
Near real-time network analysis for
the identification of malicious

activity

Rafael Cardoso de Oliveira - a35096

Dissertation presented to the School of Technology and Management of Bragança to

obtain a Master’s Degree in Informatics.

Supervised by:

Prof. Tiago Miguel Ferreira Guimarães Pedrosa

Prof. Rui Pedro Sanches de Castro Lopes

This dissertation does not include the criticisms and suggestions made by the Jury.

Bragança

2020-2021

ii

Near real-time network analysis for
the identification of malicious

activity

Rafael Cardoso de Oliveira - a35096

Dissertation presented to the School of Technology and Management of Bragança to

obtain a Master’s Degree in Informatics.

Supervised by:

Prof. Tiago Miguel Ferreira Guimarães Pedrosa

Prof. Rui Pedro Sanches de Castro Lopes

This dissertation does not include the criticisms and suggestions made by the Jury.

Bragança

2020-2021

iv

Dedication

To my family.

v

Acknowledgements

I would like to thank all the professors from the Institute Polytechnic of Bragança for all

the help throughout this academic journey.

Special thanks to my supervisors, Prof. Tiago Pedrosa and Prof. Rui Lopes for giving

invaluable help, without it, my research would have been impossible. Thank you.

For last but not least I would like to thank my family for all the support.

vi

Resumo

A evolução da tecnologia e o aumento da conectividade entre dispositivos, levam a um

aumento do risco de ciberataques. Os sistemas de deteção de intrusão são essenciais para

tentar prevenir, detetar e conter a maioria dos ataques. No entanto, o aumento da cri-

atividade e do tipo de ataques aumenta a necessidade dos sistemas de proteção possuírem

cada vez mais recursos e poder computacional. Por sua vez, requerem escalabilidade hori-

zontal para acompanhar a massiva infraestrutura de rede das empresas e a complexidade

dos ataques. Tecnologias como machine learning apresentam resultados promissores e

podem ser de grande valor na deteção e prevenção de ataques em tempo útil. No entanto,

a utilização dos algoritmos e ferramentas requer sempre um conjunto de dados sólidos e

confiáveis para treinar os sistemas de proteção de maneira eficaz. A implementação de um

bom conjunto de dados requer sistemas horizontalmente escaláveis, robustos, modulares

e tolerantes a falhas para que a análise seja rápida e rigorosa. Este trabalho descreve

a arquitetura de um sistema de captura, armazenamento e análise, capaz de capturar

pacotes de múltiplas fontes e analisá-los de forma paralela. O sistema depende de vários

nós modulares com funções específicas para oferecer suporte a diferentes algoritmos e

ferramentas.

Palavras-chave: Cibersegurança, IDS, Sistemas Distribuídos, Machine-Learning

vii

Abstract

The evolution of technology and the increasing connectivity between devices lead to an

increased risk of cyberattacks. Reliable protection systems, such as Intrusion Detection

System (IDS) and Intrusion Prevention System (IPS), are essential to try to prevent,

detect and counter most of the attacks. However, the increased creativity and type of

attacks raise the need for more resources and processing power for the protection systems

which, in turn, requires horizontal scalability to keep up with the massive companies’

network infrastructure and with the complexity of attacks. Technologies like machine

learning, show promising results and can be of added value in the detection and prevention

of attacks in near real-time. But good algorithms and tools are not enough. They require

reliable and solid datasets to be able to effectively train the protection systems. The

development of a good dataset requires horizontal-scalable, robust, modular and fault-

tolerant systems so that the analysis may be done in near real-time. This work describes

an architecture design for horizontal-scaling capture, storage and analyses, able to collect

packets from multiple sources and analyse them in a parallel fashion. The system depends

on multiple modular nodes with specific roles to support different algorithms and tools.

