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ABSTRACT The ongoing 4th industrial revolution is characterized by the digitization of industrial envi-
ronments, mainly based on the use of Internet of Things, Cloud Computing and Artificial Intelligence (AI).
Regarding Al, although data analysis has shown to be a key enabler of industrial Cyber-Physical Systems
(CPS) in the development of smart machines and products, the traditional Cloud-centric solutions are not
suitable to attend the data and time-sensitive requirements. Complementary to Cloud, Edge Computing has
been adopted to enable the data processing capabilities at or close to the physical components. However,
defining which data analysis tasks should be deployed on Cloud and Edge computational layers is not
straightforward. This work proposes a framework to guide engineers during the design phase to determine
the best way to distribute the data analysis capabilities among computational layers, contributing for a lesser
ad-hoc design of distributed data analysis in industrial CPS. Besides defining the guidelines to identify
the data analysis requirements, the core contribution relies on a Fuzzy Logic recommendation system for
suggesting the most suitable layer to deploy a given data analysis task. The proposed approach is validated
in a smart machine testbed that requires the implementation of different data analysis tasks for its operation.

INDEX TERMS Cyber-physical system design, distributed data analysis, fuzzy recommendation system.

I. INTRODUCTION

The digitization of industrial environments has been char-
acterized by the increasing adoption of Internet of Things
(I0T), Cloud Computing and Artificial Intelligence (Al) tech-
nologies [1]-[3]. In particular, data-driven Machine-Learning
(ML) based algorithms allow to analyze the huge amount of
produced data and build data models for monitoring, diag-
nosis, prediction and optimization. Besides to increase the
autonomy of machines and processes towards truly smart au-
tonomous systems, such algorithms can augment the capabil-
ities of engineers and operators in decision-making and tasks
execution [4]-[6].

Although the adoption of data analysis has increased
and demonstrated great potential, it faces some challenges,
especially when considering industrial scenarios, constrained
by response time, data sensitiveness and network connec-
tivity [7], [8]. In this context, the traditional IoT-based

data analysis approaches, where all the data are sent to be
processed at the Cloud, are not suitable. In spite of providing
a mean to run powerful algorithms using huge batches of
aggregated data, they lack responsiveness to condition change.

On the other hand, Edge Computing enables the local and
decentralized data processing, i.e., at or close to the data
sources [8]-[10], endowing end devices with data analysis
capabilities to increase the intelligence and responsiveness of
physical devices, and consequently the efficiency and auton-
omy of the whole system.

In this sense, a raising challenge is related to harmonize
the trade-offs of distributing intelligence and performing
data analysis among the Cloud-Edge computational layers
in an industrial Cyber-Physical Systems (CPS) perspective,
taking into consideration the scenario requirements and
constraints, e.g., resource availability and costs, bandwidth,
responsiveness and algorithm complexity. In fact, rather than
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an alternative to Cloud, the Edge should be viewed as a
complementary approach, providing solutions for data and
time sensitive applications, like in real-time monitoring and
control, while Cloud should be responsible for the high level
supervisory, planning and optimization tasks, also generating
knowledge to dynamically support the Edge layer tasks.

Having this in mind, the objective of this paper is to propose
a conceptual framework that supports the system engineers,
during the design phase, to decide where to deploy data anal-
ysis capabilities in cyber and physical components, covering
the Cloud-Edge layers. The proposed framework provides
a guideline to identify the main aspects and concerns that
should be considered in this engineering process to identify
the data analysis requirements, and defines a multi-criteria
Fuzzy Logic recommendation system to determine, during the
design phase, the most suitable computational layer where
a given data analysis capability should be deployed. This
innovative recommendation method constitutes the core con-
tribution of this work, allowing to reduce the complexity of
the problem by using a formal approach that is suitable to
deal with the uncertainty and vagueness from the perception
and experience of engineers in the software design decisions.
This way, this framework provides a suitable tool to sup-
port a lesser ad-hoc design of distributed data analysis in
CPS.

A smart electrical machine testbed was used to illustrate
and assess the proposed approach, demonstrating the use of
some criteria, e.g., responsiveness, network bandwidth and
algorithm processing time, to guide the selection of the most
suitable computing layers to deploy the different data analysis
capabilities presented in the case study. The data analysis
tasks were deployed according to the recommendations pro-
vided by the Fuzzy Logic system, with the achieved perfor-
mance allowing to validate the proposed approach.

The remaining of this paper is organized as follows. Sec-
tion II discusses the issues raised with the distribution of
data analysis capabilities among Cloud-Edge computational
layers, as well as the existing approaches to support the de-
sign of such Cloud-Edge systems and Section III presents the
framework to support the design of Cloud-Edge data analysis
in industrial CPS, and particularly the Fuzzy Logic recom-
mendation system. Section IV describes the case study and
the application of the proposed approach to determine the
computational layers where the data analysis tasks should be
deployed, including the analysis of the experimental results
after deploying the tasks according to the recommendations.
Finally, Section V rounds up the paper with the conclusions
and points out some future work.

Il. CLOUD-EDGE DATA ANALYSIS

The related work regarding the design of Cloud-Edge applica-
tions will be discussed in this section, with special emphasis to
the analysis of the existing frameworks to support the design
and distribution of data analysis tasks among these computa-
tional layers.
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FIGURE 1. Traditional Cloud-centric loT approach towards Edge
Computing.

A. DECENTRALIZATION OF DATA ANALYSIS

In traditional Cloud-centric IoT approaches, networked sens-
ing devices are able to monitor the environment and its objects
by sending huge amounts of data to be processed by Cloud-
based systems. In this context, Cloud solutions and data analy-
sis contributed to leverage the impact that sensor data can have
in different domains, promoting the development of a variety
of data-driven services.

Furthermore, besides promoting several advances and op-
portunities in smart devices, communication and data analysis
technologies, IoT drew the attention of more conservative
sectors, like the production industry, where it is considered
a key enabling technology in the 4th industrial revolution
(4IR) [1], [8]. However, in such constrained scenarios, the
adoption of IoT technologies faces some challenges, mainly
regarding responsiveness (low latency for time critical tasks),
data security (avoid sensitive data to be accessed by third
parties) and network connectivity (high bandwidth and reli-
able connection to cope with the large number of devices and
volumes of raw data) [7], [10].

