
Mobile Manipulator Robot:
Omni 3 Wheels Manipulator Robot

Youssef Mestiri

Work performed under the supervision of

Prof. Dr. José Gonçalves

Prof. Dr. José Lima

Dr. Mohamed Aymen Slim

Master in Industrial Engineering

2020-2021

Mobile Manipulator Robot:
Omni 3 Wheels Manipulator Robot

Master in Industrial EngineeringEscola Superior de Tecnologia e Gestão

Youssef Mestiri

2020-2021

Escola Superior de Tecnologia e de Gestão is not responsible for the opinions expressed

in this document.

To my dear father Afif and my dear mother Monia ,for their love, sacrifices and support

in the most difficult moments, which are at the origin of my success, may God keep and

protect them.

To my dear brother Elyes, for his continuous encouragement and support since my birth,

I wish you a life full of happiness and success.

To all the people who, actively or not, participated and helped in the accomplishment of

this work. It is with great pleasure, I dedicate this modest work to you

v

Acknowledgements

First of all, I would like to thank Allah, the Almighty and the Merciful, who has given

me the strength and patience to accomplish this humble work.

With the most sincere gratitude, I would like to thank my supervisors Prof. Dr. José

Gonçalves, Prof. Dr. José Lima and Dr. Mohamed Aymen Slim, for all their efforts,

their constant help and the trust they give me on a daily basis, without their active par-

ticipation and encouragement this work would not have been done. You have been an

undeniable source of motivation and working with you has been a real pleasure.

I would like to express my deepest gratitude to the members of the scientific commit-

tee for their kindness in reading this study and their interest in reviewing this document

and enriching it with their proposals.

I would like to thank Dr. Yassine Mkadem, for all his efforts and for contributing to

the success of the partnership between ULT and the IPB, which allowed us to carry out

this work in the IPB premises. I also take this opportunity to thank all the staff and

teaching team either at ULT and the IPB.

And finally a big thank you to my friends, Ekram Trabelsi, Seif Lazghab, Arezki Ab-

derrahim Chellal, Khalil Fraj, Yosri Tayechi , Majd Chellal, Hamza Khadraoui, Ameni

Nafkha, Issam Khorchani, Mohamed Abdel waheb Sethom and many others, for always

being around.

vi

Abstract

Robots are electromechanical machines having ability to perform tasks or actions on

some given electronic programming. While Omni directional mobile robots have been

popularly used in several applications since they can respond more quickly and it would

be capable of more sophistication. A robotic arm is a type of mechanical arm, usually

programmable, with similar functions to a human arm; the arm may be the sum to-

tal of the mechanism or may be part of a more complex robot. This work proposes to

design and create a model of a three-Wheeled Omnidirectional manipulator robot that

can move faster and transport materials and placed on a processing machine by com-

bine the two type of robots. Using an electrical, mechanical and power supply model

controlled by PID control and serial communication between two microcontrollers.

Keywords: three-Wheeled Omnidirectional manipulator robot, PID control,

power supply, serial communication

vii

Resumo

Os robôs são máquinas electromecânicas com capacidade para executar tarefas ou acções

em alguma programação electrónica dada. O robôs móveis Omni direccionais têm sido

popularmente empregados em várias aplicações porque podem responder mais rapida-

mente e seriam capazes de ser mais sofisticados. Também um braço robótico é um tipo

de braço mecânico, geralmente programável, com funções semelhantes às de um braço hu-

mano; o braço pode ser a soma total do mecanismo ou pode fazer parte de um robô mais

complexo. Este trabalho propõe-se conceber e criar um modelo de robô manipulador Om-

nidireccional de três rodas que pode mover-se mais rapidamente e transportar materiais

e ser colocado numa máquina de processamento através da fusão dos dois tipos de robôs.

Utilizando um modelo eléctrico, mecânico e de alimentação controlado por controlo PID e

comunicação em série entre dois microcontroladores.

Palavras-chave: robô manipulador omnidireccional de três rodas, controlo PID

, fonte de alimentação , comunicação em série

viii

Contents

1 Introduction 1

1.1 Theoretical Framework . 1

1.1.1 Objectives . 2

1.2 Document Structure . 2

2 State of the Art 3

2.1 The Evolution of Robotics in the Industry Sector 3

2.2 Description of Mobile Manipulation . 4

2.3 Evolution of Mobile Manipulation . 4

2.4 Classification of Mobile Manipulator . 5

2.4.1 Multiped . 5

2.4.2 Underwater Mobile Manipulators 6

2.4.3 Mobile Wheel Manipulators . 6

2.5 General System Composition . 7

2.5.1 Mobile Platform . 8

2.5.2 Robot Manipulator . 8

2.5.3 Sensors . 9

2.5.4 Tools . 9

2.6 Three-Wheeled Omnidirectional Robot . 10

2.6.1 Coordinates and Symbols . 11

2.7 Three-Wheeled Omnidirectional Kinematics 12

ix

2.8 The TinkerKit Braccio . 12

2.8.1 Characteristic . 12

2.8.2 Degrees of Freedom . 14

2.9 Robot Programming Language . 14

2.10 Conclusion . 16

3 System Design and Technical Study 17

3.1 Robot Design . 17

3.2 Power Supply Design . 18

3.3 Microcontroller . 19

3.4 Braccio Shield . 19

3.4.1 Battery Dimensioning . 19

3.4.2 Buck Converter . 19

3.5 Motor Control . 20

3.5.1 PID Algorithm . 20

3.6 H-Bridge DC Motor Control . 22

3.7 Programing with Interruption . 22

3.7.1 Type of Interruption . 23

3.8 Serial Communication Arduino Mega & Arduino Uno 24

3.9 Platform and Support Design . 24

3.9.1 Platform Design . 25

3.9.2 Support Design . 25

3.10 Software and Programming Tools . 26

3.10.1 CATIA V5R18 . 26

3.10.2 ARDUINO IDE . 26

3.10.3 Schematic and PCB Design Software 27

3.11 Conclusion . 27

4 Equipement Used and Financial Study 29

4.1 The Controller . 29

x

4.1.1 Arduino Mega 2560 . 29

4.1.2 Arduino Uno . 31

4.2 EMG30 Motor . 31

4.3 The Motor Driver L298N . 32

4.4 Sensors . 33

4.4.1 TCS3200 Color Sensor . 33

4.4.2 Infrared Reflective Sensor . 34

4.4.3 QTR-8RC Sensor . 35

4.5 Mechanical Parts . 36

4.5.1 Omni Wheels . 36

4.5.2 Motor Support . 37

4.6 Power Supply . 37

4.6.1 Lithium Batteries . 37

4.6.2 Buck Convert Step-Down . 38

4.7 Financial Study . 38

4.8 Conclusion . 39

5 Results and Discussion 41

5.1 Power Supply Test . 41

5.2 Final Structure . 42

5.3 Sensors Code and Practical Test . 42

5.3.1 QTR Sensor . 42

5.3.2 Color Sensor . 43

5.3.3 Infrared Reflective Sensor . 44

5.4 EMG30 Control Code . 46

5.5 Code . 47

5.5.1 Library Used . 47

5.5.2 Interruption . 48

5.5.3 Serial Communication . 48

xi

5.5.4 Pins Declaration . 49

5.6 Electronic Circuit . 50

5.6.1 Electrical Wiring . 50

5.6.2 Printed Circuit Design . 50

5.7 Conclusion . 51

6 General Conclusion and Future Work 53

A Code Arduino Uno A1

B Code Arduino Mega 2560 B1

C Technical Design C1

D Wiring Scheme D1

xii

List of Tables

2.1 Technical Specifications [16] . 13

2.2 Technical Characteristics of Servomotor SR 311 and SR 431-Dual Output

Servo . 14

4.1 Arduino Mega 2560 Specification . 30

4.2 EMG30 Color Connection . 32

4.3 Relationship Among S2, S3 and Filter Type 34

4.4 Specifications of Omni Wheels . 37

4.5 Robot Components Costs . 39

xiii

List of Figures

2.1 The Robotics Evolution in The Industrial sector [3] 4

2.2 Multiped Robot [7] . 5

2.3 Underwater Mobile Manipulators [8] . 6

2.4 Mobile Wheel Manipulators [9] . 6

2.5 System Composition . 7

2.6 Serial and Open Kinematic Chain. [11] . 9

2.7 The robot configuration [13] . 10

2.8 Omni-Wheel [12] . 10

2.9 Coordinate Frames . 11

2.10 Different Cpnfigurations of the Tinkerkit Braccio Robot [15] 13

2.11 Servomotor SR 311 and SR 431-Dual . 14

2.12 Degree of Freedom . 15

3.1 Robot Design . 18

3.2 Power Supply Design . 18

3.3 Buck Converter Schema . 20

3.4 PID Control Principle . 21

3.5 H-Bridge[21] . 22

3.6 Serial Communication Arduino Mega & Arduino Uno [23] 24

3.7 Mobile Robot 3D Design . 25

3.8 Platform Design . 25

3.9 Support Design . 26

xiv

4.1 Arduino Uno . 30

4.2 Arduino Uno . 31

4.3 EMG30 Motor . 32

4.4 Motor Driver L298N . 33

4.5 The Functional Block Diagram . 34

4.6 Infrared Reflective Sensor . 35

4.7 QTR-8RC Sensor[29] . 35

4.8 Omni Wheels . 36

4.9 Motor Support . 37

4.10 Lithium Batteries . 38

4.11 Buck Convert Step-Down . 38

5.1 Buck Convert Test . 41

5.2 Robot Structure . 42

5.3 Square Wave Corresponding to Red and Blue Color 44

5.4 Test of Infrared Reflective . 44

5.5 PID Measurment When The Motor Get Started 46

5.6 PID Measurment When The Motor Shutdown. 46

5.7 Pins Declaration . 49

5.8 Electrical Wiring . 50

5.9 Robot Structure . 51

D.1 Schematic diagram of the electronic circuit D1

D.2 PCB Design Diagram - Top Layer . D2

D.3 PCB Design Diagram - Bottom Layer . D3

xv

Acronyms

3D 3 Dimensions. 2, 24

A Ampere. 38

AC Alternate Current. 29

CAD Computer Aided Design. 17, 26

CAE Computer-Aided Engineering. 26

CAM Computer-Aided Manufacturing. 26

CATIA Computer-Aided Three-Dimensional Interactive Application. 26

DC Direct Current. 30

EOD Explosive Ordenance Disposal. 4

GaAs Gallium arsenide. 34

PCB Printed Circuit Board. 27

PID Proportional Integral Derivative. 20

PLM Product Management Lifecycle. 26

PN P-type cilicon, N-type cilicon. 34

xvi

ROV Remotely Operated Vehicles. 6

TWOMR Three-Wheeled Omnidirectional Mobile Robot. 10

U.S. United States. 4

UART Universal Asynchronous Receiver/Transmitter. 24

V Volt. 18, 24

xvii

xviii

Chapter 1

Introduction

1.1 Theoretical Framework

Mobile manipulation is nowadays a widespread term to refer to robot systems built from

a robotic manipulator arm mounted on a mobile platform. Such systems combine the

advantages of mobile platforms and robotic manipulator arms and reduce their draw-

backs. For instance, the mobile platform extends the workspace of the arm, whereas an

arm offers several operational functionalities [1]. A mobile manipulation system offers

a dual advantage of mobility offered by a mobile platform and dexterity offered by the

manipulator. The mobile platform offers almost workspace to the manipulator. The extra

degrees of freedom of the mobile platform also provide user with more choices. However,

the operation of such a system is challenging because of the many degrees of freedom and

the unstructured environment that it performs in. General system composition:

• Mobile platform

• Robot manipulator

• Sensors

• Tooling

1

1.1.1 Objectives

The work presented in this thesis has several objectives mainly:

• design a mechanical, electrical and power supply to mobile manipulator robot

• Create the mechanical parts

• Print with the mechanical parts 3 Dimensions (3D) printer

• Assemble robot parts (motors, sensors, motor griver.)

