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Abstract

Photovoltaic (PV) energy is becoming an important alternative energy source, since it is

abundant in nature, non-polluting and requires low maintenance. However, it suffers from

low energy conversion efficiency, which can be even lower if the photovoltaic generator

does not operate around a so-called Maximum Power Point (MPP). Tracking this point,

which changes its location depending on weather conditions, is a very important step in

the design of a photovoltaic system. Several techniques have been investigated in the

literature in the MPP context. However, some techniques such as the Kalman filter are

steel unknown with a lack of information in real test conditions, since their evaluation

is limited only in simulation and literature review. This work presents an experimental

evaluation of the Kalman filter based on a comparison with two well-known maximum

power point tracking (MPPT) algorithms, which are the Perturbation and observation

(among the simplest techniques) and the Particle Swarm Optimization (among the most

complex techniques). The experimental tests were carried out under real atmospheric

conditions, using Matlab/Simulink and the 1103 dSPACE real-time controller board. The

results show that the Kalman filter has a higher aptitude to operate closer to the MPP,

with a low oscillation in steady-state compared to the other MPPT evaluated in this work.

However, the technique’s flaw lies in the shadow situation where it can not differentiate

between the local and global optimums, unlike the particle swarm optimization.

Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Perturbation

and Observation (PO), Particle swarm optimization (PSO), Kalman Filter (KF), Grid

connected PV system, dSPACE 1103.
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Resumo

A energia fotovoltaica (PV) está a tornar-se uma importante fonte de energia alternativa,

uma vez que é abundante na natureza, não poluente, e requer pouca manutenção. No

entanto, sofre de uma baixa eficiência de conversão energética, que pode ser ainda mais

baixa se o gerador PV não operar em torno do chamado Ponto de Potência Máxima

(MPP). O rastreio deste ponto, que muda a sua localização dependendo das condições

meteorológicas, é um passo muito importante na concepção de um sistema PV. Várias

técnicas têm sido investigadas na literatura no contexto do MPP. No entanto, o desempenho

de algumas técnicas, como o filtro Kalman, em condições reais de teste, ainda desconhecido,

ou existe pouca informação, uma vez que a sua avaliação é limitada apenas na simulação

e revisão da literatura. Este trabalho apresenta uma avaliação experimental do filtro de

Kalman com base numa comparação com dois seguidores de ponto de potência máxima

(MPPT) bem conhecidos, que são a Perturbação e observação e a Optimização do Enxame

de Partículas. Os testes experimentais foram realizados em condições atmosféricas reais,

utilizando o Matlab/Simulink e a carta de controlo em tempo real dSPACE. Os resultados

mostram que o filtro de Kalman tem uma maior aptidão para operar mais perto do

MPP, com uma baixa oscilação em regime permenente, comparativemente com os outros

algoritmos MPPT avaliados neste trabalho. No entanto, a desvantagem ocorre aquando

da ocorãncia de sombra, onde a técnica não consegue diferenciar entre os óptimos locais

e global, ao contrário da optimização do enxame de partículas.

Palavras-chave: Fotovoltaico (PV), Seguimento do Ponto de Potência Máxima (MPPT),

Perturbação e Observação (PO), Optimização de enxame de partículas (PSO), Filtro de

Kalman (KF), Sistema PV ligado à Rede, dSPACE 1103.
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 الملخص 
 

 ومع. منخفضة صيانة وتتطلب ملوثة وغير الطبيعة في وفيرة لأنها ، البديلة للطاقة مهمًا مصدرًا( PV) الكهروضوئية الطاقة أصبحت

 يسمى ما حول يعمل لا الكهروضوئي المولد كان إذا أقل تكون أن يمكن والتي ، للطاقة منخفضة تحويل كفاءة من تعاني فإنها ، ذلك

 النظام تصميم في جدًا مهمة خطوة ، الجوية الظروف على اعتمادًا موقعها تغير التي ، النقطة هذه تتبع يعد.  القصوى الطاقة نقطة

 فإن ، ذلك ومع.  القصوى الطاقة نقطة تتبع سياق في سابقا الموجودة المنشورات في التقنيات من العديد في التحقيق تم. الكهروضوئي

 السابق تقييمها لأن نظرًا ، الحقيقية الاختبار ظروف في المعلومات نقص مع معروفة غير تظل كالمان مرشح مثل التقنيات بعض

 لتتبع معروفتين تقنيتين مع مقارنة إلى استنادًا كالمان لمرشح تجريبياً تقييمًا العمل هذا يقدم. الأدبيات ومراجعة المحاكاة في فقط محدود

 إجراء تم(. تعقدا التقنيات أكثر أحد) الجسيمات سرب وتحسين( التقنيات أبسط أحد) والمراقبة الاضطراب وهما ، القصوى الطاقة نقطة

 dSPACEالحقيقي الوقت في التحكم ولوحة Matlab / Simulink باستخدام ، حقيقية جوية ظروف ظل في التجريبية الاختبارات

 حالة في منخفض تذبذب مع ، القصوى الطاقة من بالقرب العمل على أعلى بقدرة يتمتع كالمان مرشح أن النتائج أظهرت. 1103

 يمكن لا حيث الظل حالة في موجود التقنية عيب فإن ، ذلك ومع. العمل هذا في تقييمها تم التي الآخرى بالتقنيات مقارنةً  الاستقرار

 .الجسيمات سرب تحسين تقنية عكس على ، والكلية المحلية المثلى القيم بين التمييز للتقنية

 تحسين ،( P&O) والملاحظة الاضطراب ،( MPPT) القصوى الطاقة نقطة تتبع ،( PV) الكهروضوئية الانظمة : مفتاحية كلمات

 .dSPACE 1103 ، بالشبكة المتصل الكهروضوئي النظام ،( KF) كالمان مرشح ،( PSO) الجسيمات سرب
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Chapter 1

Introduction

This chapter introduces the background and motivation established in this work, including

a brief overview of the current standing of Maximum Power point (MPPT) techniques.

This is followed by project’s objectives attached with the main contribution of this work.

At the end of this chapter, an outline of this master thesis is provided.

1.1 Background of study

The climatic and geographical conditions have a great influence on the validity and

efficiency of all types of renewable resources based on various aspects according to each

resource [1]. However, photovoltaic (PV) solar energy is the least influenced since the

source is generously distributed on our planet. Additionally, PV systems offer standard

concepts in the implementation phase [2], in order to produce electricity through solar

energy easily, and without causing major environmental risks [3]. For these reasons,

PV systems have taken an essential market in the field of energy production worldwide.

Figure 1.1 shows the average annual growth rates of several renewable energies, where the

solar PV have the higher growth rate compared to other renewable resources, achieving

120 GW in the end of 2019. In which it accounted for approximately 59% of the total

renewable energy production from new generation assets [4].
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CHAPTER 1. INTRODUCTION

Figure 1.1: Average annual growth rates of renewable energy [4].

Additionally, according to the power density graph presented in Fig. 1.2, a PV

efficiency close to 20% would translate to electricity generation rates between 20 and

40 W/m2, i.e. one order of magnitude higher than the majority of wind and hydro

projects, and two orders higher than biomass conversion [5].

Figure 1.2: Power densities of energy consumption and renewable energy production [5].
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CHAPTER 1. INTRODUCTION

From an economic point of view, the cost of energy generated by using PV systems

is relatively high and cannot be competitive yet compared with traditional wholesale

electricity prices, even thought the system efficiency remains low. However, the PV plant

efficiency is greatly affected due to three factors:

• The efficiency of the inverter;

• The efficiency of the PV modules;

• The efficiency of the maximum power point tracking (MPPT) algorithms.

PV inverters available on the market based on silicon carbide (SiC) technology have

improved efficiency around 98% [6], while improving the efficiency of the PV modules is

hard because it may depend on the technology available which leads to a radical change

in cost [7]. Instead, improving the efficiency of tracking the MPPT with several control

techniques is easier. This motivates the research for evaluating some techniques in order

to extract the maximum energy possible from a PV system.

1.2 Current standing of the maximum power point

tracking

Since the 3th century B.C. humanity has used solar power, primarily the Greeks bounced

sunlight off of “burning mirrors” to light sacrosanct torches for their religious ceremonies.

Despite this, the PV effect was uncovered very early in 1839 by the French scientist

Edmond Becquerel. The first silicon PV cell has been developed at Bell Labs (America)

in 1954 [8].

From 1954 to 2020, the maximum power point tracking (MPPT) is the aim of researchers

to improve efficiency and enhance the yield of the PV systems, in which the control is based

on electronic systems that varies the operating point of the PV module [9]. Nowadays,

electrical MPPT techniques are employed in the majority of modern PV inverters. Their

main function is to extract the maximum amount of energy available from the PV systems

3



CHAPTER 1. INTRODUCTION

during their period of functioning [10].

In other specific PV systems such as concentrator PV technology, mechanical sun-tracking

system is required since this technology is mainly based on the direct solar radiation,

through the use of high-efficiency cells and inexpensive polymer-lenses to concentrate the

light on the cells. However, this category is complex and costly in implementation since

it requires hydraulic cylinders and motors [9][11] .

1.3 Project motivation and objectives

The output power of PV systems is greatly affected by the external influences such as

solar irradiation, temperature, shading effect, etc. . . . From this point, around 10 main

MPPT techniques in literature have been evaluated in order to maintain the maximum

efficiency of the PV systems [10]. However, some techniques such as the Kalman filter

(KF) is still ambiguous since its evaluation is limited on simulations [12][13][14], which

leads to a lack of credible information about its performance on tracking the maximum

power in real conditions. Additionally, the initial parameterization presents the harsh

task of the implementation, since a wrong initialization may diverge the tracking process

away [15]. This creates a new challenge to evaluate the performance of the KF technique

as well as the exploration of its advantages and disadvantages in real experimental tests.

At this stage, this work aims to perform the operating principle of the KF and analyse

its performances by comparing the concerned MPPT with two other well-known MPPTs,

which are the perturbation and observation (one of the most simple techniques) and

the particle swarm optimization (one of the most complex technique). The experimental

results are performed in grid connected PV system, which consists of a PV array connected

to the utility grid through a power conditioning block as shown in the block diagram of

Fig. 1.3. The power conditioning topology includes a boost converter, MPPT block

control, inverter, grid interface as well as the necessary control system for efficient system

performance [16].

4



CHAPTER 1. INTRODUCTION

Figure 1.3: Block diagram of the PV system connected to the grid.

1.4 Main contribution

This work contributes to the validation of the Kalman filter-based MPPT in a grid-

connected PV systems, by comparing this technique with two other algorithms of high

utilization. An extension of this work was published in the International Journal of

renewable Energy and Research (IJRER) [17]. The main contributions of this work can

be summarized in the following items:

• An understandable detail covering the Kalman filter (KF), Perturbation and

Observation (P&O) and the Particle Swarm optimization (PSO), which helps to

differentiate between the operating principle of each MPPT algorithm, and identify

the complexity of implementation, effectiveness, parameterization and sensors required.

• Feasibility decision based on two sets of experimental tests regarding the KF

technique in the MPPT process. First, tests under normal operating conditions,

where it is relevant to evaluate the accuracy in achieving the maximum power point

(MPP), the oscillation around the MPP and the speed convergence. The second set

of tests focuses on the ability to operate on the global MPP under partial shadow

conditions.

5



CHAPTER 1. INTRODUCTION

1.5 Thesis organization

The thesis is divided into six chapters, which are briefly summarized in the following.

