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Abstract
1.	 Invasive alien species (IAS) are leading to the homogenisation of taxonomic 

and functional biodiversity, with negative consequences for key ecosystem 
processes in fresh water. Invasive signal crayfish (Pacifastacus leniusculus) is ex-
pected to disrupt detritus-based food webs by affecting leaf breakdown and/or 
by decreasing invertebrate density and diversity through predation. The combi-
nation of per-capita and abundance effects of P. leniusculus in invaded ecosys-
tems is still largely unknown.

2.	 A four-week field experiment was established in Rabaçal and Tuela Rivers (NE 
Portugal) to assess effects of P. leniusculus on invertebrate taxonomic and func-
tional diversity and leaf litter breakdown following a gradient of invasion. We 
controlled the presence and absence of crayfish by placing the animals and leaf 
litter inside cages at six sites (three sites per river) according to the crayfish in 
situ abundance (absent, low, high). Cages were covered with coarse- or fine-
mesh net to allow or prevent invertebrates from accessing the leaves.

3.	 Results showed that higher crayfish in situ abundance led to a decrease in abun-
dance, richness and Shannon diversity of invertebrates and to changes in the 
communities’ structures. Higher crayfish abundance led also to a decrease in in-
vertebrate functional redundancy and an increase in the percentage of inverte-
brate taxa with resistance forms. Leaf litter breakdown increased with crayfish 
presence and decreased at sites with higher crayfish abundance.

4.	 Overall, signal crayfish changed the community structure of invertebrates, with 
potential severe long-term effects on native communities and leaf litter break-
down. Given the widespread distribution of signal crayfish (and other crayfish 
species), their ecological impacts should be assessed carefully, especially in pris-
tine freshwater ecosystems such as those described here.
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1  |  INTRODUC TION

Global freshwater diversity is facing an unprecedented crisis driven 
by direct and indirect anthropogenic influence (Dawson,  2012; 
Dudgeon et al., 2006; Strayer, 2006; Tickner et al., 2020). The in-
troduction of invasive alien species (IAS), in conjunction with hab-
itat loss and fragmentation, climate change, pollution and resource 
overexploitation, is contributing to species declines or, in extreme 
cases, even extinction (Dudgeon et  al.,  2006; Pyšek et  al.,  2020; 
Reid et  al.,  2019). The introduction of IAS may cause significant 
changes in native biodiversity and ecosystem processes by alter-
ing biotic interactions (e.g., carrying novel diseases and parasites, 
competing for space and resources, changing predator–prey inter-
actions), physically altering the habitat (ecosystem engineering) 
or changing assimilatory-dissimilatory (uptake and release of en-
ergy and materials) interactions (Carpenter et  al.,  2011; Gallardo 
et  al.,  2016; Gutiérrez et  al.,  2014; Simberloff et  al.,  2013; Sousa 
et al., 2009). By interfering with native species and ecosystem pro-
cesses, IAS are leading to taxonomic (Olden, 2006) and functional 
(Olden et al., 2004) global homogenisation of biota, decreasing their 
resistance and resilience to new disturbances (Clavel et  al.,  2011; 
Downing et al., 2012).

The impacts of IAS may vary spatially and temporally depending 
on important factors, such as population density (Benkwitt, 2015; 
Pintor et  al.,  2009), phenotypic diversity (Carvalho et  al.,  2018), 
propagule pressure (Barney et al., 2016; Warren et al., 2012), func-
tional distinctiveness (Ehrenfeld, 2010; Sousa et al., 2011) and envi-
ronmental characteristics of the invaded area (Strayer et al., 2006). 
However, the invasion process (e.g., establishment, population 
growth, dispersion or niche occupation) may be context-dependent 
and perhaps change through time as a consequence of evolutionary 
responses by native species, increasing the unpredictability of IAS 
impacts (Buckley, 2017; Mooney & Cleland, 2001). Given the degree 
of uncertainty in assessing IAS effects (e.g., Jarić et al., 2019), scien-
tists have been trying to develop strategies to implement compa-
rable approaches to better predict their ecological impacts (Bacher 
et al., 2018; Blackburn et al., 2014; Kumschick et al., 2015; Thomsen 
et al., 2011).