In this context, Edge Computing emerged as a comple-
mentary paradigm, promoting approaches and strategies to
perform data processing locally, close to the data sources.
Such data analysis decentralization plays an important role in
the realization of industrial CPS, promoting the development
of more intelligent physical components. Although the terms
Edge and Fog Computing are used interchangeably, the sec-
ond is often used to designate the approaches where the data
processing is performed by computing equipment at the local
network, e.g., local servers or computers [10]-[12].

Fig. 1 illustrates the traditional Cloud-centric IoT approach
towards the Fog/Edge Computing trends. The differences are
mainly in the computing resources of end devices and the
local where the data is processed. On the left, the traditional
IoT is shown, where the end devices are directly connected
to Cloud systems, sending the collected data and/or receiving
commands. In the Fog Computing (Fig. 1, middle), the IoT
devices communicate with equipment at local network. The
Edge approach (Fig. 1, right) considers devices that have
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FIGURE 2. Edge-Cloud Computing trade-off.

enough computational resources to perform some kinds of
data processing, and also present horizontal communication
capabilities.

Although there is a trend in the adoption of Edge Com-
puting approaches towards the decentralization of data anal-
ysis [13], [14], this strategical decision implies several trade-
offs, as illustrated in Fig. 2 (left). For instance, many aspects
that are considered benefits of Cloud, may represent draw-
backs in Edge solutions, and vice-versa, closing the trade-
off cycle. This raises the importance to harmonize what can
be performed by each computational layer. Indeed, in many
scenarios these approaches can coexist. Fig. 2 (right) maps
the strengths and weaknesses of these approaches, illustrating
some of their main complementary aspects (where “5” means
a very good aspect and “1” a very bad aspect).

Besides that, different kinds of data analysis capabilities
and algorithms are suitable for specific computing layers.
For instance, when considering (real-time) monitoring tasks,
simple algorithms running at the Edge should be more appro-
priate than complex algorithms. But this should also consider
the amount of data produced and the required computational
resources. For instance, if the problem does not consider high
sample rate and data size, the data can be sent to a remote
system and still get the response inside the time constraints.
On the other hand, if the data analysis algorithm requires
significant computational resources, deploying it locally may
not be feasible, thus some hybrid solution could be adopted.
As example, some works propose the distribution of the neural
network layers along Cloud to Edge that besides offload the
computation in central servers can also provide a local fast and
partial response [9], [15]. In general, Cloud should be the most
suitable choice when considering tasks related to the system
optimization or planning, which may require the analysis of
historical data and/or from multiple sources.

B. DISTRIBUTION OF DATA ANALYSIS CAPABILITIES BY
CLOUD-EDGE LAYERS

In this context, the definition of where to deploy data analy-
sis capabilities is a major challenge in the specification and
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design of industrial CPS solutions, which is not straightfor-
ward and raises several architectural and technological con-
cerns. Several frameworks are available for the design of
Cloud-based data analysis systems, but in this work, the objec-
tive is the design of industrial CPS applications that span the
data analysis capabilities among Cloud-Edge computational
layers.

A general approach to develop CPS is a 3 layer architecture,
where the cyber components are deployed on the Cloud (top)
and Fog (middle) layers, while the physical components are
at the Edge (bottom) [8], [12], [16]-[18]. Despite being seen
as a layered architecture, it does not imply the existence of
a direct hierarchy between the components, as in the ISA-95
architecture. In CPS, a network of distributed and cooperating
intelligent components is considered, where the Edge nodes
promote the decentralization of processing, control and deci-
sion making, enhancing the autonomy of end devices, system
dynamics and self-reconfiguration.

This layered architecture represents a common consensus
regarding the organization of the system components. How-
ever, the distribution of the data analysis capabilities is usually
performed in an ad-hoc manner, only considering the benefits
of some aspects (e.g., latency, computing resources, data type
or data analysis algorithms), and paying minor attention to
their specific features and constraints that can be different for
each layer [19], [20]. The large number of aspects that can in-
fluence the distribution of such capabilities raises fundamental
questions about where, when and how to choose the most
suitable layer to deploy a given data analysis capability [10].

These aspects are also discussed in the domain of Com-
putation Offloading that provides approaches to optimize the
choice of where to execute a given task [21], [22]. However,
these approaches are more focused on service-based solutions
in the context of mobile Edge Computing to address dynamic
nodes and service workloads through the dynamic task allo-
cation and load balancing solutions, aiming to assure QoS,
low latency and device energy efficiency [21]-[23]. Besides
that, they consider the use of lightweight virtualization tech-
nologies that provide high level of scalability in exchange of
extra overhead that are still not suitable for most limited re-
source and fast response applications [24], [25]. On the other
hand, industrial CPS go beyond a service-based approach,
also considering a collaborative and complementary interac-
tion between components (cyber and physical). This requires
customized and optimized solutions, where the data analysis
capabilities should be defined during the system design.

In this context, some works propose general approaches and
raise some main aspects and concerns that may support the
proper distribution of data analysis functionalities in CPS. For
instance, the 5 C Architecture [26] presents a functional orga-
nization of data analysis capabilities in 5 levels that goes from
the basic data acquisition and processing to high level decision
support tasks that can be abstracted along Cloud-Edge. A
Fog Computing taxonomy is presented in [11], raising several
general aspects and concerns that should be considered and
evaluated to deploy a CPS solution. Similarly, some aspects,
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FIGURE 3. Edge-Cloud Computing complementary aspects.

called “architectural imperatives” (e.g., positioning of Fog
nodes, numbers, types, topology, protocols, data bandwidth,
hardware and software), are presented in [27]. They are used
to support architectural decisions, regarding the adoption of
Fog solutions. In the same manner, the work presented in [21]
discusses 8 criteria to decide if the task offload is necessary,
including security, affordability, feasibility, and maintenance
aspects. Another approach is presented in [12], where a deci-
sion model, considering 6 parameters, is proposed to choose
the most suitable layer for a given task. The importance of
a decision support framework to support loT designers to dis-
tribute application components along Edge-Cloud is discussed
in [28], being analyzed several key attributes, e.g., response
time, energy consumption, resource usage and accuracy, that
can impact the design decisions through two real use cases.

