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Improving the Mobile Robots Indoor Localization System by
Combining SLAM with Fiducial Markers
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Abstract— Autonomous mobile robots applications require a
robust navigation system, which ensures the proper movement
of the robot while performing their tasks. The key challenge
in the navigation system is related to the indoor localization.
Simultaneous Localization and Mapping (SLAM) techniques
combined with Adaptive Monte Carlo Localization (AMCL)
are widely used to localize robots. However, this approach is
susceptible to errors, especially in dynamic environments and
in presence of obstacles and objects. This paper presents an
approach to improve the estimation of the indoor pose of
a wheeled mobile robot in an environment. To this end, the
proposed localization system integrates the AMCL algorithm
with the position updates and corrections based on the artificial
vision detection of fiducial markers scattered throughout the
environment to reduce the errors accumulated by the AMCL
position estimation. The proposed approach is based on Robot
Operating System (ROS), and tested and validated in a simula-
tion environment. As a result, an improvement in the trajectory
performed by the robot was identified using the SLAM system
combined with traditional AMCL corrected with the detection,
by artificial vision, of fiducial markers.

I. INTRODUCTION

Mobile robots are widespread in several areas, such as
industrial automation, agriculture, medical care, autonomous
driving, product deliveries, planetary exploration, smart
warehouses, personal services, construction, reconnaissance,
entertainment, emergency rescue operations, patrolling and
transportation [1]. Being one of the fastest-growing scientific
fields today, mobile robotics has considerable impact not
only on research but also on the economy. Even with the
Covid-19 pandemic scenario, the robotics market is expected
to move around U$23 billion in 2021 and growing to U$54
billion in 2023 [2], pointing to a considerable expansion of
autonomous mobile robots applications.

Characterized as intelligent systems, mobile robots have
the ability to move autonomously, without the human in-
terference [3], making decisions based on the information
collected from their sensors (e.g., LiDAR, sonar and cam-
eras), which allows them to help humans with heavy or time-
consuming tasks [4]. However, for a mobile robot to be able
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to operate effectively in an environment it is necessary to
implement efficient solutions for factors such as locomotion,
perception with sensors, cognition, and navigation [5].

For mobile robots to perform autonomous operations, their
localization system require to know the position and orienta-
tion of the robot in a given coordinate system. Considering
the high demand for indoor applications, correlated with the
complexity and dynamism of these environments as well as
the inaccuracy of the GPS signal, locating a mobile robot in
an indoor environment represents an arduous and challenging
task. Alternative perception systems, e.g., systems based on
electromagnetic received signal strength indication (RSSI)
such as WiFi and Bluetooth are susceptible to high noise
levels and are currently not robust enough for precise indoor
localization. On the other hand, systems with time-of-flight
based signals, such as POZYX, have a good position result,
however they do not obtain a satisfactory orientation [6].

Another adopted method for indoor location is the Simul-
taneous Localization and Mapping (SLAM), which was in-
troduced to enable robots to generate maps of their surround-
ings based on LiDAR information, which is used for robot
position estimation as well as the path planning between
different points in the environment [7]. The intrinsic error
due to noise measurements or inaccurate LiDAR readings can
be minimized by using the Adaptive Monte Carlo Localiza-
tion (AMCL) algorithm. The AMCL algorithm estimates the
position of the robot applied to a two-dimensional occupancy
map through a particle filter, where the particles swarm is
used to describe the possible position of the robot in a known
map. Particles are randomly added during resampling to
slow down the convergence rate of the algorithm preventing
localization errors related to robot kidnapping problem [8].

Even when performing SLAM with the AMCL algorithm,
the robot’s position estimation can be subject to errors.
This discrepancy between the real and estimated position
increases when the scenario has dynamic obstacles, which
ends up constantly changing the laser sensor readings, or
hallways that are very long and very similar in their exten-
sion, making difficult to determine the actual position of the
robot in the environment [9].

This paper presents an approach to achieve the localization
of a wheeled mobile robot during its indoor navigation in
more reliable manner. SLAM techniques will be integrated
with the position tracking of fiducial markers distributed in
an environment. The fiducial markers will serve as landmarks
since the distance between them and a camera (which will
be positioned on the robot) can be determined with artificial
vision techniques. Whenever a marker is detected, and since
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its actual position in the environment is already known, it
will update the robot’s position data by resetting the AMCL’s
particle filter, eliminating the existing discrepancies in the
localization estimation. The achieved results showed that the
robot’s localization is more reliable than the simple use of
SLAM techniques based on LiDAR and odometry.