Chapter 2 presents the operating principle of PV cells and their main different types

of crystalline silicon available in the market. Afterward, the mathematical model of the

PV cell is presented, followed by the behavior of the PV modules imposed by the change

of atmospheric conditions (temperature, radiance and even in partial shading). Finally,

a brief description is provided about stand-alone and grid-connected PV systems in the

MPPT context.

Chapter 3: starts with a literature review on the MPPT techniques, followed by a

detailed explanation of the three MPPT experimented within this work, which are the

Perturbation and observation (P&O), particle swarm optimization (PSO) and Kalman

filter (KF).

Chapter 4: describes the power topology used for the experimental tests, including

its relevant components. This chapter provides also the Simulink control blocks for the

techniques evaluated in this work, attached with their required parametrization.

Chapter 5: presents the results obtained from the implementation of MPPT techniques,

followed by performance analysis of their results.

Chapter 6: summarizes the work that has been achieved throughout this master

thesis. The chapter ends with a perspective on the complementary research that can be

carried out following the work presented in this project.
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Chapter 2

Photovoltaic fundamentals

This chapter introduces the operating principle of photovoltaic (PV) cells, followed by

their basic types. It provides also the mathematical model of the PV cells and the extent to

which it is affected by external factors such as solar irradiance, temperature and shading.

At the end, the profitability of the tracking of the maximum power point is provided for

different types of PV installations.

2.1 Operating principle of a photovoltaic cell

The photovoltaic cell is a means of transforming light into electrical energy by using the

photovoltaic effect process. The PV cell is made of two silicon layers, one P-doped (boron-

doped) and the other layer N-doped (phosphorus-doped) providing a P-N junction with

a potential barrier, as it is described in Fig. 2.1. When photons are absorbed by the

semiconductor, they transmit their energy to the atoms of the P-N junction in such a way

that electrons from these atoms are liberated and create electrons (negatively charged)

and holes (positively charged), which creates a potential difference between the two layers.

It is measured between the terminals of the positive and negative connections of the cell.

The maximum voltage of the cell is about 0.45 − 0.58 V at zero current [18], it is called

the open circuit voltage Voc. Whereas, the maximum current produced is the short-circuit

current Icc attained when the terminals of the cell are short-circuited.
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Figure 2.1: Schematic representation of a solar cell [18].

2.2 Basic Types of PV cells

Reference [19] presents a wide range of materials used for PV applications, such as the

Cadmium telluride, Copper indium gallium selenide, Organic and polymer materials.

However, crystalline silicon photovoltaic cells dominates the PV markets, since they

are manufactured with different performances and forms, each model has its benefits

compared to other models. The most commonly used types of crystalline silicon PV cells

are shown in Fig. 2.2 [20], which are:

1. Mono-crystalline (single crystalline) cells:

Mono-crystalline solar panels are generally considered as a premium product thanks

to its high efficiency (18− 19%) and aesthetic performance. It is considered as the

expensive crystalline silicon (0.83AC to 1.25AC per watt) [21][22].

2. Poly-crystalline (multi-crystalline) cells:

It is made from the wafer cut of recrystallised silicon and as its name indicates, it

is made up of a large number of crystals in a disordered manner. Poly-crystalline

cells have a low efficiency (around 16− 17%) compared to mono-crystalline cells, at

a cost around 0.75AC to 0.83AC per watt [21][22].
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3. Amorphous cells (Thin-film):

It is formed by depositing a silicon film on a glass substrate. In this technology,

less silicon is used in the production process compared to mono- or poly-crystalline

cells, but this saving is at the detriment of the conversion efficiency (around 9%),

which reflects its cost at 0.58AC to 0.83AC per watt [21][22].

Figure 2.2: Different types of PV modules.

2.3 Equivalent circuit and mathematical model

The solar cells are represented based on diode models; single diode model [23][24], two

diode model [25], and three diode model [26]. Generally, the single-diode model is the most

widely used since it offers a good trade-off between simplicity and precision over other

models. In the two-diode model, an additional diode is used to reflect the effect of carrier

recombination. A three-diode model is applied to take into consideration the influence of

grain boundaries and large leakage currents across the peripheries. The equivalent single

diode circuit of the PV cell is represented in Fig. 2.3 [27] .

Using Kirchhoff’s current law for current:

I = IL − ID − Ish

Where IL represents the light generated current in the cell (photocurrent), Ish represents

the current lost due to shunt resistances. In this circuit model, ID represents the voltage-

dependent current lost to recombination, it is formed using the Shockley model for an

9
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Figure 2.3: Single diode equivalent circuit models.

ideal unique diode by the following equation:

ID = I0

[
exp

(
V + IRs

n ∗ VT

)
− 1

]
(2.1)

Where n is the ideality factor of the diode, (the factor ideality is between 1 and 2 for

a single junction cell), I0 represents the reverse saturation current and VT represents the

thermal voltage as:

VT = NsKTc
q

Where Ns is the number of cells in series, K is the Boltzmann’s constant (1.381 ∗

10−23J/K), q is the elementary charge (1.602 ∗ 10−19C) and Tc refers to the junction

temperature of the module in Kelvin.

The shunt current can be written as:

Ish = (V + (I ∗Rs))/Rsh (2.2)

The parasitic parametersRs andRsh represent the series resistance and the shunt resistance,

respectively. They affect the illuminated current–voltage (I-V) characteristics and efficiency

of cells [28]. Therefore, using Eq. (2.1) and Eq. (2.2), the single diode circuit can be

performed following Eq. (2.3).

10
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I = IL − I0

[
exp

(
V + IRs

n ∗ VT

)
− 1

]
− V + IRs

Rsh

(2.3)

The output of the current source is instantly proportional to the light incident on the

cell (photocurrent IL) following Eq. (2.4). During darkness, the solar cells are not an

active device, where it operates as a diode [29].

IL = G

Gstc

× Isc = G

Gstc

(Isc,stc +KI (T − Tstc)) (2.4)

In standard test condition (STC), the temperature Tstc and solar irradiance Gstc are

respectively set at 298.15◦K and 1000 W/m2. Also, Isc,stc presents the short circuit current

at standard test condition, and KI is the short circuit temperature coefficient. The PV

module temperature interferes with the solar irradiance (G) following Eq. (2.5).

T = Tstc + G

Gstc

×
(
NOCT − 20

G0.8

)
= Tstc +G

(
NOCT − 20

800

)
(2.5)

Where NOCT refers to the normal operating temperature of the PV cell provided by

the manufacturer in ◦C, it is defined as the temperature reached by open circuited cells

in a module under the conditions listed below:

• Solar irradiance on cell surface = 800 W/m2;

• Air Temperature = 20C

• Wind Velocity = 1 m/s

The reverse saturation current of the diode, at the reference temperature, Tstc, is due

to the diffusive flow of minority electrons from the p-side to the n-side and the minority

holes from the n-side to the p-side, which can be expressed in Eq. (2.6).

I0,stc =
Isc,stc − Voc

Rsh

exp
(

qVoc

nNsKTstc

)
− 1

=
Isc,stc − Voc

Rsh

exp
(
Voc

nVt

)
− 1

(2.6)
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Hence, the reverse saturation current varies according to the diffusion coefficient of electrons

and holes. As the minority carriers are thermally generated, the reverse saturation current

is practically unaffected by the reverse bias but is strongly sensitive to temperature

changes.

2.4 Non Linear characteristics of PV system

In Photovoltaic system, the output characteristics are largely dependent on the level of the

irradiance and temperature. Based on Fig. 2.4.a, increasing the level of solar irradiance

leads to increase the PV output current joined with a slight increase in the PV output

voltage. While in Fig. 2.4.b, increasing the cell temperature leads to reduce the PV

output voltage. It can be deduced that a photovoltaic cell generates a higher amount of

output in the coldest place with a highest level of solar irradiation [30].

Figure 2.4: a) I-V curves of a PV module traced at different solar irradiance levels and
25◦C; b) I-V curves of a PV module traced at different temperature levels and 1000 W/m2.

Based on Fig. 2.5, the PV output power is directly proportional to the amount of

solar irradiance falling on, and inversely proportional to the temperature. In addition, it
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is clear that the change in atmospheric conditions implies a change in the position of the

Maximum Power Point (MPP), which leads to affect the system efficiency.

Figure 2.5: P-V curves of a PV module, plotted at: a) different temperature levels at
1000W/m2; b) different solar irradiance levels at 25◦C.

For this purpose, Maximum Power Point Tracking (MPPT) techniques are required,

in order to avoid power losses by varying the PV terminal voltage. MPPT techniques will

be detailed in the next chapter.

2.5 Shading effects in PV module

Shading a solar module is equivalent to introducing a clog (impediment) in a pipe of liquid.

The clog inside the pipe restricts the stream of water through the pipe. Identically, when

a solar module is shaded, automatically the current flowing through the whole string is

reduced.

Partial shading is one of the most causes that reduce the PV systems efficiency,

approximately by 50% [31][32]. It happens due to several external influences such as

neighbouring buildings, the existence of clouds, trees and snow. . . . The influence of
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shadow differs depending on the string configuration, number of cells per module (36, 60

or 72 cells), the number of the bypass diode (BPD) and its placement. Figure 2.6.a shows

a visual representation of the PV module configuration used in this study. In this case,

the PV panel containing 60 cells is subdivided into 3 sub-strings or groups of cells of 20

cells each, and three bypass diode. A BPD does not prevent a cell to dissipate energy

because it has to operate in the inverse bias in order to surmount the positive bias in the

chain and activate BPD. Once a BPD is activated, it would provide an alternative path

for the flow of current from the other strings as shown in Fig 2.6.b, but this means that a

shaded cell may reduce the power of a conventional module by one third (60 cells, three

BPDs). In the absence of a BPD, the power loss could be even greater [33].

Figure 2.6: a) Schematic back side of a PV module with 60 solar cells; b) PV module
with one shaded solar cell.

In this context, the PV string receives different value of irradiance, this effect generates

a current mismatching, making the shaded cells to proceed as a resistor. In addition to

that, instead of one MPP (unique peak), several local maximums appear which makes it

difficult to differentiate between the local maximum power point (LMPP) and the global

maximum power point (GMPP), which causes losses in the PV output power as it is

described in Fig. 2.7 [34].
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Figure 2.7: Representation of the different losses due to partial shading in a PV system.

Additionally, the output of the entire module may be greatly affected by the orientation

of the shadow, where a horizontal orientation has a greater impact since it affects the whole

cells of the module [35].

Approaches to Avoid shading drawbacks

In real application, the possibility of completely avoiding all the effects of partial shading

remains a hard task. To mitigate these losses, engineering approaches have been developed

[36], including the following solutions:

• PV module configurations;

• PV array configurations;

• Module Level Power Electronics (MLPEs).
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2.6 Types of solar power systems

Photovoltaic solar systems include devices and equipment such as photovoltaic modules,

charge controllers, inverters, battery bank. . . . Their design and cost estimation depends

on the installation site, the building design, the required load profile and the type of solar

module. Depending on the application and usage, they can be classified into two main

categories, as stand-alone systems or grid connected PV systems [37].

Stand-alone systems, also called also called autonomous systems, are designed for

regions where the utility grid is not available, such as isolated (remote) regions where the

energy needed is limited and the solar source is available. Figure 2.8 presents the off-grid

PV system components based block diagram [38].

Figure 2.8: Off-grid PV system component based block diagram.

