
Development of an Autonomous
Mobile Robot with Planning and

Location in a Structured
Environment

Lucas Tiago Eckert

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Engenharia Industrial.

Work oriented by:

Professor PhD José Luis Sousa Magalhães Lima

Professor PhD Paulo Gomes Costa

Professor PhD Alberto Yoshihiro Nakano

Bragança

2019

Development of an Autonomous
Mobile Robot with Planning and

Location in a Structured
Environment

Lucas Tiago Eckert

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Engenharia Industrial.

Work oriented by:

Professor PhD José Luis Sousa Magalhães Lima

Professor PhD Paulo Gomes Costa

Professor PhD Alberto Yoshihiro Nakano

Bragança

2019

Acknowledgement

Firstly, I would like to express my sincere gratitude to my advisor Prof. PhD José Luis

Lima for the continuous support of my Master study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis.

To Professor PhD Alberto Nakano, co-supervisor of this work, my gratitude for your

availability, encouragement, immense knowledge, and support in the preparation of this

work.

To Professor PhD Paulo Costa, co-supervisor of this work, my gratitude for the guid-

ance and willingness to share his vast knowledge in the area.

To Engineer Luis Piardi, my gratitude for your availability, immense knowledge, and

support during the development of this work.

To all the friends and colleagues who, directly or indirectly, contributed to the prepa-

ration of this study, my gratitude for the patience, attention and strength you have given

in difficult moments.

Finally, I must express my very profound gratitude to my family for providing me

with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would

not have been possible without them. Thank you.

v

Abstract

With the advance of technology mobile robots have been increasingly applied in the

industry, performing repetitive work with high performance, and in environments that

pose risks to human health. The present work plans and develops a mobile robot platform

for the micromouse competition. The micromouse consists of a small autonomous mobile

robot that, when placed in an unknown labyrinth, is able to map it, search for the best

path between the starting point and the goal and travel it in the shortest possible time.

To accomplish these tasks, the robot must be able to self-locate, map the maze as it

traverses it and plan paths based on the map obtained. The developed self-localization

method is based on the odometry, the laser sensors present in the robot and on a previous

knowledge of the start point and the configuration of the environment. Several method-

ologies of locomotion in unknown environment and route planning are analyzed in order

to obtain the combination with the best performance.

In order to verify the results, the present work is developed in real environment, in

3D simulation and also with a hardware in the loop capability. Labyrinths from previous

competitions are used as basis for comparing methodologies and validating results. At the

end it presents the algorithm capable of fulfilling all the requirements of the micromouse

competition together with the results of its evaluation run.

Keywords: Micromouse; Autonomous Mobile Robot; Path Planning; Mapping; Self-

Location.

vii

Resumo

Com o avanço da tecnologia, os robôs móveis têm sido cada vez mais aplicados na indús-

tria, realizando trabalhos repetitivos com alto desempenho e em ambientes que expõem

riscos à saúde humana. O presente trabalho planeja e desenvolve um robô móvel para

a competição micromouse. O micromouse consiste em um pequeno robô autônomo que,

ao ser colocado em um labirinto desconhecido, é capaz de mapeá-lo, procurar o melhor

caminho entre o ponto de partida e o objetivo, e percorrê-lo no menor tempo possível.

Para realizar estas tarefas, o robô deve ser capaz de se auto-localizar, mapear o labir-

into enquanto o percorre e planejar caminhos com base no mapa obtido. O método de

auto-localização desenvolvido baseia-se na odometria, nos sensores a laser presentes no

robô e em um prévio conhecimento do ponto de início e da configuração do ambiente.

Diversas metodologias de locomoção em ambiente desconhecido e planejamento de rotas

são analisadas buscando-se obter a combinação com o melhor desempenho.

Para averiguação de resultados o presente trabalho desenvolve-se em ambiente real e

em simulação 3D com hardware in the loop. Labirintos de competições anteriores são

utilizados de base para o comparativo de metodologias e validação de resultados. Ao final

apresenta-se o algoritmo capaz de cumprir todas as exigências da competição micromouse

juntamente com os resultados em sua corrida de avaliação.

Palavras-chave: Micromouse; Robô Móvel Autonomo; Planejamento de Caminho; Ma-

peamento; Auto Localização.

ix

Contents

Acknowledgement v

Abstract vii

Resumo ix

Acronyms xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Dissertation Outline . 4

2 Related Work 7

2.1 Robotics Competitions . 7

2.1.1 RoboCup Soccer Competition . 8

2.1.2 Urban Search and Rescue Competitions 9

2.1.3 Robot@Factory . 9

2.1.4 DARPA Grand Challenge . 10

2.2 Mobile Robots Applications . 11

2.3 Locomotion of Wheeled Mobile Robot . 12

2.3.1 Ackerman Steering Geometry . 13

2.3.2 Omnidirectional Geometry . 13

xi

2.3.3 Differential Geometry . 14

2.4 World Representation . 14

2.4.1 Topological . 15

2.4.2 Grid-based . 16

2.5 Simultaneous Localization and Mapping 17

2.6 Path Planning . 18

2.6.1 Cell Decomposition . 18

2.6.1.1 Approximate Cell Decomposition 19

2.6.1.2 Adaptive Cell Decomposition 19

2.6.1.3 Exact Cell Decomposition 21

2.6.2 Roadmap Methods . 21

2.6.2.1 Visibility Graphs . 21

2.6.2.2 Voronoi Diagrams . 22

2.6.2.3 Probabilistic Roadmaps 23

2.6.3 Potential Fields . 24

2.7 Trajectory Planning . 25

2.7.1 A* Algorithm . 25

2.7.2 Dijkstra’s Algorithm and Best-first Search Algorithm 27

3 Real Robot Description 29

3.1 Structural Constitution of the Robot . 29

3.2 Kinematic Model of Differential Robot . 32

3.2.1 Pose . 32

3.2.2 Linear and Angular Velocity . 33

3.3 Electronic Hardware . 34

3.3.1 WEMOS D1 Mini . 35

3.3.2 Motor Shield . 35

3.3.3 Battery Shield . 36

3.3.4 Step-up and motor . 36

xii

3.3.5 Sensors . 37

3.3.5.1 Odometer . 38

3.3.5.2 Laser Distance Sensor . 40

3.4 Robot Software . 41

4 Simulation Model 43

4.1 SimTwo Simulator . 43

4.1.1 Maze Generator . 44

4.1.2 Robot Configuration . 46

4.1.3 Robot Control . 47

4.1.4 Results Presentation . 48

4.2 Hardware in the Loop . 49

5 Localization, Mapping, Path planning and Control 53

5.1 Maze representation . 53

5.2 Localization . 54

5.3 Control . 57

5.3.1 Centralization Algorithm . 58

5.3.1.1 Both Close Lateral Walls or a Large Frontal Wall 58

5.3.1.2 One of the Close Lateral Walls 59

5.3.1.3 One of the Sidewalls a Cell Away 59

5.3.1.4 Other cases . 61

5.3.2 Curves . 61

5.4 Search Algorithms . 62

5.4.1 A* Modified . 62

5.5 Mapping . 63

5.6 Path Planning and Evaluation Run . 65

6 Results 67

6.1 Simulation . 67

xiii

6.1.1 Localization . 68

6.1.2 Mapping . 69

6.1.2.1 Wall Follower . 70

6.1.2.2 Wall Follower with repositioning algorithm 71

6.1.3 Path Planning . 73

6.1.3.1 2008 All Japan Micromouse Expert Contest 73

6.1.3.2 2018 APEC Micromouse Contest 75

6.1.3.3 2018 UK Micromouse . 76

6.1.3.4 Comparison . 77

6.1.4 Evaluation Run . 77

6.2 Real Robot . 78

7 Conclusions and Future Work 81

7.1 Developed Work . 81

7.2 Future Works . 82

A Publications 92

A.0.1 Paper Submitted and Accepted . 92

A.0.2 Papers Submitted and Awaiting Evaluation 93

xiv

List of Tables

3.1 Dimensions of the micromouse robot . 31

3.2 Micro metal gear motor specifications . 37

4.1 Micromouse simulated structure. 46

4.2 Position of the sensors in Simtwo simulation. 47

6.1 Results of the wall follower algorithm. 72

6.2 Results of the wall follower with repositioning algorithm. 73

6.3 Search Algorithms applied on 2008 All Japan Micromouse results 74

6.4 Search Algorithms applied on 2018 APEC Micromouse results 75

6.5 Search Algorithms applied on 2018 UK Micromouse results 76

6.6 Evaluation run results. 78

xv

xvi

List of Figures

1.1 APEC 2017 Micromouse Contest Venue [5]. 2

2.1 RoboCup soccer competitions : (a) Simulation league. (b) Middle size

league. (c) Humanoid league. 8

2.2 A USAR robot operating in the National Institute of Standards and Tech-

nology (NIST) arena [13]. 9

2.3 Robot@Factory competition arena [16]. 10

2.4 Defense Advanced Research Projects Agency (DARPA) Gran Challenge.

Adapted from [17]. 11

2.5 Curiosity - Robot for exploration of the planet Mars (NASA). Adapted

from [21]. 12

2.6 Ackerman steering geometry realizing a turn. 13

2.7 Robot with omnidirectional geometry (Uranus) [20]. 14

2.8 Robot with differential geometry (Cyo, produced by Probotics, Inc). 15

2.9 Topological map representation [33]. 15

2.10 Grid-based map representation [33]. 16

2.11 Cell decomposition with different resolutions [43]. 20

2.12 Quadtree representation [33]. 20

2.13 Complete visibility graph [47]. 22

2.14 Voronoi diagram [33] . 22

2.15 Probabilistic roadmap [33] . 23

2.16 Potential field algorithm [52]. 24

xvii

2.17 A Star Algorithm . 26

3.1 Assembled micromouse robot : (a) Frontal view. (b) Side view. (c) Top

view. 30

3.2 Base plate designed for the micromouse robot : (a) Frontal view. (b) Side

view. (c) Top view. 31

3.3 Robot in the plane representing the global robot reference frame. Extracted

from [19]. 32

3.4 Micromouse electronic architecture. 34

3.5 WEMOS D1 Mini. 35

3.6 Motor shield. 36

3.7 Battery shield. 37

3.8 Simplified scheme of the process of interaction of the sensors with the en-

vironment. 38

3.9 Optical encoder representation. Adapted from [66]. 39

3.10 VL53L0XV2 sensor. 40

3.11 Time-of-flight technology model. Adapted from [70]. 40

4.1 SimTwo micromouse simulation interface. 44

4.2 Maze conversion process. 45

4.3 Simulated micromouse robot : (a) Lateral view. (b) Top view. 47

4.4 Maze presentation in the Spreedsheet window. 49

4.5 Correlation of price, time, risk and precision between simulation and real

systems. (adapted from [76]). 50

4.6 Architecture HIL for Micromouse SimTwo simulator. 51

4.7 SimTwo HIL configuration. 52

5.1 Partial representation of the maze matrix (white - free cell, grey - obstacle). 54

5.2 Partial representation of the maze and its axes. 55

5.3 Environment situations: (a) Both close lateral walls. (b) Large frontal wall. 59

xviii

5.4 A single wall close. 60

5.5 A single wall a Cell Away. 60

5.6 Ordering a new cell in a binary heap. 62

5.7 Mapping process: (a)Robot’s current position. (b) Generated map. 65

6.1 Traveled route. 68

6.2 Comparative between odometry and real robot movimentation. 69

6.3 Maps of past micromouse competitions : (a) 2008 All Japan Micromouse

Expert Contest (b) 2018 APEC Micromouse Contest. (c) 2018 UK Micro-

mouse Finals Maze. 70

6.4 Path traversed using the wall-follower algorithm. 71

6.5 Maps generated by the wall follower algorithm 71

6.6 Path traversed using the wall-follower with repositioning algorithm. 72

6.7 Maps generated by the wall follower with repositioning algorithm 72

6.8 Search Algorithms applied on 2008 All Japan Micromouse: (a) Dijkstra’s

Algorithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A*

Modified w/ K=1.5. (f) A* Modified w/ K=2. 74

6.9 Search Algorithms applied on 2018 APEC Micromouse: (a) Dijkstra’s Al-

gorithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A*

Modified w/ K=1.5. (f) A* Modified w/ K=2. 75

6.10 Search Algorithms applied on 2018 UK Micromouse : (a) Dijkstra’s Al-

gorithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A*

Modified w/ K=1.5. (f) A* Modified w/ K=2. 76

6.11 Trajectories performed on the evaluation run in the mazes : (a) 2008 All

Japan Micromouse Expert Contest (b) 2018 APEC Micromouse Contest.

(c) 2018 UK Micromouse Finals Maze. 77

6.12 Assembled maze. 78

6.13 Real maze: (a) Map. (b) Path planning. 79

6.14 Trajectory performed in the evaluation run. 79

xix

Acronyms

AAAI Association for the Advancement of Artificial Intelligence.

AI Artificial Inteligence.

AUVSI Association for Unmanned Vehicle Systems International.

DARPA Defense Advanced Research Projects Agency.

HIL Hardware in the Loop.

IEEE Institute of Electrical and Electronics Engineers.

MDF Medium-density fibreboard.

NIST National Institute of Standards and Technology.

PWM Pulse Width Modulation.

SLAM Simultaneous Localization and Mapping.

UAV Unmanned aerial vehicle.

USAR Urban Search and Rescue.

xxi

Chapter 1

Introduction

This work deals with the study and development in three essential areas in wheeled mobile

robots: path planning, simultaneous localization, and mapping and control. It aims to

develop an autonomous mobile robot to compete in the micromouse contest [1]. As a

basis for the studies, a simulation platform is used to implement and test the developed

mapping and path planning algorithms. After the simulation step, a real mobile robot

was implemented to validate the methodology in a real maze.

1.1 Motivation

In the last decades robots have become common in industrial and domestic environments

performing various tasks. With the emergence of new technologies its use should become

even greater. According to the research groups Boston Consulting Group and Tractica

[2], the robotic market is expected to grow dramatically in the next few years. Seeking to

stimulate research and encourage students in the field of robotics, a wide range of robotic

competitions takes place all over the world. Among such competitions the best known is

the micromouse.

The micromouse competition began in the late 1970s, being the first competition

promoted by the Institute of Electrical and Electronics Engineers (IEEE). In this com-

petition, 8 × 8 cells mazes were used and the robots achieve speed-run times around 30

1

2 CHAPTER 1. INTRODUCTION

seconds. Since then, micromouse competitions have spread all over the world, being espe-

cially popular in Japan, Taiwan, Indonesia, the United Kingdom and the United States

[3]. Nowadays, 16 × 16 cell mazes are used and the robots reach speed-run times of less

than 5 seconds.