The rest of this paper is organized as follows. Section
II briefly reviews the state-of-the-art on SLAM techniques
and fiducial markers used for the position tracking. Sec-
tion III describes the proposed architecture for the indoor
localization system, and the Section IV presents the system
implementation. Section V analyses the achieved results, and
finally, Section VI presents the conclusions and future work.

II. RELATED WORK

Considering the importance of SLAM techniques in the
navigation of mobile robotics, this section briefly discusses
their associated concepts and issues, as well as the concepts
related to the detection and tracking of fiducial markers by
RGB cameras.

A. Simultaneous Localization And Mapping

As stated earlier, the mobile robot navigation involves
solving the problems of mapping, path planning, obstacle
avoidance and localization which are covered by SLAM tech-
niques [10]. Mapping consists of creating a representation of
the environment that can be used by the robot as a form of
recognition. There are different types of map representations,
e.g., the topological map and the metric map, where can
be highlighted the occupancy grid representation [4]. The
map is divided into two distinct types of cells arranged in
grids, which are based on an occupancy threshold. The cells
may represent regions where the navigation is not possible,
considered as occupied, and the others reflect free space
that indicates regions where non-collision is guaranteed
[11]. Well-known algorithms such as Gmapping and Hector
SLAM are widely used in the creation of grid occupancy
maps, applied in SLAM approaches so that a mobile robot
can be located by estimating its position using LiDAR data.

The SLAM localization is essential for the navigation
of a robot to be autonomous, requiring robust calculations
and approximations to determine the robot’s position in the
environment, in order to know how to act during its move-
ment for the reliable execution of tasks [12]. However, the
localization is subject to many factors that contribute to its
lack of accuracy, e.g., encoder/odometry and mapping errors,
location uncertainty based on scan matching, loss of previous
position information, sensor inaccuracy and environmental
conditions. For these reasons algorithms such as Kalman
filter, Markov localization and particle filters like AMCL are
used to improve SLAM localization feature [13].

Even using some of the mentioned techniques, it is not
possible to guarantee a robust indoor robot localization
for dynamic and complex scenarios. Although the particle
filtering converges on the most likely position of the robot
in the environment, this technique has difficulties especially
in global localization, where the particle convergence speed
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is slow when there is no initial position information of
the robot, or in the kidnapped robot problem. The particle
convergence is even slower or error-prone in dynamic envi-
ronments or with simple and repetitive geographic features
[14].

The techniques associated with SLAM have problems,
e.g., the localization uncertainty, and difficulty in identifying
the corresponding position obtained from samples of sensor
data in order to be able to associate this data with a known
position on the map. In addition, problems related to time
complexity due to limited processing to estimate the position
and desynchronism with high-speed robots can compromise
a robot mission in an indoor environment [7].

B. Fiducial markers

Fiducial markers are elements used as reference points
or measurements RGB data, and they are usually charac-
terized as artificial marks of known size and shape. There
are different open-source packages of fiducial markers that
have integration with ROS (Robot Operating System), which
facilitates their use in robotics applications, e.g., ARTag,
ARToolkit, AprilTag, ArUco, STag, and others [15].

The fiducial markers are widely used in mobile robotics
localization applications. By positioning them in an environ-
ment as landmarks, it is possible to accurately determine their
relative position and orientation between them and a camera
positioned on the mobile robot, information that can be
used to significantly increase the accuracy of the localization
system [9]. However, since artificial vision strategies are
applied for tracking the markers, the use of the presented
packages requires a high computational power, which can
interfere with the efficiency of the localization system in the
navigation of a robot (note that the data must be processed
in real time).

The high accuracy in the position tracking of fiducial
markers, as well as their versatility, allows to apply them
in different mobile robotics scenarios. For example, fiducial
markers are used as a complementary localization system for
a Unmanned Aerial Vehicle (UAV) in power distribution line
inspections [16], in simulations for target tracking for UAVs
[17], and localize mobile robots in a smart warehouse system
with fiducial markers positioned on top of the robots and the
camera positioned on the warehouse ceiling [18]. Similarity,
visual markers are captured by a ceiling-mounted camera
to position virtual LiDAR sensors on small robots [19].
Fiducial markers are also applied as a method to improve the
localization of a turtlebot robot in an indoor environment,
combining the tracking position of the tags in walls with
SLAM techniques and the Kalman filter algorithm, achieving
an autonomous navigation system [20].