In case of grid-connected systems, DC electricity produced by the solar modules flows

through a grid-connected inverter and is converted into AC electricity, which can be used

by domestic electrical appliances or fed directly into the utility grid via a net meter or a

bi-directional meter. Figure 2.9 presents the grid connected PV system component based

block diagram [38].

In stand-alone systems, the PV string is usually over-sized to be able to store energy

that can be used later, when solar irradiance is not available. In these systems, during

sunny days, it may be not possible to use the maximum power available, especially
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Figure 2.9: Grid connected PV system component based block diagram.

when the batteries are charged and consumption is low. In these situations, the MPPT

algorithms are not relevant since the system can not operate at the MPP. Furthermore, an

excessive oversizing may affect the MPPT controller [39]. In grid-connected PV systems,

the maximum power is permanently extracted using the MPPT controllers and injected

directly to the utility grid.
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Chapter 3

Maximum power point tracking

techniques

3.1 Introduction

External influencers such as temperature and solar irradiance introduce a non-linear

characteristic to the system (see section 2.4). Furthermore, internal degradation and

shadows may affect the system efficiency by introducing additional local maximums in the

P-V curve (see section 2.5). These factors hinder the system to operate on its maximum

power point (MPP), which affect the system efficiency.

In order to track the MPP continuously even when the atmospheric conditions change,

the PV output voltage must be continuously adjusted towards its optimum value, this is

called the Maximum Power Point Tracking (MPPT).

In this chapter, an overview of the MPPT algorithms is presented, attached with a

detailed functional principle of three different MPPT algorithms, which are the Perturbation

and Observation (P&O), Particle swarm optimisation (PSO) and the Kalman filter (KF ).
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3.2 Overview about MPPT

In literature, there are about 10 different main MPPT techniques [10], and a dozens of

variants have been investigated [40]. Each technique vary in tracking efficiency, convergence

speed, complexity, number of sensors required and type of implementation hardware.

Sumathi and Kumar [41] classified the MPPT techniques into three categories:

• Off-line techniques such as fractional short-circuit current (FSCC) and fractional

open-circuit voltage (FOCV) techniques;

• On-line or hill-climbing (HC) techniques such as incremental conductance

(InCond) and perturb and observe techniques;

• Artificial-Intelligent (AI) techniques such as artificial neural network (ANN)

technique, fuzzy logic control (FLC) technique, particle swarm optimization (PSO)

technique and genetic algorithm (GA).

Three different MPPTs are detailed and evaluated in the next section in order to

analyse their performance in real test conditions.

3.3 Perturbation and Observation

Perturbation and observation (P&O) technique is widely used and the most known MPPT

algorithm since it is the simplest method among all MPPTs [42]. In addition to that, only

two sensors are required to measure the PV’s terminal voltage and current where the

instantaneous power can be calculated.

The algorithm introduces a perturbation on one of the converter input parameters

usually the PV output voltage Vpv by a constant value (∆V ). Right after, it observes

the impact of this perturbation on the PV output power. According to Fig. 3.1, on the

left side of the maximum power point, incrementing the voltage value is followed by an

increase of the PV output power, whereas on the right side, incrementing the voltage
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value is followed by a decrease in power. Based on this analysis, the P&O flowchart can

be summarized in Fig. 3.2.

Figure 3.1: Operating principle of the P&O in the P-V curve.

The algorithm uses the PV voltage and current to calculate the PV output power.

If the power variation increases (∆P > 0), the perturbation will continue in the same

direction. Otherwise, the direction of the perturbation will be inversed, due to power

reduction (∆P < 0) [43].

Figure 3.2: Flowchart of the MPPT based P&O technique.
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The operating voltage is disturbed at every perturbation cycle, even when the MPP is

achieved, which makes the power oscillates around the maximum operating point (MPP).

These oscillations cause loss in the PV output power, and may affect the efficiency of the

technique [44]. knowing that the amount of oscillation depends on the step width of the

perturbation, two scenarios are possible:

• If the step width of the perturbation is large, more oscillation amplitude around

the MPP occurs. However, the dynamic to achieve the MPP increases, even in fast

changes of the atmospheric conditions.

• If the step width of the perturbation is small, less oscillation amplitude around the

MPP occurs. However, the dynamic to achieve the MPP decreases.

In this work, the ideal step size of the perturbation is defined in the experimental part.

Several works have been carried out to address this problem by setting a variable pitch

during the maximum point search phase and the steady state phase around the MPP [45].

This technique presents an important drawback in rapid irradiance changes as Fig.

3.3 shows. At this stage, the system is disturbed towards the point C by the sunlight and

not by the perturbation of the algorithm, which distances the search for the MPP from

the operating point.

Figure 3.3: Wrong tracking of the P&O technique under sudden solar irradiance changes.
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3.4 Particle Swarm Optimisation

3.4.1 Overview about the PSO

PSO algorithm was created in 1995 by Kennedy and Eberhart [46]. It was inspired by

the social behaviour of animals evolving in swarms (example: Bird flocks), where each

individual animal has a limited knowledge (local knowledge) about his situation in the

whole swarm. The PSO technique plays a key role in solving wide optimization problems

such as:

• Nonlinear problems;

• Multi-objective optimization;

• Unconstrained and constrained optimization problems.

3.4.2 Operating principal

The particle swarm is a group of simple agents called particles. Each particle is considered

as a solution of the problem referred by a particular position xi and velocity vi. Additionally,

each particle has two values to communicate with the other particles, where the first is

the personal best performance pop−i reached by the particle i, and the second is the global

best pop−g, which represents the optimal solution of all the particles [47].

Figure 3.4 presents the three components that control the movement of particles, which

are:

• Inertia weight component: each particle has to follow its own current direction

of shifting;

• A cognitive component: each particle has to follow the best location where it

has already passed ppo−i;

• A social component: each particle has to move towards the best location ppo−g
already reached by the rest of the particles based on the shifting of its congeners.
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Figure 3.4: Particle movement in the optimization process.

Based on the shifting components, Eq. (3.1) shows the new position at iteration (t+1)

adjusted by the PSO technique.

xi(t+ 1) = xi(t) + vi(t+ 1) , i ∈ {1, ..., ni} (3.1)

Knowing that:

vi(t+ 1) = wvi(t) + c1r1(ppo−i − xi(t)) + c2r2(ppo−g − xi(t)) (3.2)

Where:

i: The index of the particle;

ni: Number of particles;

xi(t): The position of the particle i at the instant (t);

xi(t+ 1): The position of the particle i at the instant (t+1);

vi(t): The shifting of the particle i at the instant (t);

vi(t+ 1): The shifting (velocity) of the particle i at the instant (t+1);

w: Coefficient of inertia;

c1 and c2: Acceleration coefficients;

r1 and r2: Two random values drawn uniformly between zero and one;
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pop−i: The best position of the particle i;

pop−g: The best position of all the particles of the swarm.

The performance evaluation of the swarm particles is done by a maximum character

function, called fitness function (F). In order to improve the performance of the particles

(position and velocity), a comparison at every iteration using the fitness function is done

between the current position and the best local position to define the new local best ppo−i,

and also between the current position and the global best position to define ppo−g, which

can be summarized in the following equations [48].

if F (xi(t+ 1)) > F (pop−i)⇒ pop−i = xi(t+ 1) (3.3)

by the same:

if F (xi(t+ 1)) > F (pop−g)⇒ pop−g = xi(t+ 1) (3.4)

3.4.3 PSO based MPPT process

The analogical adaptation of the PSO technique in the instantaneous search of the MPP

is based on considering the position of the particle (xi) analogous to the duty cycle Di,

which represents the DC / DC boost converter control signal. Likewise, the shifting speed

(vi) is analogous to the variation in duty cycle at every iteration (∆Di), while the fitness

function is defined as the PV output power corresponding to the duty cycle of each particle

[48][17]. In summary: 

xi(t) ≡ Di(t)

vi(t) ≡ ∆Di(t)

pop−i ≡ dop−i

pop−g ≡ dop−g

F (xi) ≡ P (Di)

(3.5)
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Where Eq. (3.1) and Eq. (3.2) become :

Di(t+ 1) = Di(t) + ∆Di(t+ 1) , i ∈ {1, ..., ni} (3.6)

Knowing that:

∆Di(t+ 1) = w∆Di(t) + c1r1(Dop−i −Di(t)) + c2r2(Dop−g −Di(t)) (3.7)

Where:

Di(t): The duty cycle of the particle i at the instant (t);

∆Di(t): The variation of the duty cycle of the particle i at the instant (t);

Dop−i: The best duty cycle of the particle i;

Dop−g: The best duty cycle of all the particles of the swarm.

Using the fitness function at every iteration, the PSO defines the corresponding power of

the duty cycle of each particle in the swarm, where the best local power of each particle

and the global best power are updated by comparison using Eq. (3.8) and Eq. (3.9),

respectively, according to their duty cycles [49].

if P (di(t+ 1)) > P (dop−i)⇒ dop−i = di(t+ 1) (3.8)

by the same:

if P (di(t+ 1)) > P (dop−g)⇒ dop−g = di(t+ 1) (3.9)

Figure 3.5 shows the flowchart of the PSO based MPPT technique [50], which can be

described in the following steps:

• Step 1: This step includes the initial number of particles np all over the space

research, attached with their initial duty cycles and velocities.

The choice of the parameters w, c1 and c2 have an essential importance in the

optimisation process. Regarding the social component c2 and the cognitive component

c1, a large value of c2 compared with c1 make the optimization biased towards the
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global best recovery pop−g. Otherwise, the sampling related to the local best pop−i

will be preferred. Plenty of research in literature improves the variance of these

values as a variable function for better exploitation and the exploration [48].

• Step 2: Calculate the fitness value of each particle by sending the particle solution

to the fitness function (objective function)..

• Step 3: Update the best individual positions pop−i of each particle and the best

overall fitness value pop−g using Eq. (3.8) and Eq.(3.9), and replace the corresponding

pop−i and pop−g at their position if necessary.

• Step 4: If all particles are evaluated, update the velocity ∆Di and duty cycle Di of

all the particles using Eq. (3.7) and Eq. (3.6), respectively. Otherwise, repeat step

2 through step 4.

Figure 3.5: Flowchart of the MPPT based PSO technique.
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3.5 Kalman filter

3.5.1 Overview about the Kalman filter

Kalman filtering is an optimal estimation approach that has been widely implemented in

real-time computational dynamics. The Kalman filter estimates the state of a dynamic

systems based on two different models, a dynamic model and an observation model.

The dynamic model defines the behaviour of the state vector, while the observational

model sets out the relationship between the state vector and the measurement [15]. Both

models are equipped with statistical features to describe the accuracy of the models

following Fig 3.6 [51]. In many applications, the statistical noise levels of the model are

provided before the filtering process and remain unchanged during the recursive process.

Usually, this priori statistical information is determined by trial analysis and some prior

knowledge about the type of observation. If this priori information is insufficient to

represent the real statistic noise level, the Kalman estimate is not optimal and can lead to

unreliable results, sometimes even filtering out discrepancies [15][52]. Reference [15] offers

an adaptive filter which can retrieve the appropriate noise covariances and can enhance

the filter performance to deal with data assimilation problems.

Figure 3.6: Generic block diagram to illustrate the Kalman filter technique.
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Nowadays, Kalman filter is widely used in several applications such as [53]:

• Medical and Biological Sciences.

• Tracking and Positioning such as GPS systems.

• Electrical Engineering.

• Industrial Applications and Communications.