Keywords: Cybersecurity, IDS, Distributed-Systems, Machine-Learning

viii

Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Objectives . 3

1.3 Document structure . 3

1.4 Contributions . 4

1.5 Acknowledgments . 4

2 Background 5

2.1 Literature review methodology . 5

2.1.1 Data collection . 6

2.1.2 Method of analysis . 7

2.2 Literature review . 7

2.3 Other application scenarios . 17

2.4 Functional and security requirements . 18

2.5 Packet capture . 19

2.5.1 Network data tiers . 20

2.5.2 Data capture tools . 21

2.6 PCAP file format . 22

2.7 Tools . 23

2.7.1 Capturing tools . 24

2.7.2 Transportation tools . 25

ix

2.7.3 Storage tools . 26

2.7.4 Stream process tools . 28

2.7.5 Data process tools . 29

3 Approach 31

3.1 Proposed system . 31

3.1.1 Network traffic capture module . 31

3.1.2 Queuing module . 32

3.1.3 Storage module . 33

3.1.4 Analysis module . 33

3.1.5 Technologies . 34

3.2 Domain Generation Algorithms . 34

4 Implementation 37

4.1 Scenario . 37

4.2 Packet capture module . 40

4.3 Queuing module . 43

4.3.1 Data flow . 43

4.3.2 Message size and partitions . 44

4.4 Persistence storage module . 45

4.5 Analysis module . 46

4.5.1 Analyzer core . 46

4.5.2 Information analysis . 47

4.5.3 Malicious domain analysis . 48

5 Experiments and discussion 53

5.1 Packet capture . 53

5.2 Kafka message size . 56

5.3 Kafka partitions . 59

5.4 HDFS performance . 60

x

5.5 Core parser stress test . 61

5.6 Core parser performance . 63

5.7 Machine learning model . 66

6 Conclusions and future work 71

6.1 Future Work . 72

A Original dissertation proposal A1

B OL2A published paper B1

C Switch configurations C1

D Services deployment D1

E Packet capture application versions source code E1

F Persistent network data application source code F1

G Analysis module applications source code G1

xi

List of Tables

2.1 Network data usage [34] . 21

2.2 PCAP global header format, adapted from [38] 22

2.3 PCAP packet header format . 24

4.1 Laboratory computers system specifications 38

4.2 Laboratory virtual machine specifications 38

4.3 Network probe system specifications . 39

4.4 Packet capture application arguments . 41

4.5 Number of records per dataset . 50

5.1 Comparison of the three application versions, regarding the packet loss . . 55

5.2 Aggregation of five headers-only 300 seconds packet capture experiments . 57

5.3 Aggregation of five full-packet 300 seconds packet capture experiments . . 58

xii

List of Figures

1.1 Dissertation work schedule . 3

2.1 PCAP file format, adapted from [39] . 23

3.1 Proposed system - components diagram . 32

3.2 Proposed system - technologies . 34

4.1 Computer laboratory diagram . 39

4.2 Selecting the size of the message to publish 42

4.3 Apache Kafka producer and consumer . 45

4.4 Steps to generate the final dataset to the malicious domains detection . . . 51

5.1 Network throughput between the two devices on network A during 60 seconds 54

5.2 Comparison between the three packet capture applications regarding the

packet loss . 55

5.3 Kafka consumer and producer delay in a headers-only packet capture at

1Gb/s during a 300 seconds capture . 58

5.4 Kafka consumer and producer delay on a headers-only packet capture at

1Gb/s during 60 seconds . 58

5.5 Kafka consumer and producer delay in full-packet capture at 1Gb/s during

a 300 seconds capture . 59

5.6 Consumer and producer delay on a 60 seconds 1Gb/s full-packet capture

regarding a different number of Kafka partitions assigned 60

xiii

5.7 HDFS consumer and producer delay in a headers-only packet capture at

1Gb/s during 60 seconds . 61

5.8 HDFS consumer and producer delay in full-packet capture at 1Gb/s during

60 seconds . 62

5.9 HDFS consumer and producer delay in a headers-only packet capture at

1Gb/s during 300 seconds . 62

5.10 HDFS consumer and producer delay in full-packet capture at 1Gb/s during

300 seconds . 63

5.11 Runtime of the different core parsers when processing file B 64

5.12 Average of the processed packets per second of the different core parsers

when processing file B . 64

5.13 Runtime of the different core parsers when processing file A 65

5.14 Average of the processed packets per second of the different core parsers

when processing file A . 65

5.15 Performance of the core parser while performing a headers-only packet

capture . 66

5.16 Performance of the core parser while performing a full-packet capture . . . 67

5.17 Confusion matrix of the domain classifier of the machine learning model . . 67

xiv

Listings

4.1 Example of the console output produced by the information analyzer ap-

plication . 47

4.2 Example of the console output produced by the malicious DGA analyzer

application . 49

C.1 Cisco switch configuration . C1

D.1 Zookeeper installation script . D1

D.2 Zookeeper configuration file . D2

D.3 Zookeeper service manager configuration file D2

D.4 Kafka installation script . D2

D.5 Kafka configuration file . D3

D.6 Kafka service manager configuration file D4

D.7 Hadoop name node installation script . D5

D.8 Hadoop name node service manager configuration file D6

D.9 Hadoop data node installation script . D6

D.10 Hadoop data node service manager configuration file D7

D.11 Hadoop name and data node configuration file (core-site.xml) D7

D.12 Hadoop name and data node node configuration file (hdfs-site.xml) D8

D.13 Hadoop name and data node configuration file (mapred-site.xml) D9

D.14 Hadoop name and data node configuration file (yarn-site.xml) D9

D.15 Hadoop name node configuration file (ssl-server.xml) D10

D.16 Hadoop data node configuration file (client-server.xml) D11

D.17 Spark-master installation script . D12

xv

D.18 Spark-master service manager configuration file D13

D.19 Spark-worker installation script . D13

D.20 Spark-worker service manager configuration file D14

E.1 Packet capture version 2 application complete source-code E1

E.2 Packet capture version 3 application complete source-code E25

F.1 Persistent network data application complete source-code F1

G.1 Information analyzer source-code . G1

G.2 Dataset preperation source-code . G8

G.3 Model training source-code . G9

xvi

Acronyms

APT Advanced Persistent Threats. xix, 8

ARP Address Resolution Protocol. xix, 32, 47

C&C Command and Control. xix, 16, 17

CA Certificate authority. xix, 37

CNN Convolutional Neural Network. xix, 52

DAG Data Acquisition and Generation. xix, 21

DDoS Distributed Denial of Service. xix, 11–13, 15

DFI Deep Flow Inspection. xix, 13, 14

DGA Domain Generation Algorithms. xix, 34, 35, 68

DHCP Dynamic Host Configuration Protocol. xix, 37

DNS Domain Name System. xix, 16, 17, 48

DoS Denial of Service. xix, 13, 14

DPI Deep Packet Inspection. xix, 13, 14

FIFO First In First Out. xix, 29

HDFS Hadoop Distributed File System. xix, 8, 11, 12, 26–28, 34, 46, 60

xvii

ICMP Internet Control Message Protocol. xix, 47

ID2T Intrusion Detection Dataset Toolkit. xix, 13

IDS Intrusion Detection System. viii, xix, 6, 9, 11, 17, 18

IoT Internet of Things. xix, 17, 28, 72

IP Internet Protocol. xix, 11, 12, 14–16, 20, 47, 72

IPS Intrusion Prevention System. viii, xix, 6, 72

IT Information Technology. xix, 1, 2, 33, 71

JVM Java Virtual Machine. xix, 28

KiB Kibibytes. xix, 44, 56, 57, 59, 60

KPIs Key Performance Indicators. xix, 7

LSTM Long short-term memory. xix, 50, 52

MB Megabyte. xix, 44

NAT Network Address Translation. xix, 32

NIC Network Card Interface. xix, 21, 37–39, 41

NS Name Server. xix, 16

P2P Peer To Peer. xix, 13

PPA Privacy Policy Agreement. xix, 17

QoS Quality of Service. xix, 7, 8, 17

RAM Random access memory. xix, 38–41

xviii

RNN Recurrent Neural Network. xix

SDN Software Defined Network. xix, 16

SSD Solid State Drive. xix, 38, 39

SSL Secure Sockets Layer. xix, 37, 43

TCP Transmission Control Protocol. xix, 47

TLD Top-level domain. xix, 48, 49, 52

TLS Transport Layer Security. xix

UDP User Datagram Protocol. xix, 47

xix

Glossary

Distributed system A form of computing in which data and applications are distrib-

uted among disparate computers or systems, but are connected and integrated by

means of network services and interoperability standards such that they function as

a single environment [1].

