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Abstract 

This paper considers identification of treatment effects when the outcome variables and covari-

ates are not observed in the same data sets. Ecological inference models, where aggregate out-

come information is combined with individual demographic information, are a common example 

of these situations. In this context, the counterfactual distributions and the treatment effects are 

not point identified. However, recent results provide bounds to partially identify causal effects. 

Unlike previous works, this paper adopts the selection on unobservables assumption, which 

means that randomization of treatment assignments is not achieved until time fixed unobserved 

heterogeneity is controlled for. Panel data models linear in the unobserved components are con-

sidered to achieve identification. To assess the performance of these bounds, this paper provides a 

simulation exercise. 
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1 Introduction 

The need of combining information present in different data sets is very common in socioeco-

nomic investigation. One data set usually does not contain all the relevant information or all the 

variables needed by the investigator for several reasons; being high surveying costs one of the 

most important ones. Nevertheless, the potential advantages of using information from different 

data sets are considerably large, especially in the impact evaluation field. 

 

In this paper, we consider how to identify counterfactual distributions and treatment effects when 

outcome and demographic variables are found in different data sets. We obtain identification 

through the construction of sharp bounds based on previous results developed by Fan et al. 

(2014a, 2014b), who adopted the selection on observables assumption. We relax this last as-

sumption allowing for the possibility that a randomization of treatment assignments is not 

achieved until unobserved heterogeneity is properly controlled for. 

 

To deal with these unobserved factors we use panel data. Particularly, we work in the context 

where unobserved heterogeneity remains fixed across time and affects both the potential out-

comes and program participation in a linear manner1. This way, it is possible to perform some 

transformation to the model (for example, first differences) that removes the unobserved heter-

ogeneity and allows us to “return” to the standard unconfoundedness assumption, where the 

bounds developed by Fan et al. (2014a, 2014b) are valid. 

 

In the impact evaluation field, many studies have investigated the identification and inference of 

treatment effects when the outcome and demographic variables are observed in a single data set 

under the selection on observables assumption (see, for example, Chernozhukov et al. 2013; 

Hirano et al. 2003; y Rothe 2012). In this context, as mentioned by Fan et al. (2014a), the 

marginal and conuterfactual distributions of potential outcomes (and, thereby, the treatment 

effects) are pointly identified. 

 

However, the unconfoundedness assumption is not always the most appropriate. In several 

situations this assumption is violated, which entails that treatment variables are endogenous due 

to unobserved heterogeneity and selection bias. Literature has developed several methods to face 

this problem, being the most common the instrumental variables (Heckman et al. 1997) and fixed 

effect panel data approaches (Lillard y Willis 1978; Hislop 1999; Kahn 2007).  

                                                           
1 See Klevmarken (1982) or Angrist y Krueger (1995) for consistent estimators using instrumental variables when 

the relevant variables are in different data sets.  
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This paper is based on the results obtained by Fan et al. (2014a), who adopting the selection on 

observables assumption develop explicit representations of the marginal and counterfactual 

distributions via an inverse propensity-score reweighting of the data; and, jointly with the Cam-

banis-Simons-Stout inequality (see Cambanis et al. 1976), obtain sharp bound for the marginal 

and counterfactual distributions and for treatment effects (particularly average treatment effect – 

ATE- and average effects of treatment on the treated – ATT). Recent literature has used the idea 

of bounding distributions for partial identification in the impact evaluation field (see Frank et al. 

1987; Fan y Park (2012, 2010, 2009); Heckman et al. (1997); Fan y Zhu (2009), who adopt the 

unconfoundedness assumption; and Jun et al. (2014), who used panel data to deal with the se-

lection on unobservables assumption). Nevertheless, these previous works assume that all rele-

vant variables can be found in a single data set, an ideal situation but that may not be entirely 

realistic. In this new context, the ides of bounding distributions can result very useful for identi-

fication.  

 

Literature related to data combination, although small, is showing an important growth in the last 

years. Ridder and Moffitt (2007) discussed the use of Frèchet-Hoeffding inequalities when 

combining two data sets with no common individuals. Cross and Manski (1999) developed Sharp 

bounds on a regression of the outcome variable (𝑌) on two discrete control variables (𝑋; 𝑍) when 

the conditional distributions 𝐹(𝑌|𝑋) and 𝐹(𝑍|𝑋) can be identified from different data sets. 

Furthermore, Fan et al. (2014a) adopt the standard selection on observables assumption of 

Rosenbaum and Rubin (1983) to partially identify treatment effects using the Cambanis et al. 

(1976) inequality. 

 

The use of different data sets can be applied to a common problem in impact evaluation known as 

the ecological inference problem. This is a particular case where the goal is to combine an ag-

gregated outcome data set with an individual demographic data set to make inference at indi-

vidual level. This issue was first addressed by King (1997) y King et al. (2001), who deal with this 

problem when the objective is to describe, predict and make individual inference. 

 

In this context, Corvalan et al. (2015) does not recommend aggregating individual data as the 

information lost through aggregation precludes identification. Fan et al. (2014b), using the results 

developed by Fan et al. (2014a) and adopting the selection on observables assumption, proposed 

bound estimators of treatment effects2. As mentioned by the authors, the problem of identification 

in the ecological inference context is analogous to the identification problem of mean counter-

                                                           
2 Furthermore, they show the estimators to be consistent and asymptotically normal.  
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factual outcomes in a treatment effect model, where the outcome of interest is observed only at an 

aggregate level, but the conditional covariates are observed at an individual level. This identifi-

cation method has been used by Corvalán et al. (2015) to analyze the effect of the change from 

compulsory to voluntary voting on turnout in mayoral elections in Chile. 

 

Literature related to data combination with unobserved heterogeneity is much smaller. Imbens 

and Newey (2003) used control functions to identify and estimate non separable models under the 

assumption that the endogenous variable and model perturbations are independent conditionally 

on the control variable. This paper is intended to contribute presenting identification of treatment 

effects developing sharp bounds under the selection of unobservables assumption when the 

outcome and the covariates are not observed in a single data set. 

 

This paper is organized as follows. Section II introduces the modelling framework, as well as 

some examples that explain the utility of data combination under the selection on unobservables 

assumption. Section III presents the main identification results for the case of a linear model on 

the unobserved heterogeneity, where it is possible to perform some transformation to the model to 

return to the selection on observables assumption, where the bounds developed by Fan et al. 

(2014a) are valid. Section IV applies partial identification results from Section III to the eco-

logical inference context. Section V shows a simulation exercise. Section VI concludes.  

 

2 Modelling Framework 

The context where we work follows closely the potential outcomes approach developed by Rubin 

(1974). Let 𝐷𝑡 ∈ (0,1) denote the binary variable that indicates the two possible treatment states 

at each period. This way, if we denote 𝑇0 as the treatment period, 𝐷𝑡 will take the value of zero 

for 𝑡 < 𝑇0 and the value of one for the treated from 𝑡 ≥ 𝑇03. On the other hand, we denote 𝑌𝑑𝑡 

as the outcome variable for each one of the possible states 𝑑 = 0,1 in period 𝑡. Rubin considers 

these as potential outcomes and that, in practice, it is only possible to observe one of them. The 

observed and potential outcomes are related through the following equation: 𝑌𝑡 = 𝐷𝑡𝑌1𝑡 +

(1 − 𝐷𝑡)𝑌0𝑡  at each period (𝑡 = 1,… , 𝑇; where 𝑇  is the number of periods in the sample). 

Finally, we denote 𝑋𝑡  to the covariates (usually demographic variables) at time 𝑡  that can 

potentially affect both 𝐷 and (𝑌1𝑡; 𝑌0𝑡).  

This framework is frequently used in the impact evaluation field, where the main objective is to 

compare certain characteristics of the potential outcomes distribution. As mentioned, this objec-

                                                           
3 Clearly, 𝐷𝑡 = 0 for all non treated individual for all 𝑡. 
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tive is usually achieved adopting the selection on observables assumption. However, this paper 

relaxes this assumption and extends the analysis to a context where a randomized treatment 

assignment is not achieved until both observed and unobserved heterogeneity is controlled for. 

