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A B S T R A C T   

Carnaroli is a high quality and priced variety, being considered as one of the finest Italian rice varieties due to its 
sensorial and rheological properties and, thus being a potential adulteration target. The present work aimed at 
exploiting polymorphisms in the Alk (A/G and GC/TT in exon 8) and Waxy ((CT)n and G/T in intron 1) genes by 
HRM analysis to differentiate Carnaroli rice from closely related varieties. The HRM method targeting the Alk 
gene did not allow gathering the Carnaroli subgroup genotypes in the same cluster. The HRM approach targeting 
Waxy gene successfully discriminated the varieties sold as Carnaroli from all the others with high level of 
confidence (>98%), which corroborated sequencing data. Its applicability to commercial rice samples was 
successful. Therefore, the proposed new HRM method can be considered a simple, specific, high-throughput and 
cost-effective tool for the authentication of Carnaroli rice, contributing to valorise such premium variety.   

1. Introduction 

Rice (Oryza sativa L., Poaceae family) is one of the most important 
cereals for human consumption, being a staple food for nearly half the 
world population. Its global consumption has seen a slight increase over 
the past years, from about 437 million tonnes in the 2008/2009 crop 
year to 487 million tonnes in the 2018/2019 (Statista, 2021). The world 
production of paddy rice has also increased in the past 10 years, from 
680 million tonnes in 2009 to 755 million tonnes in 2019 (FAOSTAT, 
2021). In Europe, Italy leads the production of rice with about 1.49 
million tonnes in 2019 (FAOSTAT, 2021). Most of the rice fields are 
located in the regions of Piedmont and Lombardy, in the north-western 
part of the Po valley (Faivre-Rampant et al., 2011), where about 230 
different varieties registered in the Plant variety database of the Euro-
pean Commission (European Commission, 2021) are cultivated, the 
majority of which belonging to the japonica ecotype (Cai et al., 2013; 
Faivre-Rampant et al., 2011). Among them, Carnaroli is a high quality 
and valued variety, being considered as one of the finest Italian rice 
genotypes. Carnaroli is a long-grain rice type A, characterised by an 
excellent cooking resistance due to its low tendency to lose starch and 
good ability to absorb liquid while creaming, making it ideal for the 

preparation of traditional risotto (https://risodeltapoigp.it/en/carnarol 
i-rice/). Owing to its high commercial value, this variety is a potential 
target for adulteration. Therefore, the development of methods to 
differentiate and identify rice varieties, in particular Carnaroli, is of 
utmost importance to avoid fraudulent practices. Since morphological 
characteristics might be minimal among other rice varieties of the same 
group, disabling their differentiation, exploiting DNA polymorphisms 
associated to the distinct quality traits could provide useful authenti-
cation markers. 

Starch, the most relevant compound to determine rice quality and 
end-use, is composed of two polysaccharides, namely amylose and 
amylopectin, whose ratio is determinant for the rice cooking properties. 
After cooking, varieties with high amylose content have dry, firm and 
separate grains, while low amylose ones usually have tender, cohesive 
and glossy texture (Biselli et al., 2014; Dobo et al., 2010). Amylose 
synthesis is catalysed by the granule bound starch synthase (GBSS) that 
is encoded by the Waxy (Wx) gene, being located on chromosome 6. 
Various nucleotide polymorphisms have been associated with the Wx 
gene, namely a (CT)n microsatellite or simple sequence repeats (SSR), 
located in the 5’ untranslated region of the gene and closely related to 
apparent amylose content, and several single nucleotide polymorphisms 
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(SNP), such as the G/T and the A/C, located in the first intron and sixth 
exon, respectively (Biselli et al., 2014; Bligh et al., 1995; Dobo et al., 
2010; Larkin & Park, 2003). Although these polymorphisms might be 
useful, their individual correlation with a specific quality trait is not 
absolute, thus, the combination of different polymorphisms has been 
used to distinguish rice varieties with different amylose contents (Biselli 
et al., 2014; Chen et al., 2008; Dobo et al., 2010; Larkin & Park, 2003). 

The amylopectin content is related to the gelatinization temperature, 
a critical point at which the starch granules start to swell and undertake 
an irreversible process of crystallinity melting, loss of birefringence and 
solubilisation (Gao et al., 2003; Zhou et al., 2016). Its synthesis involves 
the activity of starch synthase IIa (SSIIa), encoded by the Alk gene, also 
located on chromosome 6 (Gao et al., 2003; Umemoto & Aoki, 2005; 
Zhou et al., 2016). As for the Wx gene, several SNP can also be identified 
in the Alk gene, namely G/A and GC/TT, located on exon 8. The G/T 
polymorphism from the first of the two contiguous nucleotides is a silent 
SNP because it does not cause amino acid change, whereas the poly-
morphisms G/A and C/T (second of the two contiguous SNP) lead to the 
replacements of valine (encoded by the common allele GTG) with 
methionine (encoded by ATG) and leucine (encoded by CTC) with 
phenylalanine (encoded by TTC), respectively. These amino acid 
changes affect the SSIIa activity and, consequently, starch gelatinization 
properties (Nakamura et al., 2005; Umemoto & Aoki, 2005; Zhou et al., 
2016). 

