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Chapter

Methodological Procedures for
Non-Linear Analyses of
Physiological and Behavioural
Data in Football
José E. Teixeira, Pedro Forte, Ricardo Ferraz, Luís Branquinho,

António J. Silva,Tiago M. Barbosa and António M. Monteiro

Abstract

Complex and dynamic systems are characterised by emergent behaviour,
self-similarity, self-organisation and a chaotic component. In team sports as
football, complexity and non-linear dynamics includes understanding the mecha-
nisms underlying human movement and collective behaviour. Linear systems
approaches in this kind of sports may limit performance understanding due to the
fact that small changes in the inputs may not represent proportional and quantifi-
able changes in the output. Thus, non-linear approaches have been applied to assess
training and match outcomes in football. The increasing access to wearable and
tracking technology provides large datasets, enabling the analyses of time-series
related to different performance indicators such as physiological and positional
parameters. However, it is important to frame the theoretical concepts, mathemat-
ical models and procedures to determine metrics with physiological and behavioural
significance. Additionally, physiological and behavioural data should be considered
to determine the complexity and non-linearity of the system in football. Thus, the
current chapter summarises the main methodological procedures to extract
positional data using non-linear analyses such as entropy scales, relative phase
transforms, non-linear indexes, cross correlation, fractals and clustering methods.

Keywords: complex systems, positioning, physiology, performance analysis, soccer

1. Introduction

Applying non-linear theory and approaches has been a growing research interest
in sports sciences fields such as performance analysis [1–4]. It is assumed that time-
based and team sports display non-linear characteristics [5–8]. Football is deemed as
a complex and dynamic system where players perform intermittent movements in
time-space coordination [9–11]. The prominence of this research topic is due to
several factors, amongst which the shift in the paradigm from linear to non-linear
frameworks that has been applied to a wide variety of fields and settings, besided
the ready access to technology (e.g., tracking systems) providing large datasets,
time series outputs and new time-motion approaches [12–14].
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Nonlinear theory and complex sciences are disruptive of linear frameworks
[15, 16]. Linear systems assume a linearity on time-varying case, an input-output
statistic and a linear state feedback [17]. Considering the linear system theory, an
internal and external structure developing feedback control strategies for simulta-
neous stabilisation of the system [16]. Based on this, theoretical models quantify the
relationship between human movement (input) and performance (output), consid-
ering the athlete as a linear system [18, 19]. Desynchronization between internal
(such as heart rate measure, perceived exertion and biochemical procedures) and
external components (i.e., movement speed, body impacts, metabolic power, accel-
erations and decelerations) may affect the performance [18, 20]. Small changes in the
inputs determine proportional and measurable changes in the output, reporting line-
arity characteristics such as controllability, observability and canonical structure [21].
These assumptions determines approaches focused on the linearity of the system,
reporting an fitness-fatigue binomial with a related dependence on dose-response
relationships [22, 23]. However, the accuracy of these theoretical models has been
challenged for being feeble and for the lack of individualised measurement [23].
Moreover, the ecological dynamisms of informational contexts, social relations and
human movement variability are not considered in linear analyses [24–26]. Human
movement and collective behaviour are not characterised by the linearity of the
systems (as in team sports, like football) and the linear theory could be deemed as a
reductionist approach to the problem [5, 6, 26]. Thus, the individual and collective
performance has been reported using a complex and dynamic perspective [26–31].
Under these assumptions, biological systems are characterised by non-linearity,
interaction-dominant dynamics, emergent behaviour, self-similarity, self-organisation
and a chaotic component [32]. Literature reports several nomenclatures for the topic
as complex adaptive systems [8, 33, 34], complex and dynamic systems [6, 26] or
non-linear and dynamical self-organisation systems [27, 34, 35].

The ready access to cutting-edge technology was another reason for this field of
research to increase. Such technology eventually became more affordable and user
friendly. The use of tracking data started by assessing the individual players’move-
ment, and later integrated spatial-temporal patterns based on Cartesian and Euclidean
references [13, 36, 37]. Over the last two decades, positional data has been verified in
football training and match-play to assess the complexity of the systems inherent to
the individual movements and collective coordination [31, 38, 39]. Positional dataset
can be applied to measure both physical and tactical measures [10, 40–45]. However,
analysis do not always integrate different performance indicators [10, 46, 47]. Usu-
ally, studies focused only in a single performance dimension, however, football is a
multifaceted sport with the physical, tactical, and technical factors amalgamating to
influence performance with each factor not mutually exclusive of another [47]. Inte-
grating performance metrics remain rarely described in current literature, concerning
football environments [36]. That creates issues in the performance analysis, leading to
the fact that the integrative approaches remain understudied. This research gap may
be a very important topic to enhance knowledge about the theoretical concepts,
mathematical models and methodological procedures of the non-linear approaches to
integrate physiological and behavioural data in football.