Modular system A design principle that subdivides a system into smaller parts called

modules, which can be independently created, modified, replaced, or exchanged with

other modules or between different systems offering flexibility and variety in use [2].

Promiscuous mode In promiscuous mode, a network adapter does not filter packets.

Each network packet on the network segment is directly passed to the operating

system or any monitoring application [3].

Scalability Measure of a system ability to increase or decrease in performance and cost

in response to changes in application and system processing demands [4].

xx

Chapter 1

Introduction

Cybersecurity attacks have been an issue for many years and, as time passes, these at-

tacks get more sophisticated, increasing the difficulty to detect and prevent them. Any

size companies must have a solid system to prevent those attacks, as it certainly will

have devastating consequences in case of a breach. Intellectual property and personal

data are two kinds of information that have considerable value [5], meaning that some

people will try to get them and profit from them. Cyberattacks’ objective is not only to

steal companies’ information, but also to deny services that companies provide. In any

case, a successful cyberattack on any company will most likely make them lose capital,

opportunities or even force them to close their business.

It is foreseen that, by the end of 2025, a total of around 8,000 million people and

41,200 million devices are connected to the internet, with 10,300 million of them not

being IoT devices (laptops, desktops, smartphones, etc.) [6], [7]. With this huge number

of devices connected to the Internet, the companies that provide online services (social

media, banking, retail, cloud, etc.), will also need to expand to be able to keep up with

the demand. This growth will consist in an expansion of the companies’ Information

Technology (IT) infrastructures, adding more servers and routing devices. This increase

will also result in a higher probability of suffering a cyberattack, eventually with the whole

IT infrastructure being compromised.

Cyberattacks are the main problem of the digital world and, according to Lysenko

1

et al. [8], they have generated financial damage of around 1,500,000 million U.S. dollars

in 2019. Small companies are the most fragile since around 60% of them close within

six months of an incident [9]. But that does not mean that medium to large companies

are safe from serious trouble since leaked intellectual property or stolen user data can

have a severe negative impact on any company. In June of 2021, the data of over 700

million Linkedin users (about 92%) got exposed. The leaked data consists of the following

personal details: phone numbers, physical addresses, geolocation data and more [10].

CD Projekt, in February of 2021, got breached and all of the data stolen (accounting,

administration, HR) including the source code of multiple projects (that were sold later

by the perpetrators) not to mention the hours that the employees were unable to work,

costing the company even more funds [11]. Yahoo, in 2016, announced that in 2013/2014

they suffered a security breach compromising 3,000 million user accounts [12], including

real names, email addresses, dates of birth and telephone numbers [13]. At the time

Yahoo was being acquired by another company and after this announcement they lower

the offer by 350 million U.S. dollars.

This is a problem that the community must face to prevent further successful at-

tacks on corporations, that are the primary entity to suffer the consequences. To stop

this kind of incidents a company must possess a system capable to analyse the network

traffic in near real-time. The number of cyberattacks is growing both in number and

complexity, there are always new ways of breaching and compromising the networks and,

with this complexity, traditional systems are not effective anymore due to the lack of

successful detection and prevention of attacks and the ability to operate with complex IT

infrastructure.

1.1 Problem statement

Some recent systems lack the ability to analyse the network data in near real-time, they

just perform the analysis pos-capture, making the system only useful to detect if a breach

happened, and not to prevent one. The challenge is to design and implement a system

2

capable of analysing the network traffic in near real-time, so it can detect and prevent

cyberattacks as they occur.

1.2 Objectives

This dissertation aims to study and develop a solution to capture, analyze and process

network traffic in near real-time, with the objective of detecting anomalies, such as possible

cyberattacks and/or the presence of malicious programs that affect the proper functioning

of the network. A literature review will be conducted in order to technologically and

scientifically support the work to be developed and to serve as a basis for the design

of a reliable, modular and scalable architecture for the capture, storage and analysis of

network traffic. The analysis of traffic will be performed by developing solutions that,

through the behaviour of the network, will highlight situations of potentially malicious

activity on the network. On figure 1.1 it’s presented this dissertation work schedule.

Figure 1.1: Dissertation work schedule

1.3 Document structure

This document is structured in six chapters. Chapter 1 refers to the introduction, the

problem statement description, the objectives of this dissertation, the document struc-

ture and the contributions made throughout this study. Chapter 2 explains the research

approach taken to gather vital information, the literature review and the tools used on

3

the proposed system as well the proper justification. Chapter 3 explains the approach

taken to solve the identified problem. Chapter 4 explain the implementation of this work.

Chapter 5 presents every experiment performed to evaluate and improve the proposed

system. Lastly, chapter 6 layout conclusions and future work.

1.4 Contributions

During the execution of this work, the following contributions were made:

• Publication of the following paper (appendix B): Oliveira, R. et al. (2021) “A

scalable, real-time packet capturing solution” in International Conference on Op-

timization, Learning Algorithms and Applications. Springer.