Freshwater crayfish species are amongst the most widespread 
(Marean,  2015; Vilà et  al.,  2009) and problematic IAS as a result 
of their potential ecological and economic impacts (Twardochleb 
et  al.,  2013). The omnivorous behaviour of invasive crayfish may 
be responsible for impacts at different trophic levels through al-
terations of key ecosystem functions (nutrient cycling, primary 
and secondary production) and/or direct consumption of plant lit-
ter, invertebrates and/or other taxonomic groups (e.g., Carvalho 
et al., 2016). In fresh water, the breakdown of allochthonous organic 
matter is a key ecosystem process mediated by microorganisms and 
aquatic invertebrates that ensures energy flow and nutrient cy-
cling (Covich et al., 1999; Graça, 2001; Tiegs et al., 2019; Tolkkinen 
et al., 2020). Allochthonous organic matter breakdown is affected 
by abiotic (e.g., eutrophication, Gulis et al., 2006; Dunck et al., 2015; 
Pereira et al., 2016; pesticides, Pimentão et al., 2020) and biotic (e.g., 

predation, Atwood et al., 2013) factors, which affects the diversity 
of native invertebrate detritivores.

Omnivores, as crayfish, may play an important role in food web 
dynamics by increasing or decreasing stability through competition 
or predation (Wootton, 2017). Some studies also demonstrated that 
IAS can compensate for native biodiversity loss by functional re-
placement (Zwerschke et al., 2020) and guarantee important ecosys-
tem functions. In addition, the mechanisms explaining the dynamic 
between the increase in population density and the effects of IAS 
along the invasion process are still a matter of debate. Impacts of IAS 
are expected to be higher with increasing abundances above a cer-
tain threshold, but organisms may exhibit niche plasticity and change 
their niche dimension and effects through time (Havel et al., 2015; 
Jackson et  al.,  2015). Per-capita effects may change as the abun-
dance of IAS increases, consequently reducing the availability of na-
tive preys with depletion of resources. Simultaneously, native prey 
may develop evolutionary mechanisms of defence to avoid or reduce 
predation pressures by IAS, including against invasive crustaceans 
(Freeman & Byers, 2006; Melotto et al., 2020).

In recent years, taxonomic diversity has been extended to func-
tional diversity approaches to better understand community re-
sponses to disturbances (McGill et al., 2006; Mouillot et al., 2013; 
Villéger et al., 2008). To that end, functional traits can be used as a 
biomonitoring tool (Dolédec et al., 1999). In freshwater ecosystems, 
invertebrate functional traits can be described as life-history strate-
gies or evolutionary advantages to resist environmental disturbance. 
For example, resistance forms (e.g., resistant stages such as eggs or 
diapause periods) may be used by invertebrate species as synchroni-
sation strategies to resist harsh environmental conditions, competi-
tors or predators (Verberk et al., 2008). Several studies have focused 
on how IAS change native communities and decrease taxonomic di-
versity, but few have assessed how they can affect functional diver-
sity and ecosystem functions (but see Hejda & de Bello, 2013; Ilarri 
et al., 2018; Wong et al., 2019).

The invasive signal crayfish, Pacifastacus leniusculus (Dana, 
1852), established in NE Portugal (Anastácio et al., 2019), currently 
is spreading and rapidly increasing in density (Sousa et  al.,  2019). 
Without native competitors, crayfish became the largest size in-
vertebrate species in these invaded freshwater ecosystems. Some 
authors suggest the use of a combined approach by analysing pop-
ulation density and per-capita effects (Parker et al., 1999) to assess 
the impacts of IAS on resource availability at specific locations (Shea 
& Chesson, 2002).

In this study, we aimed to assess how the presence and abun-
dance of the invasive signal crayfish affect the taxonomic and 
functional trait diversity of native invertebrates, and alter a key 
ecosystem process, namely organic matter recycling. We hypoth-
esised that the presence of invasive signal crayfish and its in situ 
abundance would lead to: (i) negative effects on native invertebrate 
abundance and diversity; (ii) trait-selective effects on native inver-
tebrates by decreasing functional redundancy; (iii) direct effects 
on organic matter recycling by accelerating leaf litter breakdown; 
and (iv) indirect effects on organic matter recycling by consuming 
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invertebrate detritivores that drive this process. As a combination of 
the per-capita and increasing abundance effects, we expected that 
the impacts of crayfish would change according to the invasion-level 
(i.e. crayfish density), and effects would be more severe at recently 
invaded areas with low crayfish abundance and naïve native inver-
tebrate communities. We also expected that these impacts would 
alter taxonomic and functional diversity of native invertebrates with 
consequences to ecosystem processes.