3.5.2 Kalman filter principle

The KF technique is an iterative mathematical process that uses a set of equations and

consecutive data inputs to quickly estimate the actual values (velocity, position, etc...) of

the object being measured. The KF technique supports estimations of the state across the

entire time axis (past, present and future) especially when the measured values contain

unpredicted random errors, or the nature of the modeled system is not known [12].

The KF algorithm combines periodically the inputs from the observation state (physical

measurement) with the prediction state (predicted by the algorithm) of a particular

situation. Furthermore, the different errors and uncertainties of the process noise and

the measurement noise are taken into consideration by using a stochastic state-space

representation, in order to reduce the imperfections of the controlled state [54][55].

The set of equations of the KF technique is divided in two groups [54]. Firstly, the

predicted equations (the time update), which are:

Xp
act(k) = AXact(k − 1) +Bu(k − 1) + w(k − 1) (3.10)

P p(k) = AP (k − 1) +Q (3.11)

The first equation represents the state vector predicted by the algorithm, where Xp
act(k) is

the prediction of the actual state vector at iteration k given by the results of the previous

iterations, Xact(k) is the actual state vector estimation at iteration k − 1 adjusted by a
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physical measurement, u is the control variable matrix, which refers to the input system

[17], A and B are constant matrices used to adapt the system to the KF process, w refers

to the imperfections of the modeling process [55].

The second equation, P p(k) represents the priori process covariance matrix (the error in

the estimate), andQ is the process noise covariance matrix which tends to keep the process

covariance matrix from becoming too small or tends to zero. When the imperfections of

the modeling process is known, the process noise covariance can be calculated as [51]:

E{w(k)× wT (k)} =


Q(k) if i = k

0 if i 6= k

Secondly, the corrector equations (the measurement updates) consist of three equations,

where the main role is to adjust the predicted state vector and process covariance by using

data from the physical model. The Kalman gain is calculated at first using Eq. (3.12).

K(k) = P p(k)H
HP p(k)HT +R

(3.12)

Where, P p(k) is the priori process covariance matrix calculated in Eq. (3.11), H is a

constant which depends on the concerned system in which the KF technique is applied,

and R is the output measurement error covariance matrix based on the the space-vector

representation of the Kalman filter model. If the measurement noise z(k) is completely

known, the measurement error covariance can be calculated as follows [51]:

E{z(k)× zT (k)} =


R(k) if i = k

0 if i 6= k

The Kalman gain is called also the weight factor, and it compares the error in the estimate

with the error in the measurement. If R is higher than P p(k), i.e. the measurement update

includes more uncertainties compared to the predicted update. Therefore, the Kalman

gain must tend to 0, considering the predicted state as a confident update, and vice versa.
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The second equation refers to update the adjusted state vector Xact(k) by combining

the measured voltage given by sensors Ymeas and the measurement output given by the

KF model Y p(k) following Eq. (3.13).

Xact(k) = Xp
act(k) +K(k) (Ymeas(k)−HY p(k)) (3.13)

Knowing that the measurement output equation depends onXact(k) and the measurement

noise z(k), which can be written following as:

Y p(k) = CXact(k) + z(k) (3.14)

The last equation updated is the posterior process covariance P (k) given by the

following equation:

P (k) = (I − k(k)H)P p(k) (3.15)

Where I is the identity matrix, and P p(k) is the priori process covariance at the same

iteration as the posterior process covariance.

3.5.3 Kalman filter based MPPT process

To achieve the tracking of the maximum power point, the position of the operating point

must be projected continuously. According to the P-V characteristic of the PV array

shown in Fig. (3.1), the curve represents a convex function where the PV power increase

with a positive slope ∆P
∆V until achieve the MPP, right after the optimal point power

decreases with a negative narrow slope. On the other hand, the state vector of the KF

based MPPT is composed by only one state variable which is the PV string output voltage

reference imposing A equal to 1. Based on this features, a similar one dimension linear

state space equation can be formed, where the MPPT can be governed by the following

equation [51]:
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V p
ref (k) = Vref (k − 1) +B

∆P
∆V (k − 1) + w (3.16)

Where V p
ref (k) is the voltage reference predicted by the MPPT controller at iteration k,

Vref (k−1) is the voltage reference corrected (step-up input voltage reference) at iteration

k− 1 based on physical measurement, B refers to the scaling factor (step size), ∆P
∆V is the

instantaneous power slope which reflects the control variable matrix. w presents the mix

of disturbances of the design, such as the switching noise generated by switching devices,

the thermal noise and also the electro-magnetic interference. Even without the errors

between the PV array and the power electronic device, there are some other errors caused

by the voltage and current sensors in order to recover the measured slope ∆P
∆V [13][17].

In this work, the measured voltage Vmeas(k) follows the Eq. (3.17):

Vmeas(k) = Vref (k) + z (3.17)

Where z is the error (uncertainties) between Vmeas and Vref at the same iteration, as

it is described in Fig. 3.7, in which the noises are supposed to be white Gaussian and

uncorrelated each other [54].

Figure 3.7: Controlling errors between the measured voltage and the reference voltage
[17].
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Two known values, Vmeas(k) and ∆P (k)
∆V (k) are used for the KF based MPPT, which leads

to describe the flowchart (Fig. 3.8) in the following steps:

• Step 1: update the predicted voltage reference

V p
ref (k) = Vref (k − 1) +M

∆P
∆V (k − 1) (3.18)

In real systems, the amount of noises is important especially the slope ∆P
∆V since it

is more sensitive. Therefore the predicted results can present failures in tracking

the MPP. The slope can achieve an unexpected magnitude around 105 (observed

experimentally) due to noise. This situation has occurred when the voltage variation

(∆V ) becomes infinitesimal. In this work, a protection block is implemented experim-

entally in order to avoid this drawback.

• Step 2: update the priori process covariance (error in estimate), whereQ refers to the

process noise covariance between the priori and the posteriori process covariance, it

imposes a tradeoff between the dynamicity and the stability of the tracking process

around the MPP. In this work, by fixing the measurement error R (appendix A),

the process noise covariance can be tuned by trial process.

• Step 3: update the kalman gain by using the measurement noise covariance R

and the priori process covariance P p(k), which in turn requires the process noise

covariance value Q [17].

• Step 4: update the corrected voltage reference (step-up input voltage reference)

Vref by controlling the error between the predicted voltage reference V p
ref and the

measurement input given by the voltage sensor in Eq. (3.17), using the kalman gain

given by Eq. (3.12).

• Step 5: update the posteriori process covariance P (k) using Eq. (3.15). As the

number of iterations progresses, P (k) will be smaller and tends to zero. Thus, the

noise will be gradually eliminated from the final estimations [51][14].
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At this stage, it should be clear that the KF technique suggests also a process that reduces

the noise effects in the tracking computation [54].

Figure 3.8: Flowchart of the MPPT based KF technique.
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Chapter 4

Experimental setup and

implementation

Introduction

In order to validate the theoretical description of the previous chapter, experimental tests

were carried out on real grid-connected PV system. The experiments were carried out in

the LSE laboratory (Electro Mechatronics Systems Laboratory, Instituto Politécnico de

Bragança, Portugal).

This chapter focus on the power topology used during this work, attached with

the electrical characteristics of the static material used. This chapter provides also

a description on the implementation of the algorithms evaluated, using a duality of

MATLAB/Simulink software and dSPACE 1103 real time controller board.

4.1 Power Structure

Figure 4.1 illustrates the power structure used for the experimental tests. It is composed of

PV string connected to a PM75RLA120 intelligent power module (IPM) from Powerex,

which provides a three-phase IGBT inverter. The first arm (U) operates as a boost

converter by maintaining the upper IGBT (switch 1) continually OFF. While the other
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Figure 4.1: System power structure.

arms (V andW) operate as a single phase voltage source inverter (VSI) [56]. An LC output

filter is used, attached with an insulation transformer for protection purpose between the

grid (active load) and this PV system.

Figure 4.2 shows the hardware setup, where the measurement module is a signal processing

interface for data acquisition and filtering. While the dSPACE 1103 real-time board

controls the single phase VSI and the boost converter based on the MPPT and VOC

blocks, which are implemented in Simulink withReal−Time Interface and ControlDesk.

Figure 4.2: Hardware setup.
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4.1.1 PV string

Figure 4.3 shows the two PV string models used for the experimental test presented in this

work. The first string (string A) consists of 5 series-connected Fluitecnik FTS220P PV

modules and is used for the tests under normal operating condition since it is installed on

the roof the laboratory. While the second string (string B) consists of 3 REC 275PE PV

modules also connected in series. it is used for the test under shadow effect (see section

2.7), since it is installed in front of the laboratory, which ease the implementation of the

artificial shadow. Table 4.1 shows the electrical characteristics of PV models used.

Figure 4.3: PV string models.

Characteristics Pmax VMPP IMPP Voc Isc
Model A 220 W 29.38 V 7,51 A 36.76 V 8.30 A
Model B 275 W 31.5 8.74 A 38.7 V 9.25 A

Table 4.1: Electrical characteristics of the PV modules.

4.1.2 DC-DC converter

The DC/DC converter controls the output voltage of the PV string (input voltage of the

converter) and limits the maximum output voltage (DC-link voltage) to an appropriate

level. The DC-DC converter controller is designed to operate as an MPPT block, which
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provide a PWM signal to control the switch (IGBT 2) of the converter. The values of the

capacitor Cdc and the inductor L are 1000 µF and 12 mH, respectively.

4.1.3 DC-AC converter

A single phase Voltage Source Inverter (VSI) is applied to balance the power flow from

DC bus to the grid. It consists of four IGBTs controlled using voltage oriented control

(VOC), by providing the reference PWM. The VOC ensures the grid synchronization and

the control of active power by keeping the DC-link voltage constant at 400V . Figure 4.4

shows the block diagram of the VOC control, which is based on the transformation between

a stationary frame (αβ) and a rotating frame (dq), in order to control the decoupled direct

current separately using two PID controllers, where the control of the active and reactive

is also possible [56][57], knowing that:

• A phase locked loop (PLL) is used to obtain a pure image of the grid voltage

(providing the grid voltage amplitude and the angle (θ) between the stationary and

rotating frames);

• The synchronous frame (dq) rotates at the angular speed of the grid space-vector

(100π);

• The grid voltage space-vector is aligned with the direct component (d) of the rotating

frame;

• The proportional and integration gains for the current component are set to be 20

and 2000, respectively, while that of the DC link voltage are set as 0,19 and 10.
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Figure 4.4: Block diagram of the Voltage Oriented Control.

4.2 Algorithms’ implementation

Figure 4.5 shows the block diagram control where the three evaluated techniques operate.

The PSO algorithm does not require any PI controller, since it generates directly the duty

cycle for the IGBT of the boost converter. Unlike the P&O and KF techniques, which

generate at first a reference voltage. Table 4.2 shows the proportional and integration

gains used for the P&O and KF techniques.

Figure 4.5: Power structure control configuration.

39



CHAPTER 4. EXPERIMENTAL SETUP AND IMPLEMENTATION

Gain Value
Proportional gain (Kp) 20
Integration gain (Ki) 2000

Table 4.2: Gains of the PI controller used for P&O and KF techniques.

The implementation of the MPPTs block were carried out by using Simulink with

dSPACE 1103 real − time controller board, where the analogue measured quantities

of the PV current and PV voltage are assigned to the A/D converter of the controller

board, so as to be used by the Simulink MPPT control block. The output signal given

by the MPPT control block is then applied towards the DS1103SL_DSP_PWM block,

in order to provide the switching signal used for driving the IGBT.