• A Python script that plots iPerf3’s JSON file, available at https://github.com/

rafaeloliveira00/iperf3-plotter

1.5 Acknowledgments

This work was developed within the “CybersSEC IP - CYBERSecurity SciEntific Com-

petences and Innovation Potential (NORTE-01-0145-FEDER-000044)” research project.

4

https://github.com/rafaeloliveira00/iperf3-plotter
https://github.com/rafaeloliveira00/iperf3-plotter

Chapter 2

Background

This chapter is arranged into seven sections, the first explains the methodological approach

used in the literature review. The next provides a discussion of a set of related works

giving a better understanding of the problems that the scientific community has identified,

possible solutions and the problems of these solutions. Then other application scenarios

where network data may be used, the functional and security requirements, the different

network data tiers, the layout of the PCAP file format and for the last section a set of

tools and technology used in the proposed system with the proper justification on why

they got selected.

2.1 Literature review methodology

This section includes the research methodology of this work. It details the research

strategy, the methodology approach, the methods of data collection and analysis, the

tools used to find and organize the information and the justification of methodological

choices.

To solve the problems described in section 1.1, research was performed to acquire a

better understanding of the topics and also the current problems and solutions. This

way, knowing what the research community is doing, the problems they face and the

improvements that could be done, there is a much better chance to create a solid system

5

and produce good results. This also serves the purpose to describe the characteristics of

some concepts like IDS, IPS and others.

For some topics like machine learning algorithms, secondary data gathering (results

of the experiments like, time of executions, accuracy, etc.) was necessary to understand

which algorithms offer the best accuracy in finding network security threads.

The research began in searching for surveys about network data collection and ana-

lysis of the last four years. With those surveys, it was possible to know many important

concepts and what the research community was doing to capture, store and analyse net-

work traffic in a modern networking infrastructure with high bandwidth. Moreover, it

also provided insights to the trend technologies to solve these issues and which functional

and security requirements a solid system must have to work without flaws. This way it

was easier to find and filter other researches that could help.

As surveys are also a collection of works, they contain multiple citations of other

researches that contains valuable information.

2.1.1 Data collection

The Online Knowledge Library b-on (www.b-on.pt) was the primary search engine to find

research papers, surveys, magazines, etc. This search engine includes multiple well known

digital libraries such as IEEE (ieeexplore.ieee.org), Elsevier (www.elsevier.com),

Springer (https://link.springer.com), and many others.

Multiple keywords were used in the search bar, some alone and others joined with

boolean operations: packet capture, packet storage, packet analysis, neural network, in-

trusion detection, passive DNS, big data analysis, distributed file system, distribution

processing, network forensics, stream processing, dga. In conjunction with the keywords

at the start, the search was also filtered by the age of the publication, up to four years.

6

www.b-on.pt
ieeexplore.ieee.org
www.elsevier.com
https://link.springer.com

2.1.2 Method of analysis

After acquiring a set of articles, the next step is to check if they go accordingly to the

problem statement. The approach was to read the abstract and check the paper’ relevance

and use it to further analyse or discard it.

The next step to do when an article is accepted to further read and analysis is to

take notes about that work, extracting the problem that the authors identified, what was

their approach to fixing the problem, with which technologies, the design of the system

architecture, the parameters they have used in their experiments, the final results and

problems that were encountered. This way, with this knowledge, the best technology

with the proper parameters may be used in this research, avoiding making the same flaws

as others and avoiding making work that is already done. Each article also provides a

source for further references were more information could be found.

2.2 Literature review

P. Roquero et al. [14] attempt to solve Quality of Service (QoS) problems on the net-

work while they’re capturing network packets. They present a scalable data collection

that captures the packets at multiple points of the network and sends them to multiple

receivers that will perform the analysis. In their system design, they have the main entity

that controls the whole system. That entity, designated by the orchestrator, keeps the

states of every component, it commands the microsniffers when to start and stop the

capture, which filters to use while capturing the data and to which devices (designated

by monitoring sinks) it must send the captured data. The microsniffers also send to the

monitoring sinks a set of Key Performance Indicators (KPIs) so they may identify if the

QoS is in the desired level. The network KPIs that the authors selected are the following:

loss of connectivity, micro-saturation, packet loss, congestion of user terminal or server,

latency and security issues (access to malicious servers). The microsniffers are codded in

C++ and the whole system’ communications are encrypted with SSL; also, authentica-

tion is performed between the orchestrator and sinks. Besides offering a good approach

7

to perform packet capture and at the same time monitor the QoS of the network, this

system possesses a huge flaw in its design: data capture is performed by a swarm of soft-

ware probes, that have to be installed in all the network computers; this requires access

to each computer and individual installation and configuration; also it would be difficult

to have the authorization to install the software in sensitive servers, not to talk about

systems where it would be just impossible to install this kind of software, like IoT devices,

embedded systems, and others alike.

Nowadays, Botnets are among the most serious network security threads, especially

Advanced Persistent Threats (APT) that may take around two years to infect hosts.

S. Mousavi et al. [15] identify the main problems related to the detection of botnets:

traditional Botnet detection methods have trouble to scale to meet the needs of multi-

Gbps networks and most published detection solutions are not effective on networks with

millions of users. To solve this problems they propose a framework fully scalable to

successfully detect Botnets on networks. Their framework is split into the following five

scalable modules: network traffic processing, transportation of the data, processing of the

data, storage and analysis. Their detection strategy is using real network data as the data

source, standard traffic monitoring as the data type, anomaly-based as the classification

method and passive analyses as the interaction with Botnet. On the network traffic

processor module, traffic mirroring is used to extract the information from the routing

devices and send it to the probe that is using PF_Ring. After the probe has captured the

data, it will send the data to a scalable queue (scalable queuing module). That module,

supported by Apache Kafka, is responsible for only synchronizing the data producers

(probes) and receivers and aggregate the data in one queue (data processing of any kind

is not performed in this module). The stream processing module, supported by Apache

Spark Streaming, is responsible to gather the data from the queue and storing it on the

storage module, built on the Hadoop Distributed File System (HDFS). The processing

module also extracts some features that will support the machine learning algorithms in

the detection of Botnets. The analysis module is then responsible to receive the extracted

features and using them on algorithms and tools like Apache SparkML to help with the

8

detection of Botnets. With their framework, they can operate in a 5Gb/s bandwidth

network. This framework is well designed and allows full scalability on every module.