2  |  MATERIAL S AND METHODS

2.1  |  Study area and experimental setup

The invasive signal crayfish was first detected in Portugal in 1997 in 
the Maçãs River (tributary of the Sabor River, Douro basin) (Bernardo 
et  al.,  2011) and has been spreading during the last two decades 
throughout the entire Sabor basin and nearby Tua basin (Anastácio 
et al., 2019; Meira et al., 2019; Sousa et al., 2019). In our manipulative 
experiment, we selected two rivers where the invasive crayfish P. le-
niusculus is currently spreading: Rabaçal and Tuela Rivers (Tua basin, 
NE Portugal). Rabaçal and Tuela Rivers have total lengths of 88 and 
102 km, respectively, very low human disturbance, and similar cli-
mate regarding precipitation and temperature (Nogueira et al., 2021; 
Sousa et al., 2018, 2020). Within both rivers, the first specimens of 
P.  leniusculus were detected in 2013 (Sousa et al., 2015) and since 
then the species has spread rapidly from upstream to downstream, 

presenting higher abundance at upstream (core) areas when com-
pared to the invasion front (Sousa et al., 2019).

Within each river, we selected three sites (Figure  1) according 
to the crayfish in situ abundance (absent, low, high). The absent sites 
were located immediately downstream the invasion front. We used 
in situ abundance as a variable factor in the analysis based on the as-
sumption that the invertebrate community that accesses the exper-
imental cages is determined by crayfish abundance at that stream 
location. Hereafter abundance was used as a proxy of signal crayfish 
population density per site. Crayfish abundances were assessed by 
setting eight to 10 bait traps for 24 hr at each site (full description in 
Sousa et al., 2019). Therefore, relative abundance of crayfish per site 
was expressed as the total number of individuals per catch per unit 
of effort (ind. CPUE/24 hr) following Sousa et al. (2013). At Rabaçal 
and Tuela, crayfish low abundance corresponded to 0.3 (± 0.8) and 
0.5 (± 0.8) ind. CPUE/24 hr, whereas high abundance corresponded 
to 26.3 (±  10.1) and 26.1 (±  7.9) ind. CPUE/24  hr, respectively. 
Physicochemical water parameters, including temperature, conduc-
tivity, percentage of oxygen saturation and nutrient concentrations, 
were measured at each site at the beginning, middle and end of the 
experiment. Temperature, conductivity and dissolved oxygen were 
measured with a field probe (Multiline F/set 3 no. 400327, WTW). 
Water samples were collected with plastic bottles and transported 
in a cool box (4ºC) to the laboratory and analysed within 24 hr, for 
quantifying nutrient concentration. Ammonium, nitrate and phos-
phate concentrations were determined using a DR/200 photometer 
(HACH) and the HACH kit protocols (ammonium 385, nitrate 351 and 

F I G U R E  1  Map of the experimental sites in the Rabaçal and Tuela rivers in NE Portugal
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phosphate 490). Hydrological and habitat conditions were very sim-
ilar between sites (for a full characterization, see Sousa et al., 2020).

In order to assess the direct and indirect effects of P. leniusculus 
on leaf litter breakdown and invertebrate diversity, we controlled 
the absence and presence of the signal crayfish (hereafter presence) 
inside cages (40 × 20 × 20 cm) at six sites according to its in situ abun-
dance (absent, low, high; see above). In total, we had four treatments 
per site/abundance-level: (i) microbes; (ii) microbes + invertebrates; 
(iii) crayfish + microbes; (iv) crayfish + microbes + invertebrates. Each 
treatment had four replicates (N = 96). The presence and absence 
(with, without) of signal crayfish inside the cages was manipulated 
by adding (or not) one crayfish (adult male, 10 cm total length) to 
each cage. Inside all cages, 4 g oak leaves (Quercus robur L.), a com-
mon species in the riparian corridors of northern Portugal (Graça & 
Poquet,  2014), collected during the abscission and air-dried, were 
added to further assess leaf breakdown. Cages with/without crayfish 
were covered with coarse- (5  mm) or fine-mesh (500  μm) nets to 
allow or prevent invertebrates from accessing the leaves. By doing 
this, we were able to measure microbial, invertebrate and crayfish 
leaf breakdown individually and together. The experiment ran for 
4 weeks, between 5 October and 2 November 2017.

