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Abstract: High-resolution air quality simulations are often performed using different nested domains
and resolutions. In this study, the variability of nitrogen dioxide (NO2) concentrations estimated from
two nested domains focused on Portugal (D2 and D3), with 5 and 1 km horizontal grid resolutions,
respectively, was investigated by applying the WRF-Chem model for the year 2015. The main goal
and innovative aspect of this study is the simulation of a whole year with high resolutions to analyse
the spatial variability under the simulation grids in conjunction with detailed land cover (LC) data
specifically processed for these high-resolution domains. The model evaluation was focused on
Portuguese air quality monitoring stations taking into consideration the station typology. As main
results, it should be noted that (i) D3 urban LC categories enhanced pollution hotspots; (ii) generally,
modelled NO2 was underestimated, except for rural stations; (iii) differences between D2 and D3
estimates were small; (iv) higher resolution did not impact model performance; and (v) hourly
D2 estimates presented an acceptable quality level for policy support. These modelled values are
based on a detailed LC classification (100 m horizontal resolution) and coarse spatial resolution
(approximately 10 km) emission inventory, the latter suitable for portraying background air pollution
problems. Thus, if the goal is to characterise urban/local-scale pollution patterns, the use of high
grid resolution could be advantageous, as long as the input data are properly represented.

Keywords: air pollution; nitrogen dioxide; WRF-Chem model; nested domains; horizontal grid
resolution; land cover; emissions; air quality assessment

1. Introduction

The degradation of air quality around the world, especially in cities, is a consequence
of the exponential population growth, intensification of anthropic activities, and lack of
urban planning. According to the World Health Organisation (WHO), in 2019, 99% of the
population was living in areas where pollutant concentrations exceeded the 2005 WHO
air quality guidelines for long-term exposure, mainly to fine particulate matter (PM2.5).
These exceedances representing outdoor air pollution are the cause of millions of premature
deaths worldwide per year (4.2 million in 2016), being that 91% of these deaths occurred in
low- and middle-income countries [1]. In view of these alarming facts, the WHO air quality
guidelines were recently revised in order to be used as a basis for policies reducing the unac-
ceptable health burden attributable to air pollution [2]. Among the main pollution sources,
the road traffic sector is responsible for a large proportion of urban air pollution, primarily
with regard to nitrogen dioxide (NO2) levels, accounting for 39% of NO2 emissions in
Europe [3,4]. However, air pollution is a transboundary issue that should be analysed in a
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broader sense, as the polluted air is transported to other regions and vice versa. In the case
of traffic-related NO2, there is a large spatial variability due to the occurrence of different
atmospheric circulation patterns and, consequently, rapidly falling concentrations with the
distance from the road [4,5]. In this context, the use of specific modelling tools for assessing
air quality from global to local scales using different temporal and grid resolutions is crucial
to understand the processes and sources leading to air pollution, as well as to build a
basis for policies defining air quality improvement strategies [6–9]. The increasing option
by online models that integrate the parallel computation of meteorology and chemistry
represents an additional value to evaluate potential feedbacks, including, for example,
direct aerosol effects on the absorption and scattering of solar radiation and the impact of
local weather patterns on chemical reactions [10–12].