2. Theoretical concepts of the non-linear approaches

2.1 Football as a complex and dynamic Cartesian coordinates

Football is an invasion game characterised as a complex and dynamical systems
with a goal-oriented adaptation amongst teammate and opponents [9, 48].
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Previously, to measure and tracking player’s movements, mapping tactical actions
and modelling collective behaviour were time-consuming processes [2, 4, 49].
Observational and notational analysis had scarce technological and procedural
means to support the occurrence of the large number of physical, technical and
tactical actions of the football game [49–51]. The wearable technologies as tracking
systems allowed real-time access the players’ position on the field during training
and competition [31, 38, 39]. Positional dataset can be captured at different fre-
quencies by using tracking systems as global positioning systems (GPS) tracking
systems [52, 53], micro-electromechanical systems (MEMS) [36, 54], local radio-
based local positioning systems (LPM) [55, 56], computerised-video systems
[57, 58] and tracking system [59, 60]. This is largely due to the high cost associated
with its use, which restricts its use almost exclusively to professional settings in
male players [20, 61]. The validity and accuracy of these time-motion methodolo-
gies is well documented with an excellent reliability (coefficient of variation, CV:
1.02–1.04%) [52, 53]. However, the integration of the different devices still needs
further studies [60, 62, 63]. Using this techniques to collect data, the players’
movements are possible to be framed in a Cartesian referential (football field),
represented by time series of Cartesian coordinates (xx, yy) [36]. Also, this
approach allows spatiotemporal patterns to be assessed with a physical and
tactical significance for coaches, performance analysts and researchers [30, 36].
Capturing collective and tactical performance also requires knowledge of the
tactical-strategic variables that mediate intra- and inter-team behaviour
[40, 64, 65]. According to Duarte et al. [11], inter-player and team coordination
reports mutual influence of each player on the behaviour of dyadic systems
shaped emergent performance outcomes. Sampaio and Vitor [64] applied
positional data to calculate mean position in relation to the geometric centre
of the team. Thus, longitudinal and lateral directions are established by the
players’ dyads and geometrical centre of the team (i.e., team centroid) [40, 45].
Movement patterns and inter-player coordination as a key issue in non-linear
signal processing method [6, 64, 66]. Length, width and centroid distance as
measures of team’s tactical performance were also applied in youth football by
Folgado et al. [66]. Synchronisation and synergy are theoretical terms recurrently
used to assess intra-team and inter-team coordination and assess spatial-temporal
displacement for goal orientation and team success [11, 65]. Typically, this special-
temporal displacement has been assessed by the distance between player’s dyads
[42, 45]:

D ax tð Þ,y tð Þ , bx tð Þ,y tð Þ

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax tð Þ,y tð Þ

� �2
þ ax tð Þ,y tð Þ

� �2
r

(1)

where D is the distance, a is the player, x and y are the coordinates, t is the time,
and b is the teammate or opponent. Team dispersion can be measured using effec-
tive playing position (EPS), surface area or spatial exploratory indexes using
Euclidean (planar) coordinates [67–69]. For their measurement dyads players are
achieved to measure the magnitude of the variability, predictability, stability and/or
regularity in the distance between players [11, 40]. However, the individual pre-
ponderance within the synergies and synchronicities of the team remains somehow
challenging to measure [70]. Additionally, ball possession is a critical issue in this
positional data modelling given the importance of distinguishing phases of play
[44, 64]. Due to this fact, different levels of analysis must be considered such as
micro, meso and macro [13, 71, 72]. Moreover, positional and behavioural data
cannot be interpreted separately, because football performance is a multifactorial
phenomenon [10, 46, 47].
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2.2 Current performance metrics to measure physiological demands under a
linear framework

The training process requires a systematic physiological and biomechanical
stimulus to ensure optimal adaptations and an adequate performance [19]. Several
theoretical frameworks have been developed to assess the quantity and quality of
the training and competition demands [18, 19]. These training load-based
consider the linear system theory, likewise dose-response relationship and
fitness-fatigue binomial. Fitness-fatigue model approach was originally proposed by
Bannister [73]:

p kð Þ ¼ p ∗ þ c1
X

k�1

i¼1

u ið Þ exp
� k�1ð Þ

τ1 �
X

k�1

i¼1

c2 ið Þu ið Þ exp
� k�ið Þ

τ2 (2)

were p kð Þ is the measured fitness (or performance) with gain term (k) and time
constant τ1ð ) [23]. Cumulative effect of training as a key guidance to the individual
athlete’s performance [20, 74]. Training load concept has been developed under the
assumption that the athlete is a linear system [74, 75]. It is possible to breakdown
training load into external and internal load. The external load describes the work
rate (i.e., physical or biomechanical output), regardless of the biochemical and
psychophysiological response [20, 76]. In training environments, it is mainstream
to reports the work rate [49, 77], workload [78, 79] and training load [18, 19]. When
load measures are also applied to analyse match performance, quite often is noted
the physical performance [47], activity profile [80, 81] or match running perfor-
mance [82–84]. Wherefore, integrating load measure with other performance fac-
tors is a current research-practice gap when determining metrics with physiological
and behavioural significance [10].