 

We denote the unobserved heterogeneity as 𝜂; which we assume constant across time. Following 

Jun et al. (2014), we can think of 𝜂 in a vectorial form; in the sense that some elements can be 

excluded of the equation that determines 𝐷 or 𝑌𝑑𝑡 for 𝑑 = 0,1. Formally, we can represent this 

approach the following way:  

 

𝑌𝑑𝑡 = 𝑔𝑑(𝑋𝑡; 𝛾; 𝑢𝑑𝑡)                     (1) 

𝐷𝑡 = ℎ(𝑋𝑡; 𝛿; 𝑣𝑡)                            (2) 

 

Where the vector 𝜂 contains the elements of 𝛾 (affects only potential outcomes) and 𝛿 (affects 

only treatment participation). This representation is a non-separable static panel model with 

specific unobserved heterogeneity for potential outcomes and treatment participation. This paper 

assume a linear model with common unobserved heterogeneity, that is, 𝛾 = 𝛿 = 𝜂. 

 

As a departure from existing literature, we assume that the variables (𝑌𝑡; 𝐷𝑡; 𝑋𝑡) are not observed 

in a single data set at time 𝑡. Instead, we observe two separate data sets at each period: (i) the one 

that contains outcome variables (𝑌𝑡; 𝐷𝑡) –named outcome data set– and (ii) the one that contains 

the covariates or demographic variables (𝑋𝑡; 𝐷𝑡) –named covariate data set. We work under the 

assumption that panel data is available for both data sets; so individuals within the outcome and 

covariate data set will be the same at all time, but they do not have common individuals4. Finally, 

we asume that we have balanced panel data, that is, we have information of all relevant variables 

of each individual for all the periods in the simple. We present some examples showing the 

usefulness of this approach below.  

 

Example I: Long Term Returns to College Attendance (similar to the example given by Fan et al. 

2014a). The information problem arises when the outcome variable is a long term indicator. For 

example, the effect of college attendance on life time earnings. Clearly, there exist unobserved 

factors that affect both treatment participation – college attendance - and the outcome variable - 

life time incomes – (i.e genetic factors, cognitive and non-cognitive skills, among others). This 

                                                           
4 This implies that there cannot exist an individual that is in the outcome data set and the covariate data set sim-

ultaneously. Potentially, there is the possibility that an individual is present in both surveys even though it is 

impossible to identify him. For simplicity, we consider that the probability of this happening is extremely close to 

zero.  
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unobserved heterogeneity causes that the treatment effect is biased. In this context, the availa-

bility of large panel data is useful to deal with these unobserved factors via a fixed effects esti-

mation. This way, one can use administrative data, which contain information of life time earn-

ings, and combine it with other surveys, tipically household surveys, to obtain unbiased treatment 

effects.  

 

Example II: Change in the income distribution across time (adapted from Fan et al. 2014a and 

DiNardo et al. 1996). DiNardo et al. (1996) compared income level on two different years, being 

the treatment variable a binary indicator for each year. In their seminal work, all relevant 

variables were found in a single data set. Nevertheless, there are certain variables of interest 

(particularly, supply side wage determinants) that cannot be observed in the same data set as 

wages. In this situation panel data together with our identification results can be used to control 

for unobserved heterogeneity and bound the treatment effects.  

 

Example III: Effect of smoking on birth weight (adapted from Jun et al. 2014). A mother’s 

choice regarding smoking is, in general, correlated with factors that affect whether she carries a 

healthy life style, which, in turn, impacts directly to her child’s birth weight. For this reason, a 

randomization of treatment assignments is not achieved unless we control for these factors that, in 

many cases, are practically impossible to measure or observe. 

Even though the authors used a single data set, it is plausible to consider that there are some 

variables of interest in other data sets. For example, some measurements of the mother’s habits 

during pregnancy available at health surveys. Potentially, the outcome variable –birth weight– 

and covariates could be observed in different data sets if we consider a survey that only gathers 

information related to the child and another that gathers information related to the mother. Again, 

the availability of panel data would be extremely useful to deal with the unobserved heterogeneity 

in this context.  

 

The use of different data sets could also be applied to the ecological inference problem; that is, the 

case where we combine an aggregate outcome data set with an individual covariate data set to 

make inference at an individual level. In this context, we can understand treatment as an aggre-

gate event so 𝐷𝑡 denotes, for example, two geographical areas at time 𝑡. We illustrate this con-

text with an example related to the electoral sphere. 

 

Example IV: The Effect of the change from compulsory to voluntary voting on turnout in Chilean 

mayoral elections. (see Corvalán et al. 2015). In Chile, until 2012, the electoral participation 
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required people to register in electoral lists, so even though the register was voluntary, once 

registered, voting was compulsory. Chilean government issued Electoral Law 20568 in January 

2012, which established that, from that moment, registration was automatic and voting voluntary. 

Corvalan et al. (2015) used this change of electoral regime to compare voters turnout in mayoral 

elections in 2012 against 2004; adopting the methodology developed by Fan et al. (2014b) under 

the selection on observables assumption. Their treatment variable was a binary indicator for each 

year. The authors used as outcome data set the aggregate voting information in each year and, as 

covariate data set, a socioeconomic survey at individual level5. In this context, the availability of 

panel data for both data sets will be useful to control for potential unobserved heterogeneity such 

as quality of candidates, which may affect the voting decision. 

 

An important aspect to consider when we deal with panel data is the timing of the surveys. De-

pending on the assumptions adopted and the type of model we are working with, information 

requirements are going to change. For example, in some contexts it may not be necessary to have 

panel data for the covariate data set since identification can be reached with a baseline, that is, 

with information prior to the treatment. Nevertheless, for more complex models, more infor-

mation or stronger assumptions will be needed to achieve identification. In this paper, we work 

with model where it is possible to remove the unobserved heterogeneity performing a transfor-

mation to the variables (which is possible in, for example, linear models). For simplicity, we 

assume the availability of only one survey prior to the treatment, which will be denoted as 𝑡 =

0 < 𝑇06. 

 

In the rest of the document, we will adopt the notation used by Fan et al. (2014a), who denote 

𝐹𝐴|𝐵(. |𝑏) as the cumulative distribution function of random variable 𝐴 conditional to 𝐵 = 𝑏. 

Likewise, we denote 𝐹−1(. ) as the quantile or inverse function of the distribution function 𝐹(. ). 

 

3 Identifying Treatment Effects 

In this section we present the identification of counterfactual distributions and treatment effects 

(ATE and ATT) in models where it is possible to remove the unobserved heterogeneity through 

the transformation of the potential outcomes. 

 

                                                           
5 Their information sources were the National Statistic Institution for voting information and the National 

Household Survey (Casen) for socioeconomic information at individual level. 
6 The extension to cases where there exist more tan one period prior to the treatment is straightforward. 
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3.1 Assumptions 

 

First, we present the selection on unobservables assumption. It establishes that, at each period, 

there is not a randomized treatment assignment until both observed and unobserved heterogeneity 

is properly controlled for.  

 

Assumption III.1 (A0): Let us consider that (𝑌1𝑡; 𝑌0𝑡; 𝐷, 𝑋𝑡; 𝜂) have a joint distribution for all 

the periods in the sample. It follows that, for all 𝑥𝑡 ∈ 𝒳𝑡 and 𝑛 ∈ 𝒩, (𝑌1𝑡; 𝑌0𝑡) is jointly inde-

pendent from D given 𝑋𝑡 = 𝑥𝑡 and 𝜂 = 𝑛. 

 

An example of this type of models where the unobserved heterogeneity can be removed are the 

linear models. In this section, we adopt a model where the unobserved factors is included linearly 

in the potential outcomes an treatment participation’s equations: 

 

𝑌𝑑𝑡 = 𝑔𝑑(𝑋𝑡) + 𝛾 + 𝑢𝑑𝑡                     (3) 

 

A common practice to control for the unobserved heterogeneity in linear models is to use the first 

difference or the within estimator. Clearly, performing any of these transformations we can 

remove the unobserved factors in equation (3). 