DNA-based methods have provided useful tools for plant and animal 
species identification, being widely applied in food authentication 
(Amaral et al., 2016; Böhme et al., 2019; Druml & Cichna-Markl, 2014; 
Garino et al., 2014; Grazina et al., 2020; Mafra et al., 2008; Soares et al., 
2017). Among them, high resolution melting (HRM) analysis is consid-
ered a promising, cost-effective and high-throughput tool to differen-
tiate closely related species or even varieties in several food matrices 
(Ballin et al., 2019; Costa et al., 2012, 2016; Druml & Cichna-Markl, 
2014; Mackay et al., 2008; Soares et al., 2018; Villa et al., 2016; Wu 
et al., 2008). HRM is a post real-time PCR analysis that relies on 
monitoring the gradual denaturation of double stranded DNA (dsDNA) 
amplicons, allowing the detection of small nucleotide variations, such as 
deletions, insertions, SNP and microsatellites, without requiring further 
sequencing (Druml & Cichna-Markl, 2014; Grazina et al., 2021; Simko, 
2016). HRM analysis targeting such polymorphisms has been applied to 
differentiate varieties of rice (Ganopoulos et al., 2011), grapevine 
(Pereira et al., 2017), olive oil (Gomes et al., 2018), common bean 
(Ganopoulos et al., 2012) and lentils (Bosmali et al., 2012). However, to 
our knowledge, its application to differentiate rice varieties or any other 
DNA fingerprint approaches to authenticate Carnaroli rice have not been 
described. 

Therefore, the present work intends to exploit polymorphisms in the 
Alk and Wx genes, namely SNP and microsatellites, by the HRM analysis 
aiming at differentiating Carnaroli rice from closely related varieties. 
For this purpose, 35 rice varieties, including several under the com-
mercial name of Carnaroli, others closely related, also classified as long- 
grain rice type A, and some belonging to long B and round types were 
acquired and sequenced to identify polymorphisms. The sequences were 
deposited in the Genbank and the identified polymorphisms were tar-
geted by HRM analysis. Additionally, the proposed HRM method was 
applied to authenticate commercial rice samples, aiming at detecting 
possible adulterations of Carnaroli rice. 

2. Materials and methods 

2.1. Rice samples 

Thirty five rice specimens of pure varieties, namely Carnaroli, S. 
Andrea, Carnise, Karnak, Gladio, Volano, Barone, Ronaldo, Gloria, Sole 
Cl, Carnaval, Caravaggio, Keope, Poseidone, L202, L252, Roma, Baldo, 
Cammeo, Galileo, Casanova, Fedra, Proteo, Telemaco and Generale 
(Table S1, supplementary material) were provided by Italian producers. 

According to their morphological characteristics, Italian rice varieties 
have distinct classifications and groups (Table S1, supplementary ma-
terial) (Gazzetta Ufficiale Della Repubblica Italiana, 2017). Addition-
ally, different varieties are gathered in subgroups and go under the same 
commercial name, which is usually the same designation of the most 
representative variety. 

Fourteen commercial rice samples were acquired from Italian (8 
samples) and Portuguese (6 samples) markets (Table S2, supplementary 
material). Additionally, to assess assay specificity, a total of 35 species 
commonly used as food were acquired in local markets, including 30 
plant (peanut, pine nut, chestnut, almond, hazelnut, walnut, broad bean, 
rapeseed, sunflower, oat, rye, barley, wheat, tomato, maize, soybean, 
potato, cassava, pumpkin, lupine, onion, garlic, parsley, white pepper, 
laurel, paprika, chilli, oregano, basil, coriander, turmeric) and 4 animal 
(pork, cow, chicken, codfish) species (Table S3, supplementary 
material). 

All rice samples were ground separately in a laboratory knife mill 
Grindomix GM200 (Retsch, Haan, Germany), using different materials 
and different blender containers, previously treated with DNA decon-
tamination solution. The prepared samples were immediately extracted 
or stored at − 20 ◦C until further analysis. 

2.2. DNA extraction 

The NucleoSpin Food kit (Macherey-Nagel, Düren, Germany) was 
chosen to perform the DNA extraction from ground rice samples (100 
mg), according to the manufacturer instructions with slight modifica-
tions, as described by Costa et al. (2012), and with the addition of 2 μL of 
RNase (2 mg/mL) after the lysis step. All extracts were immediately kept 
at − 20 ◦C until further analysis. 