Although it began more than 35 years ago, the importance of the micromouse problem

in the field of robotics remains unparalleled, since it requires careful analysis and adequate

planning to be solved [4]. In addition to the acquisition of technical skills, group competi-

tions, such as the micromouse, develop teamwork, time management and communication

skills.

Figure 1.1: APEC 2017 Micromouse Contest Venue [5].

The micromouse is an autonomous mobile robot with reduced dimensions, consisting

essentially of one or more drive motors, a steering and turning method, sensors to detect

the presence or absence of labyrinth walls, sensors to self-locate, control logic to supervise

the actions and keep the vehicle on track, and batteries to provide power [6], capable of

exploring, mapping, and racing through a small unknown maze.

In competition, each micromouse begins with some basic knowledge of the labyrinth

obtained from the rules [7]. It knows that the labyrinth has a square shape, consisting

of 16 × 16 square cells of 18 cm × 18 cm, and has walls around the outer perimeter.

These walls are 5 cm high, 1.2 cm wide and are painted white to reflect infrared light.

The labyrinth floor is painted black to not reflect the infrared light. It also knows that its

1.2. OBJECTIVES 3

initial position is one of the four corners of the maze and its goal is to reach the center.

Other than that, he knows nothing about the configuration of the walls inside the maze.

Thus, the micromouse’s first job is to explore the maze to determine an optimal route

from start to finish. As it moves through the unknown labyrinth, it traces its coordinates

and maps the walls of each cell into its memory. After a predefined mapping time, it

returns to the starting cell. From the initial cell the analysis of the obtained map is

carried out and the best route to the center is determined. Then, this route is traveled as

fast as possible. The winner of the contest is the micromouse that took the shortest time

to arrive from the initial cell to the center.

1.2 Objectives

The main objective of this work is to develop and test a small autonomous mobile robot

capable of self-locating, mapping an unknown environment and, based on the map gen-

erated, traversing the trajectory between the starting point and the goal in the shortest

possible time. To accomplish this main objective, the following sub-objectives are relevant:

• Development of robot control able to move in an unknown environment without

colliding.

• Development of a algorithm capable of locate a path to the center of an unknown

maze in a limited time.

• Development of strategies for the robot to self-locate and map an unknown maze.

• Develop a path-planning algorithm that generates the shortest path between the

starting point and the goal based on the map obtained.

• Development of a robot control capable of performing the trajectory generated in

the shortest possible time.

• Implement the methodology developed in SimTwo simulation environment.

4 CHAPTER 1. INTRODUCTION

• Assemble a robot capable of accomplishing the required tasks of the micromouse

competition.

• Implement the methodology developed in a real labyrinth using the assembled robot.

1.3 Dissertation Outline

This document is divided into 7 chapters, which present the micromouse competition, the

concepts on which this work is based, the assembled robot, the simulation environment,

the methodologies developed, and the results obtained from its application. The following

is a brief description of the contents of the chapters that make up this dissertation.

The introduction is described in Chapter 1, which presents the proposal of the work

along with the description and rules of the Micromouse Portuguese contest that guide

this project.

Chapter 2 presents a few robotic competitions demonstrating the areas of study ben-

efited by being part of the requirements necessary in such contests. Following, real ap-

plications of mobile robots are presented, showing the applicability of mobile robots in

various tasks. Then, a theoretical revision of the concepts on which this work is based,

such as simultaneous localization and mapping, wheeled mobile robots geometry and path

planning, is carried out.

Chapter 3 presents the robot assembled to solve the micromouse challenge demon-

strating the kinetic model and structural and electronic composition of the developed

micromouse robot.

Chapter 4 describes the simulation environment emphasizing the generation of mazes,

the simulation model of the robot, its control and, the presentation of the results in real

time.

Chapter 5 describes the algorithms implemented for the robot to be able to perform the

proposed objectives. These algorithms control the robot, map the surroundings, localize

the robot in the maze and plan the best path between the starting point and the goal.

1.3. DISSERTATION OUTLINE 5

Chapter 6 contains the results of the different methodologies of locomotion and path

planning in different mazes. The locomotion algorithms are evaluated by analyzing the

percentage of the maze mapped in a period of six minutes and whether the center was

reached. Meanwhile, the path planning algorithms are evaluated for the processing time

and the length of the generated path. Finally, the times obtained in the evaluation runs

are presented.

Lastly, Chapter 7 presents the conclusions obtained by analyzing the set of developed

methodologies and future works.

Chapter 2

Related Work

Taking into consideration the increasing use of robots in the most varied applications,

this chapter seeks to elaborate, based on the current scientific scenario, the concepts and

applications required in the development of this project. It will be analyzed the related

work in the area of wheeled mobile robots such as, robotics competitions, real applications,

geometries, localization and path planning.

2.1 Robotics Competitions

Robot competitions bring together researchers, students, and enthusiasts in the pursuit of

a proposed technological challenge [8]. Such competitions are an excellent way to foment

research and to attract students to technological areas [9] introducing new technologies,

teamwork [10] and even developing solutions to real challenges in industry.

Robotics competitions present problems that can be used as reference to evaluate and

compare the performances of different approaches [11]. This possibility of performance

comparison leads to advances in several areas of robotics. It is worth highlighting the

improvements in the autonomous control of Unmanned aerial vehicle (UAV) obtained from

the competition Association for Unmanned Vehicle Systems International (AUVSI) and

in autonomous vehicles generated from the Association for the Advancement of Artificial

Intelligence (AAAI) mobile robot competition [8].

7

8 CHAPTER 2. RELATED WORK

This section presents some of the best known competitions along with the main areas

of study required to meet the challenges proposed.

2.1.1 RoboCup Soccer Competition

RoboCup is an international joint project to promote Artificial Inteligence (AI), robotics,

and related fields. The soccer game has been selected for the competition because of

the requirement of multiple players to cooperate in a dynamic environment, this way,

the competition does not evaluate isolated individuals, but robots as a team. The soccer

competitions at RoboCup are held in five leagues: humanoid, four-legged, middle size,

small size, and simulation.

Different research issues are addressed to the different leagues. In the simulation

league (Figure 2.1a), advanced team play, and learning are required. The small and

middle size leagues are played by robots with wheels, Figure 2.1b. In such leagues the

robot construction, the perception of the field situation, and the implementation of basic

soccer skills are the center of the activities. The four-legged league is played by Sony

Aibo dogs and the focus of research occours in perception and behavior control, since the

robot presents 18 degrees of freedom [8].

The Humanoid League is the most challenging RoboCup soccer league (Figure 2.1c).

It requires the robots to have a human-like body, be fully autonomous, and the only

allowed modes of locomotion are bipedal walking and running [12].

(a) (b) (c)

Figure 2.1: RoboCup soccer competitions : (a) Simulation league. (b) Middle size league.
(c) Humanoid league.

2.1. ROBOTICS COMPETITIONS 9

2.1.2 Urban Search and Rescue Competitions

The recent advances in robotics platforms and intelligent software combined with the

occurrence of disasters, such as earthquakes and hurricanes, boosted the research of the

Urban Search and Rescue (USAR) robotics. USAR is a branch of robotic rescue that

concentrates on victim detection and removal from man made structures, such as collapsed

buildings [13].

In order to stimulate research in the field, competitions such as [14], [15] were proposed.

In these competitions teams of intelligent robots are placed in confined spaces, classified

according to their physical complexity, in order to locate and rescue possible persons.

Figure 2.2 shows an example of USAR robot. To obtain the desired result, the robot

must have autonomy of navigation, be able to search the environment, work cooperatively

and deal with the uncertainty of the sensing, since the environment is unstable and only

partially known.

Figure 2.2: A USAR robot operating in the NIST arena [13].

2.1.3 Robot@Factory

The Robot@Factory competition attempts to recreate the problems that one autonomous

robot will face during its use in a factory. Therefore, competition occurs in an emulated

factory environment. In this case, the factory is comprised of a supply warehouse, a final

10 CHAPTER 2. RELATED WORK

product warehouse and eight processing machines, as shown in Figure 2.3.

The robot’s task consists in carrying the material from the supply warehouse to the

machines and then to the final product warehouse. To do so, the autonomous robots must

be able to collect, carry and put materials in the right position, locate and navigate in

the given environment, as well as avoid collisions with walls, obstacles and other robots

[16].

Figure 2.3: Robot@Factory competition arena [16].

Based on this competition, Robot@factory Lite starts in 2019. This competition has

the same proposal as the Robot@factory, but without the mechanical problem of control-

ling the fork.

2.1.4 DARPA Grand Challenge

The DARPA Grand Challenge was launched in 2003 to spur innovation in unmanned

ground vehicle navigation. The goal of this Challenge was to develop an autonomous

ground vehicles capable of traversing a desert course up to 175 miles long in less than 10

hours [17].

The main technological challenge in the competition was to build a highly reliable

system, capable of driving at relatively high speeds through diverse and unstructured off-

road environments, as can be seen in Figure 2.4. Since the route information is displayed

some time before the race, no global path planning is required. This competition has

2.2. MOBILE ROBOTS APPLICATIONS 11

brought several advances in the field of autonomous navigation, especially in high-speed

location testing, real-time crash prevention and stable vehicle control on slippery and

steep terrain.

Figure 2.4: DARPA Gran Challenge. Adapted from [17].

2.2 Mobile Robots Applications

According to the dictionary, robot is a machine designed to execute one or more tasks

automatically with speed and precision. The first robots date back to the 1970s and

consisted of stationary, non-programmable, sensorless electromechanical devices. With

the advance of technology, new features were added to these robots, such as programmable

controllers and sensors, to allow the robot to perceive its environment[18] and decide the

action to be performed. Nowadays, robots can be stationary or mobile, autonomous, have

sophisticated programming, speech recognition, and other advanced features.

In general, robots were developed to perform tasks that the human being does not

perform, for reasons of unhealthiness, incapacity or disinterest [19]. Robotic systems

are usually implemented to execute tasks with higher quality, speed and at a lower cost

compared to a human [20]. Mobile robot with wheels is the focus of this work. A mobile

robot with wheels is applied to problems that require the movement of the robot inside

an environment (Figure 2.5) , which can be simple or complex, known or unknown, static

or dynamic.

The world market of mobile robotics is expected to increase substantially in the next

12 CHAPTER 2. RELATED WORK

Figure 2.5: Curiosity - Robot for exploration of the planet Mars (NASA). Adapted from
[21].

20 years. the forecasts of all the major robotics research institutions clearly indicate

that the world market of service robotics, especially ground mobile robots, is expected to

increase dramatically over the next years, surpassing the market of industrial robotics in

terms of units and sales [22]. Among the fields of application are homeland security [23],

surveillance [24], [25], demining [26], agriculture [27], and others.

2.3 Locomotion of Wheeled Mobile Robot

Several mechanical robot architectures have been proposed by academic and industrial

researchers, each presenting advantages and drawbacks according to its application [22].

Consequently, when designing a new mobile robot for a specific application, it is necessary

to evaluate which technological solution best fits the required conditions. Some of the key

conditions to be evaluated are the operating environment and requirements for the robot

to perform its task optimally.

Considering such conditions in the context of this work, where the environment is flat

and the robot must operate at high speed, wheeled mobile robots prove to be the best

option, since they can reach high speeds with low power consumption and can be guided

by controlling a few active degrees of freedom [28]. In this section the main types of

locomotion developed for mobile robots with wheels are presented.

2.3. LOCOMOTION OF WHEELED MOBILE ROBOT 13

2.3.1 Ackerman Steering Geometry

The Ackerman steering geometry is characterized by all wheels having their axis arranged

as a radius of a circle, with a common center point. As the rear wheels are fixed, this

point must be defined in an extended line passing through the rear axle. In order to

intercept the front wheels tangentially to the axis of their movement, it is necessary that

such wheels have different angles, the inner front wheel must have an angle of rotation

greater than the outer front wheel. Such a difference occurs using rods and two extra

pivots forming a trapezium. This configurations is presented in Figure 2.6.

The advantage of this system is to eliminate the need for side-slip or skidding, reducing

the effort of the engines when making the turns. However, this system requires a minimum

radius of curvature that makes maneuvering difficult, especially in tight environments.

Figure 2.6: Ackerman steering geometry realizing a turn.

2.3.2 Omnidirectional Geometry

Robots with omnidirectional geometry usually have three or four wheels, each controlled

by a motor. This geometry is characterized by its movement having no non-holonomic

constraints, in other words, the robot is able to move in all directions. To perform such

movements, the wheels require a special shape that allows movement on two different axes.

The change between the axes of movimentation occurs when different speeds and direc-

tions are set for these wheels. Figure 2.7 shows an example of robot with omnidirectional

14 CHAPTER 2. RELATED WORK

geometry.

Figure 2.7: Robot with omnidirectional geometry (Uranus) [20].

2.3.3 Differential Geometry

Robots with differential geometry are composed by two main wheels and one or more cas-

tor wheels, that is, wheels that can freely move in two different axis, to support the robot

and prevent it from unbalancing and possibly falling. The main wheels are positioned

on the same axle and are controlled by independent motors. The speed variation of the

wheels controls the direction of the robot, this allow the robot to turn without change

it axis central position. However, unlike the omnidirectional robot, this configuration

presents non-holonomic constraints. Figure 2.8 presents Cyo, an example of robot with

differential geometry that can vacuum and make deliveries in the home.

2.4 World Representation

For an autonomous robot mobile be able to perform the assigned tasks, it must be capable

of learn and maintain models (maps) of the environment [29]. Without this maps the

calculation of the relative position of the objects around the robot and the determination of

the routes become more difficult and imprecise, causing imperfect executions and possible

2.4. WORLD REPRESENTATION 15

Figure 2.8: Robot with differential geometry (Cyo, produced by Probotics, Inc).

collisions [30]. To faithfully represent the location where the robot operates two major

paradigms for mapping indoor environments was produced: Grid-based and topological

paradigms.

2.4.1 Topological

Topological approaches represent the robot environment per graph, as proposed by [31]

and [32]. This chart is made up of nodes and lines. Where nodes are positioned at identi-

fiable landmarks and locations, such as intersections, and if there is a direct path between

nodes, a line connects them. Figure 2.9 presents a simple topological map representation.

Figure 2.9: Topological map representation [33].

The main advantage of using the topological representation is the size of the generated

16 CHAPTER 2. RELATED WORK

map, since the resolution of the map corresponds directly to the complexity of the [29]

environment. This compact representation allows for quick planning and provides a more

natural interface for human instructions such as "Go to Room A". Another advantage lies

in the fact that topological approaches do not usually require the exact determination of

the geometric position of the robot, being able to recover from odometry errors.