2.3 Physiological and behaviour dataset in football environments: a integration
approach using non-linear procedures

Football performance, a multifactorial phenomenon, dependant on a variety
of factors such as environmental, contextual, physical, technical, tactical and
psychophysiological [46, 47, 83]. These factor are not mutually exclusive of
one another, what makes relevant an integrated approach to provide holistic
insights about performance analysis [47, 83]. On regular basis, each of these
factors are analysed in isolation without taking the others into account, leading to
1-dimensional insights [83]. Bradley and Ade [47] proposed a theoretical model
emphasising on high-intensity running efforts during match-play advocating a
contextualization of these running-based actions amongst technical and tactical
activities [47]. This becomes of utmost relevance considering the football game
[9, 65]. This is what mediates the players’ decision making throughout the game
according a team strategy previously defined [13]. Several authors have tried to
establish ecological approaches to evaluate training and match outcomes,
including non-linear approaches [11, 65]. Non-linear analyses were fundamentally
performed on competitive game [41, 85] and limited training tasks as small and
large-side games [42–45, 67, 69]. It is therefore important to understand mathe-
matical models and methodological procedures underpinning non-linear analyses to
assess their significance in applied research and applied settings, identify possible
research gaps to be explored and, be aware of potential limitations and criticisms
(Figure 1).
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3. Mathematical models and methodological procedures of the
non-linear approaches

Non-linear approaches have been recurrently applied in football using complexity
principles [14, 31, 36]. The informational context and spatiotemporal determinants
that mediate players’ perception and action are analysed by nonlinear and dynamic
proprieties of the football game [6, 28]. It is assumed that environmental, task and
organismic constraint influence individual and collective behaviour [5, 28]. This
behaviour has a physiological cost over time that must be measured [18, 20, 76].
Informative content can be classified as different domains of variability, namely the
frequency domain, the entropy domain and the scale-invariant domain [5, 86]. In
biological systems, sequential time-series have become outstanding data analysis in
multifaceted context [87–90]. According to Bravi et al. [86] the time-series data can
be described through five different domains of variability: (1) statistical (i.e., statisti-
cal properties of the distribution in a stochastic process); (2) geometric (i.e., proper-
ties of the dataset shaped in a certain space); (3) energetic (i.e., energy or power of
the time-series); (4) informational (i.e., degree of irregularity/complexity inherent to
the order of the elements in a time-series); invariant (i.e., fractality or unchanging
attributes over time or space). In football, time-series data application has been
widely applied [14, 36]. Low et al. [36] organised the non-linear methods into mea-
sures of the regularity (or predictability) and synchronisation. Geometrical centre
and periodic phase oscillators has been considered to analyse players’synchronisation
and modelling the coordination of a team [14]. However, remains unclear the appli-
cation of time-series data from an integrated approach perspective [10, 47, 83]. Thus,
it is paramount to determine mathematical models and methodological procedures
for non-linear time-series data analysis, bearing in mind an integrative approach.
Therefore, the following subsections elaborate on the different non-linear
mathematical models possible to apply in football.

3.1 Entropy

Entropy is a non-linear and informational parameter applied to describe
variability, regularity or predictability of the movement/performance uncover the

Figure 1.
Physiological and behavioural dataset in football environments.
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inter-player’s interactions [86, 89, 91]. That, is entropy parameters describes the
degree of irregularity/complexity inherent to the order of the elements in a time-
series [86]. There are several types of entropy reported in the literature and applied
in football research from the integrative perspective, amongst which Approximate
Entropy (ApEn) [6, 11, 42], Sample Entropy (SampEn) [44, 92], Cross-sample
Entropy (Cross-SampEn) [92] and Boltzmann-Gibbs-Shannon Entropy
(ShannonEn) [43]. ApEn expresses the probability that the sequence configuration
in a time-series data allows the prediction of the configuration from another
sequence from a distance apart [89, 91]. ApEn was derivate from Kolmogorov-Sinai
entropy and ranged amongst 0�2 where lower values correspond to more
predictable and higher values stands more unpredicted patterns within time-series
(0 ≤ ApEn ≤2) [89].

ApEn m, r,Nð Þ ¼ ϕm rð Þ � ϕmþ1 rð Þ (3)

wherem is the window length distance amongst comparting time-series points, r
is the similarity radius, N is the time-series length, and ϕ is the probability that
points m distance within a tolerance level (r) [36, 90]. Cm

i rð Þ measures how similar
are the regularity of the data points in the window length (m) having regard to the
following ϕm rð Þ [6, 36]:

ϕm rð Þ ¼ N �mþ 1ð Þ�1
X

N�mþ1

i¼1

lnCm
i rð Þ (4)

From a practical point of view, the imputed ApEn values should be computed
with 2 to vector length (m) and 0.2 * standard deviation to the tolerance (r)
[41, 45, 93]. ApEn reliability for short time series is low, providing relative consis-
tency during changes in input parameters (m, r and N) [1, 89, 91]. For this reason,
Richman and Moorman [89] developed SampEn where their logarithm is simpler
with shorter time-series records than ApEn that is heavily dependent on the length
record causing lacks of relative consistency. SampleEn logarithm has been was
developed on the basis Grassberger et al. [94] reporting a larger window length and
a greater relative consistency than ApEn [89–91]. Likewise, SampEn values close to
zero indicates a regular or near-periodic time-series sequence, while the higher
values reports a more unpredictable pattern (0 ≤ SampEn < ∞) [88, 91, 92].
SampEn measures the negative logarithmic probability that two similar sequences
of m points extracted within the tolerance limits (r) for a window length (m + 1)
[36, 92] .