2.3. DNA quality and purity 

Yield and purity of DNA extracts were assessed by UV spectropho-
tometric using a Synergy HT multi-mode microplate reader (BioTek 
Instruments, Inc., Vermont, USA) with a Take3 micro-volume plate 
accessory. DNA content was determined using the nucleic acid quanti-
fication protocol with sample type defined for dsDNA in the Gen5 data 
analysis software version 2.01 (BioTek Instruments, Inc., Vermont, 
USA). The purity of the extracted DNA was determined by the ratio of 
the absorbance at 260 and 280 nm (A260/A280). 

The integrity of DNA extracts was also evaluated by electrophoresis 
in 1% agarose gel stained with 1 × Gel Red (Biotium, CA, USA) and ran 
in 1 × SGTB buffer (GRISP, Porto, Portugal) for 20–25 min at 200 V. The 
agarose gel was visualised under a UV light tray Gel Doc™ EZ System 
(Bio-Rad Laboratories, Hercules, CA, USA) and a digital image was ob-
tained with Image Lab software version 5.1 (Bio-Rad Laboratories, 
Hercules, CA, USA). 

2.4. Oligonucleotide primers 

In silico analysis of the Alk and Wx genes located on chromosome 6 of 
Oryza sativa was performed. For HRM analysis, new primers were 
designed to amplify a 178-bp fragment targeting the nucleotide poly-
morphisms A/G and GC/TT in the exon 8 of the Alk gene (Table 1). For 
sequencing analysis of the Alk gene, a set of primers available from the 
literature were used to amplify a fragment of 922 bp (Table 1, Kadaru 
et al., 2006). For the Wx gene, the polymorphisms of the (CT)n micro-
satellite and the G/T SNP in the first intron were targeted by two newly 
designed sets of primers to amplify fragments of 183 bp and 341 bp for 
HRM and sequencing analysis, respectively (Table 1). To assess the 
amplification capacity of the DNA extracts, universal eukaryotic primers 
targeting the conserved nuclear 18S rRNA gene (Table 1) were used. The 
absence of hairpins and self-hybridization was assessed using the soft-
ware OligoCalc (http://www.basic.northwestern.edu./biotools/oligo 
calc.html). The specificity of the oligonucleotides primers was 
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assessed using the Primer-BLAST tool (http://www.ncbi.nlm.nih.gov/ 
tools/primer-blast/), allowing to reveal homologies between all se-
quences available in the GenBank database. The primers were syn-
thesised by STABVIDA (Lisbon, Portugal). 

2.5. Qualitative PCR 

PCR assays were carried out in 25 μL of total reaction volume, con-
taining 20 ng of DNA extract, buffer (67 mM Tris-HCl, pH 8.8, 16 mM 
(NH4)2SO4, 0.01% Tween 20), 3 mM of MgCl2, 1.0 U of SuperHot Taq 
DNA Polymerase (Genaxxon Bioscience GmbH, Ulm, Germany) and 200 
nM of each primer targeting the Alk and Wx genes (Table 1). All re-
actions were performed with 200 μM dNTP (GRISP, Porto, Portugal), 
except for Alk-F1/Alk-Rn primers, for which 400 μM were used. The 
reactions were performed in a MJ Mini™ Gradient Thermal Cycler (Bio- 
Rad Laboratories, Hercules, CA, USA). The temperature programs for the 
primers targeting the Alk and Wx genes were as follows: initial dena-
turation at 95 ◦C for 5 min; 40 cycles of amplification at 95 ◦C for 30 s, 
58 ◦C, 62 ◦C or 66 ◦C (for primers M6I1–F/M6I1-R, M6I1–F2/M6I1-R or 
Alk-F/Alk-R1, respectively) for 30 s and 72 ◦C for 30 s; and a final 
extension at 72 ◦C for 5 min. For primers Alk-F1/Alk-Rn the temperature 
program was: initial denaturation at 95 ◦C for 5 min; 40 cycles of 
amplification at 95 ◦C for 45 s, 60 ◦C for 45 s and 72 ◦C for 1.5 min; and a 
final extension at 72 ◦C for 10 min. 

The amplified fragments were further analysed by electrophoresis in 
a 1.5% agarose gel containing 1 × Gel Red (Biotium, Hayward, CA, USA) 
for staining and carried out in 1 × SGTB buffer (GRISP, Porto, Portugal) 
for about 20–25 min at 200 V. The agarose gel was visualised under a UV 
light tray Gel Doc™ EZ System (Bio-Rad Laboratories, Hercules, CA, 
USA) and a digital image was obtained with Image Lab software version 
5.2.1 (Bio-Rad Laboratories, Hercules, CA, USA). Each extract was 
amplified at least in two independent assays. 

