec(k) → Spec(k) be the scheme

morphism induced by the canonical inclusion k ↪→ k, then the map

j∗ : J(k) → J(k)

f → f ◦ j,

is a injective function and its image is

J(k)Galk := {f ∈ J(k)|f ◦ σ = f , for all σ ∈ Galk}.
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On the other hand, the

km : J(k)Galk → H1(Galk, (Jk)m),

coming from a Kummer sequence, fits in the commutative diagram

Div0(X)
Gm //

H

��

H1(Galk, (Jk)m)

J(k)
j∗

// J(k)Galk

km

OO

Let y be a k-rational point of X, such that κX(x) = κX(y), in particular, for all m ∈ Z+

Gm(x− y) = 0, then km ◦ j∗ ◦H(x− y) = 0, equivalent, j∗ ◦H(x− y) ∈ ∩m∈Z+ker(km), thus

j∗ ◦H(x− y) is divisible in J(k).

Theorem 4.3.2. (Mordell-Wéil-Lang-Nerón theorem) If k is a field finitely generated

over Q and A is an abelian variety, then the set A(k) is finitely generated group.

The previous theorem (whose proof can be consulted in [Lang] Chapter I corollary 4.3)

implies that the subgroup of divisible elements in J(k) is trivial, therefore, j∗ ◦H(x−y) = 0,

but j∗ is bijective and H is injective, then x−y = 0 as degree 0 divisors, since X has positive

genus, then we can conclude that x = y. This completes the prove of the injectivity of κX .

Thereby, Grothendieck’s section conjecture is the surjectivity of the profinite Kummer map.

There is not too much known about this conjecture, it seems that, at the moment, it is

far from being proved. Deligne suggest to Grothendieck a conjecturally relation of the

section conjecture and Mordell’s conjecture/Falting’s theorem, that states for a curve C

defined a number field k, the set k-rational point of C is finite. This relation was suggest

to Grothendieck by Deligne, who thinks that he gave a proof of that the section conjecture

implies Mordell’s conjecture, however, he find a gaps in his prove a gap that, at the moment,

is not filled and no other proof are given.
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