 

For a more general approach, denote 𝑌𝑑 = (𝑌𝑑0; 𝑌𝑑1; … ; 𝑌𝑑𝑇)′  for 𝑑 = 0,1  as the two 𝑇𝑥1 

vectors that contain the potential outcomes at each period. We consider the transformation pro-

posed by Arellano (2003) of the form 𝐾𝑌𝑑; where 𝐾 is a (𝑇 − 1)𝑥𝑇 matrix with rank (𝑇 − 1)   

such that 𝐾𝜄 = 0 and 𝜄 is a 𝑇𝑥1 vector full of ones. The orthogonality of the matrix 𝐾 and the 

vector 𝜄 guarantees the removal of the time fixed unobserved heterogeneity, so the transformed 

variables 𝐾𝑌𝑑  no longer depend on 𝜂. It is important that any transformation must include the 

pre-treatment period (𝑡 = 0) to identify treatment effects. Both the first difference and the within 

matrix satisfy this requirements. This way, the transformed potential outcomes does not depend 

on the unobserved heterogeneity. 

 

Regarding treatment participation, let us recall that we are working with only one pre-treatment 

period. We assume a linear relation between the unobserved heterogeneity and program partici-

pation. So, we work with the first difference of 𝐷𝑡 to remove these unobserved factors. Hence-

forth, we can define 𝐷 = ∆𝐷𝑡 as the treatment condition; as it takes the value of one for the 

treatment group and zero for the control group. We model this treatment condition as follows:  
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𝐷 = ℎ(𝑋0) + 𝑣                        (4) 

 

Where 𝑋0 represents the pre-treatment observable characteristics. That is, we model the treat-

ment condition only on initial characteristics7. The main reason for this modeling framework is to 

avoid that the covariates could be affected by the treatment. This type of modelling is common in 

the impact evaluation literature, particularly when working with matching and difference in 

difference approach (seer Abadie 2005, Lee 2005). 

 

The advantage of working with these transformations is that the new model fulfills the standard 

unconfoundedness assumption, based on two conditions. The first one refers to the conditional 

Independence assumption, while the second condition is related to the support of the propensity 

score. These assumptions are shown below (adapted from Rosenbaum y Rubin 1983; Firpo 2007 

and Fan et al. 2014a): 

 

Assumption III.I (A1): Consider that (𝐾𝑌1; 𝐾𝑌0; 𝐷, 𝑋) have a joint distribution. It follows that, 

for all 𝑥 ∈ 𝒳, (𝐾𝑌1; 𝐾𝑌0) is jointlu independent from D given 𝑋 = 𝑥. 

 

Assumption III.2 (A2): For all 𝑥0 ∈ 𝒳0 it follows that 0 < 𝑝(𝑥0) < 1, where 𝑝(𝑥0) is the 

propensity score and it is defined as 𝑝(𝑥0) = Pr (𝐷 = 1|𝑋0 = 𝑥0).  

 

Where 𝑋 = (𝑋1
′ , … , 𝑋𝑇

′ )′ is the matrix that contains all the covariates for all the periods of the 

sample. The assumption (A1) indicates that, once the potential outcomes are transformed so that 

they do not depend on the unobserved heterogeneity, these transformations are independent of the 

treatment participation conditional on the covariates. On the other hand, assumption (A2) implies 

that the propensity score based on initial characteristics must be different from zero and one for 

both the treated and non-treated individuals. This means that treatment participation cannot be 

predicted in a deterministic manner8. This way, under (A1) and (A2), the transformed model 

satisfies the standard selection on observables assumption9. 

 

To illustrate how these assumptions work, let us consider the simple but very common case where 

there are only two periods available (before and after treatment) for both the outcome and the 

                                                           
7 We could model treatment participation as a function of the “t”-th difference of observed characteristics if we 

assume that these have not been affected by the treatment. The posterior results will not be modified; the only 

change is the way we estimate the propensity score. 
8 The case where there is more than one pre-treatment period is straightforward. For example, we could obtain the 

propensity score from a pool regression incorporating all the characteristics prior to the treatment. Alternatively, 

we could work with a (weighted) average of the propensity score of each pre-treatment period. 
9 A similar idea was developed by Lee (2005: chapter 4.5). 
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covariate data set; and that the matrix 𝐾 represents the first difference operator. In this context, 

the equations (3) y (4) describes the classical difference in difference model. It is well known that, 

to achieve identification in this model, we must adopt the common trends assumption. This im-

plies that, in the absence of treatment, the outcome variables of both treated and non-treated 

individual would have followed a common (parallel) trend conditional to the covariates (see 

Abadie 2005; Lechner 2013)10. It is easy to notice that (A1) is a stronger from of this assumption 

as it implies that, conditional on the covariates, the first difference of the model is independent of 

treatment participation; which includes mean independence required by the common trend as-

sumption. Therefore, the differentiated model, we reach a randomized treatment assignment by 

conditioning only on observable characteristics. 

 

3.2 Marginal and Counterfactual Distributions and Treatment Effects 

 

In the context described above, we can apply the results developed by Fan et al. (2014a) to 

identify marginal and counterfactual distributions as well as treatment effects. As mentioned by 

Fan et al., when all the variables are not available in a single data set, the distribution 

𝐹𝑌𝑑𝑡|𝑋𝑡,𝐷(𝑦|𝑥, 𝐷) is no longer identified. This precludes identification of the counterfactual dis-

tributions 𝐹𝑌1𝑡(𝑦), 𝐹𝑌0𝑡(𝑦) y 𝐹𝑌0𝑡|𝐷(𝑦|1), as well as all the parameters that are function of these 

distributions, like treatment effects11.  

 

To deal with this problem, Fan et al. (2014a) used the Cambanis et al. (1976) inequality to obtain 

sharp bounds of the counterfactual distribution and treatment effects (ATE and ATT).  They 

adopt the selection on observables assumption, whereas this paper allows the treatment condition 

and the potential outcomes to depend on time fixed unobserved heterogeneity.  

 

However, if we perform the orthogonal transformation described in the previous section, the new 

potential outcomes, 𝐾𝑌𝑑 , no longer depend on the unobserved heterogeneity. Thus, we can adopt 

a procedure similar to the one developed by Fan et al. (2014a) and obtain sharp bounds using the 

transformed model which satisfies the standard unconfoundedness assumption. This way, the 

distributions of interest are no longer the ones related to the potential outcomes, but to their 

transformations: 𝐹𝐾𝑌1(𝐾𝑦), 𝐹𝐾𝑌0(𝐾𝑦) y 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1). 

 

                                                           
10 Formally, the common trend assumption can be written as 𝐸[∆𝑌𝑑|𝑋 = 𝑥, 𝐷 = 1] = 𝐸[∆𝑌𝑑|𝑋 = 𝑥, 𝐷 = 0]. 
11 Note that the potential outcome distribution in presence of the treatment conditional to be treated,𝐹𝑌1𝑡|𝐷(𝑦|1), is 

identified from the sample. 
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Following Fan et al. (2014a) and Firpo (2007) it is possible to write the distributions of the 

transformed potential outcomes as functions of the data, particularly, as a function of the inverse 

of the propensity score:12 

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝐸 [
𝐷

𝑝(𝑋0)
𝐼{𝐾𝑌 ≤ 𝐾𝑦}]

𝐹𝐾𝑌0(𝐾𝑦) = 𝐸 [
1 − 𝐷

1 − 𝑝(𝑋0)
𝐼{𝐾𝑌 ≤ 𝐾𝑦}]

𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) =
1

𝑝1
𝐸 [
(1 − 𝐷)𝑝(𝑋0)

1 − 𝑝(𝑋0)
𝐼{𝐾𝑌 ≤ 𝐾𝑦}]

                               (5) 

 

Where 𝑝1 = Pr [𝐷 = 1]. To have a better understanding of these distribution functions, let us 

consider the case where only two moments are available (before and after the treatment13) and, 

once again, matrix 𝐾 is the first difference operator. In this situation, the functions 𝐹∆𝑌1(∆𝑦), 

𝐹∆𝑌0(∆𝑦) represents the probability that the potential outcome growth of a treated and non-treated 

individual be equal to ∆𝑦, respectively.  