However, PF_Ring requires a paid licence to be used.

P. Emmerich et al. [16] defend that capturing only samples of the network traffic is

not enough to detect the origin of the attacks, so should be captured the full packet.

They also state that it’s hard to find a solution that can keep up with the transfer rate

of modern networks. In order to fix these issues, they proposed a tool, designated by

FlowScop, with the capability of operating at rates of 100 Gbit/s and 120 million packets

per second. They accomplish these results by developing a queuing data structure (queue

of queues) and by trading latency for throughput. They use an in-memory buffer as

intermediate storage, to store the network packets and only dump them to the disk if the

filter matches. The problem with their solution is that, it is centralized, after the packets

are captured they are written to a local disk, making it impossible to do the analysis in

real-time.

Arkime is an open-source, fully scalable, full packet capture, indexing and database

system (Elasticsearch). It exposes APIs which allows PCAP and JSON data to be down-

loaded and consumed by other services like an IDS. It stores and exports all packets in

standard PCAP format. Since Arkime is only used to capture, store and share the inform-

ation, J. Uramová et al. [17] mission is to find a good IDS that works well with Arkime.

The first experiment was with the integration of Snort IDS. To make that integration

between these two, they’ve used an available plugin (Pigsty) but that functionality does

not work anymore since its support was ceased and a new tool was created. But the new

tool only supports the Suricata IDS; that’s the reason why the authors stopped with the

integration between Arkime and Snort and will try on future work to integrate Arkime

with Suricata IDS. In their work, they also present a set of formulas that help to know

how many nodes are required to store packets, depending on the network bandwidth and

the number of days whose data will be stored; they also point out that, as in Arkime, is

very easy to add nodes, being better to start at a lower number and increase as needed.

9

M. Saavedra et al. [18] recognises that network traffic is still being analyzed on ver-

tically scalable machines and defend that Hadoop’s horizontal scale ecosystem provides a

better environment for processing captured network packets stored in PCAP files. PCAP

file format wasn’t designed for heavy processing so they point out that there isn’t a

straightforward method to analyze this kind of file on Hadoop. Their main contribution

is an improvement of an existing framework for Hadoop that is capable of processing the

PCAP files without the need in converting them into a Hadoop supported data structure

like Apache Parquet. They’ve run some tests to compare the processing time of a query

(the total size of the PCAP is omitted by the authors) on the PCAP file using the exist-

ing framework, their improvement on that framework and on the Apache Parquet dataset

that resulted from the conversion of the PCAP file. They’ve performed the analysis on a

host with intel i5-2500@3.3GHz and 4GB of RAM. The preprocessing was done on a sim-

ilar host but with 16GB of RAM instead. On 90 minutes of captured data, the authors’

improvement and the Apache Parquet format took about 14, 9 and 1 hour respectively of

query execution time. The authors managed an improvement of the existing framework

but their approach is far from the Apache Parquet results. Or not; it all depends on the

situation since the conversion of the PCAP file into Apache Parquet took about 21 hours

using hcap and some information about the packet may be lost after conversion.

M. Tun et al. [19] correlate the increase of cyberattacks with the enhancement of

the network traffic. With this huge amount of stream data flows within a short period,

the successful detection of cyberattacks in real-time is a challenge. To fix this issue

the authors defend that big data streaming analysis can achieve real-time using Apache

Kafka and Apache Spark Streaming. They defend it’s among the best software approach

based on the following reasons: Apache Spark is up to 100x faster than Hadoop’s Map

Reduce; Spark Streaming recovers from node failure without losses; there is no need to

worry about duplication as it offers exactly-once delivery; easy to use; highly scalable;

low latency and fault tolerance. The purpose of their work is to investigate the impact of

processing time on the number of stream records and to improve the efficiency of Apache

Kafka and Apache Spark Streaming. They’ve performed their experiment on an Intel i5

10

processor machine with 8GB of RAM on Linux Ubuntu 18.04 LTS. The streaming software

versions are the following: JDK 11, Scala 2.11.12, Apache Kafka 2.12 and Apache Spark

2.1.0. They’ve used 500,000 records (total of 120MB) of the UNSW-NB15 dataset that

provides 100GB of network traffic on a PCAP file. To clarify, batch interval tells Apache

Spark Streaming the time interval to fetch the data in the Kafka cluster. After multiple

executions with different batch intervals, they conclude that the best batch interval is

between 30 and 50 seconds, which took less than 1 second of processing time. The worst

batch interval was 1 second that took about 6 seconds of processing time. To note that a

higher batch interval may remove the capability to process the network data in real-time.