At regional and urban scales, several research studies have addressed the influence
of the horizontal grid resolution on air quality, simultaneously weighing the computation
time and disk space requirements. Schaap et al. [13] ran five regional chemical trans-
port models (CTM) at different horizontal resolutions (7, 14, 28, and 56 km) over Europe.
Overall, the CTM response to an increase in resolution is broadly coherent for all models,
with largest impacts on NO2 followed by coarse particulate matter (PM10) and tropospheric
ozone (O3) concentrations. After a comprehensive analysis of the results versus compu-
tational effort, for studies focused on the European domain, a resolution between 10 and
20 km is recommended. In addition, as about 70% of the model response to grid resolu-
tion was determined by the spatial distribution of emissions (0.125◦ × 0.0625◦ resolution),
improving the emissions allocation procedure at finer spatial and temporal resolutions,
considering specific seasonal and daily time profiles by activity sector and greater weight to
urban areas, is very important to realistically reproduce air pollution gradients, especially
at local and urban scales [14,15]. For a smaller domain, Tie et al. [16] conducted four distinct
simulations with the online WRF-Chem model over Mexico City in order to test the impact
of different grid spacing and emission inventory (EI) resolutions (3, 6, 12, and 24 km) on the
surface pollutant concentrations. They concluded that the model resolutions of 3 and 6 km
provide reasonable results, but for the lower resolutions, the model tends to significantly
underestimate the measurements. Thus, they suggest a ratio from 6 to 1 km resolution as
a test value to other urban case studies, and an optimal resolution of 6 km considering
the balance between the model performance and the required computation time. In turn,
Kuik et al. [17] also applied the WRF-Chem over three nested domains with 15, 3, and
1 km horizontal resolutions, using the European TNO-MACC III anthropogenic EI (covers
the 2000–2011 period with 0.125◦ × 0.0625◦ resolution) [18,19] and the same land cover
(LC) database for the three simulation domains, and they found no improvements when
comparing 1 and 3 km resolutions. In contrast, better results and spatial representativeness
of the model were obtained at 3 km horizontal resolution when compared to 15 km, which
could largely be explained by the EI resolution used. As conclusions of this study, if the
focus is to estimate urban/local-scale pollution patterns, increasing the spatial detail of both
EI and LC data, together with specific urban parametrisations useful for urban modules, is
recommended, otherwise a finer grid resolution may not be greatly advantageous [20,21].
For coarse grid resolutions (20 km), Zhong et al. [22] found large discrepancies in modelled
concentrations using two emission inventories (regional EI and global EI EDGAR) over an
East and South Asia region, where the regional EI-based simulation is more sensitive to
capture measured concentration values. In particular, when comparing the results from
both simulations, spatial differences of 100% in surface NO2 concentrations were observed,
with higher values by using the regional EI as input to the modelling system. Regarding
the LC, the changes that are induced in the Earth’s heat and energy balances and biogenic
and anthropogenic emission rates result in a pronounced impact on air quality [23–31].
When testing different LC databases as an input for the WRF-Chem, Kuik et al., Silveira
et al., and Sun et al. [17,28,31] demonstrated that a detailed and updated LC classification is
important to accurately identify the location of the main air pollution sources and allocate
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emissions by LC category, attributing greater weight to urban areas, where air pollution
hotspots are normally observed.

In summary, the lack of a clear trend to evaluate the modelling performance at differ-
ent nested domains can be attributed to many factors, namely, type of models, physical
and chemical parametrisations, grid resolutions, study region characteristics, seasonality,
LC and EI resolutions, and nonlinear chemistry and meteorology responses. Based on the
LC and grid resolution-related framework, this study aims to investigate the joint impact
of a high-resolution LC classification and grid spacing on the air quality in Portugal using
the online WRF-Chem model. The option for an online model and for developing and
implementing a new LC database to be used as an input for the simulations is justified
in Silveira et al. [12,28]. Emphasis was attributed to urban areas, where the major anthro-
pogenic pollution sources are located, and to NO2 concentrations, for which the road traffic
is the main contributor. Some less explored research aspects were tested in this work:
(i) simulating a full year with high resolutions; (ii) using a very detailed LC database and
analysing its influence on results from nested high-resolution simulation domains; and
(iii) evaluating the WRF-Chem model performance beyond the background air quality
monitoring stations.

The paper is organised as follows. Section 2 describes the main configurations and in-
put datasets for applying the WRF-Chem model, with particular relevance to the enhanced
LC classification. The impact of the LC and grid spacing on modelled NO2 concentrations is
analysed and discussed in Section 3, by comparing the results obtained for domains 2 and 3
(Section 3.1). To evaluate the model performance for these simulation domains, measure-
ments from Portuguese air quality monitoring stations were used (Section 3.2). Lastly, a few
concluding remarks and recommendations to improve modelling practices are presented
in Section 4.

2. Materials and Methods
2.1. WRF-Chem Setup

To investigate the impact of the detailed LC and horizontal grid resolution on NO2
concentrations, WRF-Chem version 3.6.1 was used. WRF-Chem is an online model, de-
veloped and periodically updated by the NOAA’s Earth System Research Laboratory
(NOAA/ESRL) in collaboration with other research groups, with a chemistry module
completely embedded within the Weather Research and Forecasting (WRF) model. This
online coupling allows the simultaneous calculation and consequent feedback between me-
teorological and chemical variables, sharing the same simulation grids (i.e., horizontal and
vertical levels), physical parametrisations, transport schemes, and vertical mixing [10,32].

For this study, the model setup includes three nested domains, run in two-way mode,
covering a large part of Europe and North Africa (D1, background domain), through a
regional domain centred over Portugal (D2) to a Portuguese region (D3, inner domain)
with horizontal grid resolutions of 25, 5, and 1 km, respectively (Figure 1). However, since
the urban scale is the focus of this research, only NO2 results from domains 2 and 3 were
analysed and compared. To solve the vertical structure of the atmosphere, 29 vertical levels
extending up to 50 hPa were considered, with the lowest level at approximately 28 m above
the surface.