2.2  |  Invertebrate taxonomic diversity, functional 
redundancy and traits

The invertebrates that entered and remained in the cages were 
collected with the help of a 500-µm pore net when retrieving the 
cages from the water. After collection, animals were preserved im-
mediately in ethanol (76% v/v) and transported to the laboratory. 
Invertebrates then were sorted and identified to the lowest possible 
taxonomic level (Tachet et al., 2010). In order to assess the effects 
of crayfish presence and abundance on invertebrate taxonomic and 
functional diversity, two matrices (site × taxa & taxa × trait) were 
created. For the functional trait matrix, we assigned the affinity of 
invertebrates to five trait categories based on Tachet et al.  (2010) 
using a fuzzy-coding approach (Chevenet et  al.,  1994). Selection 
was based on traits which could be affected by our experimental 
variables (crayfish presence and abundance through competition, 
predation or resource depletion) and included maximum potential 
size, resistance form, locomotion and substrate relationship, feeding 
habits and food source (Table S1). The affinity of invertebrates was 
converted to percentages for each trait in order to standardise dif-
ferences in the affinity scores and modalities of each trait that were 
allowed to co-occur. The affinity scores for modalities and traits are 
available in Figure S1. Percentage of individuals for each trait modal-
ity based on taxa abundance also were calculated to assess effects 
of crayfish abundance and presence on specific selected functional 
traits. To build the functional space, a triangular matrix was created 
including taxa dissimilarity to reduce their dimensionality into a num-
ber of independent axes of trait variation by using an adapted ver-
sion of the Gower index ideal for fuzzy-coding approaches (Pavoine 
et  al.,  2009). Functional space quality was assessed by selecting 

the most relevant functional axes given the optimal number of di-
mensions (Maire et al., 2015). Functional redundancy, a metric that 
indicates the average representation of organisms playing similar 
functional roles in the ecosystem, was calculated by classifying the 
species into functional groups (Figure S2) by means of clustering 
approaches based on a trait dissimilarity matrix (Bruno et al., 2016; 
Laliberté et al., 2010).

2.3  |  Leaf litter breakdown

At the end of the experiment, leaf mass remaining inside the cages 
was collected, transported to the laboratory, washed and lyophilised 
for 48h, and weighed to the nearest 0.01 mg. Percentage of leaf lit-
ter breakdown (Lc) was obtained as Lc = (Li − Lf) × (100/Li), where Li 
and Lf are the initial and final dry mass (DM, g) of leaves (following 
Carvalho et al., 2016).

2.4  |  Data analyses

Linear mixed models (LMMs) with Gaussian error distributions and 
identity link functions were used to describe the relationships be-
tween our explanatory variables: taxonomic diversity analysis, rich-
ness and Shannon diversity, functional redundancy, percentage of 
individuals with resistance forms, and leaf breakdown by microbes 
(by microbes only or by crayfish and microbes in cages excluding 
other invertebrates); and response variables. Models were fitted by 
using crayfish presence and abundance as fixed effects. To account 
for non-independence of the data, river was used as a random vari-
able (Tables S2, S4 and S5). LMMs with Gaussian error distribution 
and loglink function were used for invertebrate abundance and for 
leaf breakdown by invertebrates (cages allowing the entry of inver-
tebrates with and without the presence of crayfish). We included a 
variance function in models when data showed heteroscedasticity 
(Zuur et al., 2009).

The effects of crayfish presence and abundance on invertebrate 
community structure were analysed by a principal component anal-
ysis (PCA) creating two plots (based on row coordinates) for the two 
independent variables. Monte Carlo permutation tests were applied 
for the statistical effects of crayfish presence and abundance on the 
invertebrate community. Another PCA based on species (based on 
column coordinates) was performed to identify the most influential 
species, and SIMPER was used to check for dissimilarities in inverte-
brate species average abundances between the three levels of cray-
fish abundance (Table S3).

For functional analysis after graphically checking the most im-
portant relationships between the percentage of trait modalities and 
our independent variables, we calculated the percentage of individ-
uals with resistance form and without resistance form as dependent 
variables. The percentage of individuals with resistance strategies 
included the sum of the percentages of invertebrate taxa with co-
coons +eggs and statoblats +diapause or dormancy.



    |  5CARVALHO et al.

All of the analyses were performed in R software v3.6.3 (R Core 
Team,  2021). For invertebrate taxonomic diversity, species rich-
ness and Shannon–Wiener diversity index were calculated using 
the “diversity” and “specnumber” functions in R/vegan (Oksanen 
et  al.,  2007). Taxonomic and functional analyses were performed 
with R/ade4 (Dray et al.,  2007), R/adegraphics (Siberchicot 
et al., 2017) and R/FD (Laliberté et al., 2014).

All of the LMMs were validated by visually checking the dis-
tribution of residuals for normality and homoscedasticity (Zuur & 
Ieno, 2016; Zuur et al., 2009). LMMs were fitted using the command 
“lme” from R/nlme (Pinheiro et al., 2020). Model selection was per-
formed by the lowest corrected Aikake information criterion (AICc) 
values using R/MuMin (Barton & Barton, 2015).

3  |  RESULTS

3.1  |  Stream water parameters

Stream water parameters did not vary significantly across sites 
with different crayfish abundance (Table S6). Temperature and ox-
ygen saturation were similar in Tuela and Rabaçal Rivers, whereas 
conductivity was higher in the Tuela River (Table S6). Mean am-
monium and phosphate concentrations were similar in both riv-
ers, whereas nitrate concentration was higher in the Tuela River 
(Table S6).