In summary, the design of industrial CPS comprises a com-
plex engineering process, where several tasks are still per-
formed in an ad-hoc manner, mainly based on the experi-
ence of experts on similar projects. Moreover, most existing
approaches only present very general and reference architec-
tures, criteria and ad-hoc approaches to use Cloud or Edge
separately, or to optimize the choice of where to execute a
given task during the operation phase, as the computation
offloading approach does. In spite of covering broad and high-
level aspects that support several abstractions and concepts
during the engineering process, they are missing the definition
of guidelines and recommendation methods to support the
decision on how to distribute and balance the deployment of
data analysis capabilities among the different computational
layers during the design of an industrial CPS.

lil. FRAMEWORK TO DISTRIBUTE CLOUD-EDGE DATA
ANALYSIS

The definition of where data analysis capabilities should be
deployed comprises an important architectural decision in the
development of industrial CPS, that should be handled during
the requirement analysis and system design phases. In this
context, the proposed framework, illustrated in Fig. 4, defines
a guideline to support the identification of the requirements
and constraints for the specification and the development of

VOLUME 3, 2022

system design & development pk

Design
system architecture
& components

Implementation
</> system development,
test & deployment

Requirements
system requirements
& functionalities

Guideline for data lysi: e & ns E ® @
+ identify data analysis requirements and ‘%@ ®i @ &
constraints i

+ define data analysis capabilities -

Multi-criteria recommendation system

+ determine the criteria

+ define the components organization
(Edge/Fog/Cloud)

FIGURE 4. Framework to support the design of Cloud-Edge data analysis
in industrial CPS.

data analysis capabilities in cyber and physical components.
These capabilities should be analyzed in the second phase, in
order to design the system architecture in terms of the orga-
nization of the components. For this purpose, the framework
defines a multi-criteria recommendation system to determine
the most suitable computational layer, regarding Edge-Cloud,
that a given data analysis capability could be deployed.

A. GUIDELINES TO IDENTIFY DATA ANALYSIS
REQUIREMENTS IN CPS

The analysis of the system requirements, comprises one of the
first tasks in a software engineering methodology. Therefore,
it should be performed following the chosen methodology,
where the guideline proposed here intends to support the exe-
cution of this phase, especially during the analysis of the sys-
tem requirements and the definition of the use cases to develop
the CPS solution. Considering that data analysis represents
a mean to achieve intelligent systems, this guideline aims to
help stakeholders, experts in the knowledge domain (system
experts, engineers and operators) and software engineers (ar-
chitects, analysts, developers, and data analysts) to answer the
questions about how decentralize intelligence in CPS, but also
to better understand why, when, where and most important
what should or could be decentralized.

In order to design and develop distributed data analysis in
industrial CPS, several aspects should be evaluated, with each
one raising several concerns that engineers need to have in
mind for the design and development of such approaches, in
order to properly address or mitigate their implications and
impacts. The proposed framework considers five main aspects
to define a guideline for the identification of the data analysis
requirements and the related concerns, as illustrated in Fig. 5.
These aspects represent the most common and relevant types
of concerns and requirements considered during the design of
CPS architectures that were identified during the analysis of
the literature review. Note that the proposed guideline does
not intend to list and discuss all the possible aspects, since
they vary with the application domain and scenario. There-
fore, it should be considered as a general guideline, where its
structure allows to be easily adapted or extended to support
other scenarios and related aspects.

177



QUEIROZ ET AL.: FUZZY LOGIC RECOMMENDATION SYSTEM TO SUPPORT THE DESIGN OF CLOUD-EDGE DATA ANALYSIS

/ P .
@ What are the tasks or system Monitoring
functionalities, and how they visualization
could be supported or enhanced logging / fe_Domﬂg
by data analysis? event detection/alerts
\ quality inspection/control

process automation
equipment status/operations

. (" Building Urban Transport Energy Healthcare Industrial Agriculture

o What are the requirements automation infrastructure smart vehicles, smart grid, smart wearables, Automation smart farming,

and constraints of the smart home, smart city, road, parking, meter, charging hospitals smart manufacturing, greenhouse
o l[e 1B application scenario, and how office governance traffic light micro grid, ambient assisted machines, products crop and livestock

they can affect the definition of manage manage water, car navigation, prosumers, load living, clinical predictive maintenance, management,

data analysis capabilities? HVAC, lighting, ~ waste, surveillance, speed control, balancing, energy decision, mHealth, self-reconfiguration, vertical farming,
\_ appliances urban services traffic manage market/transmission quality of life dynamic control agri-food track /

Control Supervision Planning / Optimizatic i i ) performance,

throughput,
safety, stability

condition or scenario
test, prediction,
recommendation and

decision support
manage task execution

performance and
resource management

closed-loop, cloud-in-the-loop  organization, reconfiguration ERP, BI, PLM, i

navigation diagnosis, maintenance SCM, CRM design and prototype | reconfigurability

© what are the physical ‘/Leg.af:.y quif IPTV' “_ _ Sensor»an}d Actuatqr Mobi{ity o Management interoperabilly,
Physical \ts, their " dlgmz_e / replace communication (wired, wireless)  data acqulgmon / sampllng energy efficiency distributed / heterogeneous connect_\\_n(y Q
Components RLECIIEEN and how they can be (cost/ investment) embeddgd computing data quality, uncertainty power supply number of nodes scalability, 3
enhanced with data analysis? | Proprietary/industrial (processing, memory) response time resource discovery/sharing | reliability and g
\__ standards costs and environment constraints autonomy plug&play Y autonomy 2
<2
o What data are available or Type - UL L] . SLTCEL . Ana{y — - - N integrity, %‘
required, and how they should telemetry, time-series. distributed data collection short-term /long-term  algorithms / tasks (descriptive, predictive, prescriptive) | standardization,
be integrated, stored and sound, image, video, pr_eprr_)cessing (aggreg/s_ynch, local / remote complexity (embe_dded, interpr_etabi\ity, accuracy, transpgrency, g
text, documents filtering, feature extraction) cost / performance uncertainty, responsiveness) security and g

analyzed?