SampEn m, r,Nð Þ ¼ � ln
ϕmþ1 rð Þ
ϕm rð Þ (5)

Where, m, r, N, and ϕ retain the meaning from ApEn equation, whereby and
m + 1 windows are compared for eliminating the self-matching bias in the ApEn

[90]. ϕmþ1 rð Þ reports the total number of time-series sequences in a window length
m + 1 as far the ϕm rð Þ expresses the total template in a length m within the
aforementioned tolerance level (r) [36].

Multiscale entropy (MSE) as Cross-ApEn and Cross-SampEn was recently
introduced from the primary entropy procedures (i.e. ApEn and Cross-ApEn)
[90, 95]. Therefore, cross-entropy methods quantify the degree or complexity of
coupling between two cross-sequences while the primary entropy techniques eval-
uated the asynchronism between two time series [87, 90]. Cross-SampEn remain a
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greater relative consistent than Cross-ApEn, being defined as long as one template
finds a time-series sequence [89]. Mostly, Cross-SampEn has been recurrently used
in football settings to measure players’ synchrony [36, 92]. Cross-SampEn, the
templates are chosen from the series u and compared with vectors from v, while the
negative logarithm accounts the ratio of two average between outputs [36, 89]:

Cross� SampEn m, r,Nð Þ ¼ � ln
ϕmþ1 rð Þ
ϕm rð Þ

� �

(6)

Boltzmann-Gibbs-Shannon entropy was applied by Ric et al. [43] to measure
temporal diversity and structural flexibility of the players. This entropy-based
technique was originally applied by Balescu [96], reporting the configuration’s
probabilities as the large N in a relative frequency occurring in a stationary distri-
butions described by Shannon [97]:

H xð Þ ¼
X

n

i¼1

pi log bpi (7)

where pi = ni/N, where ni and N is the frequency and total number of the
configuration, respectively [1, 43]. Predictable and unpredictable patterns were also
reported as lower and higher entropy values, which is presented by absolute or
normalised forma (0 ≤ H xð Þ ≤ 1) [36].

MSE techniques was applied in football by Canton et al. [44] to identify how
positioning the goals in diagonal configurations on the pitch modifies the external
training load and the tactical behaviour in youth football environments (i.e., small-
sided games). The authors applied a SampleEn algorithm to compute entropy values
in different timescales, calculating the area under for complexity index as reported
in multiple entropy analysis for time-series [90, 98]. MSE techniques reports the
point-to-point fluctuations over a time-series range [44, 90, 98] as:

yτj ¼
1

τ

X

jτ

i¼ j�1ð Þτþ1

xi (8)

Where, timescales is τ, yi is the data point in the constructed time-series and xi is
a data point in the original time-series through a window length (N). Complex
index (C1) is calculated using the area under the constructed time-series and the
original time scale curve [90, 98]:

C1 ¼
X

N

i¼1

En ið Þ, 1≤ y j ≤
N

τ
(9)

Where, En is the reported entropy parameter at the time scale i andN is the total
number of time scale used for the C1 calculation [90].

3.2 Relative phase (Hilbert transform)

Relative phase was extensity reported in football within an integrative frame-
work [40, 41, 67]. Using a Hilbert transform ϕ tð Þ½ �, relative phase computes the
difference between two signals reporting coupled oscillators and stable patterns of
synchronisation, in-phase and anti-phase, when players moved in the same or
opposite directions [36, 99]. Hilbert transform was originally introduce by Gabor
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[100] with aim to measure the phase and amplitude for a signal. Palut and Zanone
[99] configured a phase diagram plotting the imaginary part of the Hilbert transform:

ϕ tð Þ ¼ ϕ1 rð Þ � ϕ2 rð Þ

ϕ tð Þ ¼ arctan
H1s2 tð Þ �H2 tð Þs1 tð Þ

s1 tð Þs2 tð Þ þH1 tð ÞH2 tð Þ
(10)

Where, H1s2 tð Þ and H2 tð Þs1 tð Þ were the Hilbert transform from the two com-
pared signals [36, 99]. In football, longitudinal and lateral directions within the
pitch were reported using near-in-phase synchronisation of each players’ dyads
[40, 41, 67]. The percentage of time spent in each near-in-phase mode of coordina-
tion was computed to verify in-phase synchronisation (�30° ≤ ϕ ≤ 30°), anti-phase
synchronisation (�180° ≤ϕ ≤ �150° or 150° ≤ ϕ ≤ 180°) or without pattern
synchronisation (all other ϕ degree) [36, 99]. Oscillation in football environment
has been a recurrent non-linear approaches to process x- and y-directions and
positions covered by football players in centroid and effective playing space zone
[38, 101]. Sampaio and Vitor [64] displayed the relative phase post-test value to
measure movement patterns and inter-player coordination. This study reported a
higher regularity of the patterns with the increasing of the expertise level. There is a
gap in understanding how the physiological dataset can influence the intra- and
inter-team variability that needs to be further studied [47]. It remains to be under-
stood how this varies across the different levels of the expertise.