A. Karimi et al. [20] reinforce the idea that companies need to have proper attack

detection and mitigation tools. With the increase of the traffic volume, feature extraction

for machine learning algorithms will be computational exhausting, imposing several chal-

lenges in the implementation of a real-time IDS. Even with high-end stand-alone systems,

extraction of features takes a lot of time even on offline analysis. To address these issues

the authors propose a system architecture of an IDS that could run in near real-time to

detect different kinds of Distributed Denial of Service (DDoS) attacks. They use Netmap

in conjunction with port mirroring to perform the network packet capture and Apache

Spark to compute the data and extract features. They also use Apache Hadoop on the

same cluster as Apache Spark; this way they can use HDFS for distributed storage. Their

system performs five different tasks: the first is the live capturing and extraction of re-

quirement headers; the second is the distribution of the extracted headers throughout

the storage cluster; the third is the extraction of features from the packet headers; the

fourth is the analysis of the traffic features for the anomaly detection; the last task con-

sists in the training and update of the machine learning algorithm using Apache Spark

Mlib. The last task is only performed in a big-time window like, for example, each month

after the first training. They use the following features in their machine learning model:

source Internet Protocol (IP), destination IP, source port, destination port, IP protocol,

IP payload, TCP FIN flag, TCP SYN flag, TCP RST flag, TCP ACK flag, TCP RUG

flag and TCP PUSH flag. In their experiments, they’ve used a dataset containing 40

11

minutes of a DDoS attack that generated a PCAP file of 21.1 GB. For the Spark cluster

and HDFS they used a server with two Intel Xeon CPUs at 2.30 GHz, 96GB of RAM

and 20 cores per CPU running VMware ESXi. With six worker nodes, a 3 GB file took

around 3.17 minutes to get processed, while it took 3.5 minutes to get processed with

four workers. The authors leave a note saying that the feature extraction could be faster

if they executed some queries in parallel.

F. Aryeh et al. [21] identify that plenty of institutions’ information is accessed illegally

and the Wireshark, a generally used tool, is most of the time impractical to filter and

follow TCP streams. To solve this problem they developed a system, consisting of the

capture, storage and analysis of network packets. In the capturing process, they use Scapy,

a Python framework, to capture the packets and store them in a PCAP file format. They

justified the choice in using Scapy as it has ongoing Python community support and

many capabilities. The PCAP files are converted into a Pandas (Python framework)

DataFrame in order to do the analysis. When the data is converted, it is possible to

retrieve some information and generate graphics about the top 1 source address, the top

1 destination address, to whom the top 1 address communicates too, the most used ports,

etc. They’ve captured network traffic for about 2 hours generating only 86,000 packets

and with the generated graphs they were able to retrieve a suspicious IP address. The

authors omitted the bandwidth of the network, the computation power and the time taken

in the conversion and queries of the data. Clearly, the authors didn’t want a system able

to capture on a multi-Gb network, since Scapy is not able to capture at such high rates.

Moreover, as their system is able only to analyse the data after the capture, it can’t fix the

problem that they identified, that is preventing the unauthorized access to the companies

data (they can only identify suspicious hosts).

E. Do et al. [22] identify that detecting and labelling network attacks is yet a huge

challenge. They outline a machine learning algorithm technique that uses deep neural

networks to detect and classify a diversity of network attacks. As they use PCAP files

as their data source they first perform a pre-processing of the raw data. The PCAP file

data is transformed from packets to flows using the YAF and YAFSCII tools. Those

12

tools convert the data into a human-readable format. Then they use Shannon entropy

(Hfeature) and compute the following:

Hfeature(x) = −
m∑

i=1
Pilog2(Pi)

For each feature ∈ {Source IP, Source Port, Destination IP, Destination Port, Protocol,

Initial Flags, Union Flags, Reverse Initial Flags, Reverse Union Flags, End reason} in

addition to features that combine {Destination IP and Port, Destination IP and Initial

Flags, Source and Destination IP, Source IP and Initial Flags}. These 14 entropies are

the input to their machine learning model. Their machine model classifier is a fully

connected feed-forward neural network, consisting of an input layer, three hidden layers

and an output layer. The hidden layers have 100, 30 and 100 nodes respectively where

all of them uses the ReLU as the activate function. The output layer uses Softmax as the

activation function and consists of the following five categories: no attack, DDoS attack,

port-scan attack, Peer To Peer (P2P) Denial of Service (DoS) attack and network scan

attack. They’ve run some experiments on the MIT SuperCloud cluster, on nodes with Intel

Xeon E5 processors and 64Gb of RAM per node. Of the MAWI dataset, they used 36 days

for training the model and 17 for validation. Their classification set was generated using

the Intrusion Detection Dataset Toolkit (ID2T) to directly inject malicious network traffic

on samples. This tool makes it possible to adjust the frequency and which type of attacks

to ingest. It took about 3 minutes to train the model, performing a total of 2000 epochs,

corresponding to an accuracy of 97% and 95% on the training and validation dataset.

They’ve achieved impressive results: their model has about 90% accuracy to detect DDoS

and port scan attacks with just 4% of the total network traffic being malicious. They

state that their model can be applied in real-time network.

Often the network traffic is encrypted or involves an unknown protocol, making it a

challenge to analyze those network packets. So, instead of performing a Deep Packet In-

spection (DPI) on the encrypted payload or of unknown protocols, a Deep Flow Inspection

(DFI) is performed, making it achievable to analyse the traffic. The Y. Guo et al. [23]

13

proposal, consists of a framework that analyses the network traffic with the conjunction

of both DPI and DFI approaches to detect DoS, probe and privilege escalation network

attacks. Their framework consists of 3 phases. The first phase performs a deep packet-

level (DPI) inspection by resolving the protocol headers, fingerprints of the application

layer, etc. In the second phase, they adopt data-mining for the DFI. In the last phase, the

final result will be the detection result of the DFI in case of encrypted traffic or unknown

protocols; otherwise, a comparison is made for DPI and DFI and when the fingerprint of

both matches, a result can be acquired. They’ve chosen the C4.5 data-mining decision

tree as the classifier for the DFI. As for the data, they used the KDD Cup ’99 dataset

where the ’10% KDD’ was used for the training of the model and the ’KDD Correc-

ted’ for the testing. They’ve chosen the following features for their data-mining model:

duration, protocol-type, service, src_bytes, dst_bytes, num_failed_logins, loggen_in,

root_sheel, num_access_files, num_outbound_cmds, count, Serror_rate, srv_rerror_

rate, same_srv_rate, dest_host_srv_count, dest_host_same_src_port_rate and dest_

host_rerror_rate. According to their results, their model isn’t very valuable. For the de-

tection of probe and DoS attacks, the model has an accuracy of 72% and 92%, while for

privilege escalation the accuracy is only 4%.