• Coding the robot usig PID controller, serial Communication and interruption

• Testing

All the work and the test were made at LCAR laboratory using measuring, electronics

and mechanical devices.

1.2 Document Structure

This document is divided into 5 sections, using the following structure. Section 2 promotes

the work already done in this field and highlights the objectives intended throught this

work. Section 3 describes the system design and technical study with the relation between

all parts. Section 4 present all equipment used and a financial study. Section 5 provides

the results and some discussion. Finally, Section 6 draws together the main ideas described

in this document and outlines future work to further improve this work.

2

Chapter 2

State of the Art

Robots are developing rapidly due to technological advances and the increased need for

mobility. They are taking on increasingly complex forms, from huge stationary robots

to small devices that can move around, perform many difficult tasks, and move freely in

factories, offices and even homes. A mobile manipulator is a robotic system that consists

of a robotic manipulator arm attached to a movable platform. These systems combine the

benefits of mobile platforms and robotic manipulator arms while trying to minimize their

disadvantages. The mobile platform, for example, expands the arm’s workspace, whereas

an arm has numerous operational functions. This chapter gives a general overview on the

history of robotics in the world. Then, it presents the new techniques used and identifies

the tasks to be performed in the functional analysis part. Finally, it explains the issues

that led to the elaboration of this project as well as the specifications.

2.1 The Evolution of Robotics in the Industry Sector

While productivity, accuracy, repetition and speed have been at focus of research in

robotics for years, other criteria based on industrial transformation have become of equal

importance. Modern robots must meet criteria such as flexibility, adaptability, precision,

and autonomy of action in practically every industry. These characteristics reveal mobile

robots and related automation technology play a significant role in the development and

3

advancement of industry. However, it is not only the industrial sector that benefits from

these developments [2], being shown in the figure below that the world supply chain also

improves with the use of industrial robots

Figure 2.1: The Robotics Evolution in The Industrial sector [3]

2.2 Description of Mobile Manipulation

A mobile manipulation system benefits from the mobility of a mobile platform and the

dexterity of the manipulator. The manipulator has increased workspace on the mobile

platform. The additional degrees of freedom offered by the mobile platform provide users

more options. However, due of the multiple degrees of freedom and the unstructured

environment in which it operates, the operation of such a system is difficult.

2.3 Evolution of Mobile Manipulation

Since the 1960’s, robotic arms have been transforming the way companies do business.

Although they were big, bulky, and highly specialized, early industrial robotic arms were

able to automate repetitive tasks at a rate of three times the speed of humans[4]. Several

decades later, robotic arms are not only smaller and sleeker, but also able to mimic the way

humans think, react, and adapt due to the improved controlling algorithms. Although

mobile robots have existed for decades, it was the United States (U.S.) Military that

widely adopted and deployed unmanned ground vehicles with manipulation capability to

keep troops safe while performing Explosive Ordenance Disposal (EOD) missions during

4

the wars in Iraq and Afghanistan[5]. Considered cutting-edge at the time, these simple

robotic arms with 6 degrees of freedom would be considered crude by today’s standards,

especially since modern robot arms can offer more dexterity than a human arm [6].

2.4 Classification of Mobile Manipulator

The concept of the mobile manipulation consists of associating, in the same system, one

or more means of locomotion with one or more means of manipulation. The means of

locomotion provide the system with a working space limited mainly by its energy auton-

omy. The means of manipulation ensure that the system is able to move and manipulation

capabilities. Among the systems that currently exist we can mention three main families.

2.4.1 Multiped

As the name suggests, multi-legged mobile manipulators can have one or more legs. Hu-

manoids are the most popular representatives of this type of manipulator as it can be seen

in Figure 2.2, both with the general public and with researchers, because of the challenge

they represent. From the point of view of manipulation, their possible uses are limited

from an industrial point of view and their main outlet is service robotics.

Figure 2.2: Multiped Robot [7]

5

2.4.2 Underwater Mobile Manipulators

Underwater mobile manipulators are nowadays the most widely used mobile manipulators

for work purposes. Often remotely operated, they are called Remotely Operated Vehi-

cles (ROV) and allow access to maritime areas not accessible to these provide sampling,

manipulation, measurement and data acquisition capabilities that can be adapted to the

missions required missions. An example is the Victor 6000 as it can be seen in Figure 2.3

Figure 2.3: Underwater Mobile Manipulators [8]

2.4.3 Mobile Wheel Manipulators

Wheeled mobile manipulators figure [7] are more common than those presented. This is

due particularly due to two facts:

• Their relatively simple mechanical design

• The natural suitability of their means of locomotion to a wide range of terrains.

Figure 2.4: Mobile Wheel Manipulators [9]

6

2.5 General System Composition

Mobile manipulator is generally composed by 4 parts, as it can be seen in Figure 2.5:

• Mobile platform is a machine controlled by software that use sensors and other

technology to identify its surroundings and move around its environment.

• Robot manipulator is a device used to manipulate materials without direct physi-

cal contact by the operator. They have been used in diverse range of applications

including welding automation, robotic surgery and in space. It is an arm-like mech-

anism that consists of a series of segments, usually sliding or jointed, which grasp

and move objects with a number of degrees of freedom.

• Vision system is a subarea of robotics science intended to give robots sensing capa-

bilities, so that robots are more human-like. Robotic sensing mainly gives robots the

ability to see, touch, hear and move and uses algorithms that require environmental

feedback.

• Tooling aims to manipulate objects and is designed according to the needs of ma-

nipulation.

Figure 2.5: System Composition

7

2.5.1 Mobile Platform

A mobile robot is a mechanical, electronic and computer system that physically acts on

its environment to achieve an assigned objective. This machine is versatile and capable of

adapting to certain variations in its operating conditions. It has equipment that enable

some functions of perception, decision and action. Thus, the robot should be able to

perform multiple tasks in different ways and perform its task correctly, even if it encounters

new and unexpected situations [10].

The name Mobile Robot includes all types of robots that have the ability to move, which

is the common characteristic between them. The difference lies in the locomotion system,

which depends on the area of use of the robot, by which the robot will achieve this

ability of movement. Wheeld traction system is the most commonly applied mechanical

structure. Depending on the arrangement and dimensions of the wheels, this technique

ensures movement in all directions with high acceleration and speed.

The Characteristics of mobile robotics

• Perception of the environment thanks to sensors

• Capacity to adapt in the event of changes in the environment by overcomes obstacles

• Autonomous navigation, planning and action

• Task-based software/task-based programming

2.5.2 Robot Manipulator

The mechanical structure of robot manipulator consists of a sequence of rigid bodies

(links) interconnected by means of articulations (joints); a manipulator is characterized

by an arm that ensures mobility and an end-effector that performs the task required of

the robot. The fundamental structure of a manipulator is the serial or open kinematic

chain. From a topoligical viewpoint, a kinematic chain is termed open when there is only

one sequence of links connecting the two ends of the chain. Alternatively, a manipulator

8

contains a closed kinematic chain when a sequence of links forms a loop.

Figure 2.6: Serial and Open Kinematic Chain. [11]

2.5.3 Sensors

Sensors are the sensory parts of a robot. Some are fragile and must be protected, others on

the contrary must be able to absorb shocks. The simpler ones can be directly connected

to the control center, like switches. The other types require a small adapter interface,

such as infrared or ultrasonic sensors. Other more sophisticated types require a special

card, such as cameras. There are two types of sensors:

• The external sensors: These are exteroceptive sensors, delivering information related

to the environment or to the interactions between the robot and its environment.Such as

distance sensors.

• The internal sensors : These are the sensors that provide information on the internal

state of the robot: wheel position or speed and battery charge sensors.

2.5.4 Tools

Final actuators whose purpose is to perform work on a part instead of picking up on them.

9

2.6 Three-Wheeled Omnidirectional Robot

Three-Wheeled Omnidirectional Mobile Robot (TWOMR), is a holonomic robot that can

move in translation and rotation simultaneously and independently [12]. The robot is

equipped with three omni-wheels that are evenly spaced around its circumference at 120

degrees. Each omni-wheel is directly connected to its motor shaft, allowing the motor

and the wheel to rotate on the same axle. The robot is able to make in translation and

rotation simultaneously and independently that robots on standard wheels cannot due to

individual control of each motor’s speed. Figure 2.7 shows a representation for a 3 wheels

robot.

Figure 2.7: The robot configuration [13]

Figure 2.8 shows an example of an omni-wheel where the wheel is equipped with many

rollers to enable it to move sideways perpendicular to the normal direction of rolling. An

omnidirectional drive system requires a minimum of three omni-wheels.

Figure 2.8: Omni-Wheel [12]

10

2.6.1 Coordinates and Symbols

Figure 2.9 depicts the three-wheel robot’s configuration, as well as all of the system’s

axes, pertinent forces, and velocities. A 120-degree angle separates the wheels.

Figure 2.9: Coordinate Frames
[14]

notation used

x, y, - Robot’s position (x,y) and angle to the defined front of robot

d [m] - Distance between wheels and center robot

v0, v1, v2 [m/s] - Wheels linear velocity

0, 1, 2 [rad/s] - Wheels angular velocity

f0, f1, f2 [N] - Wheels traction force

T0, T1, T2 [N · m] - Wheels traction torque

v, vn[m/s] - Robot linear velocity

[rad/s] - Robot angular velocity

Fv, Fvn [N] - Robot traction force along v and vn

T [N · m] - Robot torque

11

2.7 Three-Wheeled Omnidirectional Kinematics

Vx(t)=dx(t)/dt, vy(t)=dy(t)/dt, and (t)=d(t)/dt are the kinematic models of an omni-

directional robot positioned at (x, y,) [14] Figure 2.9 .The linearvelocities vxand vyon

the static axis may be converted to linearvelocitiesv and vn on the robot local axis using

Equation 1.

Xr =

v(t)

V n(t)

W (t)

 (2.1)

X0 =

vx(t)

V y(t)

W (t)

 (2.2)

The relationship between the wheel velocities and therobot velocities is:

v0(t)

V 1(t)

V 2(t)

 =

−sin(π/3) cos(π/3) d

0 −1 d

sin(π/3) cos(π/3) d

 .

v(t)

V n(t)

ω(t)

 (2.3)

2.8 The TinkerKit Braccio

The TinkerKit Braccio is a arm assembly kit composed of plastic parts and 6 servomotors,

which are controlled by a Shield designed to overlap on an Arduino development board.

The current estimated price is currently about 199 e r.