Concerning the main physical and chemical model parametrisations, the following
were adopted for the simulations: RADM2 (Regional Acid Deposition Model, second
generation) chemical mechanism, MADE/SORGAM (Modal Aerosol Dynamics Model for
Europe/Secondary Organic Aerosol Model) aerosol module, Fast-J photolysis, RRTMG
(Rapid Radiative Transfer Model for General Circulation Models) short-wave/long-wave
radiation schemes, and aerosol–radiation feedback were turned on. Other options and
further details are presented in Silveira et al. [12].
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In terms of input data, besides the LC described below, which is one of the study’s
targets, the inputs listed in Table 1 were also used. Information about their processing is
exposed in Silveira et al. [12,28].

Table 1. Input datasets used in the numerical WRF-Chem simulations.

Category Subcategory Source Resolutions

Static data Topography, soil
properties, albedo USGS 2 arc-minute

Emissions
Anthropogenic EMEP (for 2015) 0.1◦ × 0.1◦

Biogenic MEGAN v2.04
Initial and boundary

conditions
Meteorological ECMWF 0.5◦ × 0.5◦, every 6 h

Chemical MOZART-4/GEOS-5 1.9◦ × 2.5◦, every 6 h
Acronyms: USGS—United States Geological Survey; EMEP—European Monitoring and Evaluation Programme;
MEGAN—Model of Gases and Aerosols from Nature; ECMWF—European Centre for Medium-Range Weather
Forecasts; MOZART-4/GEOS-5—Global Model for Ozone and Related Chemical Tracers.

2.2. Land Cover

The LC arises as a prevailing driver of all interactions within the atmospheric bound-
ary layer, directly influencing the Earth’s energy budget, and emission and deposition
rates of air pollutants [26,27,33]. Given that preponderance of the LC on physical and
chemical processes occurs in the atmosphere, a preliminary analysis based on different
LC distributions for assessing air quality impacts was previously performed using the
same WRF-Chem setup [28]. The analysis, involving the 24-classes USGS database (2-min
horizontal resolution) provided with the WRF-Chem package against a new 33-classes
LC classification, showed that the USGS LC reproduces unrealistically the spatial pattern
under the simulation grids, and tends to a higher underestimation of maximum air quality
values compared to the new LC. In the case of primary air pollutants, such as NO2, these
evidences are stronger in urban areas, with higher emissions and a greater weight in the
spatial allocation of these emissions for the simulation grids. Accordingly, since many ur-
ban areas are not identified or are roughly represented through the USGS database (class 1
in D3—Figure 2a), a more homogeneous spatial pattern of atmospheric concentrations is
expected. In turn, the new LC classification, which combines CLC (CORINE Land Cover)
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for Europe with greater accuracy and specific LC data for Portugal, enables enhanced LC
representation and air pollution hotspot identification; hence, it is selected as input for the
WRF-Chem simulations.
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the simulation grids: (a) default USGS LC and (b) new LC for 1 km grid resolution; (c) new LC for
5 km grid resolution (D2 cut on D3 area).

Methodologically, this new LC database was developed and implemented within the
WRF-Chem as follows: (i) CLC and national LC data were integrated in GIS (geographic
information systems) software and reclassified according to the new 33-classes USGS
nomenclature following those previously suggested [34]; (ii) in the LC reclassification
process, the inclusion of three different urban classes: low-intensity residential (class 31),
high-intensity residential (class 32), and industrial or commercial (class 33) should be
highlighted; and (iii) lastly, the resulting LC was processed to be directly ingested by the
model considering 5000 and 100 m horizontal resolutions for CLC areas and Portugal,
respectively.
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Once the new LC database was successfully implemented, the outcome was interpo-
lated for the simulation domains taking into account the dominant LC category in each grid
cell. Focusing on domain 3 coverage, Figure 2b,c shows the resulting LC for 1 and 5 km grid
resolutions. However, it should be noted that the interpolation from very high-resolution
data to coarse grid cells leads to considerable losses of detail, not taking the best advantage
of the relevance of these inputs. This advice is particularly useful for studies over urban
areas, where adjusted urban parametrisations and higher input and output resolutions are
essential to improve the modelling performance.