 

The expressions described in equation (5) cannot be identified from the available data, so, fol-

lowing Fan et al. (2014a), it is possible to establish sharp bounds to partially identify these dis-

tributions using the Cambanis et al. (1976) inequality14. These bounds are presented in Theorem 

III.115:  

 

THEOREM III.1: For 𝑑 = 0,1, we have that 𝐹𝐾𝑌𝑑
𝐼 (𝐾𝑦) ≤ 𝐹𝐾𝑌𝑑(𝐾𝑦) ≤ 𝐹𝐾𝑌𝑑

𝑆 (𝐾𝑦), where: 

𝐹𝐾𝑌1
𝐼 (𝐾𝑦) = 𝐸 [𝐷∫ 𝐹𝑊|𝐷

−1 (𝑢|𝐷)𝑑𝑢
𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)

0

] 

𝐹𝐾𝑌1
𝑆 (𝐾𝑦) = 𝐸 [𝐷∫ 𝐹𝑊|𝐷

−1 (𝑢|𝐷)𝑑𝑢
1

1−𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)
] 

𝐹𝐾𝑌0
𝐼 (𝐾𝑦) = 𝐸 [(1 − 𝐷)∫ 𝐹𝑉|𝐷

−1 (𝑢|𝐷)𝑑𝑢
𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)

0

] 

𝐹𝐾𝑌0
𝑆 (𝐾𝑦) = 𝐸 [(1 − 𝐷)∫ 𝐹𝑉|𝐷

−1 (𝑢|𝐷)𝑑𝑢
1

1−𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)
] 

                                                           
12 The proof is shown in Appendix 1. 
13 Note that the case where we analyze two periods does not limit the analysis to situations where 𝑇 = 2. We could 

think in a context where there are different horizons depending on whether one is interested in short, median or 

long term impacts. Alternatively, we could think of a context where we have several outcomes and each one 

measures a different dimension with different flowering periods.  
14 The Cambanis-Simons-Stout inequality is given in Appendix 2. 
15 Appendix 3 shows a detailed proof.  
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Furthermore, we have that 𝐹𝐾𝑌1|𝐷(𝐾𝑦|1) = 𝐸[𝐷𝐼{𝐾𝑌 ≤ 𝐾𝑦}]/𝑝1 is already identified, whereas 

𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) is partially identified through: 𝐹𝐾𝑌0|𝐷
𝐼 (𝐾𝑦|1) ≤ 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) ≤ 𝐹𝐾𝑌0|𝐷

𝑆 (𝐾𝑦|1), 

where: 

𝐹𝐾𝑌0|𝐷
𝐼 (𝐾𝑦|1) =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|𝐷)𝑑𝑢
𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)

0

] 

𝐹𝐾𝑌0|𝐷
𝑆 (𝐾𝑦|1) =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|𝐷)𝑑𝑢
1

1−𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)
] 

 

Where 𝑊 = 1/𝑝(𝑥0) and 𝑉 = 1/(1 − 𝑝(𝑥0)), and it is assumed that the variances of W, V and 

V/W are finite. In this context, the bounds are finite and sharp. 

 

Regarding treatment effects, let us denote 𝜏 = 𝐾𝑌1 − 𝐾𝑌0 as the individual treatment effect, so 

we can define the average treatment effect (ATE) and the average treatment effect on the treated 

(ATT) as 𝜇𝐴𝑇𝐸 = 𝐸[𝜏] and 𝜇𝐴𝑇𝑇 = 𝐸[𝜏|𝐷 = 1], respectively. The sharp bounds of these effects 

are obtained from Theorem 3.2 of Fan et al. (2014a)16 applied to the transformed model (the case 

where 𝑔(�̃�𝑑) = �̃�𝑑): 

 

𝜇1
𝐿 − 𝜇0

𝑈 ≤ 𝜇
𝐴𝑇𝐸

≤ 𝜇1
𝑈 − 𝜇0

𝐿 

𝐸[𝐷(𝐾𝑌)]

𝑝1
− 𝜇0|1

𝑈 ≤ 𝜇𝐴𝑇𝑇 ≤
𝐸[𝐷(𝐾𝑌)]

𝑝1
− 𝜇0|1

𝐿  

 

The advantage of this result is that the bounds can be identified from the available data. Indeed, 

𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷) can be identified from the outcome data set, while the distributions 𝐹𝑊|𝐷(. |𝐷), 

𝐹𝑉|𝐷(. |𝐷) and 𝐹𝑉/𝑊|𝐷(. |𝐷) can be identified from the covariate data set. Furthermore, these 

bounds are considerably narrower than the ones developed by Manski (1990), as shown by Fan et 

al. (2014b). 

 

The identification source of the treatment effects allows us to extract some interesting conclusions 

regarding the information requirements. Under the selection on time fixed unobservables as-

sumption, we only need two periods from the outcome and covariate data set to estimate sharp 

bounds for the counterfactual distributions and treatment effects, applying the difference in dif-

                                                           
16 The application of Theorem 3.2 of Fan et al. (2014a) to the transformed model is described in Appendix 4 

(consider the case where �̃� = 𝐾𝑌). 
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ference approach. Moreover, if we model the treatment condition as a function of only 

pre-treatment characteristics, we would only need panel data for the outcome data set, it suffices 

with a baseline for the covariate data set. If more periods are available, we could perform more 

efficient transformations such as the one done by the within group operator. 

 

4 Identifying Treatment Effects with Ecological Inference Data 

 

In this section, we apply the results obtained in section 3 to the case where ecological inference 

data is available, that is, a context where we seek to combine an aggregate outcome data set with 

an individual covariate data set to make individual inference. For this purpose, we use simple 

adaptations of the bounds obtained by Fan et al. (2014b) and Corvalan et al. (2015) to partially 

identify the treatment effect. For the ecological inference model, Fan et al. (2014b) states that the 

identification problem in the ecological inference context is analogous to the identification 

problem of mean counterfactual outcomes in a treatment effect model, where the outcome of 

interest is observed only at an aggregate level, but the conditional covariates are observed at an 

individual level. 

 

As Corvalan et al. (2015) and Fan et al. (2014b), we analyze the case where both the potential and 

outcomes have a binary behavior. Adopting the selection on observables assumption, the treat-

ment effects can be written as: 

 

𝜇𝐴𝑇𝐸 = 𝐸[𝑌1 − 𝑌0] = Pr[𝑌 = 1] − Pr[𝑌 = 0] 

𝜇𝐴𝑇𝑇 = 𝐸[𝑌1 − 𝑌0|𝐷 = 1] = Pr[𝑌 = 1|𝐷 = 1] − Pr[𝑌 = 0|𝐷 = 1] 

 

To estimate these treatment effects, it is only necessary to obtain sharp bounds of these coun-

terfactual means (probabilities). Corvalan et al. (2015: Theorem I) and Fan et al. (2014b: section 

4) obtain this bounds as a particular case of Theorem 3.2 of Fan et al. (2014a); as well as plug-in 

estimators of these bounds.  

 

As in previous section, we could apply the results obtained by Corvalan et al. (2015) and Fan et 

al. (2014b) to the transformed model 𝐾𝑌𝑑, which depend only on observed covariates. We con-

sider the particular though very common situation where only two periods are available so the 

matrix 𝐾 is the first difference operator17. In this context, the treatment effects are 

                                                           
17 Models where there are more than two periods of time and/or another transformation is performed are straight-

forward.  
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𝜇𝐴𝑇𝐸 = 𝐸[∆𝑌1 − ∆𝑌0] = E[∆𝑌1] − E[∆𝑌0] 

𝜇𝐴𝑇𝑇 = 𝐸[∆𝑌1 − ∆𝑌0|𝐷 = 1] = E[∆𝑌1|𝐷 = 1] − E[∆𝑌0|𝐷 = 1] 

  

Unlike the case analyzed by Corvalan et al. (2015) and Fan et al. (2014b), the treatment effects 

does not reduces to the difference of probabilities as the first difference is no longer a binary 

variable. Indeed, these transformed variables can take the values of one, minus ones or zero 

depending on whether the evolution of the potential outcomes is positive, negative or null; 

respectively.  

 

To solve this problem, we present two alternatives. The first one consists to return to the binary 

case and only analyze the situation where the potential outcomes has grown (or dropped). This 

way, we can define an alternative variable that takes the value of one if the growth has been 

positive (or negative) and zero in any other case. In this context, we estimate the bounds for the 

counterfactual probabilities as Corvalán et al. (2015) and Fan et al. (2014b). The second alter-

native, a little more complex, is to extend the authors results to the case where the outcome is still 

discrete but can take more than three different values. These two options are analyzed below. 