3.3 Complex index

Non-linear parameters are often transformed into reliable complexes indices to
measure complexity in football settings [43, 69, 93]. Dynamic overlap is a complex
index used to compare time-series against the average cosine auto-similarity of the
overlap between configurations within time lags [102]. It is an informational non-
linear parameter that expresses how timescale statured in a dynamic behaviour
using the exploratory breadth at different timescales [43, 69]:

< qd tð Þ> ¼ 1� qstat
� �

tα þ qstat (11)

Where, < qd tð Þ> is the dynamic overload value, t is the time lag, qstat is the
horizontal asymptote and α expresses the gradient. Dynamic overlap tends to infinity
wherefore predictable and unpredictable reflects zero an one values, respectively
(0 ≤ qd tð Þ ≤ 1) [36, 43, 69]. Additionally, trapping strength is the overall behavioural
flexibility performed at lower and highest values of the time scale [43].

Another complex index reported in the literature is the stretch index, which can
be defined as distances amongst players and the geometrical centre of the team
[45, 85]. That is, this complex index measures the spatial expansion or contraction
[103] as:

sind ¼
PN

i¼1widi
PN

i¼1wi

(12)

Here di is the distance between player i and their geometrical team centroid
[103]. Stretch index can be expressed in meters, and is also computed by CV and
entropy parameters [93, 104]. Otherwise, spatial exploration index (SEI) is
obtained with the width and length displacements, computing the distance from
each data point in the time-series according to geometrical centre [1, 2].
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3.4 Correlation index

Windowed and cross correlation were also applied to assess collective behaviour
through positional data in football training and match environments [36, 65, 92].
Cross correlation function is well-supported in the human movement research,
wherein the overlapping time windows that enclosed the time-series sequence
under analysis [105, 106]. Cross-Correlation function multiplied the point-to-point
amongst two time-series data series, reporting the sum of the products and the
respective relationship quantification [105]:

rxy ¼
X

N�1

i¼0

xiyi (13)

Where rxy is the correlation across the window length of each analysed time-

series (N); xiyi are the data point of the calculated data series. Boker et al. [106]
described cross-correlation with the pairwise dataset at two different time-series
signals in accordance with:

rxyτ ¼
1

N � τ

X

N�τ

i¼1

xi � xð Þ yiþτ � y
� �

σ xð Þσ yð Þ (14)

Where τ is the observations across cross-correlation (r) amongst time-series data

point (xiyiÞ; x and y are the means, σ xð Þσ y
� �

are the standard deviations in the
studied window length (N) reporting positives and negatives correlation
(�1 ≤ r ≤ 1) [105–107]. Pearson coefficient (r) was expressed as [105]:

rxy ¼
N

P

xyð Þ � P

xð Þ P

yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

x2 �
P

x2ð Þ½ � n
P

y2 �
P

y2ð Þ½ �
p (15)

where, rxy maintains the meaning to the previous equation. Person-moment
correlation was used to estimate in-phase synchronisation (i.e., r values close to �1),
anti-phase synchronisation (i.e., r values close to 1) and without pattern (i.e., r = 0)
[36, 92]. It remains to be seen whether matrix correlation may be applied to
correlate players synchronisation with physiological insight, since it was only applied
to assess dynamic collective behaviours in isolation individual physiological demands
[65, 92, 107]. Complementarily, a study associated the cross-correlation with the an
vector coding technique to analyse coordination patterns between teams during
offensive sequences that ended in shots on goal or defensive tackles [108]. The
authors based their non-linear analysis the relative motion plot proposed by Sparrow
et al. [109]:

θ ið Þ ¼ arctan
θ2 iþ 1ð Þ � θ2 ið Þ
θ1 iþ 1ð Þ � θ1 ið Þ

	

	

	

	

	

	

	

	

, i ¼ 1, 2, … , n� 1 (16)

where i is the time-series data point in a right horizontal and n is the total frame
for each timescale [108]. As well, the θ ið Þ is the coupling angles between in the
second, third and fourth adjusted quadrant (i.e., π � θi, π þ θi, 2π � θi) [36, 109].
Near-in-phase synchronisation were computed using this non-linear technique,
expressing the in-phase (22.5° ≤θi < 67.5° or 202.5° ≤θi < 247.5°) and anti-phase
(22.5° ≤θi < 67.5° or 202.5° ≤θi < 247.5°). Even more, attacking and defensive team
phases are also reported by Moura et al. [108]. By distinguishing the phases of the
play, this non-linear method could allow to understand how physiological
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demands can affect the intra- and inter-synchronisation in offensive and
defensive phases.