In order to proceed real time tracking of the MPP, the Simulink MPPT block must be

downloaded on the dSPACE board, so as to generate a C code according to each MPPT

control block.

4.2.1 Implementation of Perturbation and Observation technique

Figure 4.6 shows the Simulink MPPT block of the P&O technique, where the increment

(perturbation) is chosen to be 4V.

Figure 4.6: Simulink diagram of the P&O technique.
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4.2.2 Implementation of Kalman Filter technique

Figure 4.7 shows the Simulink MPPT block of the KF technique, while Table 4.3 shows

the required parametrization used in this work. A protection block is applied to avoid the

divergence of the slope, when the measured PV voltage difference between two successive

iterations ∆V becomes infinitesimal.

Figure 4.7: Simulink diagram of the KF technique.

Parameter value
B 1
P0 0
Q 0.265
R 0.405

Table 4.3: Parameterization of the KF technique.

The setting of measurement covariance R was carried out using the Excel program via

a measurement signal, while the value of Q was set experimentally by tuning this value

in real-time. The initial value of the process covariance P0 is chosen to be 0 since the

distance between the predicted voltage and the reference voltage is unknown.

4.2.3 Implementation of the PSO technique

Figure 4.8 shows the Simulink MPPT block of the PSO technique, while table 4.4 shows

the required initial parametrization used in this work. The number of particles is chosen
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to be 5 particles. It should be specified that a large number of initial particles may

generates a large amount of oscillation at the beginning of the tracking.

Figure 4.8: Simulink diagram of the PSO technique.

Parameter value
np 5
w 0.4
c1 1.2
c2 2.2

Table 4.4: Parameterization of the PSO technique.
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Chapter 5

Experimental results and discussion

This chapter is divided into two parts. The first presents the test protocol of the algorithms

evaluated, attached to the experimental results carried out under two situations: under

normal operating conditions, and under shadow conditions. The second part stands on

the discussion regarding the tracking performance of each MPPT technique.

5.1 Experimental results

In order to compare experimentally the performances of the MPPTs evaluated, two sets

of tests were curried out. Firstly, the tests under normal operating conditions, which were

carried out in sunny day, where the irradiation and temperature are almost constant for

the entire duration of the tests applied with the three algorithms. Figures 5.1 and 5.2 show

the ambient atmospheric solar irradiance and temperature, where the tests are performed

on 09/03/2021 between 11:20 pm and 12:50 pm. During the testing period, the ambient

solar irradiance varies around 4% and the ambient temperature varies around 8%, which

will not affect the performance comparison between the MPPTs evaluated. Secondly, the

tests under partial shading conditions, where the purpose is to discover the capability to

deal with shadow effect described in section 2.5.
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Figure 5.1: Ambient solar irradiance.

Figure 5.2: Ambient temperature.

Since the PV output voltage at the maximum power point VMPP is located at around

0.8 of the open-circuit voltage Voc, about 65% of the P-V curve (including the MPP) was

traced by using a ramp block following Figs. 5.3 and 5.4.
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Figure 5.3: P-V curve identification for P&O and KF algorithms.

Figure 5.3 shows that the PV output voltage increases linearly from 40V to 0.9Voc,

where the MPP is included. Thereafter, the P&O and KF techniques are launched after

turning back the output PV voltage at 40V .

Figure 5.4: P-V curve identification for PSO algorithm.

Figure 5.4 shows that in the case of the PSO technique, the PV output voltage

decreases linearly from the Voc to 40V , which is imposed by increasing linearly the duty

cycle from 0.4 to 0.9. Thereafter, the PSO technique is launched at the same voltage

value 40V .
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5.1.1 Tests under normal operating conditions

Tests under normal operating conditions are performed using the PV string A shown in

Fig. 4.3, where the three MPPT techniques are executed with the same cadence at 0.1s.

Figures 5.5, 5.6 and 5.7 show the performance tracking of the MPPT techniques evaluated

in this work.

Figure 5.5: Test under normal operating conditions using P&O.

Figure 5.6: Test under normal operating conditions using KF.
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Figure 5.7: Test under normal operating conditions using PSO.

5.1.2 Tests under partial shadow conditions

Tests under shading are performed using the PV string B shown in Fig. 4.3. Where the

purpose lies in the ability to operate around the global MPP described in section 2.5. The

artificial shadow was realized using a semitransparent film on a small portion of string

B as in Fig. 4.3. Figures 5.8, 5.9 and 5.10 show the performance tracking of the MPPT

techniques evaluated under shading conditions.

Figure 5.8: Test under partial shadow condition using P&O.
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Figure 5.9: Test under partial shadow condition using KF.

Figure 5.10: Test under partial shadow condition using PSO.

5.2 Discussion

The results obtained in Figs. 5.5, 5.6 and 5.7 share the same test conditions, such as

the temperature, solar irradiance exposed, hardware setup and execution cadence of the

algorithms, where their evaluation can be performed to compare the precision to reach

the MPP, the oscillation around the MPP at steady state, the response time (speed

convergence) and the ability to deal with partial shading conditions.
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The aptitude to reach the MPP

The results in Fig. 5.5, 5.6 and 5.7 show that the P-V curve obtained by the ramp block

includes a single MPP. The difference between the MPP and the operating point achieved

by each MPPT technique represents the aptitude in reaching the MPP. In short, the

algorithm which operates closer to the MPP extracts more power from the PV String.

The aptitude to reach the MPP can be calculated using Eq. 5.1 and 5.2, where VMPP is

the voltage associated to the MPP given the P-V curve, and VMPPT presents the voltage

where each MPPT operates according to its efficiency.

Power aptitude =
(

1− MPP −MPPT

MPP

)
× 100 (5.1)

V oltage aptitude =
(

1− VMPP − VMPPT

VMPP

)
× 100 (5.2)

Table 5.1 shows the results based on Eq. 5.1 and 5.2. The precision is around 99% for

the three algorithms, where the KF operates closer to the MPP, achieving 99.5%, since

its operation is based on the P-V curve slope, making the prediction depending on the

lightness or the steepness of the slope.

Algorithms P&O Kf PSO
Aptitude 98.8% 99.5% 99%

Table 5.1: Aptitude to achieve the MPP.

Oscillation around the MPP

The efficiency of each algorithm depends strongly on the amount of oscillation around

the MPP in steady-state, since it represents an energy loss of the system. However, the

amount of losses differs from one technique to another according to its operating principle.

The oscillation of each MPPT can be analyzed as follows:

• Case of the P&O algorithm

Figure 5.11 presents a zoom of Fig. 5.5 in the steady-state region, where the voltage
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oscillation around the VMPP (129.5V ) is permanent and periodic due to the fixed

step of the perturbation imposed by the P&O algorithm (4V ). This situation leads

to generate a power oscillation of about ∓14.5W from the average PV output power.

However, This techniques presents a compromise between the amount of oscillation

and the response time by the mean of the perturbation.

Figure 5.11: Oscillation around the MPP using PO technique

• Case of the KF algorithm

Figure 5.12 presents a zoomed part of Fig. 5.6 in the steady-state region, where the

oscillations around the VMPP (125.8V ) are lower compared to the P&O technique,

and not periodic since the KF has the ability to predict adaptatively the next

voltage using the instantaneous power slope, whereas the P&O algorithm move to

the next voltage with a fixed value. On the other hand, the KF technique reduces

oscillations due to the power line and sensor noises by using their covariances at

every iteration. Likewise, the oscillations around the MPP are lower compared to

the P&O, and about ∓11W from the mean output power.
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Figure 5.12: Oscillation around the MPP using KF technique

• Case of the PSO algorithm

Figure 5.13 represents a zoomed part of Fig. 5.7 in steady-state, where the oscillations

around the VMPP are quite low compared to the P&O and the KF algorithms, and

in a range of (∓2V ). Due to the fact that all duty cycles reach a better fitness value,

where the direction of the velocity of these particles keeps unchanged and they then

shift towards Gbest in the same direction. As a result, the value of the duty cycle

approaches a fixed constant, in which the operating point is maintained and the

oscillation around the PPM decreases.

Figure 5.13: Oscillation around the MPP using PSO technique

51



CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

Table 5.2 summarizes the amount of oscillation around the MPP and the VMPP of the

evaluated techniques.

MPPT P&O KF PSO
Delta P 1.6% 1.17% 0.96%
Delta V 4.13% 3.1% 1.54%

Table 5.2: Oscillation around the MPP.

Convergence speed

It is also called the response time and refers to the time taken from launching the

MPPT technique (40V ) until achieving the MPP. Based on the results obtained under

normal operating conditions, the P&O algorithm achieves the MPP after 2.4s, being the

convergence speed affected by the perturbation factor, whereas the PSO algorithm took

2.8s, where speed is affected directly by the social and cognitive components. Moreover,

the initial oscillation presented by the PSO in Fig. 5.13, is due to the number of initial

particles, which may also slow the response time by keeping the particles moving around

the research space permanently. While the KF algorithm presents the higher convergence

speed compared with the P&O and PSO algorithms, at around 2.3s, since it moves to

the next iteration adaptatively starting with a large step, then decreases this step when

the MPP is closer to the VMPP achieved by the algorithm. It is important to note that

the execution cadence (the execution cycle) for the three MPPT is chosen to be 0.1s. To

avoid absolute value problems, the same test was repeated for different cadence values, in

which the convergence speed was a multiple of the first one (0.1s). Table 5.3 summarizes

the convergence speed of the three evaluated MPPTs.

MPPT P&O KF PSO
C. speed 2.4s 2.3s 2.8s

Table 5.3: Convergence speed of the MPPT evaluated.
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Ability to deal with partial shadow

According to Fig. 5.8, 5.9 and 5.10, the P&O and KF techniques fail to operate around

the global MPP, since they converge to the first optimum met, i.e. they confuse between

the local optimum and global optimum. In fact, only the PSO was able to track the global

MPP since it explores all over the research space with multiple particles in different

directions, and compares their output power associated at every iteration in order to

identify and track the global optimum.
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Chapter 6

Conclusion and future work

6.1 Conclusion

This master thesis presents an experimental evaluation of one of the most unknown

techniques in the tracking of the maximum power for photovoltaic systems, which is is the

Kalman filter (KF) technique. The evaluation is based on experimental comparison with

two of the most widely used algorithms, which are the Perturbation and Observation

(P&O) and Particle Swarm Optimization (PSO). The contribution of this work was

published in the International Journal of Renewable Energy and Research (IJRER) [17].

The experimental tests were curried out in the LSE with a grid connected PV system,

usingMatlab/Simulink2011 and dSpace real−time controller board. The power topology

is based on a boost converter followed by a voltage source inverter. The first controls the

operating point of the PV string by setting its output voltage (input voltage of the boost

converter). For this purpose, the MPPT algorithm gives the reference signal for the boost

converter. The second controls the active power flow to the grid using voltage oriented

control. This is done setting the DC-link voltage equal to 400V and controlling the current

direct component in a reference frame synchronous with the grid voltage. The evaluation

was based on two different configuration: under normal operating conditions and under

partial shading.
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One important conclusion from Chapter 3 is that the three evaluated MPPT algorithms

differ in their operating principle, sensors required, complexity of implementation and

initial parametrization, which play a key role in the tracking performances of each technique.

The experimental results assert that the KF algorithm exhibits a wide range of qualities

superior to those of the P&O and PSO algorithms in terms of operating accuracy close to

MPP, oscillation around MPP and convergence speed, which are summarized in Table 6.1.

