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Abstract— The digital twin is a trending technology that 

has been applied to different fields. In this work, the use of 

the digital twin of electric machines in a life cycle perspective 

is investigated. It presents a literature review of the main 

concepts and applications of the digital twin in the field. In 

addition, it discusses the methodological approach to obtain 

the digital twin of a static electric machine by using its 

multiphysics model in a reduced order model, to improve the 

maintenance scheme and estimate the lifetime of its insulation 

system based on the machine’s temperature profile. 

 

Keywords—digital twin; multiphysics; FEM; remaining 

lifetime; electric machines 

I. INTRODUCTION 

The digital twin is one of the most trending 
technologies, being nominated in 3 consecutive years as top 
10 strategic technology trends [1]. It extends the simulation 
in a specific domain or physical asset to the complete 
lifetime. By this way, engineering simulation may support 
decision making through the entire life-cycle of products 
and processes.  

The advances of computer hardware and software have 
allowed the design process of electric machines to become 
more sophisticated, enabling accurate multiphysics models, 
saving costs and time. Also, the ability to use a variety of 
sensors to monitor several parameters allied with the 
advances of the Internet of Things (IoT) and Big Data 
allowed the development of new technologies. 

Considering the above mentioned technologies, the 
digital twin seems like a natural step in the industry. 
According to Hartmann and Auweraer [1], it is expected 
that the digital twin becomes imperative in the industry, 
thus the enterprises must not fall behind it. 

Due to the fact of the electric machines have a highly 
non-linear behaviour, depending, for instance, on 
environmental data and load conditions, the “dynamic” 
modelling provided by the digital twin concept is able to 
reduce costs over the lifetime and favour optimized control 
of industrial drive systems. 

This work is structured as follows: section II presents a 
literature review of the main concepts of digital twin and 
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the works that apply a digital twin in the context of electric 
machines; section III proposes an approach to develop a 
digital twin for electric machines and section IV concludes 
the paper and outlines the future work. 

II. LITERATURE REVIEW 

The digital twin is a technology that has been receiving 
more attention in the past years in different fields of study, 
mostly applied to manufacturing, aircraft, and healthcare. 
The beginning of the digital twin concept traces back to 
Michael Grieves in 2002, which was initially called 
“Conceptual Idea for Product Lifecycle Management”, but 
it aggregated all the key concepts of the digital twin [2]. 

Almost 20 years have passed and there are still 
misconceptions about the digital twin definition; as pointed 
out by [3], it is necessary that both industry and academy 
work toward presenting a definitive and more clear 
definition of a digital twin. In Grieves words, the digital 

twin is a set of virtual information constructs that fully 

describes a potential or actual physical manufactured 

product from the micro atomic level to the macro 

geometrical level [2]. The digital twin also brought other 
terms to facilitate its understanding and operation, such as 
a physical entity, a virtual entity, a physical environment, 
and a virtual environment. According to [4] the physical 
entity is the real-world object, while the virtual entity is the 
computer-generated representation of the physical entity. 
The physical environment is the setting where the physical 
entity is placed, and the virtual environment is an 
environment that imitates the physical environment to fulfil 
the purposes of the digital twin. 

To develop a digital twin, it is necessary to obtain a 
virtual model of the physical entity, which can be physics-
based modelling or data-driven modelling. Physics-based 
modelling uses analytical or numeric methods to solve the 
governing equations of the related physics phenomena that 
occur in the entity’s geometry. The finite element method 
(FEM) is a good example of a numeric method used to 
model physics phenomena. The data-driven models exploit 
the availability of a variety of sensors to capture the 
information and process it with modern computer 
techniques; this approach is particularly useful due to 
advances on the IoT and Big Data. Table I shows the main 
advantages and disadvantages of both approaches.  
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Methodologies aggregating both modelling approaches 
are also possible, for instance, using data-driven models to 
calibrate the physics models. 

TABLE I.  PHYSICS-BASED MODELLING VS DATA-DRIVEN MODELLING. 
ADAPTED FROM [5]. 

Physics-based modelling Data-driven modelling 

+ Solid foundation based on physics - Works like black-boxes 
- Difficulty to assimilate long 
historical data 

+ Assimilates long historical 
data and experience 

- Sensitive to instability 
(convergence errors, boundaries 
conditions, etc.) 