  

4.1 Dichotomizing potential outcomes growth 

 

Without loss of generality, let us consider the case where the interest is to analyze whether the 

outcome has positively evolved due to the presence of the treatment. In this context, we can define 

an auxiliary potential outcome, �̃�𝑑, as: 

 

�̃�𝑑 = {
1, if ∆𝑌𝑑 = 1
0, if ∆𝑌𝑑 = 0 𝑜𝑟 ∆𝑌1 = −1

 

 

The observed auxiliary outcome, �̃�, relates the potential outcomes with the following equation: 

�̃� = 𝐷�̃�1 + (1 − 𝐷)�̃�0. The treatment effects are: 

  

𝜇𝐴𝑇𝐸 = 𝐸[�̃�1 − �̃�0] = Pr[�̃� = 1] − Pr[�̃� = 0] 

𝜇𝐴𝑇𝑇 = 𝐸[�̃�1 − �̃�0|𝐷 = 1] = Pr[�̃� = 1|𝐷 = 1] − Pr[�̃� = 0|𝐷 = 1] 

 

This way, it is posible to identify treatment effects using sharp bound on the counterfactuals 

means of the auxiliary variables as Corvalán et al. (2015) and Fan et al. (2014b). For this purpose, 

we denote:  
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𝑝00 = Pr[�̃� = 0|𝐷 = 0] = Pr[∆𝑌𝑑 = 0; ∆𝑌1 = −1|𝐷 = 0] 

𝑝01 = Pr[�̃� = 0|𝐷 = 1] = Pr[∆𝑌𝑑 = 0; ∆𝑌1 = −1|𝐷 = 1] 

 

Using these definitions, we can use the bounds developed by Fan et al. (2014b) by applying 

Theorem 3.2 of Fan et al. (2014a).  

 

Theorem IV.1: Assuming that 𝑉𝑎𝑟(𝑊) < ∞ and 𝑉𝑎𝑟(𝑉) < ∞, it follows that: 

𝐿1
𝐼 − 𝐿0

𝑆 ≤ 𝜇𝐴𝑇𝐸 ≤ 𝐿1
𝑆 − 𝐿0

𝐼  

𝑝11
𝑝1

− 𝐿0|1
𝑆 ≤ 𝜇𝐴𝑇𝑇 ≤

𝑝11
𝑝1

− 𝐿0|1
𝐼

 

where: 

𝐿1
𝐼 = 𝑝1∫ 𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
1−𝑝01

0

 

𝐿1
𝑆 = 𝑝1∫ 𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
1

𝑝01

 

𝐿0
𝐼 = (1 − 𝑝1)∫ 𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
1−𝑝00

0

 

𝐿0
𝑆 = (1 − 𝑝1)∫ 𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
1

𝑝00

 

𝐿0|1
𝐼 =

(1 − 𝑝1)

𝑝1
∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
1−𝑝00

0

 

𝐿0|1
𝑆 =

(1 − 𝑝1)

𝑝1
∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
1

𝑝00

 

 

For the estimation of these bounds we can use plug-in estimators analogous to the ones developed 

by Fan et al. (2014b) and Corvalan et al. (2015). Let us assume that the outcome data set contains 

𝑀 regions, whereas the covariate data set contains 𝑁 individuals in both periods. From the 

outcome data set we can obtain estimators for the sample proportions �̂�1, �̂�11, �̂�00 and �̂�01 as 

proposed by Corvalan et al. (2015): 

 

�̂�1 = 𝑀
−1∑𝐼{𝐷𝑖 = 1}

𝑀

𝑖=1

 

�̂�11 = (𝑀�̂�1)
−1∑𝐼{�̃�𝑖 = 1,𝐷𝑖 = 1}

𝑀

𝑖=1
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�̂�00 = (𝑀�̂�1)
−1∑𝐼{�̃�𝑖 = 0,𝐷𝑖 = 0}

𝑀

𝑖=1

 

�̂�01 = (𝑀�̂�1)
−1∑𝐼{�̃�𝑖 = 0,𝐷𝑖 = 1}

𝑀

𝑖=1

 

 

Regarding the quantile functions 𝐹𝑊|𝐷
−1 (𝑢|0), 𝐹𝑉|𝐷

−1 (𝑢|0) y 𝐹𝑉/𝑊|𝐷
−1 (𝑢|0), we can obtain them 

using the same estimators developed by Fan et al. (2014b) and Corvalan et al. (2015), with the 

only difference that our estimators uses the propensity score based on pre-treatment characteris-

tics18. Finally, we can obtain estimators of the bounds proposed in Theorem IV.1 by integrating 

numerically in the established interval.  

 

4.2 Using the potential outcomes growth 

 

The second alternative consists in working directly with the first difference of the potential out-

comes. Therefore, it would be very useful to extend the result proposed by Fan et al. (2014b) to 

the case where the outcome variable is still discrete but can take more than two different values.  

 

Consider a general situation, where the potential outcomes, denoted by �̃�𝑑 can take 𝐺 distinct 

values (�̃�1, … , �̃�𝐺); upwardly ordered: �̃�1 < �̃�2 < ⋯ < �̃�𝐺. To obtain sharp bounds on treatment 

effects, we can apply once again Theorem 3.2 of Fan et al. (2014a) 19 in the particular case where 

𝑔(�̃�𝑑) = �̃�𝑑. Noting that: 

  

𝐹�̃�|𝐷
−1 (𝑢|𝑑) =

{
 

 
�̃�1 𝑢 ∈ [0; 𝑝1𝑑[

�̃�2 𝑢 ∈ [𝑝1𝑑; 𝑝2𝑑[
⋮
�̃�𝐺

⋮
𝑢 ∈ [𝑝𝐺−1𝑑; 1]

 

𝐹�̃�|𝐷
−1 (1 − 𝑢|𝑑) =

{
 

 
�̃�1 𝑢 ∈ [1 − 𝑝1𝑑; 1[

�̃�2 𝑢 ∈ [1 − 𝑝2𝑑; 1 − 𝑝1𝑑[
⋮
�̃�𝐺

⋮
𝑢 ∈ [0; 1 − 𝑝𝐺−1𝑑]

 

 

where, for 𝑑 = 0,1 and 𝑗 = 1,2,… , 𝐺 − 1 we denote 𝑝𝑗𝑑 = Pr[𝑌 = 𝑌𝑗|𝐷 = 𝑑], sharp bounds 

takes the form described in Theorem IV.2 

                                                           
18 Appendix 5 shows in detail the quantile functions estimators proposed by Fan et al. (2014b) applied to our 

context. 
19 Theorem 3.2 of Fan et al. (2014a) is shown in Appendix 4. 
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Theorem IV.2: Assuming that 𝑉𝑎𝑟(𝑊) < ∞ and 𝑉𝑎𝑟(𝑉) < ∞, it follows that: 

𝐶1
𝐼 − 𝐶0

𝑆 ≤ 𝜇𝐴𝑇𝐸 ≤ 𝐶1
𝑆 − 𝐶0

𝐼 

𝐶1
𝑝1
− 𝐶0|1

𝑆 ≤ 𝜇𝐴𝑇𝑇 ≤
𝐶1
𝑝1
− 𝐶0|1

𝐼  

where: 

𝐶1 = 𝐸[𝐷�̃�] =∑�̃�𝑖𝑝𝑖1
∗

𝐺

𝑖=1

 

𝐶1
𝐼 = 𝑝1 [∫ �̃�1𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
1

1−𝑝11

+∫ �̃�2𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

1−𝑝11

1−𝑝21

+⋯+∫ �̃�𝐺𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

1−𝑝𝐺−11

0

] 

𝐶1
𝑆 = 𝑝1 [∫ �̃�1𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
𝑝11

0

+∫ �̃�2𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

𝑝21

𝑝11

+⋯+∫ �̃�𝐺𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

1

𝑝𝐺−11

] 

𝐶0
𝐼 = (1 − 𝑝1) [∫ �̃�1𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
1

1−𝑝10

+∫ �̃�2𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

1−𝑝10

1−𝑝20

+⋯

+∫ �̃�𝐺𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

1−𝑝𝐺−10

0

] 

𝐶0
𝑆 = (1 − 𝑝1) [∫ �̃�1𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
𝑝10

0

+∫ �̃�2𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

𝑝20

𝑝10

+⋯+∫ �̃�𝐺𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

1

𝑝𝐺−10

] 

𝐶0|1
𝐼 =

(1 − 𝑝1)

𝑝1
[∫ �̃�1𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
1

1−𝑝10

+⋯+∫ �̃�𝐺𝐹𝑉/𝑊|𝐷
−1 (𝑢|0)𝑑𝑢

1−𝑝𝐺−10

0

] 

𝐶0|1
𝑆 =

(1 − 𝑝1)

𝑝1
[∫ �̃�1𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
𝑝10

0

+⋯+∫ �̃�𝐺𝐹𝑉/𝑊|𝐷
−1 (𝑢|0)𝑑𝑢

1

𝑝𝐺−10

] 

 

where, for 𝑑 = 0,1 and 𝑗 = 1,2,… , 𝐺 − 1 we denote 𝑝𝑗1
∗ = Pr[𝑌 = 𝑌𝑗; 𝐷 = 1]. 