3.5 Fractality

Fractal dimension is an invariant non-linear parameter characterised by the
unchanged proprieties of the system over time and/or space [86]. Multifractal time
series expresses different local scaling exponents for a time-series dataset scaling
different exponents at different times [86, 110]. Few studies applied fractal dimen-
sion to predict stability and predictability of the football players along specific
training tasks [110, 111] and competitive matches [110–112]. Fractal calculus (FC)
was reported using Shanon and Grünwald-Letnikov approaches [111, 112].
Grünwald–Letnikov fractional differential consideres the matrix containing the
multi-player positions [111, 113]:

Xδ t½ � ¼
x1 t½ �
⋮

xNδ t½ �

2

6

4

3

7

5
, xi t½ �∈R2
� �

(17)

where Nδ expresses the number of players in the team Nδ across a time-series
analysis. The matrix Xδ t½ � is the planar positioning matric of player (i) in a target
team δð Þ at the a concrete time (t) [111, 113]. Shannon information was expressed
by [112]:

I P xð Þ½ � ¼ � logP xð Þ (18)

wherebyI P xð Þ½ � is the function between the cases D�1I P xð Þ½ � ¼
P xð Þ 1� logP xð Þ½ � and D1I P xð Þ½ � ¼ P xð Þ 1� 1

P xð Þ

h i

. I and D are the integral and

descriptive operations [112].
A study applied multifractal dimension in football movement behaviour using

Hausdorff dimension (D) [110, 112, 114]:

D Eð Þ ¼ lim
ε!0

sup
logNE εð Þ
� log ε

(19)

where NE is the minimal diameter at the most ε needed to cover [114]. Fractional
dynamics may tracking football players trajectory, which can be useful to increase the
autonomy of tracking systems [113]. Additionally, fractal and multifractal analysis
can be used to analyse the regularity and synchronisation of the team, as well the
players’ movement dynamics [110, 111, 113]. However, the use of fractal variables
within an integrative approach remains little explored whereas it is important under-
standing the links between collective behaviour with the fractional properties of
movement and its physical and physiological repercussions [47, 110]. Fractal propri-
eties may also increase the autonomy of the tracking systems to collect information in
tracking systems such as making decisions based on it [111].

3.6 Clustering methods

Clustering methods have become popular in data mining in several research
areas, including sports sciences [70, 92, 115]. Rokach and Maimon [115] was
described the clustering methods in different typologies as hierarchical,
partitioning, density-based, model-based, grid-based, and soft-computing methods.
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Duarte et al. [92] pioneered applied a clustering method to measure overall and
player team collective synchronisation in football. This method is derived from
Hibert transform to calculate individual phase time-series and subsequently the
cluster phase of these time-series by the natural exponential function [36, 92].
Originally, cluster phase analysis was proposed by Frank and Richardson [116]
using Kuramoto’s parameters for group synchronisation [117]. This clustering
method calculates the mean and continuous group synchronisation

ρgroup or ρgroup,i

� �

whence individual’s relative phase ϕkð Þwas measured in relation

to the group measure [116]. After the Hilbert transform calculation, the continuous
degree of overall team synchronisation was clustered [92]:

ρgroup tið Þ ¼ 1

n

X

n

k¼1

exp i ϕk tið Þ � ϕk

� �
 �

	

	

	

	

	

	

	

	

	

	

(20)

where overall team synchronisation ρgroup tið Þ∈ 0, 1½ � and mean degree to group

synchronisation at every point-to-point of the time-series data tið Þ [36, 92]. ρgroup,i
was computed by the inverse of the circular variance of relative phase of the cluster

amplitude, ϕk tið Þ, while i ¼
ffiffiffiffiffiffi

�1
p

as [92]:

ρgroup tið Þ ¼ 1

N

X

n

i¼1

ρgroup,i (21)

Synchronisation cut-off values is zero to one representing synchronisation and
unsynchronisation (0≤ ρgroup or ρgroup,i≤ 1), respectively [36, 92]. Cluster phase

analysis has not yet been applied to integrate physiological and behavioural data in
football [38, 101].

Furthermore, average mutual information (AMI) was also applied to measure
complexity of the football patterns and expresses the amount of information one
random variable contains another [118]. AMI is calculated by relative entropy
between probabilities distribution and the product midst two selected variables
[36]. The mathematical equation described by Cover and Thomas [118] for the
calculation of mutual information is:

I x, yð Þ ¼
X

X,Y ∈A

P x, yð Þ log P x, yð Þ
P xð ÞP yð Þ

� 

(22)

Where xð Þ and y
� �

is the team’s centroid movement coordinates and A is the

space discretisation [119]. P xð Þ and P y
� �

are the marginality of the probabilities

distributions [36]. The AMI identify the relationships between time-series points
that are not detected by linear correlation [118, 119]. Similar correlation cut-offs
values were applied to predict uncertainty in less values and independence in higher
values (0 ≤ AMI <1) [119].