However, the KF shares the same drawback as P&O in partial shading, where they fail to

distinguish between local and global optima, which leads to converge to the first optimum

encountered. Unlike PSO, which was the only algorithm to handle partial shading, since

its operation is based on exploring and exploiting the whole search space.

Algorithms P&O KF PSO
Aptitude 98.8% 99.5% 99%

Power oscillation 1.6% 1.17% 0.96%
Voltage oscillation 4.13% 3.1% 1.54%
Response time (s) 2.4 2.3 2.8

Ability in partial shading No No Yes

Table 6.1: summary of the results obtained.

6.2 Future work

It would be interesting in future work to integrate the Kalman filter, which has great

qualities under normal operating conditions, with particle swarm optimization to overcome

the power loss due to shading, in order to develop a new powerful MPPT based on KF &

PSO duality.
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Appendix A

Measurement noise covariance

calculation

The covariance formula can be written as:

σx × σy =
∑N
n=1(x− xi)× (y − yi)

N
(A.1)

Since the system is a one-dimensional system, the covariance becomes variance following

Eq. A.2.

σ2
x =

∑N
n=1(x− xi)2

N
(A.2)

In order to estimate the measurement covariance noise, which refers to the uncertainties

of the voltage sensor, the PV output voltage must be measured. Right after, a portion of

data from the measured voltage in steady-state has to be exported to excel software. At

the end, using Eq. A.3, the measured covariance noise. By fixing this last, the process

error covariance can be tuned and concluded by trials.

σ2
Vmeas

=
∑N
n=1(Vmeas − Vmeas,i)2

N
(A.3)

A1
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Abstract- Photovoltaic (PV) energy is among the most used renewable sources. Grid-connected PV systems should yield as 
much energy as possible. However, external influencers such as irradiance and temperature impose a non-linear characteristic of 
the PV system, which hinder its operation at the maximum power point. Additionally, other factors, such as shading or internal 
degradation, can change this characteristic by making local maximums appear, which makes it difficult to extract the maximum 
available power. There are several techniques for maximum power point tracking (MPPT) and very diverse algorithms for this 
purpose. There are also some published works with comparative studies. However, in most of these works, the comparison is 
based on a literature review or on simulation. An experimental evaluation of MPPT techniques, from the simplest to the most 
complex, remains relevant. Thus, this paper presents an experimental analysis of five MPPT algorithms: two of the simplest and 
widely used (Perturb & Observe and Incremental Conductance) and three of the most complex (Fuzzy Logic Controller, Kalman 
Filter and Particle Swarm Optimization). The experimental tests were carried out under real test conditions, using Simulink and 
the dSPACE 1103 real-time controller board. The results show that the five MPPT algorithms are able to track the MPP with a 
difference of less than 2% in their efficiency under normal operating conditions. This difference increases under shadow effect. 
The PSO algorithm was the only one able to find the global MPP under the effect of partial shading. 

Keywords MPPT algorithms; Perturb and Observe; Incremental Conductance; Fuzzy Logic Control; Kalman filter; Particle 
Swarm Optimization. 

 

1. Introduction 

Since the past decade, photovoltaic (PV) energy is among 
the most preferred source over all the other renewable sources, 
due to its wide range of qualities such as abundance in nature, 
low maintenance and high power density [1, 2]. However, the 
efficiency of PV systems is greatly affected by the efficiency 
of the inverter, the PV modules and the maximum power point 
tracking (MPPT) algorithms. PV inverters available on the 
market have achieved a maximum efficiency of 98% [3]. The 
increase of PV modules efficiency is under way and has been 
intensely investigated but it depends on complex 

manufacturing processes. Instead, improving the efficiency of 
the MPPT with various control techniques may be an 
alternative [4]. The main goal of these algorithms is to achieve 
the maximum power point (MPP) located along the nonlinear 
P-V characteristic, which depends on the temperature, solar 
irradiance and shadow situations [5]. Fig. 1 presents a generic 
P-V curve under normal test conditions containing a unique 
MPP, and under partial shading conditions, which contains a 
local MPP (LMPP) and a global MPP (GMPP)[5, 6].  

There are about 10 main MPPT techniques [7, 8], and a few 
dozen variants [9] published in literature. Some of the most 
recent works [10-12] deal with the integration of conventional 
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Fig. 1. Generic P -V curves. 

and advanced MPPT techniques, since conventional 
techniques are very complex to implement [13]. In [5], 
research lacunae and noteworthy remarks are discussed on 
recently published MPPT algorithms. Most research work 
focuses on simulation for the purposes of cost and versatility 
analysis [14, 6], which leads to a lack of information regarding 
other characteristics. Furthermore, the MPPT based on the 
Kalman filter has not been sufficiently investigated since only 
a few simulation studies are known [15-17]. 

This paper presents an experimental evaluation between 
different MPPT techniques such as Perturb and Observe 
(P&O), Incremental Conductance (IC), Fuzzy Logic 
Controller (FLC), Kalman Filter (KF) and Particle Swarm 
Optimization (PSO). It compares the performance of these 
algorithms in terms of oscillation at the MPP, precision of the 
MPP voltage and shadow effect. The paper brings an 
experimental perspective, which complement many studies 
reporting analytical or simulation studies. Furthermore, this 
paper presents further developments to the previous work [18] 
with the analysis of the KF algorithm about which there is still 
lack of information regarding the MPPT capabilities. 

The practical implementation of the MPPT algorithms was 
carried out using a conventional power topology based on a 
step-up converter followed by a single-phase voltage source 
inverter under Voltage Oriented Control (VOC) [18]. Both, 
MPPT and VOC algorithms were implemented in Simulink 
and tested using the dSPACE 1103 real-time controller board 
and ControlDesk interface. 

2. MPPT Control Algorithms 

References [2, 19] present a wide comprehensive review of 
published algorithms for MPPT, but it does not include the 
Kalman filter strategy. This section summarizes the MPPT 
algorithms evaluated in this paper by extending the previous 
description made in [18] to the Kalman filter technique. 

2.1. Perturb and Observe  

Perturb and Observe (P&O) technique is the most used and 
cited in literature due to its simplicity of implementation [19]. 
The algorithm measures the PV voltage and current to 
calculate the PV output power. Then, it introduces a 
perturbation on the voltage reference and observes the effect 
on the output power. If it increases, the perturbation of the next 
iteration will continue in the same direction. Otherwise, the 
direction of the perturbation will be reversed [20-22]. Fig. 2 
shows the flowchart of the P&O algorithm.  

 
Fig. 2. Flowchart of Perturb and Observe algorithm. 

2.2. Incremental Conductance 

Considering the convex aspect of the P-V characteristic, the 
incremental conductance (IC) algorithm is based on the fact 
that the slope of the P-V curve is equal to zero !	∆$

∆%
= 0( at the 

MPP [19]. Eq. (1) presents the operating principle of the IC 
technique: 

 

⎩
⎪
⎨

⎪
⎧
∆𝐼
∆𝑉 = −

𝐼
𝑉 	𝑖𝑓	𝑃 = 𝑀𝑃𝑃

∆𝐼
∆𝑉 > −

𝐼
𝑉 	𝑖𝑓	𝑃 < 𝑀𝑃𝑃

∆𝐼
∆𝑉 < −

𝐼
𝑉 	𝑖𝑓	𝑃 > 𝑀𝑃𝑃

 

 

(1) 

The MPP is achieved by comparing the incremental 
conductance !∆$

∆%
( with the instantaneous conductance !6

%
(. 

Fig. 3 presents the IC technique flowchart, where the 
algorithm increases or decreases the reference voltage until the 
condition ∆6

∆%
= − 6

%
 is atained [15]. 

 
Fig. 3. Flowchart of Incrimental Inductance algorithm. 
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2.3. Particle Swarm Optimization 

The Particle Swarm Optimization (PSO) algorithm begins 
with an initial swarm of random particles throughout the 
research space, where the generation update is completed until 
the optimal solution is found. Each individual has his own 
fitness value, which is measured frequently in order to select 
the optimal individual to continue with the next generation. 
Each individual has only two values where the first is the 
personal best 7𝑃89:;,=> and the second is the global best 
(𝐺89:;). The personal best is for each particle while the global 
best is a unique one for all the particles of the swarm [19, 23]. 
In short, each particle tries to improve its current location and 
velocity based on two criteria: the path between its present 
location and its personal best location, and the distance 
between its present location and the global best, relative to all 
the particles. For the MPPT purpose, the operation starts by 
searching the nearest point to the MPP using the PSO 
optimization, where the duty cycle of the DC-DC converter 
represents the position (Particle location) and the output power 
refers to the fitness function (maximum character function). 
The PSO flowchart is shown in Fig. 4. The following 
equations are used to adjust the new position at each iteration, 
Eq. (3), via the speed equation given by Eq. (2) [24]. 

 𝑣=(𝑘 + 1) = 𝑤	𝑣=(𝑘) + 𝐶H𝑅H7𝑃89:;,= − 𝐷=(𝑘)>
+ 𝐶K𝑅K(𝐺89:; − 𝐷=(𝑘)) 

(2) 

 

 𝐷=(𝑘 + 1) = 𝐷=(𝑘) + 𝑣=(𝑘 + 1) (3) 
𝐷= and 𝑣= are the duty cycle and the velocity of the particle 

𝑖, respectively, and 𝐶H and 𝐶K are the acceleration constants. 𝑤 
refers to the weight of inertia and 𝑅H and 𝑅K are random values 
between 0 and 1. 𝑃89:;,=  is the location with the best fitness of 
all the visited locations of the particle 𝑖, and 𝐺89:;  is the best 
position found over all the particles. In this work, the number 
of initial particles is chosen to be 4, 𝐶H and 𝐶K are 1.2 and 2 
respectively, and 𝑤 equal to 0.4. 

 
Fig. 4. Flowchart of Particle Swarm Optimization algorithm. 

2.4. Kalman Filter 

The Kalman filter (KF) technique was applied in [16] for 
MPPT purposes and compared with the P&O algorithm. 
Recently, other works [15, 17] have done similar studies. 
Reference [15] presents a comparison between KF and the IC 
method and in [17] the comparison is with the PSO algorithm. 
These works present their analysis using simulation results. 
This work extends the previous experimental research [18] 
(with P&O, IC and PSO) to the KF and makes the analyses 
based on experimental results. 

The KF is a recursive identification method used for 
systems described by a state-space representation. However, 
in this case, it takes into consideration the system (𝑟:) and 
measurement (𝑟M) noises. The first represents the 
imperfections of the modeling process and controllers. The 
second represents the imperfections of measurements. This 
stochastic state-space representation is described by the 
following equations [25]: 

 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝑟:(𝑘) (4.a) 
 

 𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝑟M(𝑘) (4.b) 
 

The first is the state equation and the second is the output 
equation, where 𝑢 and 𝑦 represent, respectively, the input and 
output of the system. The state vector is composed by only one 
state variable: the PV string output voltage reference. This is 
the reference for the input voltage of the step-up converter as 
shown in Fig. 5. In a general case, if the matrices 𝐴, 𝐵 and 𝐶 
are constant, each state variable of the state vector 𝑥 do not 
depend on other state variables of the same state vector. In that 
case, the state-space representation (4) is linear and the 
Kalman filter can be applied. The state-space equations (4) can 
be applied to the MPPT as demonstrated in [15-17]. Both, 𝑟: 
and 𝑟M, are considered Gaussian and independent sequences. 
The system output, 𝑦(𝑘), is the PV string output voltage and 
the system input, 𝑢(𝑘), is the slope of the P-V curve, ∆$

∆%
(𝑘). 