However, accurate and consistent topological maps are difficult to learn in large-scale

environments, particularly if momentary sensor data is highly ambiguous. In such case

the topological approach often have difficulty determining if these places are the same or

not.

2.4.2 Grid-based

Grid-based approaches represent environments by evenly-spaced grids. Each cell repre-

sents a fixed portion of the environment and stores a value that indicates the state of such

cell [29]. This state indicates whether or not the center of the robot can be moved to the

center of that cell. Figure 2.10 presents a simple Grid-based map representation.

Figure 2.10: Grid-based map representation [33].

Such grid mapping approaches are easy to build and maintain (if the environment

changes, it is only necessary to change the value of some cells) in large-scale environments.

It also avoids the problem of ambiguity of the sensors that the topology approach presents,

since the places location in the map are based on the robot’s geometric position within a

global coordinate frame.

2.5. SIMULTANEOUS LOCALIZATION AND MAPPING 17

On the other hand, grid-based approaches suffer with their enormous complexity of

space and time. Once the size of the grids must be small enough to capture all the

important details of the world, drastically increasing the number of cells according to

the complexity of the environment. Another problem is the need to accurately determine

the position of the robot, so the odometer and sensors must be calibrated to avoid the

accumulation of errors.

2.5 Simultaneous Localization and Mapping

The problem of Simultaneous Localization and Mapping (SLAM) has attracted immense

attention in the mobile robotics literature. This problem asks if it is possible for a mo-

bile robot to be placed at an unknown location in an unknown environment where the

robot will, incrementally, build a consistent map of this environment while simultaneously

determining its location within this map [34]. Such capacity is considered to be a key

prerequisite of truly autonomous robots [35].

The solution to the SLAM problem is of high importance in a range of applications

where absolute position or precise map information is unobtainable, including, among

others, autonomous planetary exploration, sub-sea autonomous vehicles, autonomous air-

borne vehicles, and autonomous all-terrain vehicles [36].

In general, three philosophy are used to solve this problem. The most popular of

these is the estimation-theoretic or Kalman filter based approach. The popularity of

this approach is due to it directly provides both a recursive solution to the navigation

problem and a means of computing consistent estimates for the uncertainty in vehicle and

map landmark locations on the basis of statistical models for vehicle motion and relative

landmark observations [36]. An example of applying the Kalman filter can be found in

[19].

The qualitative philosophy seeks to avoid the need of estimates of absolute position and

precise measures of uncertainty. Instead, it employs qualitative knowledge of the relative

location of landmarks and the vehicle. Several approaches have been developed based on

18 CHAPTER 2. RELATED WORK

this philosophy, as presented in [37] [38]. In these approaches, several advantages were

observed in comparison to the theoretical-evaluative methodology, especially in terms of

limiting the need for precise models and computational requirements.

The third philosophy uses an essentially numerical or computational approach to solve

the problem, however its not rigorous as the Kalman filter. Such approaches are based

on the use of landmark matching, global map registration, bounded regions and other

measures to describe uncertainty, as presented in [39] with a grid based approach.

2.6 Path Planning

Since the 1980s, mobile robot motion planning problems have become an important re-

search topic that has attracted the attention of many researches who have worked exten-

sively to obtain efficient methods to solve these problems [40]. The choice of the path

planning algorithm is one of the most important assignment on the robot navigation,

since it will determine the efficiency of the robot in performing the given task.

The mobile robot path planning task is to find a collision-free route, through an

environment with obstacles, from a specified start location to a desired goal destination

while satisfying a certain optimization criteria [41]. The path planning methods can

be classified according to the type of environment where the robot is located, static or

dynamic, and the quantity of information that the robot have of the surroundings, which

can be known or unknown.

Below, will be presented some of the main methodologies used to generate a collision-

free path between two defined locations. Since this work contemplates the maze environ-

ment, where the obstacles are only static, only the path planning in static environments

are presented.

2.6.1 Cell Decomposition

The methods of cellular decomposition are the most studied methods in mobile robotics.

These methods are based on the discretization of the environment, the entire analyzed

2.6. PATH PLANNING 19

space is divided into non-overlapping regions (cells) whose union results exactly in the

previously discretized environment. The result is a graph in which each cell is adjacent to

another cell. The methods to cross from one cell to another are called connectivity graph.

Based on such graph a path is generated, this path consists in the sequence of cells the

robot should transverse to reach the goal.

Below, three of the most known approaches to environmental discretization are pre-

sented along with the advantages and disadvantages of their use.

2.6.1.1 Approximate Cell Decomposition

Proposed by [42], approximate cell decomposition is elaborate by laying a grid, formed

of cells with predefined shape and size, over the entire environment. The map is then

assembled by marking the cells that contain the obstacles and the center of each cell

becomes a node in the search graph that will search for the best paths.

This method is called "approximate" because the boundaries of physical objects in the

world do not necessarily coincide with the predefined cell boundaries [33]. In this approach

the resultant route is usually a conservative estimate, since the entire cell containing a

small object is labeled as occupied despite having free space. Such conservative estimate

might present errors once small passages end up labeled as obstacles, as shown in Figure

2.11.

The advantages of this approach lie in the easier implementation compared to other

algorithms, it is simple to apply to the environment and it is flexible. Cell size can be

adjusted to control computational time and map quality. If the cell size is incremented,

computational time and map details are decreased, and if size decreases, computational

time and map details increase.

2.6.1.2 Adaptive Cell Decomposition

Adaptive cell decomposition is utilized to save processing time and memory storage by

reducing the number of cells in open space. This approach relies on the fact that much

of the information in open spaces is redundant in a regular cell decomposition [33].

20 CHAPTER 2. RELATED WORK

Figure 2.11: Cell decomposition with different resolutions [43].

One of the possible adaptive cell decomposition is the quadtree decomposition, as

presented in [44]. This method begins by imposing a large size cell over the entire planning

space. If a grid cell is occupied, it is subdivided into four equal parts. This process repeat

until each of the cells is either entirely empty or entirely full. The result is a map with

various grid cells size, as shown in Figure 2.12, and well defined obstacle boundaries.

Figure 2.12: Quadtree representation [33].

The problem with such approach is the difficulty in providing near optimal paths,

often result in jagged paths, and in high clutter environments it can be less efficient than

regular grids.

2.6. PATH PLANNING 21

2.6.1.3 Exact Cell Decomposition

Exact cell decomposition is a solution to some problems that occur in regular grids. In

this approach, the cells do not have predefined size or shape, they are based on the exact

information of the obstacles. The result is a map almost identical to the real environment,

which will always find a way, if it exists.

However, this approach is quite difficult to implement since there is no simple rule on

how to decompose space into cells. Another problem is the sub-optimal paths generated,

this occurs due to the details resides on the obstacles, not the free space. Examples of

exact cell decomposition are found in [45].

2.6.2 Roadmap Methods

The Roadmap methods are the second most studied methods in mobile robotics. Roadmap

are graphs that represent how to go from an initial position to the goal. This graph is based

on nodes and edges, where the nodes represent certain positions and the edges connect

these nodes creating a path. The best path is a combination of edges that connect the

starting point to the goal. There are three main approaches of this methodology: visibility

graph, Voronoi diagrams and Probabilistic Roadmaps.

2.6.2.1 Visibility Graphs

The main idea of the visibility graph method is that if there is a collision-free path between

two points, then there is a polygonal path that bends only at the obstacles vertices [46].

Basically, this method consist of straight lines connecting nodes, that are positioned at

the start point, goal and the vertices of all obstacles, without crossing the interior of them.

These straight lines make up the paths on which the robot may transverse [33]. Figure

2.13 shows a complete visibility graph

The main disadvantage of such method is that the calculated paths are tangential

to the obstacles and the robot will brush or even collide against them. However, such

problem can be fixed by enlarging the obstacles, creating a safety margin, although this

22 CHAPTER 2. RELATED WORK

Figure 2.13: Complete visibility graph [47].

results in incompleteness and inefficiency of the planner.

2.6.2.2 Voronoi Diagrams

The Voronoi diagram is the set of points where the distance to the two closest objects, in

this case obstacles, is the same [48]. The set of points where this edges meet are called

vertices and consist on the possible roads to the robot reach the objective. Figure 2.14

present an example of Voronoi diagram application.

Figure 2.14: Voronoi diagram [33]

Voronoi paths are by definition as far from obstacles as possible. This makes the

Voronoi diagram method safe for the robot to move around without possible collision,

but the paths generated are inefficient.

2.6. PATH PLANNING 23

2.6.2.3 Probabilistic Roadmaps

The global idea of Probabilistic Roadmap is to pick a collection of random configurations

in the free space [49]. In other words, the Probabilistic Roadmap create a discrete version

of the free space by randomly sampling it. Such discretization reduces the search space

and consequently accelerate the planning process.

The path planning process can be divided in two phases: construction of the roadmap

and path query. To construct the map random points in the space are chosen and added

to a list, if one of these points is inside an obstacle, it will be discarded. With these points

the mapping algorithm attempts to connect them, usually simply by using straight lines

between the points and not connecting them if an obstacle is in the way. In the query

phase, when the robot need a path between two points, the algorithm uses the connections

created in the fist phase to find the nodes that leads into the lowest cost path [33]. Figure

2.15 show an example of probabilistic roadmap generation.

Figure 2.15: Probabilistic roadmap [33]

The main problem with the Probabilistic Roadmap is inefficiency in narrow spaces.

Once the points are chosen randomly, the chance of a random point being placed in a

tight space is low, and if there is no point, no connectivity will be established in this

space. Such problem can be fixed by increasing the number of points on the space, but

24 CHAPTER 2. RELATED WORK

this also increases the processing time and make the planning algorithm more complex.

2.6.3 Potential Fields

Initially proposed by [50] and further developed in [51] the potential fields methods are

quite different for the previously presented. This method instead of trying to map the

environment applies a mathematical function over the entire space. Such function acts

like an artificial potential field in which the target is an attractive pole and the obstacles

are repulsive surfaces [40].

In such method the robot is treated as a point under the influence of the generated

fields and its behavior is similar as an electron in an electric field [33]. At every spot in

the environment the resultant force of the fields on the robot define the direction of the

robot’s motion.

Figure 2.16: Potential field algorithm [52].

The potential field methods are relatively easy to implement and are computationally

efficient. However, the major problem is that robots are often trapped into a local minima

before reaching the destination. To improve its efficiency this method is combined with

many other computational methods. In [53] and [54] the potential field method was

integrated with the simulated annealing algorithm to escape the local minima problem.

2.7. TRAJECTORY PLANNING 25

2.7 Trajectory Planning

Trajectories planning are crucial in robotics, because defining the times of passage at

the via-points influences not only the kinematics properties of the motion, but also the

dynamic ones. The trajectory planning generate the reference inputs for the control

system of the robot, so as to ensure that the desired motion is performed. Usually, the

algorithm employed for trajectory planning takes as inputs the path generated by the

path planner, as well as the kinematic and dynamic constraints of the robot. The output

of the trajectory planning is given by the trajectory of the joints, or the robot, in form of

a sequence of values of position, velocity and acceleration [55].The optimization criteria

of the trajectory planning define how the robot will interact with the environment while

the selected path is traveled.

The trajectory planning methodologies can be classified according to the set opti-

mization criteria. The most common are minimum execution time, energy and jerk. In

addition, some hybrid optimization have been proposed, such as time-energy optimal

trajectory planning.

This section presents three well-known route planning algorithms. These algorithms

return the set of cells to be visited to reach the goal. Based on the location of these cells

and the position of the robot, the trajectory to be followed is defined.

2.7.1 A* Algorithm

A-Star algorithm is one of the best-known path planning algorithms, which can be applied

on metric or topological configuration space [56]. It is based on a cell map where each

cell (position) represents a node [57]. A* explores the environment by calculating a cost

function for each possible next position to be searched, this function f(n) is used to

determine the order in which the nodes will be searched. Then the lowest cost position is

added to the search space. Adding this new location to the search space generates more

path possibilities [58].

The f(n) cost is a sum of two functions, f(n) = g(n) + h(n), where g(n) is the

26 CHAPTER 2. RELATED WORK

length of the path from the origin to a node n through a specific cell path and h(n) is

the heuristic distance of the cell to the target node. In this project only horizontal and

vertical movements were used. The Figure 2.17 shows an application of the A* algorithm

in its first search, showing h(n) in purple, g(n) in blue and f(n) in black.

Figure 2.17: A Star Algorithm

The memory requirements for the algorithm is composed by two lists. The open list

(Olist) contains the nodes that are candidates for exploration and the closed list (Clist)

contains the already explored nodes. The parent node information is stored along with

each node that is stored in (Olist) and (Clist). To obtain the best path, the lowest cost

node of the (Olist) is selected. The neighbors of this node are processed and inserted into

the (Olist) if they are not there, and the initial node is moved to the (Clist). If any of the

neighbor nodes are already contained in (Olist), the cost of the node already inserted in

the list is compared to the newly obtained cost. If the new cost is smaller, the parent

node will be changed to the newly obtained node. This procedure is repeated until the

target node is reached or the (Olist) becomes empty which means there is no solution. In

the end, the values of the parents of each node, from the objective to the beginning node,

are consulted. This list of nodes give the shortest path.

2.7. TRAJECTORY PLANNING 27

2.7.2 Dijkstra’s Algorithm and Best-first Search Algorithm

Predecessors to A-Star, these algorithms work identical to A * with the variation of

using only a partial of its search function f(n). Dijkstra is an uninformed algorithm that

searches the graph based only on the cost of each move f(n) = g(n). This way, the search

usually demand a longer time, but always return in the best way.

Meanwhile, the best-first search is an informed algorithm that performs its search by

checking the cells with the greatest promise of being close to the target [59]. The search

function is based only on the heuristic distance f(n) = h(n). This result in a fastest

search, however it may return suboptimal paths.

Chapter 3

Real Robot Description

The mobile robot shown in the Figure 3.1 was designed and developed for the purpose of

completing a micromouse challenge. Its structure is designed with dimensions that meet

the rules of such competition, the robot must be no more than 250 mm wide and 250

mm long [7], and with components that allow the robot to locate, move and identify the

environment around it, necessary conditions to map the labyrinth, to plan the best way

between the starting point and the goal and to go through this route.

This section describes the settings and features that compose the real robot. Initially,

it will be approached the structural part of the robot, highlighting the development of the

central plate of the robot and the reasons for the differential geometry to be chosen for

the development of the micromouse. Then, the cinematic model of the differential robot

is described. Subsequently, the electronic scheme of the robot is presented along with a

description of the electronic components used. Finally, the software used in the robot

development is described.