3.7 Frequency domain

Non-linear techniques as entropy measures can also be expressed in the fre-
quency domain [86]. Several studies have evaluated the variability of movement
comparing informational and frequency domains [10, 41, 42]. CV expresses the
magnitude of the variability in the distance amongst players’, expressed as
percentage (%) [10, 93]:
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CV %ð Þ ¼ σ

x
100 (23)

Speed synchronisation has also applied into a integrative approaches in some
studies [10, 41]. The near-in-phase synchronisation to players’ displacements is
expressed in time spent (%) of time according to speed intensity zones: 0.0–
3.5 km h�1 (low intensity); 3.6–14.3 km h�1 (moderate intensity); 14.4–19.7 km h�1

(high intensity); and >19.8 km h�1 (very high intensity) [41]. Summary diagram
for mathematical models and methodological procedures of the non-linear
approaches are presented in Figure 2.

Table 1 displayed the corresponding equation, thresholds, advantages,
disadvantages and practical application for each nonlinear variable.

4. Practical considerations, criticisms and future perspectives

Matlab® routines (Math-Works, Inc., Massachusetts, USA) were the most
selected procedure to analyse positional dataset in football. Universal Transverse
Mercator (UTM) coordinate system were used to transform latitude and longitude
data points [40, 66]. Methodological procedures differ on the correction guidelines
to be used and reduce tracking signal noise, advising the use of 3 Hz Butterworth
low pass filter [64, 92]. Several authors ran non-linear logarithms using 20 windows
of 3000 points per data collect (i.e. ranged 5�25 Hz) [40, 67]. Integrating notational
analysis and video-based tracking systems has been a worthwhile strategy to pro-
vide contextual significance to positional data [67, 68, 93]. Applying new analysis
techniques based on big data still lack an integrative approach, and it will be
interesting to understand how future studies can do so with techniques such as
machine learning, deep learning or network analysis [13, 14]. These techniques
have been extensively used to analyse positional and physiological variables, but
there are still few studies under an integrative perspective [13, 36, 46]. There is a

Figure 2.
Summary diagram for mathematical models and methodological procedures of the non-linear approaches.
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Variable Equation Thresholds Advantages Disadvantages Practical application

ApEn ApEn m, r,Nð Þ ¼ ϕm rð Þ � ϕmþ1 rð Þ 0 ≤ ApEn ≤2; close

0—predictable; close

2—unpredictable

Similar patterns will not be

followed by subsequent

similar observations.

Dependent on the length

record causing lacks of

relative consistency.

Interpersonal coordination

(1-vs-1 sub-phase);

Opposition and cooperation

relationships on collective

movement behaviour.

SampEn SampEn m, r,Nð Þ ¼ � ln ϕmþ1 rð Þ
ϕm rð Þ

0 ≤ SampEn < ∞; close

0—predictable

< ∞unpredictable

Shorter time-series records

with a greater relative

consistency

Lower complexity for a

signal than white noise

signal.

Diagonal positioning of the

goals on SSG

ShannonEn H xð Þ ¼
Pn

i¼1pi log bpi (Eq. 7) 0 ≤H xð Þ ≤ 1; close

0—predictable; close

1—unpredictable

Multiple optimal weights on

the evaluation and self-

information.

Only consider a particular

event, not the meaning of

the events (criteria)

themselves

Dynamics of tactical behaviour

emerging on different time-

scale using SSG

MSE Cross� SampEn m, r,Nð Þ ¼ � ln ϕmþ1 rð Þ
ϕm rð Þ

n o

0 ≤ Cross-SampEn < ∞; close

0—predictable;

< ∞—unpredictable

Faster and allows to evaluate

two time-series crossed

Loss of pattern

information hidden in the

time series

Assessing the dynamics of

team–team and player–team

synchronisation

Hilbert

transform

ϕ tð Þ ¼ ϕ1 rð Þ � ϕ2 rð Þ
¼ arctan H1s2 tð Þ�H2 tð Þs1 tð Þ

s1 tð Þs2 tð ÞþH1 tð ÞH2 tð Þ

In-phase (�30° ≤ ϕ ≤ 30°) or

anti-phase synchronisation

(�180° ≤ ϕ ≤ �150° or 150° ≤ ϕ

≤ 180°); without

synchronisation (other ϕ

degree)

Require short signals than

classical non-parametric

methods

One dimensional

processing causing phase

ambiguities

Movement behaviour, speed

synchronisation, inter-team

distances, spatial interaction,

oscillations of centroid position

and surface area.