2.8.1 Characteristic

One of the most notable features is that its structure is not unique, so it can be adapted

to different applications as shown in this Figure 2.10

Concerning the more technical specifications, they are summarized in table 2.1, which

presents the most general characteristics, and then in table 2.2 with the details of the

12

Figure 2.10: Different Cpnfigurations of the Tinkerkit Braccio Robot [15]

servomotors available in the Tinkerkit Arduino Robot kit. This servo is controlled via

Characteristics Details
Weight 0.792 Kg

Operating distance 80 cm
Maximum Height 52 cm

Base width 14 cm
Clamp width 9cm
Cable length 40 cm
Load capacity 0.15 kg / 32cm

Load capacity in minimum configuration 0.4
power supply 5V / 5A

Shield consumption 0.02W
Maximum Shield Current From M1 to M4 1.1A

From M5 to M6 0.75A
Servomotors 2x SR 311 + 4x SR431

PCB Shield Measurements 6,858x5,334 cm

Table 2.1: Technical Specifications [16]

analog signal(PWM), the range of signal impulse:from 0.5ms to 2.5ms. A Rotation range

:from 0to 180

13

Characteristics Servomotor SR 311 servomotor SR 431-Dual
Control Signal Analog PWM Analog PWM
Torsional stress 4,8V:3,1kg.cm 4,8V:12,2kg.cm

6v :3,8 kg.cm 6v :14,5 kg.cm
Velocitat 4,8V:0,14s/60o 4,8V:0,20s/60o

6v :0,12s/60o 6v :0,18s/60o

Rang of rotation 180o 180o

Dimensions 31,13 x16,5x28,6 mm 42,0x20,5x39,5
weight 0,027kg 0,062kg
Speed 0.14 sec/60 0.20 sec/60
Torque 3kg.cm 12.2kg.cm

Table 2.2: Technical Characteristics of Servomotor SR 311 and SR 431-Dual Output Servo
[8]

Figure 2.11: Servomotor SR 311 and SR 431-Dual

2.8.2 Degrees of Freedom

The number of joints of a manipulator arm is also referred to as the degree of freedom.

Braccio Robot have between 4 and 5 degrees of freedom as shown in Figure 2.12.

2.9 Robot Programming Language

Intelligent robots must be capable of action in reasonably complicated domains with some

degree of autonomy. This requires adaptivity to a dynamic environment, ability to plan

and also speed of execution. In the case of helper robots, or domestic robots, the ability

to adapt to the special needs of their users is crucial. The problem addressed here is

one of how a user could instruct the robot to perform tasks which manufacturers cannot

14

Figure 2.12: Degree of Freedom
[17]

completely program in advance. [6].

1. C: is an imperative programming language designed for system programming.

Invented in the early 1970s with UNIX, C has become one of the most widely used

languages. Many modern read-only languages such as C++, Java and PHP take up

aspects of C. However, professionals place C language at the top of the list for several

reasons: it is simple and powerful.

2. C++: in the 80’s B. Stroustrup proposed to call C++ a new language, designed

not as a replacement but as an improvement of the C language. Like C, C++ takes

a very machine-like view. It was primarily intended for writing operating systems but

its characteristics have opened up other perspectives. It consists of very explicit, short

instructions, whose execution time can be predicted in advance, when the program is

written.

3. Java: Java is a high-level computer programming language. High-level languages,

such as Java, allow programmers to write instructions using commands in English. Each

instruction in a high-level language corresponds to many instructions in the language of

15

the machine.

4. The assembler: The assembler language is very close to the machine language (i.e.

the language used by the computer: information in binary, i.e. 0s and 1s). It therefore

depends strongly on the type of processor. Thus there is not one assembler language, but

one assembler language per type of processor [18].

2.10 Conclusion

After the presentation of the history of robotics in the world, the Description of Mobile

Manipulation and the techniques used, in the next chapter, it will presented the design

of the system, the technical study and the equipment used for the proposed robot.

16

Chapter 3

System Design and Technical Study

The technical study of a project is a design expertise that serves as a preliminary study

for the production of a prototype that meets the set expectations and budget. It mostly

comprises of displaying the robot’s information and technical qualities. The design of a

product is a complex task that requires the use of different skills from various areas. The

three-wheel omnidirectional manipulator robot is the name of our project. This chapter

aims to describe first the operating principle adopted for the system, then to describe the

relationships between the various electronic, and finally the mechanical Computer Aided

Design (CAD) .

3.1 Robot Design

The robot is equipped with three omni-wheels that are evenly spaced around its circum-

ference at 120◦. In the center of the robot there is a robotic arm with a certain number

of degrees of freedom, which is connected to the moving part. The Figure 3.1 attempts

to show the different relationships between the components of the robot.

17

Figure 3.1: Robot Design

3.2 Power Supply Design

To power the main control system of power supply and motor drive power supply figure

3.2, the moving platform of choice was 12 Volt (V) lithium-ion battery as a power source,

main control board needs 5V and for the sensors 3.3V power supply, and the power needed

is small, so to reduce power consumption, the Buck step-down circuit is powered down to

5V and 3.3V. Because the motor drive requires a 12 V power source and a high amount

of power.

Figure 3.2: Power Supply Design

18

3.3 Microcontroller

The two microcontrollers Arduino Mega and Arduino Uno can be programmed to analyze

and produce electrical signals, so as to perform a wide range of tasks such as home

automation (control of domestic appliances, lighting, heating ...), the control of a robot

and embedded computing. It is a platform based on a input/output interface. The master

microcontroller is the central element of the system, it is one of the most important because

it contains the code to be executed, but also it depends on all the other components like

the sensors to receive the external information

3.4 Braccio Shield

The included Braccio shield connects to an Arduino or compatible board and has Tin-

kerKit connectors for easy connection of servo motors.

3.4.1 Battery Dimensioning

This model’s total storable power varies depending on the capacity of the cells fitted. The

use of three 2200 mAh lithium cells provides the system a battery capacity of 6600 mAh.

The greatest current that can be given is 2 A, allowing for a power output of up to 24 W,

which is adequate to power the robot.

3.4.2 Buck Converter

Buck converters transform a greater input voltage into a stabilized lower output voltage

figure [19], which is rather impressive3.3. On the other hand, correct implementation of

the controller, which is extremely difficult to parameterize, is required for this regulator.

Incorrect control can result in interference, radio frequency interference, and harmonics,

all of which can impair the proper operation of electronic components and shorten their

service life.

19

Figure 3.3: Buck Converter Schema
[20]

3.5 Motor Control

The key to ensuring that the omnidirectional mobile platform moves in the desired di-

rection is precise control of the motor speed. Motor control can be divided into two

categories:

• The open-loop control means that the main controller is provided direction and

speed without requiring to know the motor variables state.

• Closed-loop systems are considered as fully automatic control system because it is

designed in a way that the achieved output is automatically compared with the

reference input to have the required output, so we must use a closed-loop control

method for the motor output speed before using the Proportional Integral Deriva-

tive (PID) algorithm to adjust the input speed to the actual predicted speed.

3.5.1 PID Algorithm

The input of PID controller figure3.4 is the error e(t) between the given output value

r(t) and the actual output value y(t), and the input error e(t).The input error can be

20

expressed as:

e(t) = r(t) − y(t) (3.1)

The mathematical expression of PID algorithm is:

u(t) = Kp · e(t) +Ki ·
∫
t · e(t) +Kd · de(t)

dt
(3.2)

where,

• Kp :Represent the proportion coefficient

• Ki :Represent the integral coefficient

• Kd :Represent the differential coefficient

Figure 3.4: PID Control Principle

A discrete PID algorithm formula needs to be obtained:

u[k] = u[k− 1] +Kp · [e[k] − e[k− 1]] +Ki · e[k] +Kd · [e[k] − 2 · e[k− 1] + e[k− 2]] (3.3)

where,

• u[k] : represents the output value at the first k sampling time.

21

• u[k-1] : represents the output value at the first k-1 sampling time.

• e[k] : the error values of input and output at the current sampling time.

• e[k-1] : the error value of input and output at the last sampling time.

3.6 H-Bridge DC Motor Control

For controlling the rotation direction, we just need to invert the direction of the current

flow through the motor, and the most common method of doing that is by using an H-

Bridge. An H-Bridge circuit contains four switching elements figure 3.5, transistors or

MOSFETs, with the motor at the center forming an H-like configuration. By activating

two particular switches at the same time we can change the direction of the current flow,

thus change the rotation direction of the motor.

Figure 3.5: H-Bridge[21]

3.7 Programing with Interruption

Interrupts are useful in microcontroller applications for making things happen automati-

cally and for resolving timing issues. Reading a rotary encoder or monitoring user input

are two examples of interrupt-worthy operations. To ensure that a program always cap-

tured the pulses from a rotary encoder and never missed a pulse, the software would have

22

to constantly poll the sensor lines for the encoder in order to catch pulses as they occurred,

making it very difficult to design a program to do anything else. Other sensors, such as

a sound sensor attempting to detect a click or an infrared slot sensor (photo-interrupter)

attempting to detect a coin drop, have a similar interface dynamic. In all of these cases,

using an interrupt allows the microcontroller to focus on other tasks while still receiving

input [22].

3.7.1 Type of Interruption

Interrupts significantly improve the use of microcontrollers. Interrupts cause programs

to react to the microcontrollers’ hardware, which could be a reaction from the circuit

environment outside of the microcontroller. An interrupt is a circumstance that forces

the microprocessor to operate on a different task for a short period of time before returning

to its original duty.

Internal interruption

An internal interrupt is a sort of interrupt that occurs as a result of a specific event within

the processor, such as a division by zero error, which causes an internal interrupt known as

the divide by a zero interrupt. In arduino, an interrupt is a signal that tells the processor

to halt what it’s doing right now and handle some high-priority work. Any void function

can be used as an interrupt handler. It will be invoked anytime the interrupt signal is

triggered if it is written one and attached to an interrupt.

External interruption

The arduino mega 2560 has six external interrupts for serving external devices. Both of

these interrupts have a low active level. An external interrupt alerts the microcontroller

to the need for routine service on an external device. External interrupt is a process

in which the Arduino suspends its regular work or loops and switches to the interrupt

function to perform the task assigned to it. Digital pins 2, 3, 18, 19, 20, and 21 are the

23

ones to look for [19]. This interrupt model has been used quite a few times in our project.

3.8 Serial Communication Arduino Mega & Arduino

Uno

In the Arduino ecosystem, serial communication is the most commonly utilized way. It’s

also known as Universal Asynchronous Receiver/Transmitter (UART), and it’s an asyn-

chronous link, as the name suggests. It can be used to connect an Arduino to a computer

or other electronic devices. When the two devices are connected, the data is also shown

on the computer via this port.from the Arduino Mega is connected with the Vin pin of the

Arduino Uno. In the serial communication we will power up the Arduino Uno using the

Arduino Mega’s 5 V and the grounds of both the Arduino boards are connected together.

Figure 3.6: Serial Communication Arduino Mega & Arduino Uno [23]

3.9 Platform and Support Design

After having known the operating system and our system components. We made the

design of our mobile part by respecting the standards then we printed it in 3D.

24

Figure 3.7: Mobile Robot 3D Design

3.9.1 Platform Design

The platform has well determined dimensions so that we can print it in plastic 2 times

for the 2 parts (base part and top part) with 3D printer to support the weight of all the

components. One for Motors, Motor Driver and Sensors the second for the arm.