A. Ulmet et al. [24] note that Wireshark displays data as a table, making it difficult

and time-consuming to get an overview and focus on the significant parts. Also, each time

Wireshark is initialized, the process of loading the files is repeated, taking a large amount

of time to open big files. Therefore their goal is to develop a web-based alternative to

Wireshark. That way, as the service is easily accessible more users will try to analyse

the data. As the PCAP file contains a lot of information and users may not need all

the data, the authors implement techniques to reduce the amount of data to upload and

store on the server. At first, the user must select the PCAP file to be uploaded; when the

file is chosen the system collects statistics of the entire PCAP file, so the user may select

which protocols to filter and which IP addresses are internal (to ease on the analysis).

In the uploading phase, the network packets are uploaded to the server as small bits

(data chunking) with their payload omitted. Each time a chunk of data is uploaded

14

and stored in the server, the server will return the data needed for visualization back

to the client, giving immediate feedback to the user so it may start to analyse the data

while the rest of the PCAP file is being uploaded. The other method of uploading would

be process chunking, which is especially useful for providing an early prediction of the

result. As for the technologies they use a MySQL database to store the data; the visual

interface is processed on a Spring Boot Java Server that is connected to the database;

the communication between the server and client is handled by WebSockets using SockJS

and Stomp to lower the latency; the front-end is supported by React.JS, Material-UI and

D3.JS. The authors tested their system with two different PCAP files. The first dataset

has nearly 29,000 packets with 19 MB in size; the second has 240 packets with 70KB in

size. The goal of their experiment is to determine a suspicious IP address and then use

the same filters in Wireshark to inspect the raw data. In the first case, the authors state

that the system is capable to perform the tasks of finding suspicious patterns, time frames

and IP addresses. In the second case, they conclude that with the filtering mechanism of

their system, the analysis time can be reduced by only looking at the significant parts of

the data.

X. Ye et al. [25] analyse the network activity by detecting anomalous network be-

haviours based on a host’s social relationship (to whom it communicates) interaction

patterns. Their work captures network traffic as a traffic activity graph and analyses

group activities corresponding to the community evolution, considering both structural

and temporal properties of network behaviours. This is unlike most other studies, which

ignore the temporal changes and only focus on static graphs. Their system performs the

analysis only using the source and destination IP addresses, reducing the data volume

and computation complexity. They discovered that analysing the network evolution at

a different point in time is useful to monitor the network, as hosts often act as a group

on network attacks (e.g. DDoS, botnet, etc.). Using the network evolution concept, they

can compare and determine the changes in the number of each evolution event between

two snapshots. With this approach, they can capture the structural properties of group

15

activities and calculate their absolute and relative changes. Before a network attack, of-

ten there is a probing behaviour on the network to identify hosts and services, but this

kind of attack does not impact the network operation, thus not attracting much attention

from the security administrators. Being this the main reason for their study, they pay

particular attention to detecting and defending group-oriented attack patterns by ana-

lysing the social relationship between hosts. Their system consists of three phases. The

first phase, data preparation, cleans the data, extracting both the source and destination

IP address, processes it, stores it and then applies Apache Spark GraphX to construct a

graph model. The second phase, mining TAGs, obtains the host community in the given

graph, with a fast unfolding algorithm to discover every group. After building the profiles

of the group activities from consecutive time steps, a standard dynamic evolution can be

defined. In the last phase (anomaly detection), the group evolution events that deviate

from the normal pattern are considered anomalous. The authors made some experiments

using the CTU-13 dataset as the data source and their system showed an average accuracy

of 99.91% and 97.84% of precision. They then concluded that their system can effectively

identify group activities and accurately detect anomalous hosts.

Domain Name System (DNS) protocol is being used to support stealth botnet commu-

nications between the bot and its Command and Control (C&C) center. This communic-

ation starts with the bot sending a DNS query to the C&C center directly, without using

the organization name resolver, and with the payload of the query being hashed to encode

the content of the communication. H. Ichise et al. [26] propose a framework with the

aim of the detection and blockage of anomalous DNS traffic by analysing archived Name

Server (NS) records history. To acquire a list of allowed DNS servers, using TCPDump

they captured traffic and analysed it using DPKT (a Python framework) to construct

their white-list dataset and stored it on a MariaDB database. They use Software Defined

Network (SDN) technology, namely the OpenFlow switch protocol and a controller on

their system, for the detection and blockage of unauthorized name resolvers. When a

client sends a DNS query, the OpenFlow Switch sends the query packet to the controller;

the controller will then check in the database if that IP address is allowed, returning the

16

response to the switch. Depending on the response from the controller to the switch,

the switch will then redirect or drop the packet. The authors performed a functionality

experiment, without worring about the performance of the system. As the result of the

experiment, their system blocked a DNS query done to 8.8.8.8 (Google DNS server) but

not to 8.8.4.4 (Google DNS alternative server), proving their system isn’t a viable option

as it may block important legitimate traffic. Nevertheless, the problem with this system

relies on the construction of the white-list: performing packet capture on the network to

obtain the list isn’t a good approach as the network may already have been infected and

communications between the bot and its C&C center may be already happening, adding

the malicious name resolver to the white-list. A good fix could be to redirect the DNS

query to a IDS to further analysis.

2.3 Other application scenarios

In addition to security auditing, network traffic collection may also be used for many

other purposes. Managing the network is one of them: by analysing the retransmission

rate of the packets, loss of connectivity or network failures, it may be determined the QoS

of the network to figure out if it’s necessary to add more routing points throughout the

network.

Network data may also be used to compute an estimation of the occupancy of a

room. E. Longo et al. [27] designed a system with cheap Wi-Fi sniffers to estimate the

occupancy of several rooms by analysing the Wi-Fi Probe requests and probing Bluetooth

scan frames.