Dynamic

overload
< qd tð Þ > ¼ 1� qstat

� �

tα þ qstat 0 ≤qd tð Þ ≤ 1; close

0—predictable; close

1— unpredictable

Compare dataset using a

cosine auto-similarity that

increase in each time lag

Analysis allowed the slow

dynamics on a long

timescale

Dynamical of tactical behaviour

and constrained the perceptual-

motor workspace

Stretch

index
sind ¼

PN

i¼1
widi

PN

i¼1
wi

Near-in-phase synchronisation

to players’ displacements is

expressed in time spent (%)

Provide the centroid position

of the team and the sum of

each player’s dispersion on

both axes

Relative stretch indexes

has needed to measure

two teams

Coordination and spatial

interactions for opposite and

team behaviours
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Variable Equation Thresholds Advantages Disadvantages Practical application

Windowed

and cross

correlation

rxy ¼
PN�1

i¼0 xiyi
�1 ≤ r ≤ 1—phase (r close to

�1), anti-phase synchronisation

(r close to 1); without pattern

(i.e., r = 0)

Measuring similarity, can

determine time delay and the

identity lagging signal

Bivariate linear association

between group synchrony

time-series data

Cross-correlation and peak

picking for team synergies

variability in tactical behaviour

Fractal

Calcus

I P xð Þ½ � ¼ � logP xð Þ (Eq. (17)) 0-Dimensional sets to

3-dimensional sets (D = 0�3)

Assessing fractal properties of

human movement associated

to sport skills and motor

variability

Non-cyclicality of football

movement using fractal

analysis

Multifractal properties,

dynamical stability and

predictability of the movement.
Hausdorff

dimension
D Eð Þ ¼ lim

ε!0
sup logNE εð Þ

� log ε

Kuramoto’s

Clustering
ρgroup tið Þ ¼ 1

N

Pn
i¼1ρgroup,i 0≤ ρgroup or ρgroup,i ≤ 1; close

0—predictable; close

2—unpredictable

Unbiased measure of group

coordination and measure to

assess player–team synchrony

Achieve synchronisation

modes in networks with

different structures

Order, disorder and variability

in spatio-temporal interactions

amongst two teams

AMI

(clustering)
I x, y
� �

¼
P

X,Y ∈AP x, y
� �

log
P x, yð Þ
P xð ÞP yð Þ

� 

0 ≤ AMI < 1; close

0—predictable; close

1—unpredictable

Measuring the nonlinear

correlation of the two

centroids’ movements

Disadvantages of

redundancy in each class

Positional synchronisation an

geometrical center

modifications in team

behaviour

CV% CV %ð Þ ¼ σ
x 100 NR Statistical measure that is

normalised and non-

dimensional

Dependent on the mean

values of the time-series

Speed synchronisation match-

to-match variation

Abbreviations: AMI—average mutual information; ApEn—approximate entropy; CV—coefficient of variation; D—dimension; di—distance between player i; H—Boltzmann-Gibbs-Shannon entropy;
H1s2 tð Þ—Hilbert transform; I—Shannon information; m—window length; MSE—multiscale entropy; n—frequency; N—time-series length; NR—not reported; qd�dynamic overload; qstat– horizontal
asymptote; r—correlation; r—similarity radius or tolerance level; SampEn—sample entropy; ShannonEn—Shannon entropy; sind—stretch index; SSG—small-sided games; t—time lag; yi—data point; τ—
timescales; ϕ—probability; ρgroup—group synchronisation.

Table 1.
Summary of the non-linear variables and respective equation, thresholds, advantages, disadvantages and practical application.
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lack of standardisation on non-linear measures, measurement and thresholds
[20, 76]. It is even more evident in the physiological measures, therefore, the results
obtained in studies that integrate positional and physiological datasets should be
interpreted with caution [120]. The application of integrative approaches should
also consider the boundaries between different key performance indicators such as
the psychophysiological [45, 121–123], technical [44, 67, 93] and contextual factors
[83, 84]. Also, acceleration outputs, metabolic power and body impacts have been
poorly integrated with positional data. Behavioural data should still be better
contextualised and the related-bias for physiological thresholds must be considered
upon the time-dependent and transient reduction [84]. An integration approach to
physiology and behavioural data must overcome some challenges on data visualisa-
tion, data processing (inherent to big data) and real-time tracking [13]. Moreover,
futures researches should focus their analysis on women and sub-elite performers
[20, 61].

5. Conclusion

Physiological assessment to monitoring training and match load has been carried
out mainly under a linear perspective. Positional data to assess tactical behaviour
considers fundamentally the theory of the complex systems and non-linear dynam-
ics. Thus, an integrative approach allows a more holistic and extensive evaluation of
the performance as a multifactorial phenomenon. This chapter summarises the
theoretical concepts, mathematical models and methodological procedures to be
applied by researchers and practitioners in training and match settings in football.
The non-linear techniques reported more often in the literature were entropy,
relative phase, complex indexes, correlation matrixes, clustering methods,
frequency-based measures, fractals and multifractals. Correlation matrixes, clus-
tering methods and fractality have not yet been applied in an integrative perspec-
tive in football. Finally, using non-linear approaches to integrate physiological and
behavioural data remains a research-practice gap to be explored in the next years.
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