\_ discrete / continuous

standards / annotation

responsiveness

volume / technology. type (stream / batch), unlabeled, imbalanced dataset

/

Network
bandwidth / latency
technology / protocols
security / privacy
cost / performance

9 What are the available or
required infrastructures, and
how they can support the data
analysis capabilities?

.

s
-

Component Interaction
protocol (pub/sub, client/serv.)
negotiation, collaboration
hierarchy, heterarchy, distributed
trust and data sharing

Cloud solutions Human interaction connectivity,
platforms and tools visualization, user interfaces availability,
business model compliance personal assistant robustness,
public/private user experience scalability and
usability

data analysis services simulated envs. (VR/AR) )
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Each aspect, further discussed in the following sub-
sections, is supported by a specific question that should be an-
swered, taking in consideration several concerns and general
requirements regarding the system’s functionalities. Based on
the main aspects identified, the general guideline is organized
in a five steps top-down approach, starting with the aspects re-
lated to the application domain to those related to the required
infrastructure.

1) APPLICATION

The framework considers several Application domains where
CPS can provide suitable solutions, each one with specific
requirements and constraints that should be considered in the
definition and specification of the data analysis capabilities.
They are related to, e.g., the expected investment to build the
application, the expected benefits and impacts for the busi-
ness, society and/or environment, as well as the implications
in the existing solution. For instance, while the application of
data analysis in sectors like healthcare and building automa-
tion can directly affect people, their well-being, and should
have a high concern with the privacy of user data, other sectors
like urban infrastructures and transportation can affect the
environmental conditions and may need to handle heteroge-
neous and social data issues. On the other hand, sectors like
energy, industry automation and agriculture are more related
to the economic impacts and need to manage the data uncer-
tainty.

2) TASKS

The next step comprises the identification of the system tasks
and functionalities and how they can be supported by data
analysis. Monitoring and Control are two kinds of operational
level functionalities. Although Monitoring encompasses a rich
field for the application of data analysis, it may face barriers
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related to the data availability and reliability, but also regard-
ing the dynamic nature of the system that may require the con-
tinuous adaptation of the data models. Control tasks usually
operate together with Monitoring tasks in a closed or open
loop, thus facing the same concerns. Other concerns include,
e.g., the integration of data analysis in the control loops, and
the trade-offs between the autonomy against the security and
the proper operation of the system, given the nondeterministic
behavior of some data analysis algorithms.

On the other hand, in tasks more related to business and
strategical levels, e.g., Supervision, Planning and Optimiza-
tion, the application of data analysis aims to enhance decision
making, focusing on performance and costs improvements.
Some main concerns include the access and integration of
heterogeneous and distributed data from third parties and not
completely digitized. Simulation is another category of task
that can run in parallel with the real environment to evaluate
hypothesis or system configurations, and provide recommen-
dations. In this context, data analysis requires careful engi-
neering to provide accurate and timely information.

3) PHYSICAL COMPONENTS
The Physical Components represent an important aspect in
CPS. They are characterized by heterogeneous platforms with
limited computing resources, leading to several concerns, e.g.,
the integration of legacy equipment with new solutions and the
embodying of data analysis. The adoption of IoT platforms
also raises concerns regarding the communication interfaces
and protocols, computational capabilities, and the environ-
ment constraints. For instance, hostile environments may af-
fect the operation of the sensors, requiring robust and costly
platforms.

Additionally, sensors need to attend the application require-
ments, mainly regarding the data sampling and uncertainty
aspects, while controllers need to follow the response time and

VOLUME 3, 2022



IEEE Open Journal of the
Industrial Electronics Society

autonomy constraints. On the other hand, mobile or isolated
equipment require energy efficiency that can affect their sens-
ing, communication and computing capabilities. The manage-
ment of the physical components also raises concerns, e.g.,
regarding the number of nodes, their distribution and hetero-
geneity, as well as how they can be dynamically discovered
and integrated.

4) DATA

In the definition of data analysis capabilities, the most im-
portant aspect is related to identify what is the available or
required data, how it should be managed, as well as what kind
of analysis should be performed. In this context, the identi-
fication of the data type determines, not only how it will be
managed and analyzed, but also the issues that should be faced
by the data analysis solution. For instance, while telemetry
data can present significant noise, missing values and variable
sample rate, video data may require huge storage space or data
compressing strategies. Another aspect comprises the mecha-
nisms to collect and integrate distributed data, especially in
the cases of complex CPS, characterized by a large number
of heterogeneous nodes and external data sources. How and
what kind of data should be stored is another concern, where
the volume of data, storage technology, as well as the costs
and performance should also be considered.

The definition of the data analysis algorithms is a key con-
cern that may require expertise and domain knowledge. In this
context, the choice of the algorithm must comply with the
system constraints. For instance, it is necessary to consider the
characteristics of data, the accuracy and the responsiveness of
the data analysis algorithm.

5) INFRASTRUCTURE

The last aspect concerns the available or required infrastruc-
tures to support the data analysis capabilities. This aspect
includes the network infrastructure that besides the band-
width and latency constraints, also raises concerns regard-
ing the technology, transmission protocols and data security.
The distributed nature of CPS components raises concerns
about interaction protocols and topologies, as well as ne-
gotiation, collaboration and trust mechanisms. On the other
hand, although Cloud solutions can provide several tools and
data analysis services, the public Cloud should be compli-
ant with the business model, while private Cloud can be an
alternative.