+ Very stable after the training 
process 

+ Errors/uncertainties can be 
bounded and estimated 

- Errors/uncertainties cannot be 
bounded 

+ Less susceptible to bias - Bias in data is reflected in the 
model 

+ Can handle new problems with 
similar physics 

- Cannot handle unseen 
problems 

 
The digital twin has been applied in different areas such 

as manufacturing [6], healthcare [7], and logistics [8]. In 
the context of electric machines, the digital twin has also 
been applied, but the published works are still scarce. A 
summary of the works regarding electric machines and 
digital twins are presented hereinafter. 

The work presented in [9] exploits the digital twin of 
the power inverter system of an offshore wind turbine for 
maintenance purposes, thus it does not develop the digital 
twin for the generator, which could be also used for 
monitoring and predictive maintenance. A real-time 
simulation of a wind farm is developed in [10], which is 
implemented into a field-programmable gate array (FPGA) 
and it is focused on the control aspects of the generator. The 
work developed in [11] is focused on the mechanical 
aspects of a wind turbine, handling the structural stress and 
mechanic loss of the system, also there are several sensors 
installed in the system, and the digital twin uses both 
physical and data models. 

The work developed in [12] derives an electromagnetic 
FEM model of a large hydro generator to be used as a 
digital twin. As the FEM model showed its capability to 
perform reliable simulations in several conditions, e.g., no-
load, rated load, and overexcited, the digital twin based on 
this model should aid the diagnosis and maintenance 
scheme of the generator, which is helpful and convenient 
for large machines. 

The work performed in [13] develops an 
electromagnetic model of an induction machine that is 
based on FEM allowing it to be used for a digital twin; the 
model shows good results, but it only models 
electromagnetic phenomena and it is not able to calculate 
the iron loss. In [14] it is achieved an analytical 
electromagnetic model based on an equivalent circuit that 
is capable to estimate the iron loss of the machine, 
presenting results similar to the FEM model. 

Aircrafts have high standards of safety and 
maintenance, making them excellent applications for 
digital twins. Thus, in [15] it is developed a digital twin of 
the electrical generator of an aircraft, which predicts faults 

based on the temperature of the oil that is cooling the 
generator. As the model is data-driven it was necessary to 
obtain enough data from the generator, and classify it 
correctly, which was proven to be not an easy task. 

A data-driven digital twin of a 3 kW permanent magnet 
synchronous motor (PMSM) employed in an electric 
vehicle prototype is developed in [16]. Two methods were 
applied, artificial neural network (ANN) and fuzzy logic; 
both methods have three inputs, the motor’s speed, running 
time, and the casing temperature. The health of the motor 
relates to the temperatures of the windings and permanent 
magnets, which are estimated through the casing 
temperature measurements. When compared with 
theoretical results, the ANN digital twin presented a lower 
deviation margin than the fuzzy logic digital twin. 

Power transformers are simple static electric machines, 
but they play a key role in power systems, and they can take 
advantage of the digital twin technology. Within this 
subject, [17] outlines an architecture that can be used for a 
smart power distribution system, which will monitor the 
status of the transformers and will take action for an 
abnormal operating condition. However, it is not explicit 
how the transformer is modelled. Several sensors are to be 
placed in the transformer and will feed the model, which 
will enable the monitoring of the transformer and improve 
the predictive maintenance. 

The work presented in [18] develops a tool that is 
approximately a digital twin of a power transformer. With 
the measurements of the temperature sensors placed in the 
transformer’s tank, the software tool is able to estimate the 
status of the transformer. 

An important aspect of the digital twin is the ability to 
obtain information about the physical entity, which can be 
difficult sometimes. For instance, it is easier to measure the 
current and voltage on one side of the transformer than on 
the other side. To surpass this difficulty, Moutis and 
Mousavi [19] developed a digital twin of a power 
transformer that uses only the measurements obtained on 
the medium voltage side. This was accomplished with an 
analytical model of the transformer that is implemented in 
MATLAB, allowing the monitoring of the harmonic 
components and possible faults or abnormal conditions. 
The digital twin presented good results when compared 
with the real measurements. 

In [20], it is developed a digital twin of a power 
transformer based on a data model that uses machine 
learning techniques, resulting in an accurate prediction of 
the transformer status. Reference [21] also develops a data-
driven model of a power transformer, which uses multi-
source and heterogenous data to evaluate the transformer 
status. In order to obtain a real-time simulation of a power 
transformer, [22] uses an FPGA enabling to monitor and 
diagnose the transformer, with a maximum delay of 1.1 ms. 