3.2  |  Invertebrate taxonomic diversity

Crayfish presence and abundance had a significant effect on the 
abundance of native invertebrates inside the cages (LMM; Table 1). 
The abundance of invertebrates decreased in the presence of cray-
fish, particularly at high crayfish abundance (Figure  2a). In the ab-
sence of crayfish inside the cages, native invertebrate abundance 

was significantly lower at high abundance than at absent crayfish 
sites (Tukey's honestly significant difference (HSD), p = 0.0305).

A total of 45 invertebrate taxa were collected inside the cages. 
Invertebrate taxonomic richness and diversity (Shannon index) were 
affected by crayfish abundance, but not by crayfish presence inside 
the cages (LMM; Table  1). Generally, invertebrate richness was 
higher at crayfish absent sites (Figure 2b). In the absence of crayfish 
inside the cages, invertebrate richness at high crayfish abundance 
sites was significantly lower than at crayfish absent sites (Tukey's 
HSD, p = 0.0055). Shannon diversity followed the same pattern and 
was lower at high abundance sites (Figure 2c).

PCA analysis (Figure 3) showed that the structure of invertebrate 
communities was affected by crayfish abundance (Monte Carlo per-
mutations test, p = 0.001), but not by crayfish presence inside the 
cages (Monte Carlo permutations test, p  =  0.469). The first PCA 
axis explained 31.82% of the total variation, and the second axis 
17.92%. The PCA showed that Caenis (13.6%), Physella (11.5%) and 
Hydropsyche (8.3%) were the three taxa that contributed most to 
changes in the structure of invertebrate communities among cray-
fish abundance levels (Figure 3). SIMPER analysis (Table S3) showed 
that the top five taxa with the highest contribution to dissimilari-
ties in invertebrate communities were Caenis, Physella, Hydropsiche, 
Stenelmis and Ecdyonurus (Table S3).

3.3  |  Functional redundancy

Functional redundancy based on invertebrate traits was affected 
by crayfish abundance, but not by crayfish presence (LMM; Table 2). 
Functional redundancy was significantly higher at absent than at high 
abundance sites (Figure 4a; Tukey's HSD, p = 0.0391). No significant 
differences were found in crayfish abundance × presence interac-
tions (Tukey's HSD, p > 0.05).

Among functional traits, crayfish abundance significantly af-
fected the percentage of invertebrates with resistance strategies 

Response 
variables Fixed effects

Num 
df

Den 
df F-value p-value

Abundance (Intercept) 1 38 216.559 <0.0001

Abundance 2 38 9.713 0.000

Presence 1 38 4.919 0.033

Abundance:presence 2 38 1.014 0.372

Richness (Intercept) 1 38 143.772 <0.0001

Abundance 2 38 14.692 <0.0001

Presence 1 38 1.813 0.186

Abundance:presence 2 38 0.205 0.816

Shannon (Intercept) 1 38 249.750 <0.0001

Abundance 2 38 10.460 0.000

Presence 1 38 0.376 0.543

Abundance:presence 2 38 0.039 0.962

Note: Significant predictors are in bold.

TA B L E  1  Results of the linear mixed 
models (LMMs) to test the effects of 
crayfish presence and abundance and their 
interactions on invertebrate taxonomic 
diversity
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(LMM; Table 2). The presence of invertebrates with resistance form 
strategies was significantly higher at high crayfish abundance than 
at low abundance or absent sites with (Tukey's HSD, p  <  0.0001 
vs. p = 0.0342, respectively) or without (Tukey's HSD, p = 0.0001, 
both) crayfish inside the cages (Figure 4b). Invertebrates without re-
sistance form strategies followed an opposite trend by decreasing 
with the increase in crayfish abundance (LMM; Table 2). Among the 
selected traits, only resistance forms were significantly affected by 
crayfish presence and/or abundance. The percentage of larger inver-
tebrates decreased with the increase in crayfish abundance, but not 
significantly (Figure S3).

3.4  |  Leaf litter breakdown

When excluding native invertebrates, P. leniusculus significantly in-
creased leaf litter breakdown driven by microbes (LMM; Table  3; 
Figure  5a). Leaf breakdown was significantly higher in the pres-
ence of crayfish at absent (Tukey's HSD, absent, p  =  0.0019; low, 
p = 0.0034; high, p = 0.0008) and at low abundance sites (Tukey's 
HSD, absent, p = 0.0003; low, p = 0.0006; high, p = 0.0001) than in 
treatments without crayfish at all abundance sites.