Another aspect comprises the interfaces for the interac-
tion with humans that will operate or use the system. In
this sense, besides the design of tools to visualize the data
analysis outputs and assist the users in their tasks, it is also
necessary to consider interfaces to retrieve the user feed-
back, e.g., to obtain information to improve the data models.
Although more advanced interfaces, e.g., personal assistants
or virtual environments, can provide a more interactive and
enhanced experience, they still face many limitations and
challenges.
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B. CRITERIA TO DETERMINE WHERE TO DEPLOY DATA
ANALYSIS CAPABILITIES

After identifying the requirements and constraints of the CPS
data analysis capabilities, the next phase comprises the de-
sign of the system architecture and components (Fig. 4). The
guideline proposed in the previous section can support the
identification of the data analysis tasks together with the most
relevant concerns, requirements and constraints for a given
application scenario. Although being aware of them, the ef-
fective design and development of data analysis capabilities in
CPS still is a complex task, especially considering the number
of criteria that need to be evaluated to decide the most suitable
computing layer to deploy a given data analysis capability.

In this context, during the design phases, the choice of
where data analysis capabilities should be deployed is usually
performed in an ad-hoc manner, mainly based on the engi-
neers and architects experience and intuition. In this sense,
in order to have a more technical and systematic approach to
better support such decisions, the proposed framework consid-
ers seven main quantitative criteria to create a multi-criteria
decision support system, that is presented in Section III-C.
These criteria, briefly described in the following sub-sections,
were identified as the most relevant by considering the related
works (described in Section II-B), where they are commonly
used, representing those that most affect the decision to per-
form a given data analysis task at the Cloud or Edge Comput-
ing layers.

Although their choice is mainly influenced by the charac-
teristics of the case study used in this work, additional criteria
can be easily added to this approach, as well as the use of a
partial number of these criteria.

1) RESPONSIVENESS

Responsiveness describes the time the system has to respond
to an observed state without compromising its operation and
reliability. In this sense, it is directly dependent on the system
functionality requirements, and can range from few millisec-
onds (ms), like in the cases of hard real-time operational
tasks, to seconds, more common in management and decision
support tasks. High responsiveness requires Edge processing,
when it is not possible to ensure the reliability of the network
connection.

2) PROCESSING

This criterion represents the average time that a data anal-
ysis algorithm takes to process a given data sample, being
dependent on the complexity of the algorithm, and evaluated
in conjunction with the available computational resources.
For instance, simpler algorithms can present fast response
time, but may not provide the desired accuracy levels. In this
context, the processing time can range from milliseconds in
the case of simple algorithms, to seconds for complex algo-
rithms. Note that, this criterion must consider the time from
the moment the data arrives at the processing module until
the result is obtained. This may include data transformation,
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feature extraction, and even (en/de)cryption. Given the limited
resources of Edge platforms, high processing requirements
need to consider the use of Cloud or Fog.

3) DATA PERSISTENCE

This criterion represents the average time interval that the
data samples need to be kept, regarding the short or long-term
memory. Although most algorithms dedicated to analyze data
streams process the data sample once it arrives, in some cases
and according to the data analysis strategies, the samples can
be processed in small batches (e.g., a time window that can be
averaged to determine a trend). On the other hand, some sce-
narios require more complex algorithms, e.g., regarding the
descriptive or prescriptive data analysis that need to process
large batches of data. In this sense, the data persistence can
range from minutes to days. While in the first case the data
can be kept in the memory (short-term), in the second case it
may be necessary to use files or databases (long-term). This
criterion is directly related to the amount of data the com-
ponent needs to keep in memory or store, and also the algo-
rithm processing time, both affecting the required computing
resources. Therefore, Edge devices are suitable for short-term
data persistence, otherwise Fog or Cloud are preferred.

4) BANDWIDTH

This criterion represents the available data transfer rate be-
tween Edge devices and Fog-Cloud systems, indicating the
round-trip-time of the communication channel, i.e. the net-
work throughput, directly affecting the responsiveness re-
quirements. While the bandwidth between Edge and Fog de-
pends on the local network infrastructure, where affordable
equipment, like routers, can provide very high values, for the
Cloud it is limited by the subscribed internet service. More-
over, these scenarios mainly consider the upload speed that
can range from few kilobits per second (Kbps), like in some
mobile network connections, to hundreds of megabits per
second (Mbps) in the cases of broadband connections. High
available bandwidth favors the use of Cloud solutions, but the
reliability and quality of the network connection should be
considered in scenarios that require high responsiveness.

5) NUMBER OF NODES

This parameter represents the number of nodes that will share
the network, directly affecting the bandwidth and the quality
of the connection. Moreover, the number of nodes and the
data produced by them influence the computing resources
requirements (e.g., storage and processing) of the remote sys-
tems that interact with them. According to the application, the
number of nodes varies from few nodes, in simple environ-
ments, to hundreds of nodes, in more complex environments.
A high number of nodes can overload the network and remote
systems, which can be addressed by decentralizing the data
processing to the Edge.
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6) MESSAGE RATE

This parameter represents the average number of messages
sent by each component per second, and like the number of
nodes, can overload the network and the systems that need to
process them. Usually, it is associated with the data sampling
rate, but it should be defined based on the data analysis ca-
pability requirements, to optimize the quality of outputs and
computing resource utilization. In this context, the average
message rate can range from very few msgs/sec, in scenarios
where the devices only inform status or events, to hundreds of
msgs/sec in the cases of real-time monitoring systems. Note
that, although in some scenarios there are sensors that can
achieve sampling rates in the order of kHz, these scenarios
assume by default the use of local devices to process the data
(at least extracting features from these samples before sending
any data to other systems), since it is unfeasible to send such
amount of data over the network.

7) MESSAGE SIZE

This criterion represents the average amount of data trans-
ported by a message. Although it is associated with the col-
lected data, it is important to note that, for instance, some
devices can measure several parameters that can be aggre-
gated and encoded in a structure before send them to other
components. Like the number of nodes and message rate,
the message size can range from few bytes, like in telemetry
systems, to hundreds of kilobytes (Kb) in systems based on
image or video.