Aiming to overcome the problems identified with the use
of the SLAM techniques, the presented work attempts to
improve the SLAM localization by combining the AMCL
algorithm with the visual tracking of fiducial markers po-
sitioned on the environment ceiling. The markers provide
global reference points possible to be integrated into the
AMCL position estimation, ensuring more robust localization
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results and allowing a way to obtain the initial position
information by detecting the tags and contributing to mit-
igate the localization uncertainty, data correspondence, and
kidnapped robot problems. This allows to offer a solution to
global localization and abducted robot localization problems,
and to integrate the localization system for the autonomous
navigation of wheeled mobile robots in indoor environments.

III. INDOOR LOCALIZATION SYSTEM ARCHITECTURE

As previously referred, this work proposes to improve the
estimation of the robot’s indoor localization (position and
orientation) by using the generated map and LiDAR data,
that are combined with the odometry and corrected with the
tracking of fiducial markers.

For this purpose, the fiducial markers are distributed in the
environment, fixed on the ceiling, being their positions and
orientations properly stored in a database. When the artificial
vision system detects a marker, the robot’s position in the
localization system is corrected. The Algorithm 1 describes
the proposed indoor localization system considering the
detection of the markers.

Algorithm 1 Proposed Indoor Localization Algorithm

1: while Robot_navigation do

2 if Marker_detected then

3 i = Get_marker_ID(Marker);

4 P, = Get_global_marker_pose_database(i);
5: P,, = Get_marker_pose_related_to_cameral();
6 P, = Calculate_robot_position(Py, Py,);

7 Correct_error_from_pose_estimator(P,);
8 else

9 Estimate_robot_position();

10: end if

11: end while

When a marker enters the field of view of a camera
positioned on the robot, the artificial vision system gets the
ID i of the fiducial marker. Then, the algorithm identifies the
P,, i.e., the global position and orientation (x4, yg, 2, 6,) of
the marker i checking in the database. The next procedure
gets the position and orientation (Zy,, Ym, Zm, Om) of the
marker in relation to the camera (P,,).

With the procedure that correlates the global position of
the marker P, and the position in relation to the camera
obtained by the artificial vision system P,,, it is possible to
determine the global position and orientation of the camera
in the environment. Once the camera is fixed, through the
existing offset between the camera and the robot, the robot’s
position (F,) is determined.

The application of this method, allows to update the
position estimator algorithm based on the location obtained
by the fiducial marker detection, removing the accumulated
intrinsic errors. The flowchart in Fig. 1 represents the archi-
tecture of the indoor localization system, in it the odometry
and LiDAR sensor data are used by the position estimator
algorithm and for creating the environment map. The map
generation is a one-time process, once a map exists there is
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no need to create a new one. The map data is also used by
the position estimator algorithm.

One-time process

. Map Map
Environment Generation Data
5 Robot LiIDAR
5 Camera Odometry Sensor
»
Artificial
Vision o ES“/:TanOG)
ose Algorithm .
System 9 Robot Position
Update Robot Position
Fiducial Fiducial
Marker Yes. Algorithm1 Markers

Detect? Position

Database

Fig. 1: Architecture of the indoor localization system.

Whenever a tag is identified in the environment by the arti-
ficial vision system through the images captured by the cam-
era, Algorithm 1 computes the position of the robot based
on and performs the correction of the position estimation
algorithm. It is worth mentioning that it is not necessary to
always have a marker being detected, they can be positioned
in the environment so as to be detected periodically, keeping
the localization being done by the position estimator when
there are no markers, and use them only to eventually reduce
the errors generated by the estimation.

IV. IMPLEMENTATION OF THE LOCALIZATION SYSTEM

The validation of the proposed localization system were
performed in a simulation case study environment. For this
purpose, the V-REP simulator was used, which is integrated
with ROS. V-REP provides several useful features, such
as physical and dynamics restrictions, to simulate robots
applications. On the other hand, ROS was used for the
implementation and integration of the localization system
algorithms, since ROS enables the simple integration with
numerous robotic systems, as well as providing packages that
support applications such as SLAM, the AMCL algorithm,
and ARTag to localize the fiducial markers.

In the simulation environment, it was used a wheeled
mobile robot model similar to a Roomba vacuum cleaner,
as illustrated in Fig. 2. It is equipped with a LiDAR sensor,
which will be responsible for acquiring the distances between
the robot and the walls and obstacles of the environment,
and an RGB camera positioned upwards, in order to obtain
the necessary images for the identification and tracking of
the fiducial markers positioned on the ceiling. The fiducial
markers chosen to be used belong to the ARTag package
(ar_track_alvar) and are known as AR tags.