In the presence of native invertebrates, leaf litter breakdown 
increased significantly with crayfish presence inside the cages, 
whereas increasing crayfish abundance did not alter leaf litter break-
down (LMM; Table 3; Figure 5b).

4  |  DISCUSSION

Our results highlight that invasive signal crayfish led to an impov-
erishment of taxonomic and functional diversity of native inverte-
brates, and altered leaf litter breakdown in freshwater ecosystems. 
As hypothesised, signal crayfish presence and increasing abundance 
had a negative effect on invertebrate abundance and diversity. An 
increase in crayfish abundance led to a decrease in functional re-
dundancy of native invertebrates and to a trait-selective effect (i.e., 
selection of invertebrate resistance form strategies). The effects of 
crayfish presence and abundance on leaf litter breakdown were more 
pronounced in treatments when excluding native invertebrates.

4.1  |  Invertebrate taxonomic diversity

The presence and increasing abundance of the invasive crayfish 
P.  leniusculus had a strong negative effect on native invertebrate 
abundance. Similar results have been described (Twardochleb 
et  al.,  2013), but the effects appear to vary between popula-
tions at different streams (Evangelista et  al.,  2019; Klose & 
Cooper,  2012) or within populations among different traits 
(Carvalho et al., 2018). Invertebrate abundance was lower at high 
crayfish abundance sites in cages without the crayfish indicat-
ing higher predation impacts on invertebrate diversity in highly 
invaded areas. The absence of effects on invertebrates between 

F I G U R E  2  Invertebrate abundance (a), richness (b) and Shannon diversity index (c) in the absence (without) and presence (with) of the 
signal crayfish (Pacifastacus leniusculus) at three sites with increasing levels of crayfish abundance (absent, low and high). Boxplots show 
median values (central line), the range from the 25th to 75th percentile (box), the largest and lowest value within 1.5 times the interquartile 
range below and above the 25th and 75th percentile (whiskers) and extreme values (dots)
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crayfish abundance sites in the presence of crayfish may be attrib-
uted to predation on invertebrates that entered the cages, which 
may reduce differences across treatments as a combined effect 
of the crayfish abundance outside the cages and the per-capita 
effect inside the cages. Nevertheless, we also may hypothesise a 
potential predator avoidance behaviour of invertebrates (Nunes 
et al., 2014; Strauss et al., 2006) that would explain the lower num-
bers of invertebrates entering the cages.

Our results suggest that increasing crayfish abundance may 
be particularly detrimental for invertebrate richness and diversity. 
Additionally, per-capita effects may change with the increase in cray-
fish population abundance, which may increase intraspecific com-
petition leading individuals to search for alternative food sources. 
This can act as a driver for increasing niche width and changes 
in trophic position of crayfish individuals (Jackson et  al.,  2017). 
Crayfish per-capita and abundance impacts also may have functional 

F I G U R E  3  Principal component analysis (PCA) of invertebrate taxa grouped according to crayfish abundance. Invertebrate taxa of the 
same variable level are assigned by an ellipse. Arrows indicate invertebrate taxa with higher influence on the PCA. Longer arrows denote 
stronger influence on the results

Response variables Fixed effects
Num 
df

Den 
df F-value p-value

Functional 
redundancy

(Intercept) 1 38 14.443 0.001

Abundance 2 38 3.337 0.046

Presence 1 38 0.244 0.624

Abundance:presence 2 38 2.014 0.148

With resistance 
form

(Intercept) 1 38 581.257 <0.0001

Abundance 2 38 29.333 <0.0001

Presence 1 38 2.054 0.160

Abundance:presence 2 38 1.661 0.204

Without resistance 
form

(Intercept) 1 38 294.411 <0.0001

Abundance 2 38 27.137 <0.0001

Presence 1 38 3.204 0.081

Abundance:presence 2 38 0.955 0.394

Note: Significant predictors are in bold.

TA B L E  2  Results of the linear mixed 
models (LMMs) to test the effects of 
crayfish presence and abundance and their 
interactions on invertebrate functional 
diversity



8  |    CARVALHO et al.

implications on leaf breakdown since richer and diverse inverte-
brate communities enhance breakdown rates through facilitation or 
complementarity between species (Gessner et al., 2010; Jonsson & 
Malmqvist, 2000).

As expected, the crayfish in situ abundance affected the struc-
ture of invertebrate communities by decreasing their abundance, 
richness and diversity, regardless of the crayfish presence in the 
cages. A previous long-term study in England with P.  leniusculus 
showed that the community structure changed in invaded areas 
owing to the decrease in the abundance of some species (Mathers 
et al., 2016). In our study, some taxa such as Ephemeroptera (Caenis 
spp.), Trichoptera (Hydropsyche spp.) and Gastropoda (Physella spp.) 

had a strong contribution to the shifts in the structure of the in-
vertebrate community. Other studies corroborate that the presence 
of P.  leniusculus has been associated with a decrease in the abun-
dance of Ephemeroptera and Trichoptera (Mathers et al., 2016) or of 
Diptera and Gastropoda (Jackson et al., 2014).