Figure 3.8: Platform Design

3.9.2 Support Design

The supports figure3.9 are the most delicate parts because we are limited to a very specific

space and they have to support the weight of our robotic arm more than that Regarding

the top, we should avoid to have planar surfaces and It would be better if the convection

between the pillar and the top should be more smooth.

25

Figure 3.9: Support Design

3.10 Software and Programming Tools

Two software packages are mainly used for this project. CATIA V5R18, where the me-

chanical design was done in 2D and 3D, and ARDUINO IDE to write and compile the

algorithm via an Arduino board.

3.10.1 CATIA V5R18

Computer-Aided Three-Dimensional Interactive Application (CATIA) is a multi-platform

software suite for CAD, Computer-Aided Manufacturing (CAM), Computer-Aided Engi-

neering (CAE), Product Management Lifecycle (PLM) and 3D, developed by the French

company Dassault Systèmes.

3.10.2 ARDUINO IDE

The Arduino IDE is an open source software for Arduino, which uses an abbreviation of the

C/C++ language, with many libraries already implemented or that can be implemented,

it allows easy writing of codes and implementation [24]. This software can be used in any

Arduino board.

26

3.10.3 Schematic and PCB Design Software

Various software packages provide the possibility of designing electronic circuits, such as

Fritzing, ISIS Proteuse, EASY EDA or Eagle, all of which have a large library containing

hundreds or thousands of components. It is possible to make the equivalent circuit first,

simulate it according to the software, and then make a Printed Circuit Board (PCB)

equivalent to the designed circuit. Making a schematic is very useful because it allows

you to detect possible problems in the design and to think more clearly about other alter-

natives. As the project progressed, a schematic was developed to meet the requirements

of our project.

3.11 Conclusion

The methods presented in this chapter are the most used in our system and in our pro-

gramming code because we have guaranteed a well determined power supply system, a

motor control in a closed loop and it was applied an interruption.

The master microcontroller, which is the central element of the system, is one of the most

important, but it depends on all the other components, meaning that if one of them fails,

the whole system is at risk. Each electronic component, when mounted in this robot

circuit, according to a defined installation principle, performs a specific function.

27

28

Chapter 4

Equipement Used and Financial

Study

In this chapter we are going to describe the different characteristics of the materials used

in our project, the instructions provided by the manufacturer for each of them and an

economic and financial analysis of our robot is made at the end.

4.1 The Controller

A controller is a system that looks like a computer: it has a memory, a processor. Mi-

crocontrollers have reduced performance, but are small in size and consume little power,

making them indispensable in any embedded electronics solution.

4.1.1 Arduino Mega 2560

The ATmega2560 is the basis for the Arduino Mega 2560 microcontroller board. It con-

tains 54 digital input/output pins, 16 analog inputs, 4 UARTs (hardware serial ports), a

16 MHz crystal oscillator, a USB connection, a power connector, an ICSP header, and a

reset button. It comes with everything you need to get started with the microcontroller;

simply plug it into a computer with a USB connection or power it with an Alternate

29

Controller Atmega 2560
Operating Voltage 5V

Input Voltage 7V-12V
USB Port Yes

DC Power Jack Yes
Current Rating Per I/O Pin 20mA
Current Draw from Chip 50mA

Analog Pins 16 (Out of Digital I/O Pins)
Flash Memory 256KB

SRAM 8KB
EEPROM 4KB

Crystal Oscillator 16MHz
LED Yes/Attached with Digital Pin 13
Wi-Fi No

Shield Compatibility Yes

Table 4.1: Arduino Mega 2560 Specification
[25]

Current (AC) to Direct Current (DC) converter or battery to get started. Most shields

created for the Uno and previous boards Duemilanove or Diecimila are compatible with

the Mega 2560 board.

Figure 4.1: Arduino Uno

30

4.1.2 Arduino Uno

The Arduino Uno is a microcontroller board that uses the ATmega328P microprocessor.

There are 14 digital input/output pins (six of which may be used as PWM outputs), six

analog inputs, a 16 MHz ceramic resonator, a USB connection, a power connector, an

ICSP header, and a reset button on the board. It comes with everything you’ll need to

get started with the microcontroller. It has the same specifications as the PWM Digital

I/O, but fewer analog input pins [25]

Figure 4.2: Arduino Uno

4.2 EMG30 Motor

The EMG30 assembles a 12 V motor with an encoders with 30:1 reduction gearbox. It

is excellent for small or medium robotic application, providing cost-effective drive and

feedback for the user. It also has a conventional noise suppression capacitor across the

motor windings. The EMG30 is supplied with a six-way JST connector, the connectionsare

given in table4.2. These motors provide a wheel revolution 200 rpm offload when supplied

12 V power supply. About input and output of motors, the input, is voltage given by

the L298N motor driver and the output is shaft angular velocity of motor. A DC motor

31

Red Motor power +
Black Motor power -
Green GND encoder
Brown Hall sensor Vcc
Blue A output encoder
Purple B encoder output

Shield Compatibility Yes

Table 4.2: EMG30 Color Connection

converts direct electrical power into mechanical power, to do this it has a mechanical part,

the rotor, and an electrical part, the armature.

Figure 4.3: EMG30 Motor

4.3 The Motor Driver L298N

The L298N is a dual H-Bridge motor driver that allows for simultaneous speed and di-

rection control of two DC motors. DC motors with voltages ranging from 5 to 35V and

peak currents of up to 2A can be powered by the module. Two screw terminal blocks for

motors A and B, as well as a screw terminal block for the Ground pin, motor VCC, and a

5V pin that may be used as an input or output, are included in the module figure4.4. This

is determined by the voltage applied to the motor’s VCC. The module has an integrated

5V regulator that can be turned on or off using a jumper. If the motor supply voltage is

more than 12V, the 5V regulator can be enabled, and the 5V pin can be utilized as an

32

output.

Figure 4.4: Motor Driver L298N
[26]

4.4 Sensors

A sensor is a device, module, machine, or subsystem that detects events or changes in

its surroundings and transmits the data to other electronics, most commonly a computer

processor. Sensors are always used in conjunction with other electronics.

4.4.1 TCS3200 Color Sensor

The functional block diagram of TCS3200D is shown in the figure 4.5.

TCS3200D has four different types of filters: red, green, blue, and clear (no filter). The

types of filters employed by the device (blue, green, red, or clear) may be chosen by two

logic inputs, S2 and S3[24], when the sensor is irradiated by a beam of light [27]. The

table 4.3 illustrates the relationship among S2, S3 and filter type:

33

Figure 4.5: The Functional Block Diagram

S2 S3 Filter type
L L Red
L H Blue
H L Clear (no filter)
H H Green

Table 4.3: Relationship Among S2, S3 and Filter Type

4.4.2 Infrared Reflective Sensor

There are two pieces to an infrared sensor: an infrared transmitter and an infrared re-

ceiver. The infrared transmitter is made up of a luminophor made up of an infrared LED

array and a P-type cilicon, N-type cilicon (PN) junction made up of a particular material

with high infrared radiation efficiency, often Gallium arsenide (GaAs)). When a current

is injected into the PN junction, a forward bias voltage can activate a source of infrared

light with a center wavelength range of 830nm-950nm. The strength of the infrared light

stimulated 4.6 is determined by the current injected. If the injected current exceeds the

maximum rating, however, the strength of the infrared light may decrease as the cur-

rent rises. Semiconductors that transform infrared light impulses into electrical signals

are known as infrared receivers. The heart of it is a PN junction made of a particular

34

material. It has a different PN junction than a general-purpose diode, which allows it to

receive more infrared light. As the intensity of the infrared light rises, more current may

be generated [28].

Figure 4.6: Infrared Reflective Sensor

4.4.3 QTR-8RC Sensor

With 8 IR LED/photo-transistor pairs installed on a 0.375" pitch figure4.7, this sensor

module is ideal for a line-following robot figure. A MOSFET allows the LEDs to be turned

off for extra sensing or power-savings choices, and pairs of LEDs are placed in series to

cut current usage in half. Each sensor has a digital I/O output that can be measured.

Figure 4.7: QTR-8RC Sensor[29]

35

4.5 Mechanical Parts

4.5.1 Omni Wheels

Omni wheels are used by several robots to allow them to move in all directions. Omni

wheels are also used as powered casters for differential drive robots to help them turn more

quickly. This design, however, is not widely utilized since it causes a vehicle handling issue.

Omni wheels are based on the idea of a regular wheel with the capacity to ’slip’ or roll

sideways figure4.8. So, even though there is no drive in the lateral direction, the wheel can

nevertheless move in that direction. Many smaller wheels or cylinders are placed on the

edges of the main wheel to achieve this. The wheels are also known as Swedish 90 Wheels

because of the angle of the smaller wheels in relation to the main wheel. Two wheels are

frequently coupled to make a wheel with a more complete surface to avoid uncomfortable

circumstances where a roller may not be in the right location and to minimize friction in

lateral movement [30]. Omni-directional wheels are unique, since they can freely roll in

both directions. Depending on the situation, they can either roll like normal wheels or

sideways. It is possible to transform a non-holonomic robot into a holonomic robot using

omni-directional wheels.

Figure 4.8: Omni Wheels

36

Specifications Details
Diameter of the wheel 58 mm
Diameter of a bearing 13 mm

Load capacity 3Kg
Material Nylon and plastic center

Table 4.4: Specifications of Omni Wheels

4.5.2 Motor Support

The motor support is shown in the figure4.9 providing easy mounting of the EMG30 to

the robot. The bracket is made from a 2 mm thick strong aluminum and finished in blue

color .

Figure 4.9: Motor Support

4.6 Power Supply

4.6.1 Lithium Batteries

Lithium batteries feature a metallic lithium anode and are used as primary batteries.

Lithium-metal batteries are another name for these types of batteries. Their high charge

density and expensive cost per unit set them apart from other batteries. Lithium cells

can produce voltages ranging from 1.5 V to 3.7 V, depending on the design and chem-

ical compounds utilized, in this project we used cylindrical lithium 5.2 cells because its

ideal for robotics applications where space is limited and weight is in overall performance.

37

Figure 4.10: Lithium Batteries

4.6.2 Buck Convert Step-Down

The LM2596 DC-DC buck convert step-down 4.11 power module features a high-precision

potentiometer and is capable of driving a load up to 3A with great efficiency. It can be

used with the aduino UNO, as well as other mainboards and basic modules.

Figure 4.11: Buck Convert Step-Down

• Input voltage: 4.5 - 35V

• Output voltage: 1.5 - 35V

• Output current: Rated current is 2Ampere (A), maximum 3A.

4.7 Financial Study

The overall cost of the project is assessed in this study. It includes the cost of acquiring the

various electronic components but excludes the cost of delivery. This table summarises the

cost of the different components used. A thorough financial analysis will reveal whether

the proposal is feasible and marketable, as well as whether it can be offered to potential

38

Components Unity Cost Qty Price
(EUR/Unit) (Units) (EUR)

Arduino Mega 35 1 35
Arduino Uno 20 1 20

EMG30 40.53 3 121.53
Motors Driver L298N 8.85 2 17.7

Color Sensor 8.9 1 8.9
Infrared Reflective Sensor 3.5 1 3.5

QTR-8RC Sensor 11.32 1 11.32
Omni Wheels 17.9 3 53.97
Motor Support 4.57 3 13.71

Lithium batteries 5.29 3 15.87
Buck Convert 2.46 1 2.46

TINKERKIT BRACCIO 247.23 1 247.23

Table 4.5: Robot Components Costs

investors in order to raise further funds for the prototype’s industrial production. The

overall bill for Robot components is estimated to be 551.19 euros. For a prototype this

price is very high but we can reduce it by changing the kit braccio for another arm made

by a 3D printer in the laboratory that allows us to lower more than 200 euros.