3. Impact of the LC and Grid Spacing on NO2 Concentrations

Following the methodological scheme described in the previous section, the WRF-
Chem was applied for the period 24 December 2014 to 31 December 2015, on a daily basis
and with hourly resolution, discarding the days of December 2014 as model spin up. The
spatial variability and range of modelled NO2 concentrations from domains 2 and 3 are
analysed and discussed in Section 3.1. To evaluate the modelling performance, measure-
ments from the Portuguese air quality monitoring stations were used (Section 3.2).

Emphasis was given to annual and hourly NO2 values, in accordance with the time
periods established for the WHO guidelines for human health protection [2] and for the
limit values of the European Commission’s Ambient Air Quality Directive 2008/50/EC.

3.1. Comparative Analysis

As a starting point to analyse the influence of the horizontal grid resolution on
NO2 concentrations, annual mean spatial differences between D3 and the part of D2
that overlaps D3 (D3–D2 for each grid cell of D3) and its relationship with the new LC were
quantified (Figures 3 and 4).
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Looking at the spatial pattern of annual mean NO2 differences, the influence of the
LC interpolation process under the simulation grids has a large impact, since the highest
resolution from domain 3 solves the geographic location of the LC categories better and,
consequently, an improved representation of the main emission sources and amount of
emitted pollutant is expected. Hence, higher positive differences of NO2 concentrations (up
to 2 µg·m−3) in pollution hotspots were found, which, to a certain extent of domain 2, are
not properly captured, or even not identified. For the Aveiro and Figueira da Foz munici-
palities, more pronounced positive differences occur near the large industrial point sources,
whereas for Coimbra, the resulting LC characterisation and associated road activity were
the reason for raising the NO2 concentrations over domain 3. Supporting this information,
Figure 4 shows the dominant LC categories for the D3 cells, where those identified as urban,
mainly the categories 32 and 33 (high-intensity residential and industrial or commercial,
respectively), contributed to higher NO2 values in relation to the D2 estimates. In con-
trast, for the surrounding area of these hotspots, higher concentrations were estimated for
domain 2 (negative differences in Figure 3), probably due to the way the emissions were
spatially distributed by the simulation grids, attributing a more uniform pattern to D2.

The predicted levels for D2 and D3 were compared with observations from air quality
stations common to both simulation domains, taking into account the station type (Figure 5).
In total, results for seven locations representing air quality stations (inside the red rectangle)
are presented: 2 rural (FRN, MOV), 2 suburban (ILH, TEI), 1 urban (IGE), and 2 traffic
(AVE, COI).

Figure 6 shows the median and some percentiles calculated for the hourly observed
and modelled NO2 concentrations at these monitoring sites. Good agreement between
observations and estimates was obtained in background rural stations (FRN, MOV), since
these are normally located on quite homogeneous areas with limited and well-identified
emission sources, which favours the numerical resolution of all processes occurring within
the atmospheric boundary layer. In turn, as expected, highest measured values were
recorded in traffic stations (AVE, COI), due to the intense road activity and its significant
contribution to urban NO2 pollution.
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The model is unable to reproduce the magnitude of the higher values, because despite
the reasonable grid resolutions to portray urban areas, in particular of domain 3 (1 km),
the EI used has a resolution (approximately 10 km) which does not allow for solving
urban-scale air pollution patterns. The low resolution of the EI and its use in all simulation
domains, contributed to the relatively small differences between D2 and D3. Nevertheless,
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there are other factors that could explain the variability of the modelled data and their un-
derestimation, such as smoothing of areas with complex terrain, omission/underestimation
of emission sources, and poorly reproduced meteorological processes. When comparing
the results of traffic stations with the other typologies, differences between measured and
modelled data tend to decrease substantially, demonstrating that the traffic-related NO2
emissions used for simulating air quality over urban areas with high traffic activity are
clearly underestimated. At this scale, specific modelling tools and detailed characterisation
of the local emission sources and urban geometry are required.

3.2. Model Evaluation

For a more comprehensive analysis of the agreement of WRF-Chem results with
observed values, the model performance for the Portuguese air quality monitoring stations
common to the D2 and D3 domains (Figure 5b) and for the year 2015 was evaluated,
considering the following statistical metrics: Pearson´s correlation coefficient, mean bias,
and root mean square error (RMSE) (Figure 7). Appendix A shows the equations used.
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As expected, worst performance was found in traffic stations, with lower correlations
and higher biases and RMSE. This model behaviour can be largely explained by the
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geographic location of these stations, since they are strategically positioned over urban
street canyons with high traffic activity, and due to the low resolution of the EI used in all
simulation domains, which contributed to a poor characterisation of the emission sources,
mainly for urban/local-scale modelling purposes. In turn, this limited representativeness
of the EI, associated to emissions evenly distributed in space and more simplified terrain
features were the reason for the best estimates on rural areas, leading to the highest
correlations and lowest biases and RMSE. Furthermore, the best agreement in rural stations
can also be justified through the model’s numerical solving capabilities, which favour the
simplified representation of the atmospheric processes, given the homogeneity and large
distance from the main pollution sources that are typically associated to rural areas.