In the last two decades, some authors have highlighted the im-
portance of addressing the linearity of the density–effect curves 
related to IAS impacts (Benkwitt,  2015; Jackson et  al.,  2015; 
Yokomizo et al., 2009). Although this study used a non-continuous 
analysis of density–effect curves, our results indicate that inva-
sive crayfish affected invertebrate diversity depending on crayfish 
abundance.

F I G U R E  4  Functional redundancy (a) and percentage of individuals of invertebrate taxa with resistance form strategies (b) in the absence 
(without) or presence (with) of the signal crayfish (Pacifastacus leniusculus) at the three sites with increasing levels of crayfish abundance 
(absent, low and high). Boxplots show median values (central line), the range from the 25th to 75th percentile (box), the largest and lowest 
value within 1.5 times theinterquartile range below and above the 25th and 75th percentile (whiskers) and extreme values (dots)

Response variables Fixed effects
Num 
df

Den 
df F-value p-value

Microbes (Intercept) 1 41 236.598 <0.0001

Abundance 2 41 4.407 0.019

Presence 1 41 33.927 <0.0001

abundance:presence 2 41 3.197 0.051

Invertebrates (Intercept) 1 41 228.940 <0.0001

Abundance 2 41 3.005 0.061

Presence 1 41 14.262 0.001

Abundance:presence 2 41 1.010 0.373

Note: Significant predictors are in bold.

TA B L E  3  Results of the linear mixed 
models (LMMs) to test the effects of 
crayfish presence and abundance and their 
interactions on leaf litter breakdown
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4.2  |  Functional redundancy and resistance 
form traits

Invasive signal crayfish decreased the functional redundancy of 
native invertebrate taxa in our experiment. Functional redun-
dancy has been used as a tool to assess ecosystem resistance to 
disturbances (e.g., Rosenfeld,  2002), including human-mediated 
ones (e.g., Laliberté et  al.,  2010). As expected, the decrease in 
taxonomic diversity was accompanied by a slight reduction in 
functional redundancy in response to the increase in crayfish 
abundance. We should consider that invertebrate communities in 
both rivers are particularly diverse with low human-induced dis-
turbances besides the invasion of P.  leniusculus (Nogueira et al., 
2021; Sousa et al., 2019). Hence, it is expected that communities 
with higher diversity are more resistant to disturbances as a re-
sult of their functional redundancy (Lecerf & Richardson,  2010). 
Considering that P.  leniusculus introduction was recent, and that 
the species is still spreading and increasing in abundance in the 
studied rivers, it is possible that patterns can change in the future. 
Moreover, our results indicate that increasing crayfish abundance 
may lead to a decrease in the percentage of invertebrates with re-
sistance traits in natural communities accompanied by a decrease 
in functional redundancy with possible implications for ecosystem 
functioning in the long term.

Specific trait analysis of the invertebrate community showed 
that the percentage of larger invertebrates tended to decrease 

with the increase in crayfish abundance. However, only resistance 
form traits were significantly affected, and effects were mediated 
by crayfish abundance. Although the percentage of invertebrates 
with resistance strategies increased at high crayfish abundance, 
an opposite trend was observed for invertebrate taxa without re-
sistance form strategies. Resistance form strategies are indicative 
of increased invertebrate species resistance against disturbances, 
including predation (Verberk et al., 2008). IAS are sometimes con-
sidered as evolutionary traps for native species. This may happen 
when some native species traits are selected as evolutionary ad-
vantages, or from learning, when native species develop specific 
defences against the invader (Schlaepfer et  al.,  2005). Native 
species may have defensive behaviour against recognised native 
predators, although naïve against recently introduced invasive 
predators (Kuehne & Olden,  2012). However, after some time in 
contact with invasive predators, native prey are able to develop 
evolutionary defensive responses or strategies against IAS (e.g., 
Freeman & Byers, 2006; Melloto et al. 2020). Our results indicate 
that P. leniusculus may have an important role in native invertebrate 
ecology, physiology and evolution because invertebrate taxa with 
resistance strategies may be less impacted by crayfish within in-
vaded ecosystems, particularly at higher densities. Other studies in 
freshwater ecosystems demonstrated that invasive aquatic macro-
phytes (Michelan et al., 2010) or invasive bivalves (Ilarri et al., 2018) 
impact functional diversity by changing habitat properties and 
complexity. Predation by IAS also may have significant effects on 