4.8 Conclusion

Knowing the various characteristics of these electronic components allows one to deter-

mine, on the one hand, the tension and current thresholds that they can support, but

also, more importantly, their power consumption. Indeed, knowing the total consumption

of the product is an important aspect of prototype design that should not be overlooked,

and allows one to improve it later. According to the financial analysis, the design price is

551.19 Euros, which is now a high price in comparison to similar products.

39

40

Chapter 5

Results and Discussion

A crucial part of project design is implementation and realization. This step entails the

concretization of the developed conceptual model, allowing for model confirmation on the

one hand, as well as the discovery of previously undetected issues.

5.1 Power Supply Test

The power supply role is to provide the voltage for all the electrical element but the robot

need two types of voltage to supply the circuit (12V for the motors and 5V for the Arduino

cards and sensors). On the other hand, our battery provides a voltage of 12V so we used

the buck step-down to lower the voltage to 5V. Figure 5.1 shows the result of the voltage

after using the Buck converter

Figure 5.1: Buck Convert Test

41

5.2 Final Structure

For this robot, we have made the mechanical structure in plastic for all the parts of the

mechanical structure. This material has some interesting properties: on the one hand,

it is light and has an acceptable density and rigidity. On the other hand, it is available

and has the ability to be machined well. The prototyping of the parts and their assembly

were carried out manually. The figure 5.2 present the final result of robot.

Figure 5.2: Robot Structure

5.3 Sensors Code and Practical Test

5.3.1 QTR Sensor

To follow the line with the stable motion of the robot, it is important to adjust the right

KP,ki and kd value for the PID controller of the robot as indicated in the algorithm 1.The

42

right value found with sampling in many real test of the robot motion on the black line

and calibration of the QTR sensor.

Algorithm 1: QTR Sensor void Loop
/*Main Line Follower Code with PID*/

void loop()
{
// read calibrated sensor values
// To get raw sensor values
// qtrrc.read(sensorValues); instead of unsigned int position =
qtrrc.readLineBlack(sensor);
Position = qtrRC.readLineBlack(sensors);
int error_QTR = -3500 + Position;

int motorSpeed = Kp_QTR + Kd_QTR + (error_QTR - lastError_QTR);
lastError_QTR = error_QTR;

int rightMotorSpeed = 100 - motorSpeed;
int leftMotorSpeed = 100 + motorSpeed;

vitesseDemandeeM1 = constrain(rightMotorSpeed,0,200);
vitesseDEmandeeM2 = constrain(leftMotorSpeed, 0 ,200);
}

5.3.2 Color Sensor

TCS3200D outputs a square wave corresponding to light intensity and color, and the

frequency is directly proportional to light intensity. Using the oscilloscope we can detect

the frequency of the 3 color (red, blue and green) as we can see in this figure 5.3

The following code, shown in algorithm 2 is applied to read all the three colors. The

algorithm collects, through the function ReadRGB(), the equivalent color in RGB format

of the piece that is in front of the sensor, and identify through the functions ReadRed(),

ReadGreen() and ReadBlue() the specific color frequency.

43

Figure 5.3: Square Wave Corresponding to Red and Blue Color

5.3.3 Infrared Reflective Sensor

The existence of an item within a certain range is detected using an infrared reflective

sensor. An IR LED and a photosensor pair make up the sensor. Any item put in front of

the sensor reflects the light generated by the IR LED, and the photosensor detects this

reflection. Any surface that is white reflects more light than a surface that is black. The

detected result can be checked by a signal indicator on the module, which will turn on

the signal indicator, when the sensor is close to a barrier. It will turn off afterwards the

signal, when the sensor will be away from the barrier as we can see in figure5.4.

Figure 5.4: Test of Infrared Reflective

44

Algorithm 2: Color sensor code
void ReadRGB()
{
RGB[0] = ReadRed();
RGB[1] = ReadGreen();
RGB[2] = ReadBlue();
}
unsigned int ReadRed()
{
// Setting Red (R) filtered photodiodes to be read digitalWrite(s2, LOW);
digitalWrite(s3, LOW);
// Reading the output frequency unsigned int f = pulseIn(out,LOW);
// Remaping the value of the RED (R) frequency from 0 to 255 f =
map(f,15,180,255,0);
return f;
}
unsigned int ReadGreen()
{
// Setting Green (G) filtered photodiodes to be read
digitalWrite(s2, HIGH);
digitalWrite(s3, HIGH);
// Reading the output frequency
unsigned int f = pulseIn(out,LOW);
// Remaping the value of the Green (G) frequency from 0 to 255
f = map(f,25,180,255,0);
return f;
}
unsigned int ReadBlue()
{
// Setting Bleu (B) filtered photodiodes to be read
digitalWrite(s2, LOW);
digitalWrite(s3, HIGH);
// Reading the output frequency
unsigned int f = pulseIn(out,LOW);
// Remaping the value of the Blue (B) frequency from 0 to 255
f = map(f,17,180,255,0);
return f;
}

45

5.4 EMG30 Control Code

The code represent This function will made the motor speed is exactly as we want

This figure 5.5 and 5.6 shows 2 curves Vt the target speed in blue and V current speed in

red after increasing Kp and decreasing Ki the error was reduced so the response became

faster when the motor get started and shutdown. The controller is able to reach zero

speed and the target spped in 100 rpm.

Figure 5.5: PID Measurment When The Motor Get Started

)

Figure 5.6: PID Measurment When The Motor Shutdown.

This algorithm has shown the method used to get the measurement by :

-Set a target and define Kp and Ki, the determination of these parameters can directly

be obtained through experience and empirical experiments[31].

-Compute the error then the control signal u.

46

-Set the motor speed and direction and finally Serial plotter.

Algorithm 3: EMG30 Control Measurment Code
// Set a target
float vt = 100*(sin(currT/1e6)>0);
// Compute the control signal u
float kp = 5;
float ki = 10;
float e = vt-v1Filt;
eintegral = eintegral + e*deltaT;
float u = kp*e + ki*eintegral;
// Set the motor speed and direction
int dir = 1;
if (u<0){
dir = -1;
}
int pwr = (int) fabs(u);
if(pwr > 255){
pwr = 255;
}
setMotor(dir,pwr,ENA,IN1,IN2); Serial.print(vt);
Serial.print(" ");
Serial.print(v1Filt);
Serial.println();
delay(1);
}
}

5.5 Code

5.5.1 Library Used

In this project we have used 5 libraries in the programming to help us to make the

simulations :

• digitalWriteFast.h To read faster the GPIO pins (needed for boath of encoder’s

chanels)

47

• FlexiTimer2.h This is the library of the timer2 that used to calculate periodically

the motor’s angular speed

• QTRSensors.h This is the library of the QTR sensors

• Servo.h This is the library used to control servo motors

• Braccio.h this library used to control the arm braccio

Algorithm 4: Arduino Library
#include<digitalWriteFast.h>//To read faster the GPIO pins (needed for boath
of encoder’s chanels)
#include<FlexiTimer2.h>// This is the library of the timer2 that we use to
calculate periodically the motor’s angular speed
#include<QTRSensors.h>// This is the library of the QTR sensors

5.5.2 Interruption

An interrupt occurs when a microprocessor is forced to do a different task for a brief

amount of time before returning to its original function. In this part of the work we show

the interruption declaration for 3 channesl of all motor’s encoder for rising edge

Algorithm 5: Code for Interruption
// Interupt declarations
attachInterrupt(digitalPinToInterrupt(Motor1SensorA),CallBack1,RISING);
attachInterrupt(digitalPinToInterrupt(Motor2SensorA),CallBack2,RISING);
attachInterrupt(digitalPinToInterrupt(Motor3SensorA),CallBack3,RISING);
attachInterrupt(digitalPinToInterrupt(SensorPin),CallBack3,FALLING);

5.5.3 Serial Communication

The serial.begin used to communicate with the other Arduino (Boath of them must have

the same baudrate) by send or resive one lettre

48

Algorithm 6: Code for Serial Communication
void setup() {
Serial.begin(9600); Braccio.begin(); }
void loop() {
if (Serial.available() > 0) { frame = Serial.read();
GoToAssociatedPosition(DetectColor(frame));
Serial.println(DetectColor(frame));
frame = "";
}}

5.5.4 Pins Declaration

In this part of the code we have made the I/O pins declarations for all the electrical

elements of our robot. This figure shows the pind declaration for the 3 motors

Figure 5.7: Pins Declaration

49

5.6 Electronic Circuit

5.6.1 Electrical Wiring

The test plate is a perforated insulated plastic plate with many holes. These holes are

2.54 mm apart, which is the industry standard for the electronic components used in the

assembly. This is an excellent method for testing a solderless assembly, adjusting what

has to be altered, and correcting various design and sizing issues. Figure 5.8 shows the

robot prototype wiring.

Figure 5.8: Electrical Wiring

5.6.2 Printed Circuit Design

Various software packages such as Eagle, EasyEDA, ARES provide access to a PCB

development interface, It is important that the various components are positioned so as

to minimise the occupied space. Some software offer the possibility automatic routing

feature that allows the different components to be connected in a few seconds, but it is

much more efficient to do it manually, which is what was chosen.

50

Figure 5.9: Robot Structure

5.7 Conclusion

One important phase of the project design is the code and test. This phase consists of the

concretization of the created conceptual model and allows a confirmation of the model on

the one hand, but also to find various problems which were not detected.

51

52

Chapter 6

General Conclusion and Future

Work

The work presented in this project is part of a design and imptementation of an omnidi-

rectional 3 wheeled manipulator robot. This robot can make various movements and this

thanks to the use of arduino module.

To reach the end of our work, we have organized our project in 4 chapters: The first chap-

ter covers broad aspects of robots as well as the constituent pieces of these robots based

on their mechanical construction. In general, a mobile manipulator robot can be thought

of as a generator of movements and efforts in multiple directions in space. The second

chapter explains System Design and Technical Analysis. The latter is a set of models

represented by a schema that depicts and describes our system’s operation. It is a set

of up of various parts, the most important of which are:Power supply,PID control,serial

communication and programing with interruption. The third chapter depicts all of the

electrical and mechanical elements employed in our robot in order to comprehend their

function, mode of operation, and characteristics. A cost report was also included at the

end of this chapter. The fourth chapter is a practical study that explains the design, the

realization of our robot. On the basis of the knowledge and information of the previous

chapters, For the controlled part, in this work and the elaboration of the model :

53

- The realization of the mechanical structure.

- Programming with the arduino module

Future Work

The future work will try to improve our project and make them more efficient and usable

by :

• The addition of more sophisticated sensors such as a camera for example can be

considered for a visual control of the robot.

• Planning of the different trajectories for this manipulator arm for the different op-

erations

• Design a specific controller other than the UMAC interface or the implementation

of virtual interface allowing to control the robot and to know its position in real time.

54

Bibliography

[1] Hisour. (Consulted on august 2021). Mobile manipulator, [Online]. Available: https:

//www.hisour.com/mobile-manipulator-42888/.