In this case 𝐴 = 𝐵 = 1 and 𝐵 is a scaling factor 𝑀 as described 
in [15-17]. 

 
The KF is a recursive state estimator method and, in each 

iteration, it has two steps: prediction and estimation. In the 
first, it predicts the state variable 𝑉(𝑘 + 1|𝑘) and the process 
covariance value 𝑃(𝑘 + 1|𝑘), considering the information 
available at instant 𝑘 [17]. The Kalman gain 𝐾(𝑘 + 1) is then 
calculated using these predictions. This step requires the 
process noise covariance value, Q, and the measurement error 
value (sensor noise covariance), 𝑅. These values represent the 
lack of confidence, respectively, in the predicted state and in 
the measures. Usually these values are obtained by a trial and 
error process and require some experience. 

In the second step, the algorithm estimates the state variable 
and the process covariance considering the previous 
information already available at the instant 𝑘 + 1, 
respectively, 𝑉(𝑘 + 1|𝑘 + 1) and P (𝑘 + 1|𝑘 + 1). The KF 
algorithm is described in Fig. 6. The two first equations 
(prediction step) represent the voltage and the process 
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Fig. 5. Step-up converter control using KF for MPPT and a 

PI controller. 

covariance predicted by the algorithm, respectively, 𝑉V(𝑘) and 
𝑃V(𝑘). The last three equations represent the estimation step. 
The computation of the Kalman gain 𝐾(𝑘) requires the 
measurement error covariance value 𝑅 and the predicted 
process covariance value,	𝑃V(𝑘), which in turn requires the 
process noise covariance value 𝑄. After that, the state variable 
(step-up input voltage reference) is updated by the Kalman 
gain times the error between the measured voltage, 𝑉(𝑘), 
given by voltage sensor in Eq. (4b), and the predicted voltage 
𝑉V(𝑘). Finally, the process covariance value is updated at the 
same iteration, which tends to become closer and closer to zero 
[16, 17]. The required parametrization used in this work is 
summarized in Table 2. In this work, the scale factor is chosen 
to be 1, Q is equal to 0.25, and R equal to 0.31. 

2.5. Fuzzy Logic Control 

A fuzzy logic controller has three stages, fuzzification, 
inference mechanism and defuzzification as shown in Fig. 7 
[26]. The fuzzification passes the real variables to fuzzy 
variables. The proposed fuzzy controller has two input 
variables: the voltage variation (∆𝑉) and the power variation 
(∆𝑃) [26]. In an instant of sampling, these variables are 
expressed as: 

 ∆𝑉(𝑘) = 𝑉(𝑘) − 𝑉(𝑘 − 1) (5) 

 ∆𝑃(𝑘) = ∆𝑉(𝑘) × ∆𝐼(𝑘) (6) 
 

The input signals ∆𝑉 and ∆𝑃 are converted to linguistic 
variables such as PB (big positive), PM (positive medium), PS 
(positive small), Z0 (zero), NS (small negative), NM (negative 
medium), NB (large negative) using the association functions. 
Fig. 8 shows the association functions used to input and output 
variables [27]. 

Fuzzy inference uses Mamdani's method and 
defuzzification is based on the centroid method to calculate 
the ∆𝑉Y9Z  output. Fig. 8 shows the rule base used to find the 
output and Eq. (7) gives the reference voltage for the PI 
controller 7𝑉Y9Z> [18].  

 𝑉Y9Z = 𝑉 × ∆𝑉Y9Z (7) 
 

On the other hand, in the defuzzification, the fuzzy logic 
controller output is converted to a controller variable, which is 
used by the PI controller as the voltage reference 7𝑉Y9Z>. 
Fuzzy logic controllers are able to work with inaccurate inputs 
and, therefore, they do not need a precise linear mathematical 
model, with a higher implementation cost [27]. 

 
Fig. 6. Flowchart of Kalman Filter algorithm. 

 
Fig. 7. Flowchart of Fuzzy Logic Controller algorithm. 

 
Fig. 8. Membership functions [18]. 

3. Power Topology, Control Strategy and Experimental 
Set-Up 

Fig. 9(a) presents the power topology used in this work. It 
was implemented using the intelligent power module (IPM) 
PM75RLA120 from Powerex. This IPM is a three-phase 
IGBT inverter plus a brake IGBT. The latter is always kept 
OFF and the three-phase inverter is then configured in order 
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to obtain the desired power topology [28, 29]. Thus, the first 
leg (U) implements a boost converter by keeping the upper 
IGBT always OFF. The other two legs (V, W) implement a 
single-phase voltage source inverter (VSI). Fig. 9(b) shows the 
experimental set-up. It consists of the power structure, 
described in the previous paragraph, with an LC output filter 
and an isolation transformer used for a protection purpose. The 
measurement module is a signal conditioning interface for 
data acquisition and signal filtering. The dSPACE 1103 real-
time controller board controls the boost converter and the 
single-phase VSI. The control and user interface are 
implemented using Simulink with Real-Time Interface and 
ControlDesk. 

 
The control strategy implements independent control of the 

boost converter and the VSI. The first controls power 
extracted from the PV string by setting its operating voltage. 
The MPPT algorithms described in the previous section 
generate the reference voltage. Then, the PI controller is 
responsible for maintaining the output voltage of the PV string 
equal to the reference voltage given by the MPPT algorithm. 
Thus, it generates the control voltage for the PWM, as shown 
in Fig. 5. The second controls the power flow from the PV 
string to the grid by keeping the DC-link voltage constant at 
400 V. For this purpose, the single-phase VSI is controlled 
using the voltage oriented control (VOC) strategy as in 
[28, 29]. The implemented VOC of the VSI is shown in Fig. 
9(c). The grid current is converted to the fixed orthogonal 
reference frame αβ. For this purpose, a quadrature component 
is obtained by applying a 90º phase shift. This is carried out 
by a delay of a quarter of the grid period (0.25T) which 
generates the virtual orthogonal component, iβ. The resulting 
αβ components are orthogonal sinusoidal currents. PI 
controllers can be used to control sinusoidal currents but there 
are two well-known drawbacks: they present steady-state 
errors with sinusoidal reference and are not able to reject 
disturbances. This is due to the poor performance of the 
integrative action when the reference is a periodic signal. To 
overcome this difficulty, the grid current αβ components are 
converted to a dq reference frame synchronous with the grid 
voltage. In this new reference frame, the orthogonal 
components of the grid current are DC quantities and 
consequently, PI controllers can be used. Therefore, they are 
able to cancel the steady-state error, at the fundamental 
frequency of the grid, and improve its dynamic response [28, 
29]. 

The dq reference frame rotates with the same angular speed 
of the grid voltage and current, and the d axis is permanently 
aligned with the grid voltage space-phasor. In this way, the 
grid voltage quadrature component, Vgq, is zero and, therefore, 
the active and reactive powers are controlled independently by 
controlling, respectively, the d and q current components. The 
first is controlled by keeping the DC-link voltage constant, as 
described above, and the second is directly defined, making 
reactive power compensation possible. In order to obtain the 
grid voltage angle, θ, for reference frame transformation and 
synchronization, a Phase Locked Loop (PLL) block was 
implemented as in [28]. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 9. Power structure (a), experimental set-up (b) and VSI 

control using VOC (c). 

Fig. 10 shows the two PV strings used in this work. String 
A consists of 5 Fluitecnik FTS220P PV modules and string B 
consists of 3 REC 275PE PV modules. The technical 
characteristics of the PV modules are shown in Table 1. 

Table 1. Characteristics of the PV modules. 

String Pmax(W) ISC (A) VOC  (V) IMPP (A) VMPP (V) 

A 220  8.30  36.76  7.51  29.38  

B 275  9.25  38.70  8.74  31.50  
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Fig. 10. PV string models [18]. 

4. Experimental Results 

For the experimental tests, the two PV strings described 
above were used. Under normal operating conditions, all the 
algorithms were evaluated using PV string A, which has 
higher power available. The tests were carried on clean days 
where the irradiation and temperature are almost constant 
during the time of the test. This PV string is installed on the 
roof of the laboratory and there is wiring which allows making 
various configurations (series and parallel) of these modules 
inside the laboratory. However, for now, it is not very easy nor 
safe to access the roof. Therefore, due to the difficulty of 
access for shadow emulation, a second string (B) was placed 
in front of the laboratory for the tests with shading. Thus, the 
tests under shading conditions were carried out using PV 
string B for all algorithms. Immediately before each test, the 
P-V curve was traced to obtain the MPP. 

The PV modules of string B are made up of strings of 20 
cells in series with bypass diodes. Thus, to cause a local 
maximum in the P-V curve, it is enough to shade at least one 
cell of each string. For this, a semitransparent film was used, 
as illustrated in Fig. 10. 

Each algorithm was tested separately. The MPP voltage, 
given by each one, was used as a reference voltage for the step-
up converter input. The power available on the DC-link was 
injected into the grid by controlling the single-phase VSI as 
described in the previous section. 

4.1. Tests under normal operating conditions 

Fig. 11 shows the experimental results obtained with the 
MPPT algorithms and string A. At the beginning of the tests, 
65 % of the P-V curve is traced in order to identify the MPP. 
Thus, the control algorithm linearly increases string’s output 
voltage from 40 V to 150 V, tracing the P-V curve and, 
therefore, passing through the MPP. Then, the algorithms start 
with an initial reference voltage of 40 V as shown in Fig. 11(a) 
to (d). The exception is the PSO algorithm. In this case, the 
duty cycle increases from 0.4 to 0.9 leading to a linear 
reduction in the output voltage of the PV string, making it pass 
through the MPP, as shown in Fig. 11(e). 

 
(a) Using P&O [18] 

 

 
(b) Using IC [18] 

   
(c) Using FLC [18] 

 
(d) Using KF 

 

 
(e) Using PSO [18] 

Fig. 11. MPPT algorithms evaluation tests under normal 
operating conditions. 
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4.2. Tests under Partial Shading 

Fig. 12 shows the experimental results obtained with string 
B and the shading procedure described previously. The tests 
were performed as described in the previous section. First, the 
MPP is identified by tracing the P-V curve and then the 
algorithms are launched to track the MPP by starting at 40 V. 

 
(a) Using P&O [18] 

 
(b) Using IC [18] 

 
(c) Using FLC [18] 

 
(d) Using KF 

 
(e) Using PSO [18] 

Fig. 12. MPPT algorithms evaluation tests under shading 
conditions. 

5. Discussion 

This section discusses the results presented in the previous 
section. According to the tests carried out, it is possible to 
compare the performance of each MPPT algorithm in terms of 
precision in reaching the MPP, oscillation around the MPP, 
and ability to find the global MPP in shadow situation. 

5.1 Oscillation at the MPP 

The oscillation around the MPP refers to the difference 
between the output power maximum and minimum values 
divided by the power at the MPP previously known, which 
affects the system efficiency. 

Fig. 13 presents a more detailed graphical analysis of the 
operation of the algorithms after they have already reached the 
MPP. It shows, graphically, the oscillation in the operating 
values of power and voltage. The results of this analysis are 
summarized in Table 2, which presents the power and voltage 
oscillations of the evaluated MPPT algorithms. The results 
show that the oscillation is less than 2% with the best results 
obtained with the PSO and KF algorithms, respectively 0.95% 
and 1.12%. 

It should be noted that MPPT algorithms such as P&O and 
IC were tested with fixed step increments or decrements in the 
reference voltage. The size of these steps is a tradeoff between 
the oscillation magnitude around the MPP and the response 
time to achieve the MPP. For the purpose of this study, and for 
the comparison of only conceptual versions, modified 
implementations as in [12] were not considered. 