F I G U R E  5  Leaf litter breakdown in the absence (without) or presence (with) of signal crayfish (Pacifastacus leniusculus) at three sites with 
increasing levels of crayfish abundance (absent, low and high) in the absence (a) or presence (b) of invertebrates. Boxplots show median 
values (central line), the range from the 25th to 75th percentile (box), the largest and lowest value within 1.5 times the interquartile range 
below and above the 25th and 75th percentile (whiskers) and extreme values (dots)
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native communities at the taxonomic and functional levels (Pool 
& Olden, 2012). Our results show that effects of invasive crayfish 
abundance on invertebrates are decreasing both species taxonomic 
diversity and functional redundancy, while potentially selecting for 
some traits, which may reconfigure the future invaded invertebrate 
community with consequences for ecosystem functioning, such as 
plant litter breakdown.

4.3  |  Leaf litter breakdown

The presence and abundance of P.  leniusculus stimulated leaf lit-
ter breakdown. Our results showed that in the absence of native 
invertebrates, the invasive signal crayfish was able to contribute 
to leaf litter breakdown, except at high crayfish abundance sites. 
This may be explained by a decrease in the feeding behaviour 
by sensing conspecifics outside the cages. This is supported by 
observations that crayfish usually forage on a diverse range of 
resources at low density and may decrease their activity in high-
density areas (Jackson et al., 2015). Evidence from mesocosm ex-
periments also reported increasing intraspecific aggression and 
per capita interactions with increasing crayfish densities (Pintor 
et al., 2009).

Leaf litter breakdown was not affected by increasing crayfish 
abundance in treatments where both the invasive signal crayfish 
and other invertebrates were inside the cages. At low crayfish in 
situ abundance, leaf breakdown was higher when the signal crayfish 
and other invertebrates were together. Both native invertebrates 
and invasive crayfish may contribute to enhanced leaf breakdown 
at low abundance sites. Likewise, increased leaf breakdown rates 
were observed with native invertebrates (Gammarus spp.) and inva-
sive crayfish in sympatry (Dunoyer et al., 2014). However, leaf litter 
breakdown can be also reduced indirectly via trophic cascades as 
a consequence of predation by invasive crayfish on native inverte-
brates (Lagrue et  al.,  2014; Moore et  al.,  2012). Possible explana-
tion for the lower leaf breakdown at absent sites in the presence of 
crayfish inside the cages may be the higher diversity and abundance 
of naïve invertebrates that provide an alternative food source for 
crayfish.

Pristine rivers, such as the ones where we ran our experiment 
(Nogueira et al., 2021), are expected to have high biodiversity 
and consequently high functional redundancy, making them more 
resistant and resilient to disturbances (Woodward,  2009). It is 
possible that the decrease in biodiversity imposed by crayfish 
did not lead to significant indirect effects on leaf breakdown as 
a result of functional redundancy. Although leaf breakdown by 
invertebrates in treatments without the crayfish tended to de-
crease with the increase in crayfish in situ abundance, the results 
were only marginally statistically significant. This suggests that 
with time, and if the population density of the invasive crayfish 
increases, the effects on native communities may lead to an indi-
rect decrease in leaf breakdown, but this hypothesis needs to be 
further investigated.

5  |  CONCLUSION

Overall, our results indicate that the presence of the invasive cray-
fish P.  leniusculus was responsible for important ecological effects. 
The increases in crayfish in situ abundance led to a decrease in taxo-
nomic and functional diversity of native invertebrates by enhancing 
trait selection pressures, culminating in changes in the dynamics of 
leaf litter breakdown in freshwater ecosystems.

In our sampled rivers, stream water characteristics were similar 
and indicated a very low human disturbance, as reported previously 
(Nogueira et al., 2021; Sousa et al., 2018, 2020), discarding the influ-
ence of water chemistry (or other environmental factors) on the ob-
served effects and highlighting the negative impacts of the invasive 
signal crayfish on these ecosystems. The presence of P. leniusculus 
in both study rivers is relatively recent, nevertheless their effects 
were already detrimental for endangered species (e.g., Margaritifera 
margaritifera; Sousa et al., 2019). Our results also indicated that the 
invasive signal crayfish changed the detritus-based food web by af-
fecting organic matter breakdown. Further studies should consider 
how abiotic and biotic factors influence the observed crayfish ef-
fects. The ecological effects mediated by the signal crayfish may 
significantly change in other environmental contexts (temperature, 
pollution) or in the presence of native or non-native predators (e.g., 
Lutra lutra, Neovison vison and Salmo trutta), and these situations de-
serve further attention.
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