2.6. Real-time PCR and HRM analysis 

The real-time PCR assays were carried out in 20 μL of total reaction 
volume, containing 2 μL of DNA (20 ng), 1 × of SsoFast® Evagreen® 
Supermix (Bio-Rad Laboratories, Hercules, CA, USA) and 320 nM of 
each primer (Alk-F/Alk-R1 or M6I1–F/M6I1-R) (Table 1). The assays 
were performed in a fluorometric thermal cycler CFX96 Real-time PCR 
Detection System (Bio-Rad Laboratories, Hercules, CA, USA), using the 
following temperature conditions: 95 ◦C for 5 min; 50 cycles at 95 ◦C for 
20 s, 60 ◦C (for primers M6I1–F/M6I1-R) or 66 ◦C (for primers Alk-F/ 
Alk-R1) for 50 s, with collection of fluorescence signal at the end of 
each cycle. Data were processed using the software Bio-Rad CFX Man-
ager 3.1 (Bio-Rad Laboratories, Hercules, CA, USA). 

For HRM analysis, PCR products were denatured at 95 ◦C for 1 min 
and then annealed at 65 ◦C and 70 ◦C, with primers M6I1–F/M6I1-R and 
Alk-F/Alk-R1, respectively, for 3 min, in order to promote the correct 
formation of the DNA duplexes. These steps were followed by the 
melting curves from 65 ◦C (M6I1–F/M6I1-R) or 70 ◦C (Alk-F/Alk-R1) up 
to 95 ◦C, with temperature increments of 0.2 ◦C every 10 s. Fluorescence 

data were acquired at the end of each melting phase and processed using 
the Precision Melt Analysis, Software 1.2 (Bio-Rad Laboratories, Her-
cules, CA, USA) to generate melting curves, as a function of temperature, 
and respective difference curves for easy visual identification of clusters. 
Melting curve shape sensitivity determines the stringency used to clas-
sify into different clusters, and melting temperature (Tm) difference 
threshold determines the lowest Tm difference between samples. Cluster 
detection parameters were set to high sensitivity and threshold yields, 
providing more heterozygote clusters. Therefore, melting curve shape 
sensitivity parameter was adjusted to percentage value > 50% and Tm 
difference threshold was set to 0.19 ± 0.02. 

2.7. Sequencing of PCR products 

The fragments obtained with the primers M6I1–F2/M6I1-R and Alk- 
F1/Alk-Rn (Table 1) were purified using the GRS PCR & Gel Band Pu-
rification Kit (GRISP, Porto, Portugal) to remove any possible interfering 
components. Then, the purified products were sent to a specialised fa-
cility (Eurofins Genomics, Ebersberg, Germany) for sequencing. Each 
target fragment was sequenced twice, performing the direct sequencing 
of both strands in opposite directions to allow the production of two 
complementary sequences of high quality. Sequencing data were 
aligned using the available software BioEdit v7.2.5 (Ibis Biosciences, 
Carlsbad, CA, USA) and the electropherograms were analysed with 
FinchTV (Geospiza, Seattle, WA, USA). The obtained sequences were 
deposited in the GenBank database. 

3. Results and discussion 

3.1. DNA quality and primer specificity 

In general, the quality assessment of DNA extracts showed adequate 
yields (12.7–560.9 ng/μL) and purities (A260/A280 = 2.19 ± 0.06). Prior 
to the specific amplification of the selected sequences of Alk and Wx 
genes, DNA extracts were tested with universal eukaryotic primers tar-
geting the 18S rRNA gene, as described by Villa et al. (2017), confirming 
their amplification capacity (Table S3, Supplementary material). For the 
specific amplification of the selected regions, two sets of primers were 
used for each gene, one for HRM analysis and a second for sequencing, 
encompassing the target fragment (Table 1). The primers used in HRM 
analysis were assayed for cross-reactivity using several plant and animal 
species commonly used as food ingredients, confirming the absence of 
any unspecific amplification (Table S3, Supplementary material). 

3.2. Alk gene 

3.2.1. HRM analysis 
A real-time PCR assay using EvaGreen dye was successfully devel-

oped and further combined with HRM analysis targeting the Alk gene to 
amplify a 178-bp fragment of rice (Fig. 1). This approach intends to take 
advantage of HRM analysis as a high-throughput tool capable of 
discriminating fragments with small nucleotide differences, such as the 

Table 1 
Oligonucleotide primers targeting Alk and Waxy genes of rice and a universal eukaryotic gene.  

Target gene Primer Sequence (5′→ 3′) Amplicon size (bp) Reference/NCBI accession No. 