3.1 Structural Constitution of the Robot

The micromouse robot is designed to traverse a narrow maze at high speed. In order to

achieve such performance, two factors have high importance: the robot weight must not

be too high and its center of mass must lie within the triangle formed by its three wheels.

29

30 CHAPTER 3. REAL ROBOT DESCRIPTION

(a) (b)

(c)

Figure 3.1: Assembled micromouse robot : (a) Frontal view. (b) Side view. (c) Top view.

To obtain such characteristics, a base plate has been specially developed, as shown in

Figure 3.2.

Seeking to obtain greater stability and to increase the reliability of the collected data,

grooves to fit the components were inserted in the plate. Such grooves were designed

according to the dimensions of the components used. The plate also has a bumper where

the distance sensors are placed. This plate was designed using Open SCAD and printed

on the 3D printer with 50 percent density so as to be lightweight and sturdy.

For the robot architecture, the differential geometry was selected. This geometry

presents several advantages compared to the architectures presented in the section 2.3,

highlighting: the ability to rotate without changing the position of its central axis, a

requirement to maneuver in the narrow maze environments, mechanical and control sim-

plicity, low maintenance rates and high odometric accuracy, especially in comparison with

3.1. STRUCTURAL CONSTITUTION OF THE ROBOT 31

(a) (b)

(c)

Figure 3.2: Base plate designed for the micromouse robot : (a) Frontal view. (b) Side
view. (c) Top view.

the omnidirectional architecture.

Following the concept of differential architecture the robot has three wheels. Two of

them are connected to DC motors, while the other is castor wheel which has the support

function. The Table 3.1 presents the dimensions of the mobile robot structure.

Table 3.1: Dimensions of the micromouse robot

Robot Description Dimension Unit
Width 0.096 m
Length 0.120 m
Wheel diameter 0.032 m
Wheel thickness 0.008 m
Robot mass 1.25 kg

32 CHAPTER 3. REAL ROBOT DESCRIPTION

3.2 Kinematic Model of Differential Robot

Kinematics is the study of how mechanical systems behave. In mobile robotics, it is

necessary to understand the mechanical behavior of the robot to properly design it to

perform the assigned tasks and to understand how to develop its control software [20]. In

this context, it is important to know robot’s workspace, as it defines the range of possible

poses that the mobile robot can reach, and its controllability, which defines possible paths

and trajectories in its workspace.

This section presents the mathematical modeling that represents the kinematics in-

volving the robot.

3.2.1 Pose

Throughout the analysis, the robot was modeled as a rigid body on wheels, operating on

a horizontal plane (2D plane). The total degrees of freedom of this robot on the plane is

three, two for position in the plane and one for orientation along the vertical axis, which

is orthogonal to the plane.

Figure 3.3: Robot in the plane representing the global robot reference frame. Extracted
from [19].

To specify the position of the robot in the plane, a relation was established between the

global reference of the plane and the local reference of the robot. Figure 3.3 demonstrates

3.2. KINEMATIC MODEL OF DIFFERENTIAL ROBOT 33

these references, where Yg and Xg define the arbitrary inertial basis in the plane. The

position of the robot in the global reference frame is specified by coordinates x and y, and

the angular difference between the global and local reference frames by θ. The robot pose

(εg) is described as

εg =
[
x y θ

]
. (3.1)

The relation between the global and the robot frame is defined by the rotation matrix

R(θ(t)) =

cos(θ(t)) sin(θ(t)) 0

−sin(θ(t)) cos(θ(t)) 0

0 0 1

 . (3.2)

This matrix can be used to map motion in the global reference frame (Xg, Yg) to

motion in terms of the local reference frame (Xr, Yr).

3.2.2 Linear and Angular Velocity

The velocity of each wheel is controlled by a DC motor. Deriving the state of the robot

in the global reference frame, the speed relation is

ε̇ =
[

˙x(t) ˙y(t) ˙θ(t)
]

=

cos(θ(t)) 0

sin(θ(t)) 0

0 1

 ·
V (t)

W (t)

 (3.3)

where the input variables of this system V (t) and W (t) are, respectively, the linear and

the angular velocities of the robot, obtained by

V (t) = Vr(t) + Vl(t)
2 (3.4)

34 CHAPTER 3. REAL ROBOT DESCRIPTION

and

W (t) = Vr(t) + Vl(t)
b

(3.5)

where Vr and Vl are, respectively, the speed on the right and left wheel, and b is the

distance between the traction wheels of the robot at its point of contact with the ground.

3.3 Electronic Hardware

The mobile robot, where the control, mapping, and path planning methods were imple-

mented, has an elaborate electronic structure to move through the maze autonomously.

To this end, the developed micromouse incorporated in its structure some electronic com-

ponents, batteries, a Wemos D1 mini [60], Wemos shields [61], [62], sensors and two DC

motors. The block diagram of Figure 3.4 shows the components integrated in the mobile

robot. The electronic architecture of the robot is designed to be compact in order to fit

the small base, presented in the Section 3.1, and to have low battery consumption.

Figure 3.4: Micromouse electronic architecture.

This section presents a brief description of the electronic components used in the

3.3. ELECTRONIC HARDWARE 35

development of the robot.

3.3.1 WEMOS D1 Mini

The main electronic hardware component on the mobile robot is the WEMOS D1 Mini

(Figure 3.5). This is a miniature wireless microcontroller development board based on the

popular ESP8266 microcontroller. The board has a Tensilica L106 32-bit RISC processor

running at 80 MHz, 16 MB of Flash memory, 11 digital input/output pins, 1 analogue

input pin and an external antenna connector.

Figure 3.5: WEMOS D1 Mini.

This board is responsible for the entire control system, gathering information from

the lasers sensors and odometers to provide the robots location, map and plan the paths.

The microcontroller is powered by a 3.7 V battery through a battery shield.

3.3.2 Motor Shield

To control the DC motors a WEMOS I2C Dual Motor Driver Module was used (Figure

3.6). This module is able to drive up two DC motors from the WEMOS D1 Mini. Using

Pulse Width Modulation (PWM), the motor shield can control independently the speed

and direction of each motor connected. PWM is a simple method of controlling analog

devices through a digital signal by changing or modulating the pulse width [63]. The

36 CHAPTER 3. REAL ROBOT DESCRIPTION

speed control of the motors occurs by changing the average voltage supplied to them, this

voltage is adjusted by changes in the duty cycle.

Figure 3.6: Motor shield.

The shield provides the side grooves that allow it to be easily inserted and removed

from the WeMos Mini. Its control is performed through the I2C interface of the WeMos

D1 mini, by default the address 0x30 is used in the communication.

3.3.3 Battery Shield

The WEMOS D1 mini lithium battery shield, shown in Figure 3.7, is used to power the

WEMOS D1 mini from a lithium battery up to 4.2 V. This shield contains a DC-DC

converter to step-up the voltage supplied by the battery to 5 V, providing up to 1 A to

the WeMos mini and its shields.

This shield also allows recharging the battery, simply connect the shield to a USB

power source using a mini USB cable. Two LEDs on the shield indicate battery charge

status.

3.3.4 Step-up and motor

The robot uses two DC micro metal gear motors, each coupled to one of the traction

wheels. These motors have a 50:1 gearbox in order to smooth out the robot’s motion

3.3. ELECTRONIC HARDWARE 37

Figure 3.7: Battery shield.

and increase engine torque, allowing a larger weight limit for the robot. These motors

also comes with an integrated encoder that measures the motor speed in real time. The

average resolution of this encoder is 58.94 pulses per revolution. The motors specifications

are presented in the Table 3.2.

Table 3.2: Micro metal gear motor specifications

Specification Micro Metal Gear Motor Unit
Rated Voltage 6 V
Motor Speed 15000 RPM

No-Load Speed 310 rpm@6v
No-Load Current 60 mA
Instant Torque 0.8 kg.cm

Weight 18 g

To power the engines a S7V8A step-up of the Pololu was used, since the motor shield

does not supply power directly to the motor and the battery has a considerably low

voltage. This step-up has been configured to provide 6 V to the motors, thus being able

to obtain the maximum speed possible.

3.3.5 Sensors

Essential tasks performed by a mobile robot would not be possible without a constant

interaction of the robot with the environment. Like any living being, the robot needs cer-

tain mechanisms to capture information from its environment and subsequently generate

38 CHAPTER 3. REAL ROBOT DESCRIPTION

a specific behavior [64]. The mechanisms responsible for gathering the information from

the environment are the sensors.

The sensors perform the signal capture from the environment, then the significant

measurement information is extracted and based on them, the actions of the robot are

planned. This process is explained in a simple way in the Figure 3.8, where 3 different

phases are proposed. In the first phase "Sensing", the sensor collect the signal from

the environment and convert it into computer data. The "planning" phase change the

collected data into useful robot information like current position, speed and obstacle

position. After, this information are associated with robot’s commands [65]. Lastly, the

set of commands is executed during the "action" phase [64].

Figure 3.8: Simplified scheme of the process of interaction of the sensors with the envi-
ronment.

In the current days there are several types of sensors, each one for a specific censoring.

In this section, the odometer and the laser sensor used in this project are described.

3.3.5.1 Odometer

Odometry is the most widely used method for determining the speed and momentary

position of a robot mobile, due to provide good short term accuracy, be cheap and allow

very high sampling rates [66].

For this project optical encoders of 59 pulses per revolution were used. The optical

encoder consists of a disk with several holes in its edge arranged at regular distances

(Figure 3.9). This disk is connected to the motor, this way it rotates at the same speed

3.3. ELECTRONIC HARDWARE 39

as the wheel. When the wheel rotates, a beam of light passes through the holes of the

disk, generating a square wave [65]. based on the analysis of the square wave frequency,

the speed and distance traveled by the robot are estimated.

Figure 3.9: Optical encoder representation. Adapted from [66].

The principle of the odometry is the increment of motion information over time, which

it is inaccurate due an unbounded accumulation of errors. Specifically, orientation errors

will cause large lateral position errors, which increase proportionally with the distance

traveled by the robot [66]. Typical odometry errors will become so large that the robot’s

internal position estimate is totally wrong after as little as 10 meters of travel [67].

This errors are caused by wheel slippage and some other more subtle causes, where

wheel rotations do not translate proportionally into linear motion. According to [68] the

errors can be categorized into one of two groups: systematic errors and non-systematic

errors.

• Non-systematic errors are those errors that are caused by interaction of the

robot with unpredictable features of the environment. For example, wheel slippage

or bumps and cracks.

• Systematic errors are those resulting from kinematic imperfections of the robot,

for example, unequal wheel diameters or uncertainty about the exact wheelbase.

To reduce these errors several researches propose methods for fusing odometric data

with absolute position measurements.

40 CHAPTER 3. REAL ROBOT DESCRIPTION

3.3.5.2 Laser Distance Sensor

The laser distance sensor use a focuser light to measure distance to a target object. They

detect solids objects independent of material, color and brightness. In this project, a

VL53L0XV2 laser sensor was used (Figure 3.10). The VL53L0XV2 is a time-of-flight

sensor that can report distances between 5 mm and 2 m with a resolution of 1 mm. This

sensor uses a 940 nm laser to detect obstacles and communicate through I2C.

Figure 3.10: VL53L0XV2 sensor.

Time-of-flight technology is often used in long-range measurements. These sensors

utilizes a transmitter diode to generate short pulses of infrared light which hits the surface

of an object and is reflected into a receiver diode. The phases of the emitted and received

light are compared and the distance between the sensor and the object is calculated [69],

as presented in the Figure 3.11.

Figure 3.11: Time-of-flight technology model. Adapted from [70].

3.4. ROBOT SOFTWARE 41

3.4 Robot Software

The robot software was developed directly on the Arduino platform using the C pro-

gramming language. The developed code runs on the Wemos D1 mini integrated into the

robot. This code is responsible for the odometry calculations, which together with the

data obtained by the laser sensors and previous information on the map, estimate the

position of the robot in the environment. It is also responsible for controlling the robot,

mapping the environment, planning the path and controlling the speed of each engine.

Chapter 4

Simulation Model

The development of robots is a process that involves several areas of engineering, such as

programming, electronics and mechanics, among others. In this sense, advanced techno-

logical materials and design methods are needed, which implies that the development of

new robotic solutions is often an expensive practice [71]. Due to the financial factor and

the possibility of evaluating the performance of algorithms before the actual implementa-

tion of the robot, the simulation has established itself as an important tool in the field of

mobile robotics.

This chapter presents the developed simulation model, its implementation in SimTwo

evidencing the dynamic model, the construction of the robot micromouse and the maze

environment, and the development of a Hardware in the Loop (HIL) model.

4.1 SimTwo Simulator

SimTwo is a realistic simulation software suitable for the design and development of

solutions for several types of robots. Its main purpose is the simulation of mobile robots

that can have wheels or legs, although industrial robots, conveyor belts and lighter-than-

air vehicles can also be defined. Basically any type of robot definable with rotating joints

and/or wheels can be simulated [72]. Figure 4.1 presents the workspace of the simulation

tool.

43

44 CHAPTER 4. SIMULATION MODEL

Figure 4.1: SimTwo micromouse simulation interface.

The simulator provides a platform where several robots can be simulated at the same

time. Each robot is defined by various solids (cuboid, cylinder and sphere) intercon-

nected through joints (slider, socket and hinge) and sensors that detect information from

the robot and the environment. The dynamics realism is obtained by simulating each

body and electric motor numerically using its physical characteristics: shape, mass and

moments of inertia, surface friction and elasticity [11].

This application is based on a multiple document interface where the scenario and the

robot’s body and dynamics are implemented on XML language, meanwhile the robot’s

control is implemented on Pascal programming language.

4.1.1 Maze Generator

Based on the necessity of validate and test the developed micromouse algorithms in the

most varied scenarios, a maze generator was implemented. Such generator has the capacity

to represent more than 450 different classic labyrinths (with valid start and goal), in a

simple and fast way to change between them. Those labyrinths reproduce the competition

environment with greater fidelity, having the same characteristics of a real competitive

4.1. SIMTWO SIMULATOR 45

maze, as described in section 1.1.

Originally, the labyrinths are encoded in a text file to facilitate their visualization

(credits to [73]). The developed maze generator extracts the information from the text

file and encodes it into an “obstacle” file in XML which is interpreted by the SimTwo

simulator. The maze generation is shown in Figure 4.2, where the maze in text file format

is selected for the conversion and the resultant XML file is produced. After finishing the

maze generation it is possible to observe the 3D simulation environment with the selected

maze.

Figure 4.2: Maze conversion process.