Comparing the modelled results for the sites common to both domains, the increase
in the horizontal grid resolution from 5 km (D2) to 1 km (D3) did not greatly impact the
model performance, despite the influence of the detailed LC in the spatial allocation of
emissions. However, mean bias and RMSE tend to decrease with the increasing resolution,
while a slightly higher correlation was obtained for the lower resolution.

With the purpose of assessing the quality level of these estimates for policy support,
the normalised target diagram using the Delta Tool was constructed (Figure 8) based on
all Portuguese background air quality stations, identified as rural, suburban, and urban,
as shown in Figure 5a. The diagram illustrates whether the model quality objectives (MQO)
proposed in the Air Quality Directive (2008/50/EC) are fulfilled for at least 90% of the
available stations. This approach consists of calculating the modelling quality indicator
(MQI) associated with each station, which should be less than or equal to 1 (circle area) in
order to meet the MQO. More details on Delta Tool can be found in Thunis et al. [35].
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Statistics for the Portuguese background stations with more than 75% of data avail-
ability (31 out of 40) were produced, considering hourly series of modelled (D2) and
observed NO2 concentrations. Instead of the mean bias and RMSE, the Delta Tool works
with normalised BIAS and centred RMSE (see Appendix A for the equations). For the
valid stations, an acceptable quality level based on hourly modelled values was obtained
(MQI_HD of 0.891), but it failed when annual average NO2 concentrations were compared
(MQI_YR of 1.387), due to the weaker performance verified for urban and suburban sta-
tions, as already shown in Figure 7. This can happen because different formulations are
used for obtaining the hourly (MQI_HD) and yearly (MQI_YR) Modelling Quality Indicator.
According to the guidance for the Delta Tool application [36], the difference between the
two indicators is related to the autocorrelation in both the monitoring data and the model
results, and the way the autocorrelations affect the uncertainty of the annual averaged
values. The MQI_HD results from a ratio between the RMSE and a value representative
of the maximum allowed measurement uncertainty, whereas the MQI_YR considers the
difference of the yearly mean bias of modelled and measured concentrations normalised
by the uncertainty of the measured mean concentration. On the other hand, on an hourly
basis, considering multiple modelled–measured pairs could contribute to smoothing the
differences. Nevertheless, the NO2 results for these MQI (MQI_HD < MQI_YR) are in
accordance with other studies (e.g., [37,38]).

Therefore, the performance criteria for the target indicator are fulfilled in hourly
estimates, and the following conditions for the stations are ensured:

• Normalised bias and centred RMSE (CRMSE) are less or equal to 1;
• Hourly modelled and observed data are positively correlated;
• Model uncertainty (Umod RV) of 35.4% is below the MQO´s uncertainty for ambient

air quality assessment (50% for hourly NO2 data).

Overall, the model evaluation for NO2 concentrations is within the range of other
research studies performed over regions with similar environmental conditions and by
testing different combinations of inputs and physical and chemical model parametrisa-
tions [17,39–42].

Focusing on the aspects addressed in this study, the refinement of the LC and grid
resolution contributes to a better spatial pattern of pollutant concentrations, namely over
urban and industrial areas (Figures 3 and 4), due to better allocation of emissions and thus
better reproduction of NO2 hotspots. This improvement is confirmed by the validation
results, which indicate slight increases of the calculated performance statistical indicators
(Figures 6 and 7). Therefore, modelling results are largely dependent on the spatial distribu-
tion of the system inputs and the statistical performance varies with the location/typology
of the monitoring stations.

4. Conclusions

Air quality modelling over different nested domains is a current practice for assessing
air pollutant concentrations at multiple spatial scales. However, choosing the appropriate
domain resolutions is a challenging issue concerning both efficiency and accuracy of the
predictions. Limited spatial resolution produces systematic errors in the model simulations,
while finer resolution adds computational costs and may not be practical for operational
air pollution forecasts. Moreover, increased spatial resolutions pose additional challenges
concerning the required input data (e.g., LC, emissions), which may not be available to
support fine resolutions, or the numerical limitations of the models themselves.