The selected environment for the localization tests was an
university hallway, which a real scale version was designed
in the V-REP simulator. Fig. 3 shows a floor plan of the
environment, with a 26x20 m size, and with the blue blocks
representing cabinets present in the real environment, and the
red blocks represent the distribution of the fiducial markers.
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Fig. 2: Simulation elements implemented in V-REP repre-
senting the robot and fiducial markers by AR tag.
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Fig. 3: Floor plan of the indoor environment.

A total of 20 AR tags were positioned on the ceiling of
the environment (which is 2.5 m high). Each marker has
a dimension of 20x20 cm. The positioning was done in a
way that makes it possible to use the markers as landmarks
for different routes between points in the environment, to
perform the robot navigation during the localization tests.
The real environment was also considered for the tags
arrangement once it was planned to perform future tests with
a real robot, so places with elements that could hinder the
tags detection, such as lamps, doors, pillars, among others,
were avoided during the positioning. Since there will not
always be a tag in the camera’s field of view, the localization
in these places is done only by the AMCL algorithm.

Due to the large computational requirements to run the
simulation in V-REP simultaneously with the localization
system, it was decided to use a distributed computing
strategy. For this purpose, two computers were connected
in the same ROS network, as illustrated in Fig. 4. One
of them acts as the ROS Master, and is also responsible
for running the V-REP simulator, where the environment
information will be collected through the LiDAR sensors,
the camera, and the robot’s odometry information, as well
receiving the velocity information published to perform the
navigation of the mobile robot. The second computer is
responsible for processing the received data, running the
SLAM algorithm, tracking the tags, path planning, sending
the velocity messages for the robot, requesting the robot’s
destination point.

For the operation of the localization system, the construc-
tion of a map of the environment is needed. For this purpose,
the ROS Gmapping package was used, which allows to use
laser-based SLAM strategies, creating a grid occupancy map
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Fig. 4: Distributed computation of the localization system
processes between two computers in a ROS network.

from the robot’s odometry data and a laser sensor, in this
case the LiDAR. The map only needs to be created once
and is used to assist in the localization of the robot.

The images collected by the RGB camera are processed
by the ar_track_alvar package, which detects the tags and
determines the distance and orientation between them and
the camera, which is positioned above the robot. Then
an implemented python algorithm based on Algorithm 1
is used to determine the global position of the robot. A
ROS service is used afterwards to reset the particle filter
of the AMCL algorithm with the calculated position of the
robot. In this way, the existing intrinsic error in the position
estimation made by the AMCL is eliminated, ensuring that
the new estimations are more accurate. When there are no
position updates being performed by the tag detection, the
AMCL algorithm uses the data received from the LiDAR
sensor readings and the robot’s odometry, in conjunction
with the map data generated by Gmapping through a ROS
service called map_server, to perform the particle filtering,
estimating the localization of the robot in the environment.

For the tests, a Dijkstra algorithm has been implemented
for the path planning of the robot in the environment, while
the navigation is performed with the help of the ROS package
move_base, which is responsible for controlling the robot by
sending a speed message and obstacle avoidance, guiding the
robot to the goal based on the position information received
from the AMCL algorithm.

Based on the information from the LiDAR sensor and us-
ing the map_server, cost maps are created. In the global cost
maps, tolerance regions are created in relation to the existing
occupation areas of the original map (walls, obstacles, etc.),
preventing the collisions with these regions. A local cost
map is also created, indicating tolerance regions based on
the original map and in obstacles detected by the LiDAR
readings. The detection of new obstacles not only updates
the local cost map, but also causes the re-planning of the
robot’s route to avoid collisions with the obstacle.

V. RESULTS AND DISCUSSIONS

Using an implemented python algorithm, the mobile robot
was teleguided through the simulation environment to create
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the map using the ROS Gmapping package. The map is nec-
essary to be used as reference data for the indoor localization
system. Fig. 5 shows the obtained grid occupancy, as well as
the two different chosen trajectories for the robot’s navigation
tests.
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Fig. 5: Map of the simulated environment generated by the
ROS Gmapping and planned routes for the localization tests.

Four different scenarios were defined to perform the lo-
calization tests, where different parameters were incorporated
into the AMCL algorithm, as detailed below:

e Scenario 1: Odometry data, laser sensor (LiDAR) read-
ings and known initial position.