46 CHAPTER 4. SIMULATION MODEL

4.1.2 Robot Configuration

For the simulator development, SimTwo uses an Open Dynamic Engine. This is an

open source library of simulation functions that support movement and connection of

rigid bodies, rotational inertia and treatment of collisions. Thus, in the development of

the simulation world it is only necessary to introduce a few object’s information, like

dimension, location, mass and connections [74].

The simulated micromouse robot was assembled with the same dimensions as of the

real one, presented at the Table 3.1. The model is a combination of solids (cuboids and

cylinders) and shells, elements without mass that do not modified the robot physical

properties but are an essential part of the collisions simulation. Table 4.1 show the ID

of each object along with their mass, size and position in relation to the reference point

(0, 0, 0) of the simulator.

Robot Description Mass (kg) Position (m) Size (m)
ID X Y Z X Y Z
1 Base Plate 0.8 0 0 0.0195 0.11 0.086 0.005
2 Wheel Left 0.15 0 0.043 0.08 0.008 0.008 0.008
3 Wheel Right 0.15 0 -0.043 0.08 0.008 0.008 0.008
4 Caster Wheel 0.1 -0.055 0 0.004 0.004 0.004 0.008
5 Caster Pole 0.05 -0.045 0 0.017 0.004 0 0.01292
6 Bracket Left 0 0 0.031 0.016 0.012 0.012 0.007
7 Bracket Right 0 0 -0.031 0.016 0.012 0.012 0.007
8 Motor Sheel Right 0 0 0.033 0.008 0.002 0.002 0.012
9 Motor Sheel Left 0 0 -0.033 0.008 0.002 0.002 0.012

Table 4.1: Micromouse simulated structure.

To connect the parts hinge joints were used. This type of joints allows two objects to

move between them through a single axis. The connected parts were: the right and left

wheel on the base plate, the caster pole on the base plate and the caster wheel on the

caster pole.

In order to navigate and map the environment three distance sensors were used. They

are located in the frontal part of the base plate with angles of 45, 90 and 135 degrees.

The sensors length, angle and position in relation to the reference point of the simulator

4.1. SIMTWO SIMULATOR 47

Table 4.2: Position of the sensors in Simtwo simulation.

Sensor Position (m) Angle (degrees) Length (m)
X Y Z

Right 0.04 0.071 0.004 45 0.5
Left 0.04 -0.071 0.004 90 0.5

Middle 0.04 0 0.004 135 0.5

are presented in Table 4.2. The resulting robot is presented in Figure 4.3.

(a) (b)

Figure 4.3: Simulated micromouse robot : (a) Lateral view. (b) Top view.

4.1.3 Robot Control

The robot’s control is defined in the “code editor”. This editor offers an IDE for high-

level programming based in Pascal language. The control script is divided into two main

procedures, Initialize and Control. The Initialize procedure is executed once the code

starts setting the initial configuration of the variables. Meanwhile the control procedure

repeats itself every 40 ms executing the functions responsible for the control of the robot.

The resulting robot movements obtained of such functions can be visualized in the main

window, Figure 4.1.

The robot’s locomotion is based on sensing the environment, self-locating and setting

the speed for each motor. SimTwo offers a library of functions that provide the information

required for such actions.

Initially, to navigate without collision and map the labyrinth environment, the micro-

mouse requires a constant interaction with the environment. Such interaction is performed

48 CHAPTER 4. SIMULATION MODEL

by the three sensors that measure the distance between the robot and the walls. These

measurements are obtained using the Simtwo GetSensorValue(IDrobot, IDsensor) func-

tion that returns the distance of the obstacle in millimeters. Based on such values, a

collision avoidance algorithm is implemented to keep the robot at the center of the cell,

this algorithm is presented in the section 5.3.1.

The robot’s movements is based on the motors actuation. To control the speed and

direction of the robot two variables are implemented, V and W. The V variable stores the

linear velocity of the wheels, controlling the final speed of the robot, while the variable

W keep the angular velocity, controlling the direction of the robot. The angular velocity

is related to the distances measured by the collision avoidance algorithm, meanwhile the

linear velocity is either pre-set or related to the proximity between the robot and frontal

wall. To define the final speed of the robot the Algorithm 1 is applied.

Algorithm 1 Motor’s Speed Control
1: procedure SpeedControl(V,W) . angular and linear speed
2: FinalSpeedRight← V −W
3: FinalSpeedLeft← V +W
4: SetAxisSpeedRef(IDrobot, IDmotor, F inalSpeedRight)
5: SetAxisSpeedRef(IDrobot, IDmotor, F inalSpeedLeft)

In order to map the environment and perform the planned path the robot need the

capacity of self-locate in the maze. This is implemented utilizing the encoders present

in the motor. The measured number of pulses per cycle (40 ms) can be obtained using

the SimTwo command GetAxisOdo(IDrobot, IDmotor), based on this value is possible to

obtain the current speed and position of the robot.

4.1.4 Results Presentation

SimTwo present two main tools for real time evaluation of the algorithms, the chart and

the spreadsheet windows. The chart allows to plot the current value of the variables

4.2. HARDWARE IN THE LOOP 49

utilized in the control, such as sensors distance, robot’s position, and motor speed. By

this, incoherent values are easily found and corrected.

In the spreadsheet window it is possible to customize the value of the cells and associate

them with variables present on the control. It is also possible to define the cells as buttons

for specific operations, enabling the remote control of the simulation. This window is a

great asset in the micromouse project, since it is possible to configure the cells as grid cells

and generate a 2D map of the maze according to the movement of the robot, as shown in

Figure 4.4.

Figure 4.4: Maze presentation in the Spreedsheet window.

4.2 Hardware in the Loop

The technological advances that occurred in the last decades have increased the use of

robots and embedded systems in everyday life and especially in industry. However, before

these new systems are definitely available in the market, several tests must be carried in

order to validate the operation of the system and ensure user safety. Many of these tests

may fail and compromise operators and systems. The simulators have emerged to avoid

50 CHAPTER 4. SIMULATION MODEL

these risks and speed up the development of the system. In this context, the HIL becomes

a powerful tool to be used before the actual tests, replacing the electromechanical systems

with a dynamic 3D simulator.

HIL is a real-time simulation for control systems, in which the actual processor and

other control systems are combined with the dynamic simulator to simulate the actual

system [75]. These systems lies between the real world and the simulation, as shown

in Figure 4.5, where it can be observed that the HIL presents more precision than the

simulation and it is cheaper than implement the tests in a real system.

A
cc

u
ra

cy
re

d
u

ct
io

n

Cost, Time and Risk

Computer

Simulation

Experimental

Test

Hardware

in the

Loop

Simulation

Figure 4.5: Correlation of price, time, risk and precision between simulation and real
systems. (adapted from [76]).

The HIL systems have been widely applied, since they allow to find software and

hardware errors at the beginning of the development process, and their results are very

close to the real ones. The main areas that have been developing and adopting these

systems are the aeronautical industries [77], the automotive industries [78], [79], power

systems [80] and robotics areas [81], [82].

In this project, a HIL was applied using the SimTwo simulator and a Wemos D1 mini.

Real-time communication between these devices was established through the USB port

(Serial communication). In this communication, the simulator provides sensor data (right,

left and front distance sensor and motor encoders) to the hardware-based controller, which

processes this data and controls the actions of the simulated robot (right and left motors),

as shown in Figure 4.6.

4.2. HARDWARE IN THE LOOP 51

MicroMouse

Motors Speed
Data

Sensors Data
Motor Encoder

Figure 4.6: Architecture HIL for Micromouse SimTwo simulator.

With this tool it is possible to develop the micromouse algorithm considering the

limitations presented by the controller, memory and processing time limitations, and to

verify the performances obtained in several different labyrinths, using the maze generator,

without having to assemble them. This way it is possible to verify the efficiency of the

algorithms developed in the most diverse scenarios, with a considerably low cost and

results very close to those of the real implementation.

A simple wall-follower implementation, based on the robot presented in Section 3 is

available on [83]. To test it the following steps must be performed:

1. Compile the code in the controller (Arduino IDE) and then close all dependencies

of the Serial port (Monitor Serial);

2. On the SimTwo, in the Config− > I/O tab (Figure 4.7), configure the Serial port

with a BaudRate of 115200 [bps] and select the COM port corresponding to the

Arduino IDE, and then open the communication. To finish this step, open the

communication by selecting the “open” checkbox;

3. On the Editor tab, compile the code (Ctrl + F9) and then execute pressing (F9).

After this step the HIL tool will be in operation.

52 CHAPTER 4. SIMULATION MODEL

Figure 4.7: SimTwo HIL configuration.

Chapter 5

Localization, Mapping, Path

planning and Control

This chapter will present the means for a mobile robot to be able to sweep an indoor

environment. Thus, three major research areas of mobile robotics will be discussed:

localization, path planning and mobile robot control.

5.1 Maze representation

The micromouse maze presents well defined structure, being composed by 16× 16 multiple

square units (cells) of 18 cm × 18 cm. Each wall of the labyrinth is 5 cm high and 1.2 cm

wide, leaving 16.8 cm of free space between them [7]. This maze is surround by an outer

wall with the same dimensions.

Due to the format of the obstacles, the complexity of the maze and the constant

ambiguities present on the labyrinth, a cell decomposition method was implemented. To

represent the entire maze a binary matrix of 33 × 33 were implemented. This matrix

have four different cells size according to its axis position:

• Cells in odd columns are 16.8 cm high and 1.2 cm wide;

• Cells in odd lines are 1.2 cm in height and 16.8 cm in width;

53

54 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

• Cells in odd rows and columns are 1.2 cm in height and width;

• Cells in other positions are 16,8 cm in height and width.

This configuration allows the perfect representation of the maze into a matrix maintaining

the free cells and obstacles original size (Figure 5.1). To identify the contents of the cell,

obstacle or free path, an identifier has been placed in each cell. If this identifier displays

the value one, the cell contains an obstacle, otherwise the cell is a free path.

Figure 5.1: Partial representation of the maze matrix (white - free cell, grey - obstacle).

5.2 Localization

The micromouse contest provides an initial position for the robot within the maze, this

position is located in one of the four corners of the labyrinth [7]. This initial position

is defined as the reference point for the robot location system. The displacement of the

robot in relation to the reference point is measured using the encoders present on both

wheels, according to

5.2. LOCALIZATION 55

Displacement =
Wheelcircumference · ContRight

PR
+ Wheelcircumference · ContLeft

PR

 · 12
(5.1)

Position = Position+Displacement (5.2)

where, PR are the number of peaks per revolution given by the encoder and ContRight

and ContLeft is the current number of measured peaks, these values are reset every time

the measurement is performed.

Due to the need to map the environment two-dimensionally, a two-variable record was

implemented to maintain the location of the robot inside the maze. This record contains

the variables X and Y, which stores the displacement (in millimeters) of the center of

the robot in relation to the axes of the labyrinth. The variables X and Y are initiated,

respectively, with values of 90 and 70 which correspond to the initial position of the center

of the robot, due to the fact that the robot starts the competition in the center of the

reference cell and with the back against the wall of the labyrinth.

Figure 5.2: Partial representation of the maze and its axes.

The robot starts by moving in the Y-axis of the labyrinth, consequently the distance

traveled by the robot is added to the value stored in the variable Y. The exchange between

the displacement variables occurs whenever the robot makes a curve. However, if the robot

56 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

is moving in a direction opposite to the axes, as in Figure 5.2, this movement must be

subtracted from the value stored in the variable corresponding to the axis. To maintain

control of the direction in which the robot is moving, a flag variable has been created.

Based on the information of such variable is defined whether the displacement will be

added or subtracted from the stored value.

In order to obtain a reliable mapping and to perform the planned path at the lowest

possible speed without collision, it is necessary to have the precise location of the robot

in real time. The use of only the odometric sensors for location does not provide this

required precision. As shown in Section 5, the odometry presents cumulative errors, in

this project most of the odometric errors are due inaccuracies in wheel dimensions, lack

of balance, bumps and skidding. Using the distance sensors, the information obtained by

the odometry and a previous knowledge of the dimensions of the maze, two algorithms

were developed to reduce the imprecision of the robot’s location. Such corrections are

made when:

• There is a side wall near the current position of the robot. In this case, using the

distance obtained by the laser sensor, the variable related to the axis that the robot

is not currently moving is updated according to

Position = CurrentP osition + ((Position DIV CellSize) · CellSize) (5.3)

where the equation of the current position in the cell varies between

CurrentP osition = (SensorLateral · cos 45◦) (5.4)

and

CurrentP osition = CellSize − (SensorLateral · cos 45◦) (5.5)

according to the axis and direction of movement and the side of the measured sensor.

• There is a wall in front of the robot before it realizes a curve. The variable referring

5.3. CONTROL 57

to the axis that the robot was moving is updated according to

Position = CurrentP osition + ((Position DIV CellSize) · CellSize) (5.6)

where the equation of the current position in the cell varies between

CurrentP osition = CellSize − SensorF rontal (5.7)

and

CurrentP osition = SensorF rontal (5.8)

according to the direction of movement. To avoid errors, this update is made in the

short time the robot is stopped before making the curve.

5.3 Control

The robot’s control is obtained by the configuration of the speed to be applied in each

motor. The set of such velocities defines the robot’s final speed and the direction in

which it moves. Two variables were used to control these characteristics. Such variables

configure the angular and linear velocity to be performed by the robot. The speed applied

to each motor is defined according to

VRightW heel = V −W (5.9)

and

VLeftW heel = V +W (5.10)

where VRightW heel and VLeftW heel are the speed applied in each motor.

The linear velocity is controlled according to the activity being performed. During the

mapping phase, a low speed is used to increase the accuracy of the generated map. This

58 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

speed is increased for the evaluation run, aiming to reduce the time needed for the robot

to reach the center of the maze. In order to reduce bumps and skids, especially in the

evaluation run where the robot speed is greater, an acceleration and deceleration algorithm

has been implemented. The acceleration algorithm constantly increases the speed of the

robot until it reaches the maximum speed allowed in the task being executed. Meanwhile,

the deceleration algorithm constantly reduces the speed of the robot until it reaches the

point where the curve will be made.

The angular velocity is specially applied on two occasions, when executing a curve/ro-

tation, and correcting the movement of the robot. In these cases, different speeds or

direction are applied to the wheels, thus changing the direction in which the robot is

moving.

5.3.1 Centralization Algorithm

A centralization algorithm has been implemented to increase the accuracy of the generated

map, ease the robot’s control and avoid collisions during its movements. This algorithm

uses the distance of the walls obtained by the laser sensors and the previous knowledge

of the size of the cells to keep the robot centered around the current unused axis.

The centralization algorithm analyzes the current situation of the robot in the maze

and returns the angular velocity to be applied in the motors in order to correct the robot’s

positioning. Taking into account the possible variations of the positions of the walls in

relation to the robot, this algorithm accomplishes the correction of the robot’s position in

four configurations common in the mazes. The four different cases are presented below.