III. METHODOLOGICAL APPROACH 

Without a doubt, the digital twin has been gaining 
attention in the context of electric machines, but there is still 
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a lot of research to be developed under this topic. Thus, this 
work aims to exploit the methodological approach for a 
digital twin of electric machines based on the multiphysics 
FEM model. FEM approach to obtain multiphysics 
modelling is a well-established methodology, considering 
the improvements in software development and computer 
processing capacity, and it has been obtaining popularity 
[23]–[26]. Its use brings several advantages for the design 
process of the machine, resulting in a better, faster, and 
cheaper process since it reduces the need for several 
prototypes. It is necessary to put a lot of effort to obtain a 
good multiphysics model, collecting several materials 
properties, modelling different physics phenomena and 
coupling them. Therefore, this model can be extended for 
the entire lifecycle of the machine, instead of being used 
only in the design process. Despite the nowadays software 
and computer hardware, a multiphysics FEM model cannot 
be used for a real-time digital twin since it can take at least 
several minutes to simulate all the physics phenomena 
related to the machine. 

To address this problem, it is necessary a post-
processing model that is based on the results of the FEM 
modelling but does not require a long simulation time, thus 
applying to a real-time simulation. This framework uses 
model order reduction techniques that can be described as 
the intersection of physics-based simulation and data-
driven models [5]. Using a reduced order model (ROM) 
allows a real-time simulation of the machine by trading the 
accuracy of the model with real-time outputs. Thus, it is 
necessary to ensure that the ROM provides the accuracy 
required by the application. 

Different techniques can be applied to obtain a ROM 
from a FEM model, varying according to the physics 
solution characteristics of each model. Proper orthogonal 
decomposition (POD) is an example of these techniques, 
which is completely data-dependent not requiring any prior 
knowledge of the process that generates the data, and if the 
original model has nonlinear characteristics the POD model 
will also be typically nonlinear [27]. The data for the POD 
method is gathered by running the original model, original 
FEM model, considering the inputs of different scenarios 
and taking snapshots of the results for these scenarios 
which are stored in a snapshot matrix. Thereafter, the 
singular value decomposition (SVD) is applied to the 
snapshot matrix obtaining the modes of the POD. The 
modes of the POD can be evaluated concerning the energy 
content in the least square sense [28], allowing to choose an 
appropriate number of modes to achieve an efficient model, 
combining good accuracy and fast solution time. In [28] 
this technique is applied to the electromagnetic model of a 
PMSM, whereas the developed ROM has as inputs the 
rotation angle of the machine and the angle and magnitude 
of the current. A total of 150 different scenarios were used 
to fill the snapshot matrix and 63 POD modes were 
selected, which reduced the simulation time by half, from 
0.18 s to 0.09 s. The ROM presented an average relative 
error of 2,5% showing that it is capable to calculate the 

solutions for scenarios not included in the snapshot matrix. 
POD is not the only technique being applied in the context 
of electric machines. In [29] the ROM of a PMSM is 
developed considering its application to refined real-time 
control of the machine, which is accomplished through the 
orthogonal interpolation method (OIM). An advantage of 
this method is its capability to evaluate input values up to 
20% beyond the upper and lower range with acceptable 
precision. 

Sancarlos et al. [30] point out that the employment of 
the proper generalized decomposition (PGD) techniques in 
electromagnetism problems is a very active research area at 
the moment. It applies the PGD method to obtain a 
magnetostatic solution of a PMSM, which presented an 
error below 2% when compared to the FEM solution. The 
authors of [31] use the PGD technique which resulted in an 
improvement of the solution time by about 900 when 
compared to the original FEM model, despite the torque 
estimation being in general agreement with the FEM model 
it presented some noticeable errors because it is calculated 
through the virtual work principle. In addition, the work 
developed in [32] shows the possibility to express 
deviations within the PGD framework, which is an 
interesting feature because these deviations can represent 
external disturbances and even the difference between the 
predictions and measurements. This possibility allows the 
development of a more robust and accurate digital twin that 
could be crucial for control purposes. 

Focused on the condition monitoring of induction 
machines, the work developed in [33] uses a different 
approach to obtain a model that is accurate enough and that 
is capable to run in real-time in hardware in the loop 
configuration. An induction machine can suffer from a 
variety of faults with different levels of severity, so it is 
unreasonable to obtain FEM solutions able to cover all 
ranges of faulty conditions. To overcome this difficulty, the 
authors use a sparse subspace learning (SSL) strategy. The 
SSL is used to obtain a parametric solution that is used to 
initialize the FEM solution since the prediction is close to 
the actual solution the process becoming a much faster 
method than a usual FEM. This strategy was implemented 
to monitor induction motors considering only the static 
eccentric fault and the measured current as input of the 
model. The obtained results presented a small error when 
compared with the traditional FEM method and with a 
99.92% boost in the solution time. 