Alk (Exon 8) Alk-F TCGGCGGGCTGAGGGACAC 178 AP003509.3  
Alk-R1 TCCTGCGACATGCCGCGCA    
Alk-F1 GTGGGGTTCTCGGTGAAGAT 922 Kadaru et al. (2006)  
Alk-Rn AAGCAAGAGGCAAACAGCTC   

Waxy (5′UTR and Intron 1) M6I1–F TCTATCTCAAGACACAAATAACTG 183 AP014962.1 
M6I1-R GAAAGATGCATGTGATCGATCTG    
M6I1–F2 CGTGCCCCGCATGTCATC 341 AP014962.1  
M6I1-R GAAAGATGCATGTGATCGATCTG   

18S rRNA EG-F TCGATGGTAGGATAGTGGCCTACT 109 Villa et al. (2017)  
EG-R TGCTGCCTTCCTTGGATGTGGT    
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nucleotide polymorphisms A/G and GC/TT in the exon 8 of the selected 
amplicon. Fig. 1A presents the conventional melting curve analysis of 
selected rice varieties representative of all subgroups (Table S1, sup-
plementary material), including Carnaroli and Carnise, as example va-
rieties under the commercial name of Carnaroli, and others, namely Sole 
Cl, Gladio and Ronaldo. Data provide close melt peaks around 88.8 ◦C, 
suggesting very similar amplicons for all tested varieties. The applica-
tion of HRM analysis discriminated the selected varieties in 3 clusters, 
namely Carnaroli (cluster 1), Carnise and Sole Cl (cluster 2), and Gladio 

and Ronaldo (cluster 3), which can be noted in the normalised (Fig. 1B) 
and difference (Fig. 1C) curves. These results showed that the method 
enabled differentiating Carnaroli from all the other tested Italian rice 
varieties with high level of confidence (>98%). However, Carnaroli was 
also distinguished from Carnise, a variety from the same subgroup also 
sold as Carnaroli, which is not an intended result. Therefore, the poly-
morphisms of the Wx gene were further investigated. 

Fig. 1. Conventional melting (A), normalised melting (B) and temperature shift difference (C) curves obtained by real-time PCR with EvaGreen dye and HRM 
analysis, targeting the Alk gene with primers Alk-F/Alk-R1, applied to different rice varieties. Legend: Cluster 1 (red lines), Carnaroli; Cluster 2 (green lines), Carnise 
and Sole Cl; Cluster 3 (blue lines), Gladio and Ronaldo. 
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3.2.2. Sequencing 
To further correlate HRM data with the varietal polymorphisms and 

confirm the obtained results, fragments of the Alk gene (922 bp) using 
the primers Alk-F1/Alk-Rn were sequenced in opposite directions, 
providing electropherograms with high resolution. The sequences were 
deposited in the GenBank database with the accession numbers 
OK334524-OK334536. The alignment results of selected rice varieties 
clearly highlight (Fig. 3) the polymorphisms on the exon 8 of Alk gene, 
namely A/G and GC/TT located at positions 145 and 246–247, respec-
tively, which are summarised in Table 2. As it can be inferred, Carnise 
and Sole Cl have both polymorphisms, which justifies their clustering in 
a distinct group from Carnaroli. The GC/TT polymorphism identified in 
Gladio and Ronaldo corroborates their differentiation in cluster 3. 

The gelatinization temperature is a key parameter for rice cooking 
quality that is mainly regulated by the Alk gene, encoding SSIIa, which is 
involved in the synthesis of amylopectin. Therefore, the nucleotide di-
versity of Alk gene and its correlation with rice traits has been the 
subject of several studies. Particularly, the nucleotide polymorphisms of 
G/A and GC/TT on exon 8 have been associated with gelatinization 
temperature of rice. Rice varieties with high starch gelatinization tem-
perature have the G/GC haplotype, while those with low values have the 
A/GC or G/TT haplotypes (Waters et al., 2006; Gao et al., 2011; Zhou 
et al., 2016). In the present study, three haplotypes were identified in the 
Italian tested varieties, namely G/TT, A/GC and G/GC (Table 2). These 
findings suggest that the tested varieties have mostly low gelatinization 
temperature, which is in good agreement with results of Caffagni et al. 

Fig. 2. Conventional melting (A), normalised melting (B) and temperature shift difference (C) curves obtained by real-time PCR with EvaGreen dye and HRM 
analysis, targeting the Waxy gene with primers M6I1–F/M6I1-R, applied to different rice varieties. Legend: Cluster 1 (red lines), Carnaroli, Carnise and Karnak; 
Cluster 2 (green lines), S. Andrea, Volano, Ronaldo, Gloria, Sole Cl, Roma, Baldo and Generale; Cluster 3 (blue lines), Gladio. 
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(2013), who verified that Italian japonica genotypes most frequently 
carry either G/TT or A/GC haplotypes. According to Zhou et al. (2016), 
after testing several wild accessions of rice, the G/GC haplotype was 
considered wild-type, while both the G/TT and A/GC haplotypes were 
mutant. Therefore, most of the cultivated Italian tested varieties 
diverged from wild-type and arise most likely from mutants as a result of 
the selection of rice traits for cooking properties during domestication 
(Zhou et al., 2016). 