5.3.1.1 Both Close Lateral Walls or a Large Frontal Wall

On these occasions, shown in the Figure 5.3, it is possible to make a comparison of the

values obtained by the lateral sensors. Based on the difference between these values an

angular velocity is defined to correct the positioning of the robot, as shown in

5.3. CONTROL 59

W = K · (SensorRight − SensorLeft) (5.11)

where K is a proportional gain, obtained in tests, to accelerate the centralization process.

(a) (b)

Figure 5.3: Environment situations: (a) Both close lateral walls. (b) Large frontal wall.

5.3.1.2 One of the Close Lateral Walls

In these cases the side walls are at quite different distances (Figure 5.4), not being possible

to make a comparison. In such cases triangulation is necessary. Using the known angle

of the sensor (45 degrees) and the distance measured by the sensor, the current distance

between the wall and the robot is calculated. This distance is then compared to the

distance required for the robot to be in the center of the cell and the angular velocity is

adjusted. The complete calculation of this variance is presented in

W = K ·
(
SensorDist−

(
x

cos(45)

))
(5.12)

where x is the distance between the robot’s sensor and the wall (41.5 mm), K is a propor-

tional gain, obtained in tests, and the W signal varies according to the measured sensor

side.

5.3.1.3 One of the Sidewalls a Cell Away

Very similar to having a close lateral walls and in these cases a triangulation is also

performed. However, the distance that is compared is the sum of the length of a cell

60 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

Figure 5.4: A single wall close.

with the distance required for the robot to be in the center of the cell. In this case, the

Equation (5.12) is applied by varying the value of x to 215.5 mm.

Figure 5.5: A single wall a Cell Away.

5.3. CONTROL 61

5.3.1.4 Other cases

If the environment around the robot does not fit in the situations mentioned above, it is

not possible to perform the robot centralization. In these cases the angular velocity is set

to zero and the robot moves in a straight line. The centralization will be performed when

the robot moves to an environment similar to previous ones.

To increase stability and accelerate the centralization process, the value obtained by

the centralization algorithm is multiplied to a proportional gain.

5.3.2 Curves

To ease the location control and reduce the required correction in the robot’s direction

to keep it centralized, the curves/rotations are performed when the robot is as close as

possible to the center of the cells. To perform the curves and rotations, the linear velocity

is set as zero and an angular velocity is defined. This way, the wheels rotate at the same

speed, but in opposite directions, rotating the robot without changing the central axis

position. Therefore, its not required to update the robot’s position during a curve or

rotation.

To control the angle of rotation performed by the robot, the odometry of the external

wheel is used. This angle is obtained by

θRotation = θRotation + Tg−1

W heelcircumference·Cont

P R

b

 (5.13)

where PR is the number of peaks per revolution given by the encoder, Cont is the current

number of measured peaks and b is the distance between the center of the robot and the

wheel, these values are reset every time the measurement is performed. The maximum

value of θRotation varies according to the command to be executed, if it is a curve the

robot turns 90 degrees and in case of a rotation it rotates 180 degrees. Upon reaching

the desired angle, the angular velocity is set to zero and the linear velocity is defined

according to the task being performed by the robot.

62 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

5.4 Search Algorithms

Once the mapping is complete, it is necessary to search for the best path through it.

This task is performed by search algorithms. These algorithms systematically search a

graph with the goal of finding a specific cell [33]. During this research, a record of the

movements that the algorithm performed to find the goal is kept. When the desired cell

is found, the moves are checked to get the best path. The generated path is a sequence of

cells that the robot must traverse to reach the goal. This section presents an optimization

to the A* search algorithm seeking to reduce the processing time while maintaining the

path quality.

5.4.1 A* Modified

There are several implementation details that can significantly affect the performance

of an A* algorithm. This modified A* implementation implements two modifications in

order to reduce processing time. The first modification is in the form that the cells to be

visited are stored. This version uses the binary heap data structure to store this nodes.

A binary heap is a data structure created by using a binary tree that can be constructed

by successive insertions.

Figure 5.6: Ordering a new cell in a binary heap.

One of the biggest expenses in the processing time of algorithm A* is to order the cells

5.5. MAPPING 63

to be visited according to their cost. In the binary heap this duration is reduced, since

positioning the cell accordingly to its cost just requires to verify the costs of its parents

cells (Figure 5.6), no longer is it necessary to verify the majority of the cells in the list.

The second modification is the addition of the k value into the heuristic equation.

This allows to adjust the search space, with k = 1 there is the guarantee that the final

solution will be optimal, however using a higher value for k the search space is reduced

and the solution found can be suboptimal. The modified heuristic equation

h(x, y) = k
√

(x− xt)2 + (y − yt)2 (5.14)

where the (x, y) are the coordinates of the current position and (xt, yt) are the goal

coordinates.

The advantage of reducing the search space is that the computing time is also reduced.

Sometimes the trade off can be advantageous if the computing time gains are significant

and the path length stays near the optimal. This is very important in real time scenarios.

5.5 Mapping

The mapping process occurs as the robot moves through the unknown maze, therefore, an

algorithm of motion in an unknown environment is required. In the development of this

project two algorithms of movement in unknown environment were implemented. These

algorithms are presented below:

• Wall Follower

The most common algorithm for a maze solver robot is the wall follower algorithm,

also called left hand right hand rules. In this method the robot will decide its

direction by following the left or right wall. Whenever the robot arrives at a junction,

it will detect the opening walls and select its direction, giving priority to the selected

wall [84], in the case developed the right wall was selected. This selection occurs

according to the following algorithm.

64 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

1. Sense the right wall.

2. If the right wall is not present, turn 90 degrees right and return to step 1.

3. Sense the front wall.

4. If the front wall is not present, move straight and return to step 1.

5. Sense the left wall.

6. If the left wall is not present, turn 90 degrees left, else rotate 180 degrees.

7. Return to step 1.

Taking the walls as a guide, this strategy is able to make the robot reach the goal

of the maze without actually solving it. However, this algorithm is not an efficient

method to solve a maze since the wall follower algorithm is not capable to solve

labyrinths with a closed loop region [85].

• Wall Follower with Repositioning Algorithm

In order to avoid the path repetition problem found in the Wall Follower algorithm,

a repositioning algorithm was developed. This algorithm uses the base of the wall

follower but with a variation, when going through a repeated path a search algorithm

is used to find the nearest unexplored entrance. When this entry is found, the search

algorithm returns the cells that must be traversed by the robot to reposition itself.

This path is followed by the robot until it reaches the destination, then the mapping

starts again using the wall follower algorithm.

To perform this repositioning algorithm, two conditions are required. During the

mapping, the unexplored entries must be marked with a different value to indicate

the position to be found by the search algorithm. The second condition is the use

of a search algorithm with low processing time, since the generated path does not

have to be as short as possible and the time needed to process this path can cause

collisions due to the robot continuing to move in this period. Therefore, the A*

modified algorithm with a high K value was applied.

5.6. PATH PLANNING AND EVALUATION RUN 65

Initially an unknown value is assigned to all the cells in the maze. As the robot moves

through the labyrinth these cells are updated according to their content, if there is an

obstacle, the cell receives a value of 1, otherwise it receives a value of 0. This update

happens when the robot passes the center of the cell. Using the location of the robot in

the X and Y axes and the measures obtained from the laser sensors, the values of the

frontal and diagonal cells to the robot are defined. An example of mapping is shown in

Figure 5.7, where the robot’s current position is shown in red, obstacles are displayed in

black, free paths are white, and non visited cells are blue.

(a) (b)

Figure 5.7: Mapping process: (a)Robot’s current position. (b) Generated map.

5.6 Path Planning and Evaluation Run

Based on the previously obtained map, a path planner is applied. This path planner

returns a cell path that must be visited for the robot to reach the target as quickly as

possible. In order to facilitate the robot’s control during the evaluative run, this sequence

of cells are analyzed and transformed into simple commands for the robot. Comparing

the values of the axes of the cell with its predecessor, it is possible to obtain the command

that must be executed for the robot to continue on the rail.

From the analysis of the cells it is obtained a vector with commands: front, right and

left. It starts with the robot moving frontally. When the robot changes cell, the first

66 CHAPTER 5. LOCALIZATION, MAPPING, PATH PLANNING AND CONTROL

command of the vector is executed and this vector is updated. This is repeated until the

goal is achieved. It should be noted that only 90 degree turns were considered in the

evaluation run.

Chapter 6

Results

This section is dedicated to the presentation of the results related to the localization,

mapping, planning and control activities, using the methodologies presented in the pre-

vious chapters. In order to perform this evaluation, experiments were carried out in the

SimTwo simulation environment, as well as practical experiments with the real robot.

Initially, the cumulative error generated by the odometry in the location of the robot

is introduced. Along with this introduction, the results obtained by the correction of the

location using the distance sensors are presented. Then, the methods developed for the

robot to move in an unknown environment and map it are compared. After, a comparison

of different path planning methods is realized, verifying the quality of the path generated,

the number of visited cells, and the processing time required to obtain this path. Finally,

the results obtained in the evaluation run are presented.

6.1 Simulation

The SimTwo simulator provides a realistic environment allowing the configuration of sev-

eral robotics and environmental characteristics, such as the motor settings and environ-

ment friction, letting the verification and correction of the non-idealities errors present in

the implementation of the real robot. The simulator also provides tools for real-time mon-

itoring of measures and robot configurations, enabling a quick detection and localization

67

68 CHAPTER 6. RESULTS

of errors present in the code.

The simulation environment also allows a better comparison of different methodologies,

since it is possible to obtain the results of their applications in the most varied mazes

without having to assemble them. This section presents the results obtained during the

development of the robot micromouse in simulated environment.

6.1.1 Localization

The main error present on the real development of the micromouse is due to non-systematic

errors that occur on the odometer measurements caused especially by wheel slippage and

bumps. To check this error and minimize it, the simulator provides the position of the

robot in real time, making it possible to compare the data of the odometry and the real

position/velocity. To perform this comparison, the path of the Figure 6.1 was traveled by

the robot.

Figure 6.1: Traveled route.

Figure 6.2 presents the comparison between the odometry and the real positioning of

the robot in Figure 6.1. It is observed that the difference starts small and it increases as the

robot moves, especially when performing curves due to the need to decelerate, accelerate

and correct its positioning. This increase occurs due to the error being cumulative, the

small errors are adding up, which causes great variations after some displacement.

The micromouse robot requires a precise location to be able to map correctly and

go through a selected path without colliding, so using only the odometry to locate has

proven to be inefficient. In order to increase the accuracy of the localization system, the

6.1. SIMULATION 69

Figure 6.2: Comparative between odometry and real robot movimentation.

method presented in the section 5.2 has been implemented. This method uses previous

knowledge of the dimensions of the maze, the measurements obtained by the distance

sensors and odometry to avoid that the localization error accumulates as the robot moves.

This method still shows a small variation between the measured position and the current

position, but this variation remains constantly small throughout the trajectory and can

therefore be neglected.

6.1.2 Mapping

The mapping of an unknown environment is one of the most important step in the software

development of a robot for micromouse competition, since the path planning and the

evaluation run depend on the quality of the map generated and the amount of environment

explored. The micromouse competition has a maximum time for the execution of all

required tasks being 10 minutes. Therefore, a time for each task is defined. In order to

allow plenty of time for the evaluation race, a mapping time of 7 minutes was established.

This section presents and compares the maps obtained with different locomotion al-

gorithms for unknown environments. These algorithms are evaluated in several criteria,

especially the percentage of the map explored and if the center of the labyrinth was found.

To be able to evaluate the performance of the algorithms, three maps used in past com-

petitions of the micromouse were selected. These maps are shown in the Figure 6.3. The

70 CHAPTER 6. RESULTS

locomotion algorithms are presented according to its complexity.

(a) (b)

(c)

Figure 6.3: Maps of past micromouse competitions : (a) 2008 All Japan Micromouse
Expert Contest (b) 2018 APEC Micromouse Contest. (c) 2018 UK Micromouse Finals
Maze.

6.1.2.1 Wall Follower

The wall-follower algorithm presents a simple decision making, the robot moves through

the unknown environment following the wall to its left. The complete description of its

operation is presented in the section. When applying this algorithm in the labyrinths

presented above, the robot traverses the trajectories presented in the Figure 6.4.

6.1. SIMULATION 71

Figure 6.4: Path traversed using the wall-follower algorithm.

From these trajectories the maps presented in the Figure 6.5 were obtained. In these

maps, the black cells contain obstacles, the white cells are free paths and the blue cells

were not explored.

Figure 6.5: Maps generated by the wall follower algorithm

It is observed that after some time this algorithm goes into repetition, limiting the

path traveled by the robot. This generates maps with little information due to the limited

number of visited cells. Another disadvantage is the lack of assurance of finding a path

between the starting point and the goal. Therefore, this algorithm proved to be insufficient

to map the maze. Further information on the execution of this algorithm in the selected

maps are found in the Table 6.1.

6.1.2.2 Wall Follower with repositioning algorithm

In order to prevent the robot from repeating the same paths during the mapping, a

repositioning algorithm was added to the wall follower algorithm. This algorithm bases

72 CHAPTER 6. RESULTS

Table 6.1: Results of the wall follower algorithm.

Maze Mapped Percentage Mapping Time (m)
2008 Japan 78.7 04:09
2018 APEC 33.9 00:49
2018 UK 47.4 02:21

its motion on the wall follower algorithm, however, when going through a path already

covered a search algorithm is used to find the nearest unexplored entrance.The robot

then traverses the generated path and restart the mapping of the environment from the

entrance. When applying this algorithm in the same labyrinths, with the time limit of 7

minutes, the robot traverses the trajectories presented in the Figure 6.6.

Figure 6.6: Path traversed using the wall-follower with repositioning algorithm.

From these trajectories the maps presented in the Figure 6.7 were obtained. In these

maps, the black cells contain obstacles, the white cells are free paths, the blue cells were

not explored and the green cells are unexplored entrances.

Figure 6.7: Maps generated by the wall follower with repositioning algorithm

6.1. SIMULATION 73

This algorithm solves the repetition problem presented in the wall follower algorithm,

increasing the available information about the labyrinth. Further information on the

execution of this algorithm are found in the Table 6.2.

Table 6.2: Results of the wall follower with repositioning algorithm.