 

It is posible to apply the results described in Theorem IV.2 to the first difference model, where the 

transformed potential outcome can take up to three different values: one, minus one and zero. If 

we define �̃�𝑑 = ∆𝑌𝑑 and the quantile function as: 

 

𝐹∆𝑌|𝐷
−1 (𝑢|𝑑) = {

−1, 𝑢 ∈ [0; 𝑝∆−1𝑑[

0, 𝑢 ∈ [𝑝∆−1𝑑; 𝑝∆0𝑑[

1, 𝑢 ∈ [𝑝∆0𝑑; 1]
 

 

The bounds for the first difference model are shown in Theorem IV.3. 
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Theorem IV.3: Assuming that 𝑉𝑎𝑟(𝑊) < ∞ and 𝑉𝑎𝑟(𝑉) < ∞, it follows that: 

𝐶1
𝐼 − 𝐶0

𝑆 ≤ 𝜇𝐴𝑇𝐸 ≤ 𝐶1
𝑆 − 𝐶0

𝐼 

𝐶1
𝑝1
− 𝐶0|1

𝑆 ≤ 𝜇𝐴𝑇𝑇 ≤
𝐶1
𝑝1
− 𝐶0|1

𝐼  

where: 

𝐶1 = 𝐸[𝐷∆𝑌] = 𝑝∆11
∗ − 𝑝∆−11

∗  

𝐶1
𝐼 = 𝑝1 [∫ 𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
1−𝑝∆01

0

−∫ 𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

1

1−𝑝∆−11

] 

𝐶1
𝑆 = 𝑝1 [∫ 𝐹𝑊|𝐷

−1 (𝑢|1)𝑑𝑢
1

𝑝∆01

−∫ 𝐹𝑊|𝐷
−1 (𝑢|1)𝑑𝑢

𝑝∆−11

0

] 

𝐶0
𝐼 = (1 − 𝑝1) [∫ 𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
1−𝑝∆00

0

−∫ 𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

1

1−𝑝∆−10

] 

𝐶0
𝑆 = (1 − 𝑝1) [∫ 𝐹𝑉|𝐷

−1 (𝑢|0)𝑑𝑢
1

𝑝∆00

−∫ 𝐹𝑉|𝐷
−1 (𝑢|0)𝑑𝑢

𝑝∆−10

0

] 

𝐶0|1
𝐼 =

(1 − 𝑝1)

𝑝1
[∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
1−𝑝∆00

0

−∫ 𝐹𝑉/𝑊|𝐷
−1 (𝑢|0)𝑑𝑢

1

1−𝑝∆−10

] 

𝐶0|1
𝑆 =

(1 − 𝑝1)

𝑝1
[∫ 𝐹𝑉/𝑊|𝐷

−1 (𝑢|0)𝑑𝑢
1

𝑝∆00

−∫ 𝐹𝑉/𝑊|𝐷
−1 (𝑢|0)𝑑𝑢

𝑝∆−10

0

] 

 

where, for 𝑑 = 0,1 , we denote 𝑝∆11
∗ = Pr[∆𝑌 = 1;𝐷 = 1] , 𝑝∆−11

∗ = Pr[∆𝑌 = −1;𝐷 = 1] , 

𝑝∆0𝑑 = Pr[∆𝑌 = 0|𝐷 = 𝑑] and 𝑝∆−1𝑑 = Pr[∆𝑌 = −1|𝐷 = 𝑑]. 

 

To obtain estimators for these bounds, we adopt the ones suggested by Corvalan et al. (2015) and 

Fan et al. (2014b), with the only difference that are applied to the model in first differences. Once 

more, let us assume that the outcome data set contains 𝑀 regions whereas the covariate data set 

contains 𝑁 individuals both before and after treatment. From the outcome data set we can obtain 

plug-in estimators of the sample proportions �̂�1, �̂�∆11
∗ , �̂�∆−11

∗ , �̂�∆−10, �̂�∆−11, �̂�∆00 and �̂�∆01:  

 

�̂�1 =
1

𝑀
∑𝐼{𝐷𝑖 = 1}

𝑀

𝑖=1

 

�̂�∆11
∗ =

1

𝑀
∑𝐼{∆𝑌𝑖 = 1,𝐷𝑖 = 1}

𝑀

𝑖=1

 

�̂�∆−11
∗ =

1

𝑀
∑𝐼{∆𝑌𝑖 = −1,𝐷𝑖 = 1}

𝑀

𝑖=1
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�̂�∆01 =
1

𝑀�̂�1
∑𝐼{∆𝑌𝑖 = 0,𝐷𝑖 = 1}

𝑀

𝑖=1

 

�̂�∆−11 =
1

𝑀�̂�1
∑𝐼{∆𝑌𝑖 = −1,𝐷𝑖 = 1}

𝑀

𝑖=1

 

�̂�∆00 =
1

𝑀(1 − �̂�1)
∑𝐼{∆𝑌𝑖 = 0,𝐷𝑖 = 0}

𝑀

𝑖=1

 

�̂�∆−10 =
1

𝑀(1 − �̂�1)
∑𝐼{∆𝑌𝑖 = −1,𝐷𝑖 = 0}

𝑀

𝑖=1

 

 

The estimators for the quantile functions 𝐹𝑊|𝐷
−1 (𝑢|0), 𝐹𝑉|𝐷

−1 (𝑢|0) y 𝐹𝑉/𝑊|𝐷
−1 (𝑢|0) can be obtained 

in the same fashion as in the case where we are dichotomizing the potential outcomes growth, 

described in Appendix 5. These estimators are similar to the ones used by Fan et al. (2014b) and 

Corvalan et al. (2015), but our estimators uses the propensity score based on pre-treatment 

characteristics. Finally, we can obtain estimators of the bounds proposed in Theorem IV.1 by 

integrating numerically in the established interval.  

 

V Simulation 

 

To assess the performance of the bounds, we make a simulation exercise. Consider the following 

two period model 𝑡 = 0,1: 

 

𝑌1𝑡
∗ = 𝛼1𝑋𝑡 + 𝛾 + 𝑢1𝑡;    𝑌0𝑡

∗ = 𝛼0𝑋𝑡 + 𝛾 + 𝑢0𝑡 

𝑌1𝑡 = 𝐼{𝛼1𝑋𝑡 + 𝛾 + 𝑢1 ≥ 0};   𝑌0𝑡 = 𝐼{𝛼0𝑋𝑡 + 𝛾 + 𝑢0 ≥ 0} 

𝐷 = 𝐼{𝛿𝑋0 − 휀 ≥ 0} 

 

Where (𝑋1; 𝑋0; 𝑢11; 𝑢10; 𝑢01; 𝑢00; 𝛾; 휀)~𝑁(0; 𝐼8).  

 

This model considers that treatment participation depends only on pre-treatment characteristics. 

Furthermore, as in the ecological inference context, we will evaluate the case where the potential 

outcomes are affected linearly by the unobserved heterogeneity.  