3.3. Waxy gene 

3.3.1. HRM analysis 
To further improve the discrimination of Carnaroli rice, a new Eva-

Green real-time PCR assay coupled to HRM analysis was developed 
targeting the Wx gene to amplify fragments of 183 bp, exploiting the 
nucleotide differences associated with the polymorphisms of the (CT)n 
microsatellite and the G/T SNP in the first intron. As expected, the 
conventional melting curve profiles of representative subgroup varieties 
of rice were very similar, exhibiting melt peaks around 77.2 ◦C (Fig. 2A). 
The subsequent application of HRM analysis, as displayed in the nor-
malised (Fig. 2B) and difference (Fig. 2C) curves, grouped the varieties 
in 3 clusters: Carnaroli, Carnise and Karnak (cluster 1); S. Andrea, 

Fig. 3. Alignment of sequencing products of Alk gene of different Oriza sativa varieties. The arrows identify the region of primer annealing (Alk-F/Alk-R1), while the 
boxes identify the nucleotide polymorphisms (A/G and GC/TT at positions 145 and 246–247, respectively). The GenBank accession numbers are in brackets, being 
the obtained sequences deposited as OK334524-OK334536, while AP003509.3 corresponds to Oryza sativa Japonica Group genomic DNA, chromosome 6, PAC 
clone: P0525F01. 

Table 2 
Resumed sequencing results of identified polymorphisms in the Alk and Waxy 
genes of selected rice varieties.  

Rice 
variety 

Alk gene Waxy gene 

Exon 8 
SNP (A/ 
G) 

Exon 8 
polymorphism (GC/ 
TT) 

Microsatellite 
(CT)n 

Intron 1 
SNP (G/T) 

Carnaroli G TT 17 G 
Carnise A GC 17 G 
Karnak G TT 17 G 
Roma G TT 18 T 
Baldo G TT 18 T 
Generale G TT 18 T 
S. Andrea G TT 18 T 
Volano G TT 18 T 
Barone G TT 17 T 
Ronaldo G GC 18 T 
Gloria G TT 18 T 
Sole Cl A GC 18 T 
Gladio G GC 20 G  

Table 3 
Results of HRM analysis targeting the Waxy gene of rice varieties.  

Code Variety Subgroup Cluster Level of confidence (%, mean ± 
SD) 

1 Carnaroli Carnaroli 1 99.8 ± 0.2 
2 Carnaroli Carnaroli 1 99.9 ± 0.1 
3 Carnaroli Carnaroli 1 99.5 ± 0.6 
4 Carnaroli Carnaroli 1 99.9 ± 0.1 
5 Carnaroli Carnaroli 1 99.4 ± 0.6 
6 Carnaroli Carnaroli 1 100.0 ± 0.0 
7 Carnaroli Carnaroli 1 100.0 ± 0.0 
8 Carnaroli Carnaroli 1 99.9 ± 0.1 
9 Carnaroli Carnaroli 1 99.2 ± 0.8 
10 S. Andrea S. Andrea 2 99.2 ± 0.6 
11 S. Andrea S. Andrea 2 99.2 ± 0.2 
12 Carnise Carnaroli 1 99.7 ± 0.3 
13 Karnak Carnaroli 1 99.9 ± 0.1 
14 Gladio Thaibonnet 3 99.8 ± 0.3 
15 Volano Arborio 2 99.1 ± 0.6 
16 Barone Roma- 

Baldo 
2 99.2 ± 0.6 

17 Ronaldo Ribe 2 99.2 ± 0.3 
18 Gloria Gloria 2 99.8 ± 0.1 
19 Sole CL Originário 2 99.7 ± 0.1 
20 Carnaval Carnaroli 1 99.4 ± 0.1 
21 Caravaggio Carnaroli 1 98.2 ± 0.6 
22 Keope Carnaroli 1 98.9 ± 0.2 
23 Poseidone Carnaroli 1 98.1 ± 0.3 
24 L202 Carnaroli 1 99.7 ± 0.1 
25 L252 Carnaroli 1 98.3 ± 0.4 
26 Karnak Carnaroli 1 98.7 ± 0.6 
27 Roma Roma- 

Baldo 
2 99.1 ± 0.8 

28 Baldo Roma- 
Baldo 

2 99.4 ± 0.6 

29 Cameo Roma- 
Baldo 

2 99.0 ± 0.2 

30 Galileo Roma- 
Baldo 

2 99.7 ± 0.1 

31 Casanova Roma- 
Baldo 

2 91.4 ± 0.5 

32 Fedra Roma- 
Baldo 

2 99.7 ± 0.1 

33 Proteo Roma- 
Baldo 

2 99.6 ± 0.1 

34 Telemaco Arborio 2 99.1 ± 0.8 
35 Generale Arborio 2 99.5 ± 0.4  
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Volano, Ronaldo, Gloria, Sole Cl, Roma, Baldo and Generale (cluster 2); 
Gladio (Thaibonnet) (cluster 3). Table 3 presents the resumed results of 
HRM analysis using all the producer varieties, which shows that those 
belonging to the subgroup Carnaroli were discriminated from all the 
others with high level of confidence (>98%). The other varieties were 
grouped in cluster 2, also with generally high level of confidence 
(>99%), except Gladio that formed cluster 3 (99.8%). Therefore, the 
HRM method targeting the Wx gene allowed the successful discrimina-
tion of Carnaroli rice from all the other tested varieties, thus being a 
potential tool for its authentication. 