Maze Mapped Percentage Time to Fully Map the Maze (m)
2008 Japan 95.1 08:29
2018 APEC 99.2 07:52
2018 UK 95.68 08:43

6.1.3 Path Planning

In order to obtain the best path between the starting point and the goal a search algorithm

is applied. However there are several algorithms that perform such a search. This section

presents the results obtained by applying the four path planning algorithms described in

the Sections 5.4 and 2.7. These algorithms are applied to the same maps used in the

previous section, considering them fully mapped. The results are evaluated by the length

of the route generated and the processing time required to obtain it.

6.1.3.1 2008 All Japan Micromouse Expert Contest

The results obtained in the application of the search algorithms are presented in the

Figure 6.8, where red cells demonstrate the generated path, blues were visited in the

search process and white cells were not visited.

Table 6.3 shows the number of cells visited, the number of cells to be traversed in the

generated path and the processing time required to obtain the best path. The difference

between the processing times of the modified A-Star with K equal to one and the regular

A-Star is due to the different ordering processes, in the regular A-Star it is necessary to

verify the cost of several cells while in the A-Star modified is only necessary to check some

of them.

74 CHAPTER 6. RESULTS

(a) (b) (c)

(d) (e) (f)

Figure 6.8: Search Algorithms applied on 2008 All Japan Micromouse: (a) Dijkstra’s
Algorithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A* Modified w/
K=1.5. (f) A* Modified w/ K=2.

Table 6.3: Search Algorithms applied on 2008 All Japan Micromouse results

Search Algorithm Processing Time Visited Cells Path Generated
Dijkstra’s Algorithm 2043 ms 523 145
Best-first Search 657 ms 237 161

A* 2016 ms 523 145
A* Modified - K=1 1719 ms 523 145
A* Modified - K=1.5 1541 ms 489 145
A* Modified - K=2 1523 ms 479 153

6.1. SIMULATION 75

6.1.3.2 2018 APEC Micromouse Contest

The results obtained in the application of the search algorithms are presented in the

Figure 6.9, where red cells demonstrate the generated path, blues were visited in the

search process and white cells were not visited.

(a) (b) (c)

(d) (e) (f)

Figure 6.9: Search Algorithms applied on 2018 APEC Micromouse: (a) Dijkstra’s Algo-
rithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A* Modified w/ K=1.5.
(f) A* Modified w/ K=2.

Table 6.4 shows the number of cells visited, the number of cells to be traversed in the

generated path and the processing time required to obtain the best path.

Table 6.4: Search Algorithms applied on 2018 APEC Micromouse results

Search Algorithm Processing Time Visited Cells Path Generated
Dijkstra’s Algorithm 1752 ms 512 173
Best-first Search 1200 ms 377 173

A* 1667 ms 509 173
A* Modified - K=1 1492 ms 509 173
A* Modified - K=1.5 1476 ms 503 173
A* Modified - K=2 1451 ms 500 173

76 CHAPTER 6. RESULTS

6.1.3.3 2018 UK Micromouse

The results obtained in the application of the search algorithms are presented in the

Figure 6.10, where red cells demonstrate the generated path, blues were visited in the

search process and white cells were not visited.

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Search Algorithms applied on 2018 UK Micromouse : (a) Dijkstra’s Algo-
rithm (b) Best-first Search (c) A*. (d) A* Modified w/ K=1. (e) A* Modified w/ K=1.5.
(f) A* Modified w/ K=2.

Table 6.5 shows the number of cells visited, the number of cells to be traversed in the

generated path and the processing time required to obtain the best path.

Table 6.5: Search Algorithms applied on 2018 UK Micromouse results

Search Algorithm Processing Time Visited Cells Path Generated
Dijkstra’s Algorithm 2109 ms 528 109
Best-first Search 1831 ms 491 145

A* 2015 ms 528 109
A* Modified w/ K=1 1766 ms 528 109
A* Modified w/ K=1.5 1697 ms 503 109
A* Modified w/ K=2 1640 ms 491 109

6.1. SIMULATION 77

6.1.3.4 Comparison

Among the algorithms evaluated, the modified A* and the best-first search obtained the

shortest processing times. However, as the shortest path is desired, the best-first search

was disregarded, due to generating sub-optimal paths. In the evaluation of the K values in

the modified A*, a reduction of the processing time was observed as the increase of K, but

consequently an increase in the length of the trajectory generated occurred. Therefore,

from the evaluated algorithms it was chosen to use the modified A* with K = 1.

6.1.4 Evaluation Run

Based on the path obtained, the last run is performed. In this race of evaluation the

time to reach the goal is verified and the competitor with the shortest time wins. The

trajectories performed in the final runs of the mazes previously presented are shown in

Figure 6.11.

(a) (b) (c)

Figure 6.11: Trajectories performed on the evaluation run in the mazes : (a) 2008 All
Japan Micromouse Expert Contest (b) 2018 APEC Micromouse Contest. (c) 2018 UK
Micromouse Finals Maze.

The distance traveled and the time spend to reach the center of each labyrinth are

shown in the Table 6.6.

78 CHAPTER 6. RESULTS

Table 6.6: Evaluation run results.

Maze Time to complete the run Distance performed
2008 All Japan Micromouse 82.20 s 12.87 m

2018 APEC Micromouse Contest 75.33 s 15.39 m
2018 UK Micromouse 49.94 s 9.63 m

6.2 Real Robot

To perform the tests in the real robot, a maze with reduced dimensions was assembled

as can be seen in Figure 6.12. This maze was built on a wooden surface. The walls were

made of Medium-density fibreboard (MDF) having 5 cm of height and 3 mm of thickness.

The labyrinth is formed by 5 × 5 square cells of 174 × 174 cm, the dimensions of the cells

were reduced to maintain the internal value of the cell in 168 × 168 cm [7].

Figure 6.12: Assembled maze.

In this maze, the robot was able to perform the complete mapping in 48.2 s, the

generated map is shown in the Figure 6.13a. Based on this map, the modified A* algorithm

was applied obtaining the trajectory shown in Figure 6.13b. The evaluation run was

performed (Figure 6.14) with the best time of 19.6 s.

6.2. REAL ROBOT 79

(a) (b)

Figure 6.13: Real maze: (a) Map. (b) Path planning.

Figure 6.14: Trajectory performed in the evaluation run.

Chapter 7

Conclusions and Future Work

7.1 Developed Work

A methodology has been developed that allows a small robot to self-locate, map, find

the best path between the starting point and the center of a maze, and cross it without

colliding. Areas of mobile robotics such as simultaneous location and mapping, path

planning and control were employed with the purpose of fulfill the required tasks.

Two different motion methodologies in an unknown environment were compared in

order to obtain as much information as possible from the labyrinth during the mapping

period. Among the algorithms tested, the replanning algorithm demonstrated a high

capacity of collecting information about the maze and in all verified cases was able to

locate the objective in less than 7 minutes.

An optimization for the A * search algorithm has been developed and compared with

other well-known search algorithms, seeking to generate the shortest path with the lowest

processing time possible. This optimization proved to maintain the path quality with the

lowest processing time among these algorithms.

Finally, the real and simulated robot were tested in the evaluation run and were able

to carry out the planned route.

81

82 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.2 Future Works

The present work has the potential to continue to be developed, especially optimizing the

time of the evaluation run. Among the optimizations to be performed are:

• Non-stopping 90 degrees turns;

• Implementation of 45-degree curves;

• Addition of a new cost to the search algorithm to reduce the number of curves, since

the curves require more time to execute;

• Insert a fan in the real robot, allowing an increase in robot speed without affecting

its location.

Bibliography

[1] UTAD, Utad micromouse portuguese contest, "Accessed on 12/06/2018 at 09:53

p.m.". [Online]. Available: https://www.micromouse.utad.pt/.

[2] F. Tobe, Robotics industry growing faster than expected, "Accessed on 06/12/2018

at 10:25 a.m.", 2017. [Online]. Available: https://www.therobotreport.com/

robotics-industry-growing-faster-than-expected/.

[3] S. G. Kibler, A. E. Hauer, D. S. Giessel, C. S. Malveaux, and D. Raskovic, “Ieee

micromouse for mechatronics research and education,” inMechatronics (ICM), 2011

IEEE International Conference on, IEEE, 2011, pp. 887–892.

[4] S. Mishra and P. Bande, “Maze solving algorithms for micro mouse,” in Signal

Image Technology and Internet Based Systems, 2008. SITIS’08. IEEE International

Conference on, IEEE, 2008, pp. 86–93.

[5] A. M. CONTEST, Apec 31th annual micromouse contest, 2017. [Online]. Avail-

able: https://www.apec-conf.org/Portals/0/APEC%202019/APEC%202017%

20Micromouse%20Results.pdf.

[6] S. Yadav, K. K. Verma, and S. Mahanta, “The maze problem solved by micro

mouse,” International Journal of Engineering and Advanced Technology (IJEAT)

ISSN, pp. 2249–8958, 2012.

[7] M. P. Contest, Rules of the micromouse portuguese competest, "Accessed on 05/09/2018

at 02:30 p.m.". [Online]. Available: http://www.micromouse.utad.pt/?page_id=

504&lang=en.

83

https://www.micromouse.utad.pt/
https://www.therobotreport.com/robotics-industry-growing-faster-than-expected/
https://www.therobotreport.com/robotics-industry-growing-faster-than-expected/
https://www.apec-conf.org/Portals/0/APEC%202019/APEC%202017%20Micromouse%20Results.pdf
https://www.apec-conf.org/Portals/0/APEC%202019/APEC%202017%20Micromouse%20Results.pdf
http://www.micromouse.utad.pt/?page_id=504&lang=en
http://www.micromouse.utad.pt/?page_id=504&lang=en

84 BIBLIOGRAPHY

[8] S. Behnke, “Robot competitions-ideal benchmarks for robotics research,” in Proc. of

IROS-2006 Workshop on Benchmarks in Robotics Research, Institute of Electrical

and Electronics Engineers (IEEE), 2006.

[9] L. B. Almeida, J. Azevedo, C. Cardeira, P. Costa, P. Fonseca, P. Lima, A. F. Ribeiro,

and V. Santos, “Mobile robot competitions: Fostering advances in research, devel-

opment and education in robotics,” 2000.

[10] M. Kandlhofer and G. Steinbauer, “Evaluating the impact of educational robotics

on pupils’ technical-and social-skills and science related attitudes,” Robotics and

Autonomous Systems, vol. 75, pp. 679–685, 2016.

[11] J. Gonçalves, J. Lima, P. J. Costa, and A. P. Moreira, “Modeling and simulation

of the emg30 geared motor with encoder resorting to simtwo: The official robot@

factory simulator,” in Advances in Sustainable and Competitive Manufacturing Sys-

tems, Springer, 2013, pp. 307–314.

[12] R. Federation, Robocup humanoid league, https://www.robocuphumanoid.org/,

2015.

[13] K. Osuka, R. Murphy, and A. C. Schultz, “Usar competitions for physically situated

robots,” IEEE Robotics & Automation Magazine, vol. 9, no. 3, pp. 26–33, 2002.

[14] R. Federation, Robocuprescue, https://www.robocup.org/leagues/10, 2016.

[15] ResCon, 19th rescue robot contest, https://www.rescue-robot-contest.org/

19th-contest/about/, 2018.

[16] P. J. Costa, N. Moreira, D. Campos, J. Gonçalves, J. Lima, and P. L. Costa, “Lo-

calization and navigation of an omnidirectional mobile robot: The robot@ factory

case study,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 11,

no. 1, pp. 1–9, 2016.

[17] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,

J. Gale, M. Halpenny, G. Hoffmann, et al., “Stanley: The robot that won the darpa

grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

https://www.robocuphumanoid.org/
https://www.robocup.org/leagues/10
https://www.rescue-robot-contest.org/19th-contest/about/
https://www.rescue-robot-contest.org/19th-contest/about/

BIBLIOGRAPHY 85

[18] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;

Pearson Education Limited, 2016.

[19] L. Piardi, “Application of a mobile robot to spatial mapping of radioactive sub-

stances in indoor environment,” PhD thesis, 2018.

[20] R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza, and R. C. Arkin, Introduction to

autonomous mobile robots. MIT press, 2011.

[21] M. Hutson, Curiosity rover decides—by itself—what to investigate on mars, "Ac-

cessed on 05/06/2018 at 08:40 p.m.". [Online]. Available: https://www.sciencemag.

org/news/2017/06/curiosity-rover-decides-itself-what-investigate-

mars.

[22] L. Bruzzone and G. Quaglia, “Locomotion systems for ground mobile robots in

unstructured environments,” Mechanical Sciences, vol. 3, no. 2, pp. 49–62, 2012.

[23] R. R. Murphy, “Rescue robotics for homeland security,” Communications of the

ACM, vol. 47, no. 3, pp. 66–68, 2004.

[24] G. Quaglia, L. Bruzzone, G. Bozzini, R. Oderio, and R. P. Razzoli, “Epi. q-tg:

Mobile robot for surveillance,” Industrial Robot: An International Journal, vol. 38,

no. 3, pp. 282–291, 2011.

[25] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida, S. Tadokoro, T.

Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima, et al., “Emergency response

to the nuclear accident at the fukushima daiichi nuclear power plants using mobile

rescue robots,” Journal of Field Robotics, vol. 30, no. 1, pp. 44–63, 2013.

[26] E. E. Cepolina and M. U. Hemapala, “Power tillers for demining: Blast test,” In-

ternational Journal of Advanced Robotic Systems, vol. 4, no. 2, p. 28, 2007.

[27] R. González, F. Rodrıguez, J. Sánchez-Hermosilla, and J. Donaire, “Navigation

techniques for mobile robots in greenhouses,” Applied Engineering in Agriculture,

vol. 25, no. 2, pp. 153–165, 2009.

https://www.sciencemag.org/news/2017/06/curiosity-rover-decides-itself-what-investigate-mars
https://www.sciencemag.org/news/2017/06/curiosity-rover-decides-itself-what-investigate-mars
https://www.sciencemag.org/news/2017/06/curiosity-rover-decides-itself-what-investigate-mars

86 BIBLIOGRAPHY

[28] P. Morin and C. Samson, “Motion control of wheeled mobile robots,” in Springer

Handbook of Robotics, Springer, 2008, pp. 799–826.

[29] S. Thrun, “Learning metric-topological maps for indoor mobile robot navigation,”

Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[30] D. Kortenkamp, R. P. Bonasso, and R. Murphy, Artificial intelligence and mobile

robots: case studies of successful robot systems. MIT Press, 1998.

[31] D. Kortenkamp and T. Weymouth, “Topological mapping for mobile robots using

a combination of sonar and vision sensing,” in AAAI, vol. 94, 1994, pp. 979–984.

[32] D. Pierce and B. Kuipers, “Learning to explore and build maps,” in AAAI, vol. 94,

1994, pp. 1264–1271.