 

The main objective is to compare the bounds of the policy parameters of interest, ATE and ATT, 

proposed in Section IV under the selection on unobservables with the bounds developed by Fan et 
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al. (2014a, 2014b); who adopt the unconfoundedness assumption. Likewise, we compare thess 

bounds with the difference estimator given by: 

 

∑ 𝑌𝑖𝐷𝑖
𝑀
𝑖=1

∑ 𝐷𝑖
𝑀
𝑖=1

−
∑ 𝑌𝑖(1 − 𝐷𝑖)
𝑀
𝑖=1

∑ (1 − 𝐷𝑖)
𝑀
𝑖=1

 

 

Let us recall that this estimator is consistent under the assumption that the simple is completely 

random; that is, the potential outcomes are independent from the treatment participation. Fur-

thermore, under this assumption, the treatment effects ATE and ATT are the same.  

 

Regarding the simulation, we expect that both the difference estimator and the bounds developed 

by Fan et al. (2014a, 2014b) are biased due to the presence of unobserved heterogeneity. This bias 

shall not be present in our bounds as they work on the transformed model which has already 

removed the unobserved heterogeneity. For this exercise, we use as matrix 𝐾 the first difference 

estimator, so the bounds used are the ones shown in Theorem IV.320.  

 

Table 1 shows the results for the Monte Carlo simulation. The true values of the treatment effects 

ATE and ATT were computed directly from the simulated data. 

  

                                                           
20 To integrate numerically, we used Simpson rule as we were working with discrete functions. 
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Table 1: Bounds Performance 

  
True Value 

OLS 

(Y vs D) 

Observables (Fan et al.) Unobservables 

  Lower Upper Lower Upper 

ATE -0.018 0.0064 -0.0172 0.0383 -0.0524 0.0487 

    (0.0216) (0.0200) (0.0195) (0.0139) (0.0154) 

ATT 0.023 0.0064 -0.0242 0.1311 -0.0834 0.0901 

    (0.0216) (0.0201) (0.0240) (0.0315) (0.0296) 

Note: True values were computed directly from the simulated data. The propensity-score was obtained 

through a probit model. We report the average of 100 repetitions. The sample size was of 2000 observations 

(1000 per period). Standard errors (across repetitions) are shown in parenthesis. Values:  

 

In the presence of time fixed unobserved heterogeneity, both the difference estimators and the 

bounds developed by Fan et al. (2014a, 2014b) are biased. The former reports a treatment effect 

extremely close to zero, underestimating the ATE and ATT. On the other hand, the latter seems to 

overestimate the treatment effects. For the ATT, even though the true value lies within their 

interval, it is really close to the lower bound; whereas the bounds failed to correctly identify the 

true value. This problem disappears when we use our bounds develop the Theorem IV.3. Note 

that, for both the ATE and ATT, the interval midpoint seems to be fairly close to the true value. 

 

VI Conclusions 

 

The need to combine information from different data sets to model causal effects is very common 

in social sciences. Some potential uses of data combination could be analyzing long term returns 

of college attendance, modeling electoral behavior (as Corvalan et al. 2015), comparing the 

effects of regional policies, estimating the effects of internal and external wars on individual 

indicators (such as health, education, etc.), among others. Adopting the selection on observables 

assumption is possible to partially identify treatment effects using the bounds developed by Fan et 

al. (2014a, 2014b). However, this assumption is not always appropriate. There are many cases 

where this assumption is violated, which causes the treatment variables are endogenous due to the 

presence of unobserved heterogeneity. In these cases, an alternative identification source is 

needed. 

 

In this paper we consider the identification of counterfactual distributions and treatment effects 

when the outcome variable and covariates are in different data sets under the selection on 

unobservables assumption. For that purpose, based on the results developed by Fan et al. (2014a, 

2014b), who obtain sharp bounds to identify counterfactual distributions and treatment effects 

𝛿 = 0.5,  𝛼1 = 3,  𝛼0 = −3 
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(ATE and ATT) under the unconfoundedness assumption. Working with a model based on linear 

time fixed unobserved heterogeneity, we show that we can apply an analogous procedure to the 

one proposed by Fan et al. (2014a, 2014b) using an orthogonal transformation to the model; so 

that we can return to the selection on observables assumption. As a particular case, we consider 

the ecological inference problem, where we combine an aggregated outcome data set with an 

individual demographic data set to make inference at individual level.  

 

The next step is to search for alternative methods of identification of treatment effects in models 

based on different forms of unobserved heterogeneity; for example, dynamic models or models 

that include individual rather than time fixed unobserved heterogeneity. Furthermore, we could 

consider more flexible specifications allowing for non-linearities in the unobserved 

heterogeneity. The identification source in this paper is the liner relation between the unobserved 

variables and the potential outcomes. Nevertheless, this assumption may be too restrictive, so the 

development of new identification methods robust to different functional forms shall be useful in 

these contexts. 

 

A possibility is to use alternative bounds available in the literature such as the ones developed by 

Manski (1990) or the Frèchet-Hoeffding inequalities. Nonetheless, the intervals obtained from 

these bounds are usually uninformative, so it would be useful to develop alternative forms of 

identification. This task is very challenging so it is left as future research. 
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VIII Appendix 

 

Appendix 1. Distribution Functions of potential outcomes from available data21. 

 

Let us start with the definition of the distribution functions of equation (5):  

 

𝐹𝐾𝑌1(𝐾𝑦) = Pr[𝐾𝑌1 ≤ 𝐾𝑦]

𝐹𝐾𝑌0(𝐾𝑦) = Pr[𝐾𝑌0 ≤ 𝐾𝑦]

𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) = Pr[𝐾𝑌0 ≤ 𝐾𝑦|𝐷 = 1]

                               (5′) 

 

Recall that we assumed only one pre-treatment period (denoted by 𝑡 = 0 ) and that 𝑌1 =

(𝑌10, 𝑌11, … , 𝑌1𝑇)′ e 𝑌0 = (𝑌00, 𝑌01, … , 𝑌0𝑇)′ are 𝑇𝑥1 vectors that contain the potential outcomes 

for all periods, whereas 𝑋 = (𝑋1′, … , 𝑋𝑇′)′ is the matrix that contains the covariates for all 

periods. The variable 𝐾𝑌𝑑 represents the transformation of the potential outcomes that do not 

depend of the unobserved heterogeneity.  

 

First, we apply the law of iterated expectations to condition everything to covariates at all times.  

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝔼[Pr[𝐾𝑌1 ≤ 𝐾𝑦|𝑋]] 

 

By assumption (S1) we know that the transformation 𝐾𝑌1 is independent to the treatment vari-

able 𝐷 conditional on the covariates 𝑋, so the distribution function can be written as:  

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝔼[Pr[𝐾𝑌1 ≤ 𝐾𝑦|𝑋, 𝐷 = 1]] 

 

Using the relation between potential and observed outcomes, 𝑌𝑡 = 𝐷𝑌1𝑡 + (1 − 𝐷)𝑌0𝑡 for 𝑡 =

0,… , 𝑇 and the definition of probabilityPr[𝐴] = 𝐸[𝐼{𝐴}],  

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝔼[Pr[𝐾𝑌 ≤ 𝐾𝑦|𝑋, 𝐷 = 1]] = 𝔼[𝔼(𝐷𝐼{𝐾𝑌 ≤ 𝐾𝑦}|𝑋, 𝐷 = 1)] 

 

Where 𝑌 = (𝑌0, 𝑌1, … , 𝑌𝑇)′ is 𝑇𝑥1 vector that contains all the observed outcomes at all times. 