In this study, the impact of two nested high-resolution simulation domains focused on
Portugal (D2 and D3, with 5 and 1 km horizontal grid resolutions) and on ambient NO2
concentrations, was investigated by applying the online WRF-Chem model for a whole
year (2015). Taking advantage of this annual simulation at high resolutions, the combined
effect of the grid spacing with a very detailed LC database was also analysed, given
the LC influence on the atmospheric dynamics and spatial allocation of anthropogenic
emissions under the simulation grids. To better understand the spatial fluctuations of NO2



Climate 2022, 10, 19 12 of 15

concentrations, a model evaluation was performed by station typology. The following
findings are noteworthy:

• Urban LC categories interpolated for the D3 enhanced pollution hotspots, with higher
values (of up to 2 µg·m−3) in relation to D2, are probably due to the way the emissions
were spatially distributed by the simulation grids;

• Small differences were found between D2 and D3 estimates, as a result of the low
resolution of EI and its use in all simulation domains;

• Accordingly, the increase in horizontal resolution did not considerably help to improve
model performance, with slightly smaller mean bias and RMSE for higher resolution,
and slightly higher correlation values for lower resolution;

• The worst model performance obtained for traffic air quality stations (lower corre-
lations and higher biases and RMSE) demonstrates the larger difficulty of this type
of model and the configurations used to accurately reproduce air pollution levels at
these sites;

• For policy support, the model quality objectives examining the hourly D2 results were
fulfilled (MQO less than 1);

• Balancing the computational costs involved with the overall model performance,
downscaling from 5 to 1 km grid resolution was not justified.

Overall, notwithstanding the poor improvement of the modelling performance shown
by the comparison between observed and modelled values obtained for D2 and D3,
the higher resolution of the simulation setup implied a better spatial allocation of land
use, and therefore urban and industrial areas (Figure 2, LC categories 31–33) were better
represented and simulated when capturing higher NO2 values. In fact, the effects of the
LC interpolation process under the simulation grids had a considerable impact, since the
highest resolution from D3 better solved the geographic location of the LC categories and,
consequently, an improved representation of the main emission sources and amount of
emitted pollutant was achieved.

However, even with these refinements, the main point from the results obtained is that
increasing the spatial resolution of the model setup is not always an added value. This has
to be accompanied by more detailed LC data and consequently by a better top-down, and
if possible a mixed emission inventory approach. The use of other types of data sources
(e.g., satellite data or road traffic or population dynamics-based proxies) could help on
these more detailed input data, and should be explored when 1 km resolution and hourly
simulations are projected.

In summary, for a CTM application down to 1 km horizontal resolution, an improved
representation of the spatial and temporal variability of emissions under the simulation
grids, together with the adjustment of model parametrisations according to the case study
are required. Nevertheless, whenever modelling tools are used for multiscale and long-
term air quality assessment purposes, prior planning, including proper characterisation
of the study domains, selection of the modelling system to be used, how to couple the
models with nesting capabilities (i.e., include feedbacks among the simulation domains),
search/preparation of required input data, and evaluation of extreme weather events,
is essential to improve both the understanding of atmospheric phenomena at different
scales and the modelling performance. To complement this type of modelling studies,
the use of satellite products is increasingly widespread by providing long-term data for
wider areas [43,44].

The two main messages of this work to the scientific community rely on the importance
of: (i) assessing the air quality in urban areas following a multiscale approach, for instance,
by using nesting capabilities of models; and (ii) using detailed LC databases to improve the
detail and consequently the robustness of gridded emissions.
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Appendix A. Statistical Metrics

Pearson´s Correlation Coefficient (r):

r = ∑n
i=1(Oi − O) (Mi − M)√

∑n
i=1 (Oi − O)

2
∑n

i=1 (Mi − M)
2

Mean Bias (MBIAS):
MBIAS =

1
n

n

∑
i=1

(Oi − Mi)

Root Mean Square Error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(Oi − Mi)
2

Normalised Bias (NBIAS):

NBIAS =
∑n

i=1(Mi − Oi)

∑n
i=1 (Oi)

Centred RMSE (CRMSE):

CRMSE =

√
1
n

n

∑
i=1

[
(Mi − M)− (Oi − O)

]2
where: Oi—observed values; Mi—modelled values; i—number (rank) between 1 and n;
n—total number of observed or modelled values.
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