Table 2. Power and voltage oscillation around the MPP. 

 

5.2 Ability to achieve the MPP 

The efficiency of each algorithm can be evaluated through 
the difference between the operating voltage imposed by the 
MPPT algorithm and the MPP voltage previously known 
(precision). Table 3 presents the ability to achieve the MPP for 
the evaluated algorithms using Eq. (8), where 𝑉[$$ is the MPP 
voltage given by the P-V curve, and 𝑉[$$\ is the voltage 
where each MPPT technique operates. The 𝑉[$$\ value used 
in Eq. (8) corresponds to the average value of the operating 
voltage after steady-state has been reached. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 100 × b1 −
(𝑉[$$ − 𝑉[$$\)

𝑉[$$
c (8) 
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According to the results obtained, efficiency is around 99%, 
where the best results are obtained with KF and IC algorithms 
with 99.4% and 99.3% efficiency, respectively. 

Table 3. Precision of the MPPT techniques. 

P&O IC PSO FLC KF 
98.2% 99.3% 99.0% 98.6% 99.4% 

 

5.3 Ability to deal with shadow 

From the analysis of Fig. 12(a) to 12(e), it is clear that only 
the PSO algorithm is able to reach the global MPP in partial 
shadow situation, since it is based on the exploratin and 
exploitation of the research space (starting from 40 V). 
Following the same protocol, the other MPPT algorithms end 
operating around a local MPP. Table 4 summarizes these 
results. 

Table 4. Ability to deal with partial shadow. 

P&O IC PSO FLC KF 

No No Yes No No 
 

 
(a) Using P&O 

 
(b) Using IC 

 
(c) Using FLC 

 
(d)  Using KF 

 
(e) Using PSO 

Fig. 13. Oscillation of the MPPT algorithms at the MPP. 

6. Conclusion 

This work presented an experimental evaluation of five 
MPPT algorithms: P&O, IC, PSO, FLC and KF. This 
comparative study evaluated the performance of the 
algorithms in relation to 3 parameters: the accuracy of the 
MPP found in relation to the previously known value; the 
maximum oscillation of the power extracted from the PV 
string; and the ability to find the global MPP under the shadow 
effect. The experimental results show that the KF and IC 
algorithms operate closer to the MPP than the others. In this 
case, their efficiency is 99.4% and 99.3%, respectively. 
However, the PSO algorithm has less oscillation (0.95%) 
around the MPP compared to the others. 

Despite using different methods of different complexity to 
find the MPP, the difference in efficiency obtained with the 
techniques was less than 2% under normal operating 
conditions. However, under partial shadow situations, the 
efficiency may increase with the PSO since it was the only one 
that demonstrated to be able to find the global maximum. 

References 

[1]. P. S. Pai, and S. Beevi, “Dual maximization of solar 
power for medium power application”, 2013 International 
Conference on Renewable Energy Research and 
Applications (ICRERA). IEEE, 2013. 

[2]. D. Yousri, T. S. Babu, D. Allam, V. K. 
Ramachandaramurthy and M. B. Etiba, “A novel chaotic 
flower pollination algorithm for global maximum power 
point tracking for photovoltaic system under partial 
shading conditions”, IEEE Access 7 (2019). 121432-
121445. 

[3]. S. Wall, H. Xiao-Cong, L. Sha, and J. Xie, “High-
efficiency PV inverter with SiC technology”, 5th IET 



INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH  
M. Chellal et al., Vol.11, No.1, March, 2021 

 
 

494 

Renewable Power Generation Conference, vol. 12, pp. 
149-156, 2017. 

[4]. N. Eswar, “Performance Study of Incremental 
Conductance and Modified Incremental Conductance 
MPPT Algorithms for Photovoltaic Applications”, 
International Journal of Science- Engineering and 
Technology Research (IJSETR), Vol. 5, March 2016. 

[5]. D. Yousri, T. S. Babu, D. Allam, V. K. 
Ramachandaramurthy, E. Beshr, and M. B. Eteiba. 
“Fractional chaos maps with flower pollination algorithm 
for partial shading mitigation of photovoltaic systems”, 
Energies 12.18 (2019): 3548. 

[6]. M. Abdulkadir, A. L. Bukar and B. Modu, “Mppt-based 
control algorithm for PV system using iteration-PSO 
under irregular shadow conditions”, Arid Zone Journal of 
Engineering- Technology and Environment, Vol. 13, 
February 2017. 

[7]. V. K. Viswambaran, A. Ghani, and E. Zhou, “Modelling 
and Simulation of Maximum Power point Tracking 
Algorithms & Review of MPPT Techniques for PV 
Applications”, 5th International Conference on Electronic 
Devices, Systems and Applications (ICEDSA), pp. 1-4, 
6-8 Dec 2016.  

[8]. T. Esram, and P. L. Chapman, “Comparison of 
Photovoltaic Array Maximum Power Point Tracking 
Techniques”, IEEE transactions on energy conversion, 
vol. 22, June 2007. 

[9]. H. J. El-Khozondar, and R. J. El-Khozondar, “A review 
study of photovoltaic array maximum power tracking 
algorithms”, Renewables: Wind. Water. and Solar, vol. 3, 
pp. 1-8, 18 February 2016.  

[10]. A. K. Podder, “MPPT methods for solar PV systems: a 
critical review based on tracking nature”, IET Renewable 
Power Generation, vol. 13, pp. 1615-1632, April 2019. 

[11]. N. Eswar, “Performance Study of Incremental 
Conductance and Modified Incremental Conductance 
MPPT Algorithms for Photovoltaic Applications”, 
International Journal of Science- Engineering and 
Technology Research (IJSETR), Vol. 5, March 2016. 

[12]. A. Belkaid, I. Colak, and K. Korhan. “Implementation of 
a modified P&O-MPPT algorithm adapted for varying 
solar radiation conditions”, Electrical Engineering, 99(3), 
2017, 839-846. 

[13]. A. I. Nusaif, and A. L. Mahmood, “MPPT Algorithms 
(PSO, FA, and MFA) for PV System Under Partial 
Shading Condition, Case Study: BTS in Algazalia, 
Baghdad”, International Journal of Smart Grid-
ijSmartGrid, 4(3), 2020, 100-110. 

[14]. J. Cubas, and S. Pindado, “Accurate Simulation of MPPT 
Methods Performance When Applied to Commercial 
Photovoltaic Panels”, The Scientific World Journal, June 
2015. 

[15]. S. Motahhir, A. Aoune, A. E. Ghzizal, S. Sebti, and A. 
Derouich, “Comparison between Kalman filter and 
incremental conductance algorithm for optimizing 
photovoltaic energy”, Renewables: Wind. Water. and 
Solar, pp, 1-10, vol. 4, 2017. 

[16]. B. O. Kang, “Kalman Filter MPPT Method for a Solar 
Inverter”, IEEE Power and Energy Conference. Illinois, 
pp. 1-5, 2011. 

[17]. O. B. Belghith, L. Sbita, and F. Bettaber, “Maximum 
Power Point Tracking by the technique of the extended 
Kalman filter”, International Conference on Green 
Energy Conversion Systems (GECS), pp. 1-5, 2017. 

[18]. T. F. Guimarães and V. Leite, “Analyses of MPPT 
Algorithms in Real Test Conditions”, 9th International 
Conference on Renewable Energy Research and 
Application (ICRERA). Glasgow, pp. 164-169, 
September 2020. 

[19]. P. Bhatnagar, and R. K. Nema, “Maximum power point 
tracking control techniques: State-of-the-art in 
photovoltaic applications”, Renewable and Sustainable 
Energy Reviews 23, pp. 224-241, July 2013. 

[20]. A. K. Gupta and R. Saxena, “Review on widely-used 
MPPT techniques for PV applications”, 2016 
International Conference on Innovation and Challenges 
in Cyber Security (ICICCS-INBUSH). Noida, pp. 270-
273, 2016.  

[21]. A. Belkaid, U. Colak, and K. Kayisli. “A comprehensive 
study of different photovoltaic peak power tracking 
methods”, 2017 IEEE 6th International Conference on 
Renewable Energy Research and Applications 
(ICRERA). IEEE, 2017.  

[22]. M. A. Abdourraziq, M. Ouassaid, M. Maaroufi and S. 
Abdourraziq, “Modified P&O MPPT technique for 
photovoltaic systems”, 2013 International Conference 
on Renewable Energy Research and Applications 
(ICRERA). 

[23]. A. Farayola, Y. Sun, and A. Ali, “ANN-PSO 
Optimization of PV Systems Under Different Weather 
Conditions”, 2018 7th International Conference on 
Renewable Energy Research and Applications 
(ICRERA). 

[24]. K. Ishaque, Z. Salam, M. Amjad and S. Mekhilef, “An 
improved Particle Swarm Optimization (PSO)–Based 
MPPT for PV with reduced steady-state oscillation”, 
IEEE Transactions on Power Electronics, vol. 27, pp. 
3627-3638, August 2012. 

[25]. C. K. Chui, and G. Chen, “Kalman Filtering with Real-
Time Applications”, Springer International Publishing. 
Berlin. Germany, 2017. 

[26]. B. Bendib, F. Krim, H. Belmili, M. F. Almi and S. 
Bolouma, “An intelligent MPPT approach based on 
neural-network voltage estimator and fuzzy controller, 
applied to a stand-alone PV system”, IEEE 23rd 
International Symposium on Industrial Electronics 
(ISIE). Istanbul, 2014, pp. 404-409, 2014. 

[27]. D. Haji and N. Genc, “Fuzzy and P&O Based MPPT 
Controllers under Different Conditions”, 7th 
International Conference on Renewable Energy 
Research and Applications (ICRERA). Paris, pp. 649-
655, 2018.  

[28]. V. Leite, Ȃ. Ferreira and J. Batista, “Bidirectional 
vehicle-to-grid interface under a microgrid project”, 
IEEE 15th Workshop on Control and Modeling for 
Power Electronics (COMPEL). Santander, pp. 1-7, 2014.  

[29]. M. Breve, and V. Leite, “Control of a Bidirectional 
Single-Phase Grid Interface for Electric Vehicles”, 
Ibero-American Congress of Smart Cities. Springer, 
Cham, 2019. 

 


	Introduction
	Background of study
	Current standing of the maximum power point tracking
	Project motivation and objectives
	Main contribution
	Thesis organization

	Photovoltaic fundamentals
	Operating principle of a photovoltaic cell
	 Basic Types of PV cells
	Equivalent circuit and mathematical model
	Non Linear characteristics of PV system
	Shading effects in PV module
	Types of solar power systems

	Maximum power point tracking techniques
	Introduction
	Overview about MPPT
	Perturbation and Observation
	Particle Swarm Optimisation
	Overview about the PSO
	Operating principal
	PSO based MPPT process

	Kalman filter
	Overview about the Kalman filter
	Kalman filter principle
	Kalman filter based MPPT process


	Experimental setup and implementation
	Power Structure
	PV string
	DC-DC converter
	DC-AC converter

	Algorithms' implementation
	Implementation of Perturbation and Observation technique
	Implementation of Kalman Filter technique
	Implementation of the PSO technique


	Experimental results and discussion
	Experimental results
	Tests under normal operating conditions
	Tests under partial shadow conditions

	Discussion

	Conclusion and future work
	Conclusion
	Future work

	Measurement noise covariance calculation
	Published article