3.3.2. Sequencing 
Sequencing data regarding the Wx gene amplicons used in HRM 

analysis was obtained using the M6I1–F2/M6I1-R to amplify 341-bp 
fragments in opposite directions. Fig. 4 presents the sequence align-
ments of selected rice varieties with the highlighted polymorphisms of 
the (CT)n microsatellite between the positions 186–226 and the G/T 
SNP in the first intron located at the position 282. The sequences with 
sizes above 200 bp were deposited in the GenBank database with the 
accession numbers of OK3345217-OK334523, while others did not 
amply with M6I1–F2/M6I1-R primers, being their sequencing data ob-
tained with M6I1–F/M6I1-R primers (Fig. 4). Table 2 summarises the 
obtained polymorphisms for the analysed rice varieties. Data show that 
Carnaroli, together with Carnise and Karnak, also sold as Carnaroli, 

possess 17 sequence repeats of CT and G as the SNP, which distinguishes 
them from all the other varieties and justifies their inclusion in cluster 1. 
All the other varieties, except Barone and Gladio, have a (CT)18 micro-
satellite and T as the SNP, explaining their grouping in cluster 2. Barone 
was also grouped in cluster 2 despite holding a (CT)17 microsatellite, 
which in fact corresponds to a single nucleotide difference (position 191, 
Fig. 4), comparing with the other varieties of cluster 2, not being suffi-
cient to form an independent cluster. Finally, the longest microsatellite – 
(CT)20 – and G as the SNP identified in Gladio variety justify its 
discrimination from all the others in cluster 3. 

The Wx gene, located on chromosome 6, is a key gene that regulates 
amylose synthesis. Polymorphisms of the (CT)n microsatellite and G/T 
SNP in the Wx gene and their correlation with amylose content have 
been explored in several rice genotypes (Biselli et al., 2014; Caffagni 
et al., 2013; Jayamani et al., 2007). The haplotype CT18/T has been the 
most frequently identified in numerous analysed rice genotypes from a 
wide range of origins, including Italy (Biselli et al., 2014; Caffagni et al., 
2013; Jayamani et al., 2007), which corroborates the present results 
(Table 2). Besides, the identified (CT)n-G/T polymorphisms were in 
good agreement with data obtained by Biselli et al. (2014) concerning 
the varieties of Carnaroli (Karnak, L202), Arborio (Volano), S. Andrea, 
Thaibonnet (Gladio), Ronaldo (Ribe), while data for other varieties 
(Gloria, Sole Cl, Barone, Volano, Generale, Carnise and Roma) were, as 
far as we know, herein presented for the first time. 

Fig. 4. Alignment of sequencing products of Waxy gene of different Oriza sativa varieties. The arrows identify the region of primer annealing M2I1-f2/M6I1-R, while 
the boxes identify the nucleotide polymorphisms ((CT)n at positions 187–226 and T/G at position 282). The GenBank accession numbers are in brackets, being the 
obtained sequences deposited as OK3345217-OK334523, while AP014962.1 corresponds to Oryza sativa Japonica Group DNA, chromosome 6, cultivar: Nipponbare, 
complete sequence. 
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3.4. Application of HRM method targeting the Wx gene to authenticate 
commercial rice samples 

Table 4 presents the summarised results of the application of the 
HRM method targeting the Wx gene to commercial rice samples. As it 
can be verified, from the five samples labelled as Carnaroli (C9–C14), 
four were grouped accordingly in cluster 1 (Carnaroli) with high levels 
of confidence (>97%), while one (C12) joined cluster 2, suggesting its 
incompliance with the labelled variety. Samples C6 and C8, labelled as 
Vialone Nano and Padano, were also grouped in cluster 1. Sequencing 
results confirmed that they have the same targeted polymorphisms as 
Carnaroli (CT17/G) (data not shown). Regarding Vialone Nano, this 
finding should be due to its genetic proximity to Carnaroli since they 
share a parental line: Vialone Nano was created by cross breeding Nano 
× Vialone; and Carnaroli was formed from crossing Vialone × Lencino 
(Spada et al., 2004). However, this outcome should not interfere with 
the applicability of the method since both Vialone Nano and Padano are 
morphologically very distinct from Carnaroli, being classified as me-
dium and semifino grains (Faivre-Rampant et al., 2011; Gazzetta Uffi-
ciale Della Repubblica Italiana, 2017), thus unlikely to be used to 
adulterate Carnaroli – classified as Long A and superfine rice. As ex-
pected, samples of the other variety subgroups (Arborio, Roma, Ribe, 
Originario and Rosa Marchetti) were joined in cluster 2. Sample C3, 
labelled as Thaibonnet, was expected to be part of cluster 3, but it 
formed an independent cluster (4) with low and unreproducible level of 
confidence (87.9 ± 5.9). This finding suggests that this sample might 
contain a mixture of rice varieties possessing different polymorphisms, 
which disables its accurate clustering. In fact, this is a limitation of HRM 
analysis that, similarly to DNA barcoding, its application to mixtures 
might conduct to unreliable results (Grazina et al., 2020). 