[2] Mckinsey. (consulted on the 10 mars 2021). Automation, robotics, and the fac-

tory of the future, [Online]. Available: https://www.mckinsey.com/business-

functions/operations/our-insights/automation-robotics-and-the-factory-

of-the-future.

[3] I. F. of Robotics,Global industrial robot sales doubled over the past five years, https:

//ifr.org/news/global-industrial-robot-sales-doubled-over-the-past-

five-years/, 2018.

[4] R. Robotics, The Five Keys to Mobile Manipulation. RE2 Robotics, 2020.

[5] I. Spectrum. (23 septembre). How the u.s. army is turning robots into team players,

[Online]. Available: https://spectrum.ieee.org/ai-army-robots.

[6] R. Robotics, The Five Keys to Mobile Manipulation. RE2 Robotics, 2020.

[7] Pinterest. (consulted on the 10 mars 2021). Robobuilder: Build multiple robots with

one kit, [Online]. Available: https://www.pinterest.com/pin/313140980313471127/.

[8] R. Costanzi, F. Fanelli, N. Monni, A. Ridolfi, and B. Allotta, “An attitude estima-

tion algorithm for mobile robots under unknown magnetic disturbances”, IEEE/ASME

Transactions on Mechatronics, vol. 21, no. 4, pp. 1900–1911, 2016.

55

https://www.hisour.com/mobile-manipulator-42888/
https://www.hisour.com/mobile-manipulator-42888/
https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://www.mckinsey.com/business-functions/operations/our-insights/automation-robotics-and-the-factory-of-the-future
https://ifr.org/news/global-industrial-robot-sales-doubled-over-the-past-five-years/
https://ifr.org/news/global-industrial-robot-sales-doubled-over-the-past-five-years/
https://ifr.org/news/global-industrial-robot-sales-doubled-over-the-past-five-years/
https://spectrum.ieee.org/ai-army-robots
https://www.pinterest.com/pin/313140980313471127/

[9] ETHzurich. (consulted on the 30 mars 2021). Robotic systems lab, [Online]. Avail-

able: https://rsl.ethz.ch/research/researchtopics/mobile-manipulation.

html.

[10] L. S. Lopes and J. H. Connell, “Semisentient robots: Routes to integrated intelli-

gence”, IEEE Intelligent Systems, vol. 16, no. 5, pp. 10–14, 2001.

[11] B. Kelly, J. Padayachee, and G. Bright, “Quasi-serial manipulator for advanced

manufacturing systems.”, in ICINCO (2), 2019, pp. 300–305.

[12] N. Hacene and B. Mendil, “Motion analysis and control of three-wheeled omnidi-

rectional mobile robot”, Journal of Control, Automation and Electrical Systems,

vol. 30, no. 2, pp. 194–213, 2019.

[13] S. Hu et al., “Triangular omnidirectional wheel motion control system”, Open Access

Library Journal, vol. 7, no. 08, p. 1, 2020.

[14] J. Gonçalves, J. Lima, H. Oliveira, and P. Costa, “Sensor and actuator modeling of

a realistic wheeled mobile robot simulator”, in 2008 IEEE International Conference

on Emerging Technologies and Factory Automation, IEEE, 2008, pp. 980–985.

[15] Arduino, Braccio quick start guide, Arduino, 2013.

[16] ——, Tinkerkit, Arduino, 2013.

[17] Rowan. (August 29, 2021). Arduino (tinkerkit) braccio robot arm + kinematics, [On-

line]. Available: https://www.hackster.io/rpatterson/arduino-tinkerkit-

braccio-robot-arm-kinematics-1a8303.

[18] H. drive SE. (consulted on the 19 mars 2021). ‘la robotique mobile’, [Online]. Avail-

able: https://harmonicdrive.de/fr/glossaire/la-robotique-mobile.

[19] S. Roberts, DC/DC BOOK OF KNOWLEDGE. RECOM Engineering GmbH & Co

KG, 2020.

[20] S. R. M. B.Sc, DC/DC BOOK OF KNOWLEDGE Practical tips for the User, 1st.

Münzfeld 35, 4810 Gmunden, Austria.

56

https://rsl.ethz.ch/research/researchtopics/mobile-manipulation.html
https://rsl.ethz.ch/research/researchtopics/mobile-manipulation.html
https://www.hackster.io/rpatterson/arduino-tinkerkit-braccio-robot-arm-kinematics-1a8303
https://www.hackster.io/rpatterson/arduino-tinkerkit-braccio-robot-arm-kinematics-1a8303
https://harmonicdrive.de/fr/glossaire/la-robotique-mobile

[21] D. Nedelkovski. (consulted on April 2021). L298n motor driver – arduino interface,

how it works, codes, schematics, [Online]. Available: https://howtomechatronics.

com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-

bridge/.

[22] Arduino. (consulted on April 2021). Attachinterrupt(), [Online]. Available: https:

//fr.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols.

[23] Electroniclinic. (consulted on April 2021). Serial communication between two ar-

duino boards, [Online]. Available: https://www.electroniclinic.com/serial-

communication-between-two-arduino-boards/.

[24] N. Dunbar, “Alternatives to the arduino ide”, inArduino Software Internals, Springer,

2020, pp. 273–340.

[25] Arduino. (consulted on April 2021). Arduino mega 2560, [Online]. Available: https:

//store.arduino.cc/products/arduino-mega-2560-rev3.

[26] Electroya. (consulted on 7 April 2021). Contrôleur / contrôleur double pour moteurs

pas à pas et à courant continu - l298n, [Online]. Available: https://www.electroya.

com/pt/produto/driver-de-driver-duplo-para-motores-de-passo-e-dc-

l298n/.

[27] TAOS, Color sensor user manual, The LUMENOLOGY Company, JULY 2009.

[28] ——, Infrared reflective sensor user manual, nagasm, JULY 2009.

[29] PTROBOTICS. (consulted on the 10 mars 2021). Qtr-src sensor, [Online]. Available:

https://www.ptrobotics.com/sensores-opticos/1224-qtr-8a-reflectance-

sensor-array.html?gclid=EAIaIQobChMIspXyis_g9AIVCYjVCh2QEQMwEAQYAiABEgIoZ_

D_BwE.

[30] J. H. S. Soni T. Mistry, “Experimental analysis of mecanum wheel and omni wheel”,

in International Journal of Innovative Science, Engineering Technology, 2014, pp. 292–

295.

57

https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://howtomechatronics.com/tutorials/arduino/arduino-dc-motor-control-tutorial-l298n-pwm-h-bridge/
https://fr.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols
https://fr.overleaf.com/learn/latex/List_of_Greek_letters_and_math_symbols
https://www.electroniclinic.com/serial-communication-between-two-arduino-boards/
https://www.electroniclinic.com/serial-communication-between-two-arduino-boards/
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.electroya.com/pt/produto/driver-de-driver-duplo-para-motores-de-passo-e-dc-l298n/
https://www.electroya.com/pt/produto/driver-de-driver-duplo-para-motores-de-passo-e-dc-l298n/
https://www.electroya.com/pt/produto/driver-de-driver-duplo-para-motores-de-passo-e-dc-l298n/
https://www.ptrobotics.com/sensores-opticos/1224-qtr-8a-reflectance-sensor-array.html?gclid=EAIaIQobChMIspXyis_g9AIVCYjVCh2QEQMwEAQYAiABEgIoZ_D_BwE
https://www.ptrobotics.com/sensores-opticos/1224-qtr-8a-reflectance-sensor-array.html?gclid=EAIaIQobChMIspXyis_g9AIVCYjVCh2QEQMwEAQYAiABEgIoZ_D_BwE
https://www.ptrobotics.com/sensores-opticos/1224-qtr-8a-reflectance-sensor-array.html?gclid=EAIaIQobChMIspXyis_g9AIVCYjVCh2QEQMwEAQYAiABEgIoZ_D_BwE

[31] K. Tan, T. H. Lee, and H. X. Zhou, “Micro-positioning of linear-piezoelectric mo-

tors based on a learning nonlinear pid controller”, IEEE/ASME transactions on

mechatronics, vol. 6, no. 4, pp. 428–436, 2001.

58

Appendix A

Code Arduino Uno

#include <Servo.h>

#include <Braccio.h>

#define delayBetweenTasks 1000

Servo base; // 0◦to 180◦

Servo shoulder; // 15◦to 165◦

Servo elbow; // 0◦to 180◦

Servo wrist_ver; // 0◦to 180◦

Servo wrist_rot; // 0◦to 180◦

Servo gripper; // 10◦to 73◦(10◦for Open 73◦for Close)

unsigned char M1 = 90, M2 = 45, M3 = 180, M4 = 180, M5 = 90, M6 = 10;

unsigned char frame = "", lastFrame = "";

typedef enum Color

RED = 0,

GREEN,

A1

BLUE,

UNKOWN,

;

void setup()

Serial.begin(9600);

Braccio.begin();

void loop()

if (Serial.available() > 0)

frame = Serial.read();

GoToAssociatedPosition(DetectColor(frame));

Serial.println(DetectColor(frame));

frame = "";

void DoRedJob()

// Go to the initial box position

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Maintain the box

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 73);

A2

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Turn to the Red destination

Braccio.ServoMovement(20, 180, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Move down the arm

Braccio.ServoMovement(20, 180, 60, 130, 160, 0, 73);

delay(delayBetweenTasks);

// Release the Box

Braccio.ServoMovement(20, 180, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 10);

delay(delayBetweenTasks);

void DoGreenJob()

// Go to the initial box position

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Maintain the box

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 73);

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Turn to the Green destination

A3

Braccio.ServoMovement(20, 135, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Move down the arm

Braccio.ServoMovement(20, 135, 60, 130, 160, 0, 73);

delay(delayBetweenTasks);

// Release the Box

Braccio.ServoMovement(20, 135, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 10);

delay(delayBetweenTasks);

void DoBlueJob()

// Go to the initial box position

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Maintain the box

Braccio.ServoMovement(20, 0, 60, 130, 160, 0, 73);

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Turn to the Blue destination

Braccio.ServoMovement(20, 90, 90, 90, 160, 0, 73);

delay(delayBetweenTasks);

// Move down the arm

Braccio.ServoMovement(20, 90, 60, 130, 160, 0, 73);

delay(delayBetweenTasks);

A4

// Release the Box

Braccio.ServoMovement(20, 90, 60, 130, 160, 0, 10);

delay(delayBetweenTasks);

// Move up the arm

Braccio.ServoMovement(20, 0, 90, 90, 160, 0, 10);

delay(delayBetweenTasks);

Color DetectColor(unsigned char s)

return s == ’R’ ? RED :

(s == ’B’ ? BLUE :

(s == ’G’ ? GREEN : UNKOWN));

void GoToAssociatedPosition(Color C)

switch (C)

case RED:

DoRedJob();

break;

case GREEN:

DoGreenJob();

break;

case BLUE:

DoBlueJob();

break;

default:

A5

break;

void GoToInitPosition()

Braccio.ServoMovement(20, 0, 60, 130, 160, 90, 10);