Moving towards the thermal model, the authors of [34] 
use the thermal ROM to obtain an accurate and detailed 
thermal model of an electric traction motor. The model 
considers the detailed geometry and material characteristics 
of the windings and the contact resistances between the 
different parts of the motor. As the machine is self-
ventilated the convection coefficients vary according to the 
motor’s speed, thus it is used computational fluid dynamics 
(CFD) to obtain the coefficients considering the speed 
range of the machine. The results obtained from the ROM 
presented a deviation in the range of 0.5% to 5% when 
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compared with the temperature measurements, which is 
impressive because the ROM computed the whole transient 
duty cycle in less than 1 s. 

By using the ROM approach, and keeping in mind the 
objective of an improved maintenance scheme based on the 
insulation system monitoring of an electric machine, it is 
possible to develop a 3D virtual temperature sensor that is 
capable to estimate the critical temperatures of the machine, 
which can lead to significantly reduced costs [35]. 

In a previous work [36], the coupled electromagnetic 
and thermal FEM model of a low power transformer has 
been developed using the Ansys software suite. In this 
coupled approach, the losses obtained by the 
electromagnetic model are used as the heat generation input 
in the thermal model, which allows calculating the 
temperature distribution of the machine. Conversely, the 
temperature output of the thermal model is used as input to 
the electromagnetic model, considering the temperature 
dependence on the electromagnetic parameters. This 
interaction between the electromagnetic and thermal 
models runs iteratively until the variation of temperature 
between the two last iterations is lower than a defined 
threshold, meaning that the temperature and losses 
variation is minimal. This model was able to estimate the 
steady-state temperature of the windings within an error of 
7% when compared with the measured temperature. 

It is known that thermal stress is one of the main causes 
of insulation system deterioration in electric machines. 
Thus, the ability to estimate the temperature of the windings 
can be leveraged to improve predictive maintenance 
schemes and estimate the lifetime of the insulation system. 
Based on the guidelines provided by the IEEE standard 
C57.96 [37], which uses Dakin’s method [38] to handle the 
deterioration of the insulation in view of the chemical rate 
phenomenon, the expected lifetime, in hours, of the 
insulation is calculated by 

  (1) 

where a and b are constants that are defined by the material 
characteristics, and T is the absolute temperature of the 
windings, that are to be integrated into the methodological 
approach. 

This method will enable the monitoring of the lifetime 
of the transformer's insulation considering its real operation 
conditions, allowing to predict failures and manage the 
maintenance of the device. Besides, this method can be 
expanded for other electric machines, enabling better and 
more efficient maintenance and monitoring of electric 
machines. 

On one hand, similar concepts have been already done, 
such as [39], where it is used fiber Bragg grating 
temperature sensors embedded into the stator coils, 
allowing to measure the temperature of the windings in 
different spots. With the information from the temperature 
sensors, it is possible to estimate the insulation health in 
real-time. Also, in [40] the leakage currents are used to 

estimate the insulation degradation through an ANN to 
obtain the insulation system health status. 

On the other hand, the digital twin approach is a 
technique under development, that has an enormous 
potential to be exploited. The digital twin technology 
expands the “static” models providing an accurate 
description of the machine over time. It is possible to 
accurately forecast the degradation of insulation systems, 
perform data-based predictive maintenance, support online 
fault diagnosis, and reduce operating costs, instead of 
having to work with empirical estimates which are, 
typically, overestimated. 

IV. CONCLUSION 

The digital twin is a trending technology, transversal to 
several fields, objectives, and applications. This work 
introduced a systematic literature review and discussion on 
the use of digital twins in electric machines. The research 
and application of the digital twin to electric machines is 
still evolving and its penetration in the industry is not 
mature yet. Under this scenario, the paper proposes and 
discusses the methodological approach to define a digital 
twin of a static electric machine, obtained by the ROM of 
the multiphysics FEM model used in the design process. 
This digital twin will provide the information necessary to 
estimate the remaining lifetime of the insulation, which will 
assist the monitoring and maintenance schemes. 

Further work will include the evaluation of the 
multiphysics ROM as a digital twin. If the ROM proves to 
be adequate, the digital twin should be evaluated 
considering different conditions, which will prove if it can 
be used as a monitoring and maintenance tool. 
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