C. FUZZY LOGIC DECISION SUPPORT SYSTEM TO
DETERMINE WHERE TO DEPLOY DATA ANALYSIS

Although there are other criteria, including qualitative ones,
e.g., regarding costs and security aspects, in most cases, the
evaluation of the criteria discussed in the previous section
must be enough to define the most suitable computing layer to
deploy a given data analysis capability. However, the design of
a detailed mathematical model that combines all these criteria,
and also handles the uncertainty during the system design,
is challenging. In this context, there are several multi-criteria
decision-making methods [29], including AHP (Analytic Hi-
erarchy Process), TOPSIS (Technique for Order of Preference
by Similarity to Ideal Solution) and Fuzzy Logic.

While the first two are used for ranking alternatives, the
Fuzzy Logic can also be used for mapping the experts knowl-
edge into Fuzzy rules, creating a decision support system that
allows to incorporate imprecise information in the form of
linguistic terms, e.g., when the boundaries of the criteria or
alternatives are not clearly defined. Fuzzy Logic has been used
for decision support in several engineering domains for mod-
eling problems involving imprecision, vagueness and subjec-
tive aspects [29], [30], matching perfectly the uncertainty of
this design problem.

In this context, a Fuzzy system was designed to determine
the most suitable computational layer where data analysis
tasks should be deployed, considering as input variables the
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FIGURE 6. Fuzzy decision-support approach: fuzzy sets, membership functions, fuzzy rules, inference systems and the resulting spaces for 3 cases when
the bandwidth criterion assumes values of very low (0), medium (50) and very high (100).

seven described criteria, being each data analysis capabil-
ity characterized by a set of values of these criteria. For
each input variable, a Fuzzy set was defined based on the
following linguistic terms: very low (vL), low (L), medium
(M), high (H) and very high (vH) (see Fig. 6). In order to
reduce the complexity of the Fuzzy system, in terms of the
number of Fuzzy rules (that increases exponentially with the
number of input variables and linguistic terms), this approach
considers a combination of 3 Fuzzy systems, as illustrated
in Fig. 6.

The first Fuzzy system considers as input variables the pro-
cessing and data persistence criteria, and provides as output
the level of computing resource complexity. The second Fuzzy
system considers as input variables the number of nodes, the
message rate and the message size criteria, and gives as output
the level of communication infrastructure complexity. The
third Fuzzy system considers as input variables the outputs of
the previous two fuzzy systems, and also the responsiveness
and the bandwidth criteria, providing as output the level of
suitability of each computing layer to deploy a given data
analysis capability.

The Fuzzy sets of the input variables were defined using
trapezoidal (at the edges) and triangular (in the middle) Mem-
bership Functions (MFs), where their values range follow the
characteristics of each criteria, as also illustrated in Fig. 6.
The output variables were similarly defined, where their value
ranges represent a level from O to 10. In the case of the third
Fuzzy system, its Fuzzy sets were described by the linguis-
tic terms Edge, Fog and Cloud. Their overlapping illustrates
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the scenarios where usually a solution can be deployed on
different layers, e.g., an output value close to O suggests a high
suitability of Edge, and likewise 5 to Fog and 10 to Cloud. In
this sense, the defuzzyfied output value of the Fuzzy system
is mapped to a suitability level ranging from O to 1, for each
layer (defined in equations (1), (2), (3) and (4)).

x = L(r,b,R(p,d),I1(n,m, s)) ey
1 forx < 1.75
S(Edge) = { =22 forx € [1.75,5] )
0 forx > 5
0 forx < 1.75and x > 8.25
S(Fog) = { %51  forx € [1.75.,5] 3)
=3 forx € [5.8.25]
0 forx <5
S(Cloud) = { =20 forx € [5.8.25] @)
1 for x > 8.25
where:
R(p,d) : is the Computing Resource Complexity
Fuzzy inference system
I(n,m,s) : is the Comm. Infrastructure Complexity
Fuzzy inference system
L(r,b,R,T) : is the Computing Layer Fuzzy inference

system
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r,b,p,d, n,m,s : are the input criteria: responsiveness,
bandwidth, processing, data persistence,
number of nodes, message rate and mes-
sage size

X : is the crisp value output of the Computing
Layer Fuzzy Inference system

: is the suitability of a given x for each

layer € [Edge, Fog, Cloud]

S(layer)

The Fuzzy inference system uses a set of IF-THEN rules
that map the MFs of the input variables to the MFs of the
output variables. The decision tables, illustrated in Fig. 6,
present the rules defined for each Fuzzy system. Each cell
represents the result of a logical operation AND between the
input variables (rows and columns). In this case, the [IF-THEN
rules for a given scenario can be interpreted as the following,
where 1) evaluates the Computing Resource Complexity (top-
left decision table of Fig. 6), 2) evaluates the Comm. Infras-
tructure Complexity (bottom-left decision table of Fig. 6), and
3) evaluates the Computing Layer (top-right decision table of
Fig. 6).

1) IF data persistence = vH AND processing =M THEN

computing resource complexity is H
2) IF nodes = vL AND message rate = vL, AND message
size = H THEN comm. infrastructure complexity is L
3) IF responsiveness = L. AND computing resource com-
plexity = H AND bandwidth = L, AND comm. infras-
tructure complexity = L THEN most suitable
computing layer is Fog

The Fuzzy rules considered in the decision tables define the
resulting space for each Fuzzy system. For instance, in the
first Fuzzy system, the level of computing resource complexity
increases with the increase of processing and/or data persis-
tence. Similarly, the level of comm. infrastructure complexity
will be higher the greater the number of nodes, message size
and rate, and lower in the opposite scenario. In the case of
the computing layer, a higher bandwidth favors the Cloud,
except if the communication infrastructure complexity is high
or if a low responsiveness is required, when the Edge is
more suitable. This can be observed in the three 3D charts,
included in Fig. 6 that illustrate the resulting spaces of the
Fuzzy decision-support approach for the 3 scenarios when the
bandwidth criterion assumes values of very low (0), medium
(50) and very high (100).