« Scenario 2: Odometry data and laser sensor readings. In
this case, the initial position of the robot is not informed
to the AMCL algorithm (kidnapped robot problem).

e Scenario 3: Odometry data, laser sensor readings, po-
sition updates based on AR tags detection and known
initial position.

e Scenario 4: Odometry data, laser sensor readings and
position updates based on AR tags detection. The initial
position of the robot is not informed.

The results obtained for the first scenario in the two dif-
ferent routes, in terms of trajectory performed by the robot,
are illustrated in Fig. 6, with the red arrows representing the
robot’s real position and orientation and the green ones the
position estimated by the algorithm. In this scenario, since
the robot’s initial position was known, the AMCL algorithm
was able to perform the convergence of its particle filter very
close to the robot’s actual position, keeping the estimation of
the location consistent especially in the first trajectory test
along the path between the first two waypoints. However,
after some time, a more significant error began to exist
between the actual and estimated positions.

Despite some discrepancies, the robot was able to navigate
the desired path. However, in a real environment, the errors
could be much larger, since the robot odometry used by the
AMCL algorithm could be subject to errors due to numerous
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Fig. 6: Real and estimated localization for the scenario 1.

factors, e.g., wheel misalignment, divergent wheel diameters,
uneven terrain and skidding. Similarly, the LiDAR sensor
readings could also be subject to errors from the sensor
itself, or due to changes in the environment, such as moving
obstacles. These factors would lead to a greater accumulation
of errors in position estimation.

In the second scenario, the robot did not know its ini-
tial position, and although the AMCL initially converged
close to the robot’s actual position based on the LiDAR
sensor readings, there was a large discrepancy in the angle
estimation. This made the robot to get lost during the
navigation in the first trajectory, moving far away from the
destination point, before the AMCL is able to perform a
particle convergence that best matches the actual position of
the robot. In the second test, the AMCL was able to converge
its estimates with a higher precision relative to the robot’s
actual position, ensuring that it could reach the final goal,
but the discrepancies remained high for the most part of the
course until the particle filtering could be better performed
based on the LiDAR sensor reading and the map. Fig. 7
shows the position samples during the tests.
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Fig. 7: Real and estimated localization for the scenario 2.

For the third scenario, the initial position of the robot is
reported to the AMCL algorithm. The position updates to
remove the intrinsic errors accumulated by the algorithm
based on the tag detection allowed the position estimates
to remain closer to the actual robot positions than in the
first scenario in both trajectories. In Fig. 8 the samples of
the actual and estimated positions throughout the robot’s
navigation are displayed, as well as the times at which the
tag-based updates were performed. It is quite noticeable that
when position updates occur due to the detection of fiducial
markers, the existing error between the actual and estimated
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position is reduced.
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Fig. 8: Real and estimated localization for the scenario 3.

The effectiveness of using the tag detection for improving
the robot’s indoor localization is even more evident in the
fourth scenario. Despite representing a case of the kidnapped
robot problem, the tag detection allowed obtaining an ac-
curate initial position for the AMCL, which prevented the
robot from getting lost as occurred in the second scenario.
The other position updates made by the system kept the
estimated and actual positions close together throughout
the trajectories, eliminating any errors that arose in regions
without tags. The results of the localization system are shown
in Fig. 9.
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Fig. 9: Real and estimated localization for the scenario 4.

The integration of the AR tags detection with the AMCL
algorithm proved to be a more reliable way to obtain the
localization information to a mobile robot in an indoor
environment and to achieve the autonomous robot navigation,
than just use the AMCL algorithm with the LiDAR and
odometry data. The proposed method allows the robot to
accurately determine its position and orientation even in
situations where the robot is kidnapped, and be helpful in
decreasing the localization errors.

VI. CONCLUSIONS AND FUTURE WORK

The present work addressed the problem of mobile robot
indoor localization. The integration of the probabilistic algo-
rithm AMCL with the position tracking of AR tags, proved
to be efficient to obtain an accurate localization system
in an indoor environment, being more effective than the
more traditional approach of using the AMCL algorithm,
especially in cases of the abducted robot problem, since it
provides a way to obtain the actual position of the robot in
the environment based on the tag identification.
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Future work will be dedicated to validating the localization
system in the real environment, to ensure that the system
can be robust enough to perform autonomous navigation of
a mobile robot amidst dynamic obstacles, more complex
routes, and high uncertainty in the data collected by the
Sensors.
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