[33] J. Giesbrecht, “Global path planning for unmanned ground vehicles,” DEFENCE

RESEARCH and DEVELOPMENT SUFFIELD (ALBERTA), Tech. Rep., 2004.

[34] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part i,”

IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[35] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A factored solu-

tion to the simultaneous localization and mapping problem,” Aaai/iaai, vol. 593598,

2002.

[36] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A

solution to the simultaneous localization and map building (slam) problem,” IEEE

Transactions on robotics and automation, vol. 17, no. 3, pp. 229–241, 2001.

[37] T. S. Levitt, “Qualitative navigation for mobile robots,” Int. J. Artificial Intelli-

gence, vol. 44, pp. 305–360, 1990.

[38] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy based on

a semantic hierarchy of spatial representations,” Robotics and autonomous systems,

vol. 8, no. 1-2, pp. 47–63, 1991.

BIBLIOGRAPHY 87

[39] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration and map-

building with continuous localization,” in Robotics and Automation, 1998. Proceed-

ings. 1998 IEEE International Conference on, IEEE, vol. 4, 1998, pp. 3715–3720.

[40] S. Garrido, L. Moreno, M. Abderrahim, and F. Martin, “Path planning for mobile

robot navigation using voronoi diagram and fast marching,” in Intelligent Robots

and Systems, 2006 IEEE/RSJ International Conference on, IEEE, 2006, pp. 2376–

2381.

[41] C. K. Yap, “Algorithmic motion planning,” Advances in robotics, vol. 1, pp. 95–143,

1987.

[42] R. A. Brooks and T. Lozano-Perez, “A subdivision algorithm in configuration space

for findpath with rotation,” IEEE Transactions on Systems, Man, and Cybernetics,

no. 2, pp. 224–233, 1985.

[43] M. Mekni and P. Graniero, “A multiagent geosimulation approach for intelligent

sensor web management,” International Journal of Distributed Sensor Networks,

vol. 6, no. 1, p. 846 820, 2010.

[44] H. Noborio, T. Naniwa, and S. Arimoto, “A quadtree-based path-planning algorithm

for a mobile robot,” Journal of Robotic Systems, vol. 7, no. 4, pp. 555–574, 1990.

[45] F. Avnaim, J.-D. Boissonnat, and B. Faverjon, “A practical exact motion planning

algorithm for polygonal objects amidst polygonal obstacles,” in Robotics and Au-

tomation, 1988. Proceedings., 1988 IEEE International Conference on, IEEE, 1988,

pp. 1656–1661.

[46] H. Miao and Y.-C. Tian, “Robot path planning in dynamic environments using a

simulated annealing based approach,” 2008.

[47] S. H. Tang, W. Khaksar, N. Ismail, and M. Ariffin, “A review on robot motion

planning approaches,” Pertanika Journal of Science and Technology, vol. 20, no. 1,

pp. 15–29, 2012.

88 BIBLIOGRAPHY

[48] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E. Kavraki,

and S. Thrun, Principles of robot motion: theory, algorithms, and implementation.

MIT press, 2005.

[49] V. Boor, M. H. Overmars, and A. F. Van Der Stappen, “The gaussian sampling

strategy for probabilistic roadmap planners,” in Robotics and automation, 1999.

proceedings. 1999 ieee international conference on, IEEE, vol. 2, 1999, pp. 1018–

1023.

[50] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in

Robotics and Automation. Proceedings. 1985 IEEE International Conference on,

IEEE, vol. 2, 1985, pp. 500–505.

[51] R. Volpe, “Real and artificial forces in the control of manipulators: Theory and

experiments,” PhD thesis, PhD thesis, Carnegie Mellon University, Department of

Physics, 1990.

[52] J.-C. Latombe, Robot motion planning. Springer Science & Business Media, 2012,

vol. 124.

[53] Q. Zhu, Y. Yan, and Z. Xing, “Robot path planning based on artificial potential field

approach with simulated annealing,” in Intelligent Systems Design and Applications,

2006. ISDA’06. Sixth International Conference on, IEEE, vol. 2, 2006, pp. 622–627.

[54] M. G. Park and M. C. Lee, “Experimental evaluation of robot path planning by arti-

ficial potential field approach with simulated annealing,” in SICE 2002. Proceedings

of the 41st SICE Annual Conference, IEEE, vol. 4, 2002, pp. 2190–2195.

[55] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and tra-

jectory planning algorithms: A general overview,” in Motion and operation planning

of robotic systems, Springer, 2015, pp. 3–27.

[56] S.-G. Cui, H. Wang, and L. Yang, “A simulation study of a-star algorithm for robot

path planning,” in 16th international conference on mechatronics technology, PP,

2012, pp. 506–510.

BIBLIOGRAPHY 89

[57] A. P. Moreira, P. Costa, and P. Costa, “Real-time path planning using a modified a*

algorithm,” in Proceedings of ROBOTICA 2009-9th Conference on Mobile Robots

and Competitions, 2009.

[58] R. J. Szczerba, P. Galkowski, I. S. Glicktein, and N. Ternullo, “Robust algorithm for

real-time route planning,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 36, no. 3, pp. 869–878, 2000.

[59] J. Pearl, “Heuristics: Intelligent search strategies for computer problem solving,”

1984.

[60] WEMOS, Wemos d1 mini, "Accessed on 25/06/2018 at 07:30 p.m.". [Online]. Avail-

able: https://wiki.wemos.cc/products:d1:d1_mini.

[61] ——, Motor shield, "Accessed on 25/06/2018 at 07:50 p.m.". [Online]. Available:

https://wiki.wemos.cc/products:d1_mini_shields:motor_shield.

[62] ——, Battery shield, "Accessed on 25/06/2018 at 08:00 p.m.". [Online]. Available:

https://wiki.wemos.cc/products:d1_mini_shields:battery_shield.

[63] M. K. Kazimierczuk, Pulse-width modulated DC-DC power converters. John Wiley

& Sons, 2015.

[64] R. Murphy, R. R. Murphy, and R. C. Arkin, Introduction to AI robotics. MIT press,

2000.

[65] A. Y. Hata, “Mapeamento de ambientes externos utilizando robôs móveis,” PhD

thesis, Universidade de São Paulo, 2010.

[66] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe, “Mobile robot positioning:

Sensors and techniques,” Journal of robotic systems, vol. 14, no. 4, pp. 231–249,

1997.

[67] C. Gourley and M. Trivedi, “Sensor based obstacle avoidance and mapping for

fast mobile robots,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, IEEE, 1994, pp. 1306–1311.

https://wiki.wemos.cc/products:d1:d1_mini
https://wiki.wemos.cc/products:d1_mini_shields:motor_shield
https://wiki.wemos.cc/products:d1_mini_shields:battery_shield

90 BIBLIOGRAPHY

[68] J. Borenstein and L. Feng, “Measurement and correction of systematic odometry

errors in mobile robots,” IEEE Transactions on robotics and automation, vol. 12,

no. 6, pp. 869–880, 1996.

[69] J. Lima, J. Gonçalves, P. J. Costa, and A. P. Moreira, “Modeling and simulation

of a laser scanner sensor: An industrial application case study,” in Advances in

Sustainable and Competitive Manufacturing Systems, Springer, 2013, pp. 245–258.

[70] L. Piardi, J. Lima, and P. Costa, “Development of a ground truth localization system

for wheeled mobile robots in indoor environments based on laser range-finder for

low-cost systems,” International Conference on Informatics in Control, Automation

and Robotics, 2018.

[71] T. Pinho, A. P. Moreira, and J. Boaventura-Cunha, “Framework using ros and

simtwo simulator for realistic test of mobile robot controllers,” in CONTROLO’2014–

Proceedings of the 11th Portuguese Conference on Automatic Control, Springer,

2015, pp. 751–759.

[72] C. Paulo, G. José, L. José, and M. Paulo, “Simtwo realistic simulator: A tool for the

development and validation of robot software,” Theory and Applications of Mathe-

matics & Computer Science, vol. 1, no. 1, pp. 17–33, 2011.

[73] micromouseonline, Github repository with maze files to micromouse, https : / /

github.com/micromouseonline/mazefiles, 2018.

[74] J. Lima, “Construção de um modelo realista e controlo de um robô humanóide,”

2009.

[75] P. Sarhadi and S. Yousefpour, “State of the art: Hardware in the loop modeling

and simulation with its applications in design, development and implementation

of system and control software,” International Journal of Dynamics and Control,

vol. 3, no. 4, pp. 470–479, 2015.

[76] J. L. Burbank, W. Kasch, and J. Ward, An introduction to network modeling and

simulation for the practicing engineer. John Wiley & Sons, 2011, vol. 5.

https://github.com/micromouseonline/mazefiles
https://github.com/micromouseonline/mazefiles

BIBLIOGRAPHY 91

[77] M. Karpenko and N. Sepehri, “Hardware-in-the-loop simulator for research on fault

tolerant control of electrohydraulic flight control systems,” in American Control

Conference, 2006, IEEE, 2006, 7–pp.

[78] M. Lee, H. Lee, K. S. Lee, S. Ha, J. Bae, J. Park, H. Park, H. Choi, and H. Chun,

“Development of a hardware in the loop simulation system for electric power steering

in vehicles,” International journal of Automotive technology, vol. 12, no. 5, p. 733,

2011.

[79] G. Naus, J. Ploeg, M. Van de Molengraft, W. Heemels, and M. Steinbuch, “Design

and implementation of parameterized adaptive cruise control: An explicit model

predictive control approach,” Control Engineering Practice, vol. 18, no. 8, pp. 882–

892, 2010.

[80] M. O. Faruque and V. Dinavahi, “Hardware-in-the-loop simulation of power elec-

tronic systems using adaptive discretization,” IEEE transactions on industrial elec-

tronics, vol. 57, no. 4, pp. 1146–1158, 2010.

[81] G. D. White, R. M. Bhatt, C. P. Tang, and V. N. Krovi, “Experimental evaluation

of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,”

IEEE/ASME Transactions on Mechatronics, vol. 14, no. 3, pp. 349–357, 2009.

[82] A. Martin and M. R. Emami, “Dynamic load emulation in hardware-in-the-loop

simulation of robot manipulators,” IEEE Transactions on Industrial Electronics,

vol. 58, no. 7, pp. 2980–2987, 2011.

[83] M. tools, Github repository with developed tools for the micromouse competition,

https://github.com/P33a/SimTwo/releases/tag/2019Jan, 2018.

[84] M. Rahman, “Autonomous maze solving robot,” PhD thesis, May 2017. doi: 10.

13140/RG.2.2.34525.82403.

[85] M. R. Nepali, N. Yadav, D. A. H. Prasad, and S. Balasubramaniam, “A novel

wall following algorithm for mobile robots,” International Journal of Robotics and

Automation (IJRA), vol. 5, no. 2, p. 15, 2014.

https://github.com/P33a/SimTwo/releases/tag/2019Jan
https://doi.org/10.13140/RG.2.2.34525.82403
https://doi.org/10.13140/RG.2.2.34525.82403

Appendix A

Publications

Eckert, L., Lima, J., Costa, A., Nakano, A. "Development of an Autonomous Mobile

Robot with Planning and Location in a Structured Environment". In 1a Escola de Verão

e Simpósio de Dupla Diplomação 2018 (DD 2018).

Eckert, L., Piardi, L., Lima, J., Costa, P., Nakano, A. "An optimization approach

on the robot maze path planning". In Encontro Nacional da Sociedade Portuguesa de

Matemática (ENSPM 2018).

Lima, J., Costa, P., Costa, P., Eckert, L., Piardi, L., Moreira, A. P., Nakano, A.

(2018, September). "A* Search Algorithm Optimization Path Planning in MobileRobots

Scenarios". In International Conference of Numerical Analysis and Applied Mathematics

(ICNAAM). Rhodes, Greece.

A.0.1 Paper Submitted and Accepted

Eckert, L., Piardi, L., Lima, J., Costa, P., Valente, A., Nakano, A. "3D Simulator Based on

SimTwo to EvaluateAlgorithms in Micromouse Competition". In 7Th World Conference

on Information Systems and Technologies (WCIST).

92

93

A.0.2 Papers Submitted and Awaiting Evaluation

Eckert, L., Piardi, L., Lima, J., Costa, P., Valente, A., Nakano, A. "3D Simulator with

Hardware-in-the-Loop capability for the Micromouse Competition" in 18th IEEE Inter-

national Conference on Autonomous Robot Systems and Competitions (ICARSC).

	Acknowledgement
	Abstract
	Resumo
	Acronyms
	Introduction
	Motivation
	Objectives
	Dissertation Outline

	Related Work
	Robotics Competitions
	RoboCup Soccer Competition
	Urban Search and Rescue Competitions
	Robot@Factory
	DARPA Grand Challenge

	Mobile Robots Applications
	Locomotion of Wheeled Mobile Robot
	Ackerman Steering Geometry
	Omnidirectional Geometry
	Differential Geometry

	World Representation
	Topological
	Grid-based

	Simultaneous Localization and Mapping
	Path Planning
	Cell Decomposition
	Approximate Cell Decomposition
	Adaptive Cell Decomposition
	Exact Cell Decomposition

	Roadmap Methods
	Visibility Graphs
	Voronoi Diagrams
	Probabilistic Roadmaps

	Potential Fields

	Trajectory Planning
	A* Algorithm
	Dijkstra's Algorithm and Best-first Search Algorithm

	Real Robot Description
	Structural Constitution of the Robot
	Kinematic Model of Differential Robot
	Pose
	Linear and Angular Velocity

	Electronic Hardware
	WEMOS D1 Mini
	Motor Shield
	Battery Shield
	Step-up and motor
	Sensors
	Odometer
	Laser Distance Sensor

	Robot Software

	Simulation Model
	SimTwo Simulator
	Maze Generator
	Robot Configuration
	Robot Control
	Results Presentation

	Hardware in the Loop

	Localization, Mapping, Path planning and Control
	Maze representation
	Localization
	Control
	Centralization Algorithm
	Both Close Lateral Walls or a Large Frontal Wall
	One of the Close Lateral Walls
	One of the Sidewalls a Cell Away
	Other cases

	Curves

	Search Algorithms
	A* Modified

	Mapping
	Path Planning and Evaluation Run

	Results
	Simulation
	Localization
	Mapping
	Wall Follower
	Wall Follower with repositioning algorithm

	Path Planning
	2008 All Japan Micromouse Expert Contest
	2018 APEC Micromouse Contest
	2018 UK Micromouse
	Comparison

	Evaluation Run

	Real Robot

	Conclusions and Future Work
	Developed Work
	Future Works

	Publications
	Paper Submitted and Accepted
	Papers Submitted and Awaiting Evaluation