The configuration of the MFs, the Fuzzy sets and Fuzzy
rules were defined based on the experience and knowledge of
the authors and the feedback from an interview with a group of
experts, where the best configuration was found empirically,
after several computational experiments.

IV. CASE STUDY AND EXPERIMENTAL RESULTS

The proposed framework was conceptually validated using a
testbed case study, illustrated in Fig. 7, that is based on a set
of smart electric machines. The design of the CPS solution
requires to determine how the data analysis capabilities asso-
ciated to each smart machine should be distributed among the
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1- electric motor (DC 12V-120Watt)
2 -|85d loT-based platform (UDOO QUAD)
3- @ vibration (accelerometer)
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6- (;») operational conditions (encoder -
=’ rotating direction and speed)

@ magnetic load/break system
(simulate different operations and

abnormalities)
8- motor & load/break control system

9. Raspberry Pis (simulate other Edge
components - Smart Machines)

FIGURE 7. Case study setup: the smart machine testbed.
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FIGURE 8. Summary of the identified concerns and requirements for the
case study scenario.

Edge, Fog and Cloud, taking into account the requirements
imposed by the industrial scenario.

A. IDENTIFYING THE DATA ANALYSIS CAPABILITIES
CONCERNS AND REQUIREMENTS
The first part of the proposed framework encompasses the
use of the conceptual guideline to identify and evaluate the
concerns, requirements and constraints of the data analysis
capabilities to be developed. Fig. 8 summarizes the outputs
of this process for the case study considered in this work.

The case study comprises an application of smart machines
in the industrial automation domain. For this purpose a testbed
that comprise an electric motor that was instrumented with
sensors and an IoT platform (UDOO QUAD) that enables
the measurement of several parameters and their local pro-
cessing [31]. The testbed also includes 10 Raspberry Pis
to simulate other smart machines, and a network infrastruc-
ture that comprises computers and virtual machines (used
as Fog/Cloud platforms) to support the testing of different
scenarios.

The solution to be developed requires the condition mon-
itoring and abnormality detection of the machine operation,
aiming to reduce the unexpected downtime and ensure the
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high quality of products. The focus is on taking advantage of
the state of the art ML algorithms to build data models capable
to continuously analyze the machine operational data and pro-
duce alerts when unexpected events are detected. Other tasks
planned for the smart machine include the analysis of some
parameters behaviors in order to monitor KPIs, and identify
and forecast trends. In this context, three data analysis tasks
are considered in this case study:

1) Abnormality detection — continuously monitor the elec-
tric current parameter to detect abnormalities related to
the load patterns of the machine operation.

2) Trend monitoring — analyze the machine operation to
identify trends and forecast the energy consumption,
temperature and vibration.

3) Operation quality analysis — characterize and classify
the quality of the performed operations based on the
analysis of the machine’s parameters.

The physical components comprise legacy machines that
need to be digitalized with IoT and ML technologies to em-
bed smart data analysis capabilities. Such data analysis tasks
require sensors that can measure mechanical (e.g., vibration
and temperature), electrical (e.g., current and voltage) and
operational (e.g., motor rotating direction and speed) param-
eters. The data sampling rate and quality can be limited by
the sensor technology and cost, network bandwidth and lo-
cal processing capabilities. However, they should be defined
in conjunction with the data analysis algorithms to attend a
desired level of accuracy and responsiveness.

The sensors provide a continuous time-series of telemetry
data, leading to huge volumes of data. In order to reduce
the data management and storage costs, the samples should
be cleaned, aggregated and selectively stored in remote data
bases, for data models improvement purposes. Additionally,
the integration with the existing system should be considered,
in order to retrieve the control information to support the data
analysis models. Besides that, the data samples will not be
labeled (i.e., annotated with normal or abnormal labels), and
most of them will comprise normal behavior, since abnormal
events should be rare. In these cases, unsupervised learning
algorithms usually represent a suitable option. These types of
algorithms are trained to learn the patterns of normal behav-
iors, thus any data sample that does not follow these patterns
is identified as an abnormality. Besides the classification of
current samples, such algorithms can also be used to predict
events in advance. Based on the identified data analysis tasks,
ML techniques like Autoencoders can be used to detect abnor-
malities in time-series data while clustering techniques can be
used to group and classify the quality of operation based on
the similarities of operating conditions.

Regarding the network infrastructure, given the environ-
ment characteristics and security concerns, a local wireless
network infrastructure can be easily adopted without affect-
ing the existing industrial control network. It should provide
bandwidth and cover all the machines, ensuring the connec-
tivity and responsiveness constraints, as well as the company
data security policies. Regarding the components interaction,
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TABLE 1 Evaluation of the Data Analysis Tasks Using the Fuzzy System

Fuzzy input criteria | abnormality trend operation
for data analysis tasks detection monitoring | quality analysis
processing (ms) 10 300 2500
data persistence (mins) 0 15 30
responsiveness (ms) 100 1000 2000
bandwidth (Mbps) 10 10 10
number of nodes (units) 50 50 50
message rate (msgs/sec) 30 30 30
message size (Kb) 1 1 1

Fuzzy output crisp 1.02 8.06 8.08

values ) ) )
oy suabitty “Foe| 003 006 005
Cloud 0 0.94 0.95

a hierarchical approach should be adopted, since the solution
does not require autonomous components capable to collabo-
rate and perform local diagnosis. The outputs of the solution,
i.e. the monitoring status and abnormality alerts, are intended
to be provided as a service that should be integrated in an
existing monitoring system, thus no human interfaces should
be needed.

B. DEFINING WHERE TO DEPLOY THE DATA ANALYSIS
CAPABILITIES

After identifying the required data analysis capabilities and
the related concerns regarding the given industrial application
scenario, the proposed Fuzzy Logic recommendation system
can be used during the system design phase to suggest the
most suitable layer to deploy them. Note that, during the
design phase the values of the criteria may need to be es-
timated based on the system features and requirements, or,
e.g., regarding some preliminary experiments that test the per-
formance of the algorithms and computing platforms. This is
not a concern, since the Fuzzy approach supports the decision
making based on uncertain and estimated values.