A6

Appendix B

Code Arduino Mega 2560

#include <digitalWriteFast.h>

#include <FlexiTimer2.h>

#include <QTRSensors.h>

#define SensorPin 21

#define s0 25

#define s1 27

#define s2 29

#define s3 31

#define out 33

// These defines are for enabling the appropriate test

#define TEST_MOTORS

#define testQTR

—————-QTR—————-

#define NUM_SENSORS 8

QTRSensors qtrRC;

unsigned int sensors[NUM_SENSORS];

int Position;

int lastError_QTR = 0;

double Kp_QTR = 0.1;

B1

double Kd_QTR = 0.01;

———- MOTOR PINS DECLARATION———

#define Motor1PinA 2 //int1

#define Motor1PinB 3 //int2

#define Motor1PWM 4 //enA

#define Motor1SensorA 19 //purpil motor 1

#define Motor1SensorB 18 //blue motor 1

#define Motor2PinA 5 //int3

#define Motor2PinB 6 //int4

#define Motor2PWM 7 //enB

#define Motor2SensorA 20 //purpil motor 2

#define Motor2SensorB 8 //blue motor 2

#define Motor3PinA 9 //int1 L298 2

#define Motor3PinB 10 //int2 L298 2

#define Motor3PWM 11 //enA L298 2

#define Motor3SensorA 21 //purpil motor 3

#define Motor3SensorB 12 //blue motor 3

———– Motors PID related variables ———–

#define diametre_roue 60

#define resolution_encodeur 90

#define pi 3.141592

#define TSDATA 100

#define cadenceMs 10

volatile long Sensor1Counter = 0;

volatile long Sensor2Counter = 0;

———- ENUM DECLARATION ———

enum Direction

{

ALL_BLACK,

B2

ALL_WHITE,

GO_FORWARD,

SLIGHT_LEFT,

LEFT,

URGENT_LEFT,

SLIGHT_RIGHT,

RIGHT,

URGENT_RIGHT,

UNKOWN,

};

———- STRUCT DECLARATION ———-

typedef struct threshold

{

unsigned char R;

unsigned char G;

unsigned char B;

} T;

typedef struct Color

{

threshold Threshold;

} C;

———-GLOBAL VARIABLE———-

int frequency = 0;

Color Red, Green, Blue;

unsigned int RGB[3];

unsigned char frame = "";

bool DoAction = false;

volatile long c1 = 0;

volatile long c2 = 0;

B3

double tensionBatterie = 12.0;

volatile double vitesseDemandeeM1 = 0 ;

volatile double vitesseDemandeeM2 = 0 ;

unsigned int PWM3 = 0;

int sensMotor1 = -1;

int sensMotor2 = 1;

int sensMotor3 = -1;

unsigned long tempsDernierEnvoi = 0;

unsigned long tempsCourant = 0;

volatile double dt = cadenceMs / 1000.;

volatile double temps = -cadenceMs / 1000.;

volatile double omega1, omega2;

volatile double commande1 = 0., commande2 = 0.;

———- PID VARIABLE———-

volatile double Kp = 0.3;

volatile double Ki = 9.6;

volatile double P = 0.;

volatile double I1 = 0., I2 = 0., I3 = 0.;

volatile double erreur = 0.;

volatile double v;

volatile uint8_t timer100 = 0;

———- SETUP FUNCTION ———-

void setup()

‘{

Serial.begin(9600);

Serial3.end();

Initialization();

B4

AdjustThresholds();

qtrRC.setTypeRC();

qtrRC.setSensorPins((const uint8_t[])

{

A0, A1, A2, A3, A4, A5, A6, A7

}, NUM_SENSORS); // Declaring the QTR used pins

// Interrupt declarations

attachInterrupt(digitalPinToInterrupt(Motor1SensorA), CallBack1, RISING);

attachInterrupt(digitalPinToInterrupt(Motor2SensorA), CallBack2, RISING);

attachInterrupt(digitalPinToInterrupt(SensorPin), CallBack3, FALLING);

// Timer declaration and starter (the period is 20ms)

FlexiTimer2::set(20, AsservissementVitesse);

FlexiTimer2::start();

delay(2000);

// Calibrate the QTR

for (int i = 0; i < 100; i++)

{

qtrRC.calibrate();

delay(20);

}

vitesseDemandeeM1 = 50 ;

vitesseDemandeeM2 = 50 ;

// We incomment the Test function if we want to test or calibrate our robot

//Test();

}

———- INFINIT FUNCTION ———-

B5

void loop()

{

// ecritureData();

———-Main Line Follower Code with PID———-

Position = qtrRC.readLineBlack(sensors);

int error_QTR = - 3500 + Position;

int motorSpeed = Kp_QTR * error_QTR + Kd_QTR * (error_QTR - lastError_QTR);

lastError_QTR = error_QTR;

int rightMotorSpeed = 100 - motorSpeed;

int leftMotorSpeed = 100 + motorSpeed;

vitesseDemandeeM1 = constrain(rightMotorSpeed , 0, 200);

vitesseDemandeeM2 = constrain(leftMotorSpeed , 0, 200);

} ———- FUNCTION DECLARATION ———-

// Pin State declaration function

void Initialization() // Setting the mode of each used pin

{

pinMode(Motor1PinA, OUTPUT);

pinMode(Motor1PinB, OUTPUT);

pinMode(Motor1PWM, OUTPUT);

pinMode(Motor2PinA, OUTPUT);

pinMode(Motor2PinB, OUTPUT);

pinMode(Motor2PWM, OUTPUT);

pinMode(Motor3PinA, OUTPUT);

B6

pinMode(Motor3PinB, OUTPUT);

pinMode(Motor3PWM, OUTPUT);

pinMode(Motor1SensorA, INPUT_PULLUP);

pinMode(Motor1SensorB, INPUT_PULLUP);

pinMode(Motor2SensorA, INPUT_PULLUP);

pinMode(Motor2SensorB, INPUT_PULLUP);

pinMode(Motor3SensorA, INPUT_PULLUP);

pinMode(Motor3SensorB, INPUT_PULLUP);

pinMode(IRsensor1, INPUT);

pinMode(IRsensor2, INPUT);

pinMode(IRsensor3, INPUT);

pinMode(IRsensor4, INPUT);

pinMode(IRsensor5, INPUT);

pinMode(s0, OUTPUT);

B7

pinMode(s1, OUTPUT);

pinMode(s2, OUTPUT);

pinMode(s3, OUTPUT);

pinMode(out, INPUT);

pinMode(SensorPin, INPUT_PULLUP);

// To use properly the color sensor, we put S0 High ans S1 LOW

digitalWrite(s0, HIGH);

digitalWrite(s1, LOW);

}

// Test Function

void Test()

{

#ifdef testQTR

while (1)

{

Position = qtrRC.readLineBlack(sensors);

for (int i = 0; i < NUM_SENSORS; i++)

{

Serial.print(sensors[i]);

if (i == NUM_SENSORS - 1) Serial.println(" | ");

else

B8

{

Serial.print("(");

Serial.print(i);

Serial.print(") | ");

}

delay(20);

}

Serial.println(Position);

}

#endif

#ifdef TEST_MOTORS

while (true)

{

MoveMotor1(255);

delay(1000);

MoveMotor1(-255);

delay(1000);

StopMotor1();

MoveMotor2(255);

delay(1000);

MoveMotor2(-255);

delay(1000);

StopMotor2();

MoveMotor3(255);

delay(1000);

MoveMotor3(-255);

delay(1000);

StopMotor3();

}

B9

#endif

}

// Call Back for Motor1 interruption

void CallBack1()

{

// If the logic level of the two channels are equal so the sens in 1 and we increase the

accimulated variable, else the motor sens is 2 and we decrise that variable

Sensor1Counter -=

(digitalReadFast(Motor1SensorA) == digitalReadFast(Motor1SensorB)) ?

1 : (-1);

c1 -=

(digitalReadFast(Motor1SensorA) == digitalReadFast(Motor1SensorB)) ?

1 : (-1);

}

// Call Back for Motor2 interruption

void CallBack2()

{

Sensor2Counter -=

(digitalReadFast(Motor2SensorA) == digitalReadFast(Motor2SensorB)) ?

1 : (-1);

c2 -=

(digitalReadFast(Motor2SensorA) == digitalReadFast(Motor2SensorB)) ?

1 : (-1);

}

void CallBack3()

{

DoAction = true;

}

// Periodic function to read color

B10

void ReadColor()

{

if (DoAction)

{

DoAction = false;

ReadRGB();

frame = WhatIsTheColor(RGB);

Serial.write(frame);

Serial.write("\n");

Serial1.write(frame);

//Serial1.write("\n");

RGB[0] = 0;

RGB[1] = 0;

RGB[2] = 0;

frame = "";

}

}

// Detect action needed based on direction order

void PerformMove(Direction dir)

{

switch (dir)

{

case ALL_BLACK :

Serial.println("ALL_BLACK");

break;

case ALL_WHITE :

Serial.println("ALL_WHITE");

break;

case GO_FORWARD :

B11

Serial.println("GO_FORWARD");

GoForward();

break;

case SLIGHT_LEFT:

Serial.println("SLIGHT_LEFT");

GoSlightLeft();

break;

case LEFT:

Serial.println("LEFT");

GoLeft();

break;

case URGENT_LEFT:

Serial.println("URGENT_LEFT");

GoUrgentLeft();

break;

case SLIGHT_RIGHT:

Serial.println("SLIGHT_RIGHT");

GoSlightRight();

break;

case RIGHT:

Serial.println("RIGHT");

GoRight();

break;

case URGENT_RIGHT:

Serial.println("URGENT_RIGHT");

GoUrgentRight();

break;

default:

break;

B12

}

}

// Detect all direction orders from sensors values

Direction DecodeDirection(bool *SensorsState)

{ return (AllBlack(SensorsState) ? ALL_BLACK :

(AllWhite(SensorsState) ? ALL_WHITE :

(ForwardOrder(SensorsState) ? GO_FORWARD :

(SlightLeft(SensorsState) ? SLIGHT_LEFT :

(Left(SensorsState) ? LEFT :

(UrgentLeft(SensorsState) ? URGENT_LEFT :

(SlightRight(SensorsState) ? SLIGHT_RIGHT :

(Right(SensorsState) ? RIGHT :

(UrgentRight(SensorsState) ? URGENT_RIGHT : UNKOWN)))))))));

}

//Read Sensor states and store then in an array

void ReadSensorsStates()

{ Sensors[0] = digitalRead(IRsensor1);

Sensors[1] = digitalRead(IRsensor2);

Sensors[2] = digitalRead(IRsensor3);

Sensors[3] = digitalRead(IRsensor4);

Sensors[4] = digitalRead(IRsensor5);

}

bool AllBlack(bool *SensorsState)

{

// [1] [1] [1] [1] [1]

return (!SensorsState[0] && !SensorsState[1]

&& !SensorsState[2] && !SensorsState[3] && !SensorsState[4]);

}

bool AllWhite(bool *SensorsState)

B13

{

// [0] [0] [0] [0] [0]

return (SensorsState[0] && SensorsState[1]

&& SensorsState[2] && SensorsState[3] && SensorsState[4]);

}

bool ForwardOrder(bool *SensorsState)

{

// [1] [1] [0] [1] [1]

// [1] [0] [0] [0] [1]

return (SensorsState[0] && !SensorsState[2] && SensorsState[4]);

}

bool SlightLeft(bool *SensorsState)

{

// [1] [0] [0] [1] [1]