The molecular characterization of some Italian rice varieties has 
been attempted by several authors (Brandolini et al., 2006; Caffagni 
et al., 2013; Cirillo et al., 2009; Mantegazza et al., 2008). For this pur-
pose, random amplified polymorphisms (RAPD), amplified fragment 
length polymorphism (AFLP), cleaved amplified polymorphic sequences 
(CAPS), SSR or microsatellites and SNP have been explored as molecular 
markers. RAPD profiles showed that Italian rice varieties are closely 
related (Ribe, Roma, S. Andrea, Selenio, Thaibonnet, Originario, Sat-
urno, Baldo, Vialone Nano, Carnaroli, Arborio), but more genetically 
distant from Egyptian and Indian (Amber and Basmati, respectively), 
enabling to discriminate all tested varieties (Cirillo et al., 2009). SSR and 
SNP have been the most used markers, particularly associating their 
variability with cooking properties (Biselli et al., 2014; Caffagni et al., 
2013; Gao et al., 2011; Jayamani et al., 2007; Zhou et al., 2016). 
However, their application to authenticate rice varieties is rather 
limited. Ganopoulos et al. (2011) have successfully a combined a SSR 
marker targeting the 8-bp deletion in the exon 7 of badh2 gene of rice 
with HRM analysis to authenticate Basmati rice and differentiate it from 
non-Basmati rice varieties. In the present study, both SNP and SSR 
markers were combined for the first time with HRM analysis to differ-
entiate a premium rice variety, Carnaroli, from other closely related 
Italian varieties. 

4. Conclusions 

In the present work, two methods based on HRM analysis targeting 
nucleotide polymorphisms of the Alk and Wx genes were successfully 
developed to differentiate Carnaroli rice among other Italian rice vari-
eties. The HRM method targeting the A/G and GC/TT polymorphisms in 
the exon 8 of Alk gene allowed differentiating Carnaroli from other 
tested subgroup varieties, but it also discriminated it from Carnise that 
belongs to the same subgroup Carnaroli. The second HRM approach, 
targeting the (CT)n microsatellite and the G/T SNP in the first intron of 
Wx gene, successfully discriminated the genotypes of the subgroup 
Carnaroli from all the other tested varieties with high level of confidence 
(>98%). The varieties of the Carnaroli subgroup formed cluster 1, while 

the others were gathered in cluster 2 (S. Andrea, Arborio, Roma-Baldo, 
Ribe, Gloria and Originario) and cluster 3 (Thaibonnet). The clustering 
results corroborated sequencing data, which relied on the identified 
polymorphisms. The applicability of the HMR method targeting the Wx 
gene was successful using 14 commercial rice samples, from which one 
out of 5 samples labelled as Carnaroli suggests labelling incompliance/ 
adulteration. Other eight samples were clustered according to their 
labelled variety, while one suggests mixed varieties instead of the 
labelled variety (Thaibonnet), being a possible fraudulent admixture. 

Hence, the proposed new HRM method can be considered a simple, 
specific, high-throughput and cost-effective tool for the authentication 
of Carnaroli rice among other Italian rice varieties, being potentially 
useful for control laboratories of such products, contributing to valorise 
such premium variety. 
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Table 4 
Results of HRM analysis targeting the Waxy gene of commercial rice samples.  

Code Label Clustera Level of confidence (%, mean ± SD) 

C1 Arborio 2 99.6 ± 0.5 
C2 Roma 2 99.8 ± 0.1 
C3 Thaibonnet 4 87.9 ± 5.9 
C4 Ribe 2 99.8 ± 0.1 
C5 Originario 2 99.9 ± 0.0 
C6 Vialone Nano 1 99.3 ± 0.1 
C7 Rosa Marchetti 2 99.8 ± 0.1 
C8 Padano 1 99.7 ± 0.1 
C9 Carnaroli 1 97.2 ± 0.9 
C10 Carnaroli 1 98.5 ± 0.4 
C11 Carnaroli 1 97.4 ± 0.6 
C12 Carnaroli 2 99.0 ± 0.3 
C13 Carnaroli 1 98.4 ± 0.2 
C14 Arborio 2 94.9 ± 1.3  

a Cluster 1 – subgroup Carnaroli, cluster 2 – subgroups S. Andrea, Arborio, 
Roma-Baldo, Ribe, Gloria and Originário; cluster 3 – subgroup Thaibonnet; 
cluster 4 – undefined. 
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