Then, we use the following equation: 𝔼[𝑆|𝑋] = 𝑝(𝑋)𝔼(𝑆|𝑋, 𝐷 = 1) + (1 − 𝑝(𝑋))𝔼(𝑆|𝑋, 𝐷 =

0) , where 𝑆  is a random variables. Considering that the propensity score is based on 

                                                           
21 Adapted from Firpo (2007). 
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pre-treatment characteristics unaffected by the tratment and that we only have one period before 

the treatment, the previous expression can be written as a function of 𝑝(𝑋0), 

  

𝐹𝐾𝑌1(𝐾𝑦) = 𝔼 [
1

𝑝(𝑋0)
𝔼(𝐷𝐼{𝐾𝑌 ≤ 𝐾𝑦}|𝑋)] 

Finally, using the law of iterated expectations one more time, we reach the desired result 

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝔼 [
𝐷

𝑝(𝑋0)
𝐼{𝐾𝑌 ≤ 𝐾𝑦}] 

 

We can obtain analogous results for 𝐹𝐾𝑌0(𝐾𝑦) and 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) using the same procedure.   
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Appendix 2. Cambanis-Simons-Stout Inequality (CSS) 

 

Lemma: Let R and S two random variables with fixed and known marginal distributions, 𝐹𝑅 y 

𝐹𝑆; respectivamente. Under the assumption that both R and S have finite variances, it follows that: 

 

∫ 𝐹𝑅
−1(1 − 𝑢)𝐹𝑆

−1(𝑢)𝑑𝑢
1

0

≤ 𝐸(𝑅𝑆) ≤ ∫ 𝐹𝑅
−1(𝑢)𝐹𝑆

−1(𝑢)𝑑𝑢
1

0

 

 

These bounds are sharp and finite.  
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Appendix 3. Application of the CSS inequality to the transformed model22 

 

Le tus begin from the results shown in (5). If we denote 𝑊 = 1/𝑝(𝑋0) and 𝑉 = 1/[1 − 𝑝(𝑋0)] 

and apply the law of iterated expectations: 

 

𝐹𝐾𝑌1(𝐾𝑦) = 𝐸[𝐷𝐸(𝐼{𝐾𝑌 ≤ 𝐾𝑦}𝑊|𝐷)]

𝐹𝐾𝑌0(𝐾𝑦) = 𝐸[(1 − 𝐷)𝐸(𝐼{𝐾𝑌 ≤ 𝐾𝑦}𝑉|𝐷)]

𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) =
1

𝑝1
𝐸[(1 − 𝐷)𝐸(𝐼{𝐾𝑌 ≤ 𝐾𝑦}𝑉/𝑊|𝐷)]

                               (5′′) 

 

Each expression has the conditional expectation of the product of two random variables 

(𝐼{𝐾𝑌 ≤ 𝐾𝑦} with 𝑊, 𝑉 y 𝑉/𝑊, respectively) so we can apply directly Lemma III to obtain the 

result shown in Theorem III.1. 

 

It follows that, for 𝑑 = 0,1, 𝐵𝐾𝑑
𝐼 ≤ 𝐹𝐾𝑌𝑑(𝐾𝑦) ≤ 𝐵𝐾𝑑

𝑆 , where: 

𝐵𝐾1
𝐼 = 𝐸 [𝐷∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝐵𝐾1
𝑆 = 𝐸 [𝐷∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (𝑢|𝐷)𝐹𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝐵𝐾0
𝐼 = 𝐸 [(1 − 𝐷)∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑉|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝐵𝐾0
𝑆 = 𝐸 [(1 − 𝐷)∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (𝑢|𝐷)𝐹𝑉|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

Furthermore, 𝐹𝐾𝑌1|𝐷(𝐾𝑦|1) = 𝐸[𝐷𝐼𝐾𝑌]/𝑝1  is identified, whereas 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1)  is partially 

identified through 𝐵𝐾0|𝐷
𝐼 ≤ 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1) ≤ 𝐵𝐾0|𝐷

𝑆 , where: 

𝐵𝐾0|𝐷
𝐼 =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑉/𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝐵𝐾0|𝐷
𝑆 =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝐼𝐾𝑌|𝐷

−1 (𝑢|𝐷)𝐹𝑉/𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

 

Where 𝐼𝐾𝑌 = 𝐼{𝐾𝑌 ≤ 𝐾𝑦}. To obtain Theorem III.1, it is precise to note that: 

 

𝐹𝐼𝐾𝑌|𝐷
−1 (𝑢|𝐷) = {

0, para 𝑢 ∈ [0,1 − 𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷)[

1, para 𝑢 ∈ [1 − 𝐹𝐾𝑌|𝐷(𝐾𝑦|𝐷), 1]
 

 

                                                           
22 Adapted from Fan et al. (2014a). 



30 

 
 

Finally, replacing this equality in the previous result, we obtain the bounds for 𝐹𝐾𝑌1(𝐾𝑦), 

𝐹𝐾𝑌0(𝐾𝑦) and 𝐹𝐾𝑌0|𝐷(𝐾𝑦|1). 
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Appendix 4. Theorem 3.2 of Fan et al. (2014a)  

 

(i) Let 𝜇𝑑(𝑔) ≡ 𝐸[𝑔(�̃�𝑑)]. So, 𝜇𝑑
𝐿(𝑔) ≤ 𝜇𝑑(𝑔) ≤ 𝜇𝑑

𝑈(𝑔), for 𝑑 = 0,1, and: 

 

𝜇1
𝐿(𝑔) = 𝐸 [𝐷∫ 𝐹𝑔(�̃�)|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝜇1
𝑈(𝑔) = 𝐸 [𝐷∫ 𝐹𝑔(�̃�)|𝐷

−1 (𝑢|𝐷)𝐹𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝜇0
𝐿(𝑔) = 𝐸 [(1 − 𝐷)∫ 𝐹𝑔(�̃�)|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑉|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝜇0
𝑈(𝑔) = 𝐸 [(1 − 𝐷)∫ 𝐹𝑔(�̃�)|𝐷

−1 (𝑢|𝐷)𝐹𝑉|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

 

Without additional information, these bounds are sharp. 

 

(ii) Let 𝜇𝑑|1(𝑔) ≡ 𝐸[𝑔(�̃�𝑑)|𝐷 = 1] . 𝜇1|1(𝑔)  is identified: 𝜇1|1(𝑔) = 𝐸[𝐷𝑔(�̃�)]/𝑝1  y 

𝜇0|1
𝐿 (𝑔) ≤ 𝜇0|1(𝑔) ≤ 𝜇0|1

𝑈 (𝑔), where: 

 

𝜇0|1
𝐿 (𝑔) =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝑔(�̃�)|𝐷

−1 (1 − 𝑢|𝐷)𝐹𝑉/𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

𝜇0|1
𝑈 (𝑔) =

1

𝑝1
𝐸 [(1 − 𝐷)∫ 𝐹𝑔(�̃�)|𝐷

−1 (𝑢|𝐷)𝐹𝑉/𝑊|𝐷
−1 (𝑢|𝐷)𝑑𝑢

1

0

] 

 

Without additional information, these bounds are sharp. 
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Appendix 5. Estimators of the bounds of mean counterfactuals  

 

To obtain consistent estimators of the propensity scores we can use the covariate data set. Under 

the assumption that the treatment participation depends only on pre-treatment characteristics, a 

consistent estimator, �̂�(𝑥0), can be obtained using the pre-treatment covariate data set23.  

 

Fan et al. (2014b) define, first, the estimated quantile function of the propensity score conditional 

to 𝐷 = 𝑑 as �̂�𝑝(𝑥0)|𝐷
−1 (𝑢|𝑑) = inf{𝑎: �̂�𝑝(𝑥0)|𝐷(𝑎|𝑑) > 𝑢} where �̂�𝑝(𝑥0)|𝐷(𝑎|𝑑) is the estimated  

cumulative distribution function of the propensity score given 𝐷 = 𝑑 . For 𝑑 = 0,1 ; this 

estimated function can be expressed as: 

 

�̂�𝑝(𝑥0)|𝐷(𝑎|𝑑) =
∑ {�̂�(𝑥0) ≤ 𝑎, 𝐷𝑖 = 𝑑}
𝑁
𝑖=1

𝑁�̂�𝑑
 

 

Using the estimated quantile function of the propensity score, Fan et al. (2014b) obtained the 

estimators for the rest of quantile functions as follows: 

 

�̂�𝑊|𝐷
−1 (𝑢|𝑑) =

1

�̂�𝑝(𝑥0)|𝐷(1 − 𝑢|𝑑)
 

 

�̂�𝑉|𝐷
−1 (𝑢|𝑑) =

1

1 − �̂�𝑝(𝑥0)|𝐷(𝑢|𝑑)
 

 

�̂�𝑉/𝑊|𝐷
−1 (𝑢|𝑑) =

�̂�𝑝(𝑥0)|𝐷(𝑢|𝑑)

1 − �̂�𝑝(𝑥0)|𝐷(𝑢|𝑑)
 

 

 

 

 

                                                           
23 The extension to the case where the treatment participation depends on the “t”th difference of the observed 

characteristics is straightforward. In this case, we should obtain the propensity score based on this differences 

and, then, we can perform a weighted average (by population) of the propensity scores. Finally, we can obtain the 

quantile functions analogously as Corvalán et al. (2015) and Fan et al. (2014b).  