// [1] [0] [1] [1] [1]

return (SensorsState[0] && !SensorsState[1]

&& SensorsState[3] && SensorsState[4]);

}

bool Left(bool *SensorsState)

{

// [0] [0] [1] [1] [1]

// [0] [0] [0] [1] [1]

return (!SensorsState[0] && !SensorsState[1]

&& SensorsState[3] && SensorsState[4]);

}

bool UrgentLeft(bool *SensorsState)

{

// [0] [1] [1] [1] [1]

return (!SensorsState[0] && SensorsState[1]

B14

&& SensorsState[2] && SensorsState[3] && SensorsState[4]);

}

bool SlightRight(bool *SensorsState)

{

// [1] [1] [0] [0] [1]

// [1] [1] [1] [0] [1]

return (SensorsState[0] && SensorsState[1]

&& !SensorsState[3] && SensorsState[4]);

}

bool Right(bool *SensorsState)

{

// [1] [1] [1] [0] [0]

// [1] [1] [0] [0] [0]

return (SensorsState[0] && SensorsState[1]

&& !SensorsState[3] && !SensorsState[4]);

}

bool UrgentRight(bool *SensorsState)

{

// [1] [1] [1] [1] [0]

return (SensorsState[0] && SensorsState[1]

&& SensorsState[2] && SensorsState[3] && !SensorsState[4]);

}

void MoveMotor1(int val)

{

constrain(val, -255, 255); // Limit the value of PWM between -255 and 255

if (val >= 0) // if the value is positif so the sens in 1

{

digitalWrite(Motor1PinA, HIGH);

digitalWrite(Motor1PinB, LOW);

B15

analogWrite(Motor1PWM, val);

}

else // if the PWM value is negatif so the sens is 2

{

digitalWrite(Motor1PinA, LOW);

digitalWrite(Motor1PinB, HIGH);

analogWrite(Motor1PWM, abs(val));

}

}

void MoveMotor2(int val)

{

constrain(val, -255, 255);

if (val >= 0)

{

digitalWrite(Motor2PinA, HIGH);

digitalWrite(Motor2PinB, LOW);

analogWrite(Motor2PWM, val);

}

else

{

digitalWrite(Motor2PinA, LOW);

digitalWrite(Motor2PinB, HIGH);

analogWrite(Motor2PWM, abs(val));

}

}

void MoveMotor3(int val)

{

constrain(val, -255, 255);

if (val >= 0)

B16

{

digitalWrite(Motor3PinA, HIGH);

digitalWrite(Motor3PinB, LOW);

analogWrite(Motor3PWM, val);

}

else

{

digitalWrite(Motor3PinA, LOW);

digitalWrite(Motor3PinB, HIGH);

analogWrite(Motor3PWM, abs(val));

}

}

void StopMotor1()

{

digitalWrite(Motor1PinA, LOW);

digitalWrite(Motor1PinB, LOW);

analogWrite(Motor1PWM, 0);

}

void StopMotor2()

{

digitalWrite(Motor2PinA, LOW);

digitalWrite(Motor2PinB, LOW);

analogWrite(Motor2PWM, 0);

}

void StopMotor3()

{

digitalWrite(Motor3PinA, LOW);

digitalWrite(Motor3PinB, LOW);

analogWrite(Motor3PWM, 0);

B17

}

void StopRobot()

{

StopMotor1();

StopMotor2();

StopMotor3();

}

void GoForward(uint8_t vitesse)

{

MoveMotor1(vitesse);

MoveMotor2((-1) * vitesse);

}

void GoBack(uint8_t vitesse)

{

MoveMotor1((-1) * vitesse);

MoveMotor2(vitesse);

}

void GoSlightLeft(uint8_t vitesse)

{

MoveMotor1(vitesse + 20);

MoveMotor2((-1) * vitesse);

}

void GoLeft(uint8_t vitesse)

{

MoveMotor1(vitesse);

MoveMotor2((-1) * (vitesse + 50));

}

void GoUrgentLeft(uint8_t vitesse)

B18

{

MoveMotor3(vitesse);

}

void GoSlightRight()

{

MoveMotor1(vitesse);

MoveMotor2((-1) * (vitesse + 20));

}

void GoRight()

{

MoveMotor1(vitesse + 50);

MoveMotor2((-1) * vitesse);

}

void GoUrgentRight()

{

MoveMotor3((-1) * vitesse);

}

void AsservissementVitesse(void)

{

int codeurDeltaPos1, codeurDeltaPos2, codeurDeltaPos3;

codeurDeltaPos1 = c1;

c1 = 0;

omega1 = ((2 * pi * ((double)codeurDeltaPos1)) / resolution_encodeur) / dt;

//convertion from round/min to rad/s

v = (vitesseDemandeeM1 * pi) / diametre_roue;

// PID Correction

erreur = v - omega1;

P = Kp * erreur;

commande1 = P + I1;

B19

I1 = I1 + Ki * dt * erreur;

CommandeMoteur(1, commande1, tensionBatterie);

codeurDeltaPos2 = c2;

c2 = 0;

omega2 = ((2 * pi * ((double)codeurDeltaPos2)) / resolution_encodeur) / dt;

//convertion from round/min to rad/s

v = (vitesseDemandeeM2 * pi) / diametre_roue;

//Correction PID

erreur = v - omega2;

P = Kp * erreur;

commande2 = P + I2;

I2 = I2 + Ki * dt * erreur;

CommandeMoteur(2, commande2, tensionBatterie);

MoveMotor3(sensMotor3 * PWM3);

temps += dt;

if (timer100++ >= 5)

timer100 = 0;

{

ReadColor();

}

}

void ecritureData(void)

{

double o = 0;

o = (diametre_roue * omega1) / pi;

tempsCourant = millis();

if (tempsCourant - tempsDernierEnvoi > TSDATA)

B20

{

Serial.print(temps);

Serial.print(" , ");

Serial.print(omega1);

Serial.print("\r");

Serial.print("\n");

tempsDernierEnvoi = tempsCourant;

} } void CommandeMoteur(int moteur, double tension, double tensionBatterie)

{

int tensionPWM;

tensionPWM = (int)(255 * (tension / tensionBatterie));

constrain(tensionPWM, -255, 255);

if (moteur == 1) MoveMotor1(sensMotor1 * tensionPWM);

else if (moteur == 2) MoveMotor2(sensMotor2 * tensionPWM);

}

void PrintRGB()

{

Serial.print("R:"); Serial.print(RGB[0]);

Serial.print(" G:"); Serial.print(RGB[1]);

Serial.print(" B:"); Serial.println(RGB[2]);

}

void AdjustThresholds() // Adjust filter for Red, Green and Blue colors

{

RedFilter();

B21

GreenFilter();

BlueFilter();

}

void RedFilter()

{

Red.Threshold.R = 240;

Red.Threshold.G = 220;

Red.Threshold.B = 222;

}

void GreenFilter()

{

Green.Threshold.R = 235;

Green.Threshold.G = 240;

Green.Threshold.B = 230;

}

void BlueFilter()

{

Blue.Threshold.R = 220;

Blue.Threshold.G = 235;

Blue.Threshold.B = 235;

}

void ReadRGB()

{

RGB[0] = ReadRed();

RGB[1] = ReadGreen();

RGB[2] = ReadBlue();

}

unsigned int ReadRed()

B22

{

digitalWrite(s2, LOW);

digitalWrite(s3, LOW);

unsigned int f = pulseIn(out, LOW);

f = map(f, 15, 180, 255, 0);

return f;

}

unsigned int ReadGreen()

{

digitalWrite(s2, HIGH);

digitalWrite(s3, HIGH);

unsigned int f = pulseIn(out, LOW);

f = map(f, 25, 180, 255, 0);

return f;

}

unsigned int ReadBlue()

{

digitalWrite(s2, LOW);

digitalWrite(s3, HIGH);

unsigned int f = pulseIn(out, LOW);

f = map(f, 17, 180, 255, 0);

return f;

}

unsigned char WhatIsTheColor(unsigned int *c) // Determinate the color R for Red, B

for Blue G for Green and X for unknown color

{

return ColorIsRed(c) ? ’R’ :

(ColorIsGreen(c) ? ’G’ :

(ColorIsBlue(c) ? ’B’

B23

: ’X’));

}

bool ColorIsRed(unsigned int *c) // Returns true if the color is Red

{

return c[0] >= Red.Threshold.R &&

c[1] < Red.Threshold.G &&

c[2] < Red.Threshold.B;

}

bool ColorIsGreen(unsigned int *c) // Returns true if the color is Green

{

return c[0] < Green.Threshold.R &&

c[1] >= Green.Threshold.G &&

c[2] < Green.Threshold.B;

}

bool ColorIsBlue(unsigned int *c) // Returns true if the color is Blue

{

return c[0] < Blue.Threshold.R &&

c[1] >= Blue.Threshold.G &&

c[2] >= Blue.Threshold.B;

}

B24

Appendix C

Technical Design

C1

C2

C3

C4

Appendix D

Wiring Scheme

Figure D.1: Schematic diagram of the electronic circuit

D1

Figure D.2: PCB Design Diagram - Top Layer

D2

Figure D.3: PCB Design Diagram - Bottom Layer

D3

	Introduction
	Theoretical Framework
	Objectives

	Document Structure

	State of the Art
	The Evolution of Robotics in the Industry Sector
	Description of Mobile Manipulation
	Evolution of Mobile Manipulation
	Classification of Mobile Manipulator
	Multiped
	Underwater Mobile Manipulators
	Mobile Wheel Manipulators

	General System Composition
	Mobile Platform
	Robot Manipulator
	Sensors
	Tools

	Three-Wheeled Omnidirectional Robot
	Coordinates and Symbols

	Three-Wheeled Omnidirectional Kinematics
	The TinkerKit Braccio
	Characteristic
	Degrees of Freedom

	Robot Programming Language
	Conclusion

	System Design and Technical Study
	Robot Design
	Power Supply Design
	Microcontroller
	Braccio Shield
	Battery Dimensioning
	Buck Converter

	Motor Control
	PID Algorithm

	H-Bridge DC Motor Control
	Programing with Interruption
	Type of Interruption

	Serial Communication Arduino Mega & Arduino Uno
	Platform and Support Design
	Platform Design
	Support Design

	Software and Programming Tools
	CATIA V5R18
	ARDUINO IDE
	Schematic and PCB Design Software

	Conclusion

	Equipement Used and Financial Study
	The Controller
	Arduino Mega 2560
	 Arduino Uno

	EMG30 Motor
	The Motor Driver L298N
	Sensors
	TCS3200 Color Sensor
	Infrared Reflective Sensor
	QTR-8RC Sensor

	Mechanical Parts
	Omni Wheels
	Motor Support

	Power Supply
	Lithium Batteries
	Buck Convert Step-Down

	Financial Study
	Conclusion

	Results and Discussion
	Power Supply Test
	Final Structure
	Sensors Code and Practical Test
	 QTR Sensor
	Color Sensor
	Infrared Reflective Sensor

	EMG30 Control Code
	Code
	Library Used
	Interruption
	Serial Communication
	Pins Declaration

	Electronic Circuit
	Electrical Wiring
	Printed Circuit Design

	Conclusion

	General Conclusion and Future Work
	Code Arduino Uno
	Code Arduino Mega 2560
	Technical Design
	Wiring Scheme