In this sense, Table 1 presents the criteria of the three data
analysis tasks defined in the case study, as well as the output of
the Fuzzy system (defuzzyfied crisp value), and the respective
layer suitability, computed according to the equations (2), (3),
(4). The Fuzzy system was implemented in Python, using the
library skfuzzy that implements the Mamdani Fuzzy type. The
centroid method was used for the defuzzyfication process.

In this case study, the three identified data analysis tasks
consider the same components and infrastructure. Therefore,
some criteria are the same for all the tasks, like the available
bandwidth that, in terms of the upload speed, is based on
a regular WiFi network connection (~10 Mbps), as well as
the number of nodes (50), the message rate (~30 msgs/sec)
and the message size (<1 Kb). These criteria present low
values, indicating that this case study is characterized by a
low network infrastructure complexity. However, the required
responsiveness and computing resources are dependent of the
data analysis tasks, and still need to be evaluated before choos-
ing the most suitable layer.

183



QUEIROZ ET AL.: FUZZY LOGIC RECOMMENDATION SYSTEM TO SUPPORT THE DESIGN OF CLOUD-EDGE DATA ANALYSIS

As example, the first data analysis task is related to the early
detection of abnormality during the machine operation, which
does not require any data persistence (0 mins) since it is based
on data stream analysis, and the processing time of the data
analysis algorithm is very low (~10 ms in the worst case)
since the processing of telemetry data is relatively simple and
fast. However, the required responsiveness for these tasks is
very low (~100 ms), indicating that it is critical for the system
to identify the occurrence of an abnormality as quickly as
possible. Considering these values for the Fuzzy input criteria,
the output of the Fuzzy inference system provides a crisp
value of 1.92 that, according to the equations (2), (3) and (4),
indicates that the Edge is the most suitable layer, presenting a
suitability value of 0.94 (see Table 1).

The second data analysis task, that encompasses the
analysis of trends in the operational data, requires some data
persistence, since it must consider several operations over the
last 15 minutes. This requires the processing of a greater vol-
ume of data that directly affects the algorithm processing time
(~300 ms). This task requires trends and forecasts of some
KPIs to be presented after each operation to monitor their evo-
lution. Since trends are observed in the long-term, the required
responsiveness is not critical (1000 ms), i.e. at most 1 s after
the end of the operation. Considering these characteristics,
the Fuzzy inference system gave a crisp value of 8.06, that
indicates the Cloud as the most suitable layer with a suitability
value of 0.94 (Table 1). This output can be justified based on
the increase of the computational resource complexity, caused
by the high value of processing and data persistence, but also
by the relaxed value for the responsiveness.

The third data analysis task is similar to the previous one,
requiring the processing of batches of data from multiple op-
erations. In this case, it has more computational complexity,
in terms of the processing (~2500 ms) and data persistence
(30 min). Moreover, the required responsiveness is less critical
(~2000 ms), mainly given the descriptive analytics nature
of this task, i.e., identify and characterize behaviors in the
historical operational data. Although both criteria, processing
and responsiveness, present values above the range defined in
the Fuzzy system (Fig. 6), they are automatically adjusted to
the maximum value, with the full membership in the very high
Fuzzy set. Based on this analysis and considering the other
criteria, specially the low network communication complex-
ity, this task is recommended to be performed at the Cloud
(crisp value of 8.08 and suitability value of 0.95) that attends
the responsiveness requirements, and also contribute to not
overload the local system.

C. EXPERIMENTS AND ANALYSIS OF RESULTS
The data analysis capabilities described in the case study
were implemented and deployed in the computational layer
as recommended by the Fuzzy Logic recommendation system
(discussed in the previous sub-section).

In the experiments, a set of Raspberry Pi 3 B+ were used
as the Edge platforms, while a local and a remote computer (4
cores/2.8 GHz/16 GB) were used as Fog and Cloud platforms.
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FIGURE 9. The distribution of travel and data analysis times for the early
detection of abnormality task.

35 parameters are measured every 30 ms, being required ~250
Bytes to be sent in a message. Although this represents low
values for the message rate and message size criteria, de-
pending on the number of nodes, they can easily overload
the network bandwidth. In this context, the preliminary ex-
periments showed that performing data analysis at the Edge
resulted in ~4.1 KB sent and ~5.9 KB received per node
(only status message sent/received), against ~14 MB sent
(403 msgs/operation) and ~5.9 KB received, when the raw
data are sent to be processed at Fog/Cloud. The execution of
an experimental test takes ~32 minutes, leading to a band-
width consumption of ~61 Kbps per node, while 50 nodes
require ~3 Mbps.

For the early detection of abnormality task, an Autoen-
coder, based on LSTM (Long-Short Term Memory) lay-
ers [6], was implemented using the DeepLearning4] Java li-
brary (deeplearning4j.org). The model was configured with
400 x 50 x 10 x 50 x 400 neurons per layer and was
trained to detect abnormalities in the time-series data stream
of the motor electric current parameter [31]. The experiments
used a dataset with 120.904 data samples collected from the
testbed. Half of it has no abnormalities and was used to train
the model, while the other half, used for the tests, contains 12
abnormalities in 150 operations.

Fig. 9 illustrates the experiments’ results for the early
detection of abnormality task. The distribution and average
values of the travel time between Edge and Fog/Cloud (left
chart) illustrate how the network can affect the communica-
tion between these platforms, also considering the effects of
data overload (e.g., higher magnitude and variability) when
50 Edge nodes share the same network. On the right, the
chart shows the distribution and average of the times that
the platforms of each layer takes to process a data sample
using the Autoencoder model. The Edge presents the high-
est average value (~10 ms), reflecting its lower computing
resources when compared to the computers used in the other
layers. In this case, the Fog and Cloud have similar computing
resources, which are equally affected by the data overload
(1 vs 50 Edge nodes).

This experiment indicates that this Edge platform fulfills
the requirement of a processing time of 10 ms. On t