Compliance enforcement is another potential application field using network packets,

making it conceivable to set network policies [28], investigate compliance violations on an

enterprise network or even investigate the compliance of devices with their Privacy Policy

Agreement (PPA), like in the case of the A. Subahi et al. study [29], that sniff the data

packets moved between Internet of Things (IoT) devices and the cloud and check if the

devices comply with their PPA.

17

Finally, user behaviour may also be analysed using network data. P. Boonyopakorn [30]

proposes a monitoring system to analyse the user behaviour on the network by analysing

the network data.

2.4 Functional and security requirements

Accordingly to H. Lin et al. [31] there are a set of functional and security requirements

that an IDS should meet to be recognized as a solid system able to operate in modern

networks. The functional requirements are the following:

• It must be able to collect required security-related data;

• It must be able to know when to collect the data;

• It must be capable of dynamically knowing which kind of data to capture (what

filters to use);

• It must be capable to export the data to other systems;

• It must be able to manage and control the data;

• It must be efficient and stable when collecting the data, a very important require-

ment because missing packets can compromise the analysis of the network;

• It must be flexible and scalable;

• It must not use too many resources to not affect other local operations;

• It must be automatic in terms of adaptability, in case of modifications on the network

structure;

• It can not destroy the original network system;

• It must be universal and generic, supporting multiple applications scenarios;

• It must not produce new data that may affect the accuracy of the collected data;

18

• It must be able to store collected data in a storage medium.

Concerning the last functional requirement, it should be pointed out that a system

may still be solid even if it doesn’t store the collected network data. On a near real-time

analysis system, the captured data may only be needed for a brief couple of seconds,

until the system has time to process that packet. After the packets are processed (feature

extracted or subject to other kinds of operations) it may not be necessary to have them

stored anymore. By taking this strategy, huge amounts of resources will be saved but it

won’t be possible to perform the analysis on network data from previous days.

The system must also make sure that the data that was collected was not changed

during the transmission or storage, maintaining the integrity of the data to prevent the

analysis of modified data that would invalidate the whole system operation. H. Lin et al.

[31] also presents a set of security requirements that a data collection system should meet

to minimize the probability of working with adulterated data. The security requirements

are the following:

• It must be able to prevent data loss and ensure data integrity during the capture

and transmission;

• It must protect the user privacy;

• It must ensure the security of collected data and be able to prevent any data leak;

• It must be able to verify the integrity and authenticity of the collected data;

• It must protect the data against unauthorized users.

2.5 Packet capture

Cyberattacks perpetrators usually make efforts to cover their tracks during an attack.

Security researchers can find new ways to prevent cyberattacks the same way attackers

can adopt anti-forensic techniques trying to remain undetected and without leaving traces

19

[32]. Log files can be used to detect some attacks, such as massive unauthorized accesses

or failed logins. However, they are not enough in most situations, since it is not possible

to detect all kinds of attacks and there is also the possibility of those getting modified

or erased, eluding the security team scrutiny. There is only one thing that attackers (or

anyone else) can never change or purge and that is the network traffic. As it can never

be changed or removed, it’s the best candidate to perform a full-depth analysis of the

network, trying to identify who the attackers are, when the attack took place, for how

long, with which tools, and what was transferred. Nevertheless, as the network traffic

is volatile information, meaning it only exists while being transmitted, it’s necessary to

capture it and store it in real-time [33]. As expected, the amount of network traffic is

considerable, easily reaching terabytes worth of space in a matter of seconds (depending

on the infrastructure), making its collection and storage a very expensive operation [16].

Depending on what the security needs to comprehend about the network, it must select

which type of data must be stored, from a byte in a header to the full-packet capture.

2.5.1 Network data tiers

Network flow data tier represents streams of network packets by generating one flow record

for all packets seen on an observation point over a period of time [34], [35]. A single flow

is constituted by a set of packets with the same source and destination IP address. It is

the tier that requires the least amount of storage space by dropping payloads and most

of the header information. However, it’s also the one that less information has, limiting

the analysis of the network data. An IP network flow record must define the following

properties [36]:

• one or more packet header field (IP address), transport header field (port number)

or application header field;

• one or more characteristics of the packet itself;

• one or more fields derived from packet processing.

20

To cope with the previous limitations, it is possible to keep additional information.

The augmented network flow data tier adds information that may be extracted from the

header or payload or derived from the flow/packet characteristics (e.g. passive operation

system fingerprint).

An alternative approach is the full packet data tier that captures the packets that

travel from one endpoint to another. This means that all the payload, as well as headers,

will be captured, which requires much more space than the other data tiers. It also

requires more computational power for the analysis.

Table 2.1 helps to understand what is possible to discover, during an investigation of

an attack, for each data tier [34].

Table 2.1: Network data usage [34]

Properties
Data tier Who How Much When How Long Using What Transferring What How
Network Flow D D D D
Augmented Flow D D D D D D
Full Packet D D D D D D D

2.5.2 Data capture tools

There is a vast number of different tools to perform network packet capture, some of them

are software-based and others are hardware-based.

Software-based packet capture tools consist of several subsystems. The packets flow

starts at the Network Card Interface (NIC) (hardware subsystem) moving to the Kernel

space subsystem (device driver and operating system) to reach the userspace subsystem,

containing the packet capture library and application. If any problem occurs in any of

those subsystems, packet loss will most likely occur [31].

Hardware-based tools are usually more expensive than software-based ones, as they

are physical devices. Data Acquisition and Generation (DAG) cards are effective devices

to capture network packets in high-speed networks. Those cards can even apply filters at

the hardware level, further improving the performance [37]. In routing devices that have

21

the packet-forward functionality, when configured, they send a copy of every packet that

crosses that routing device to a specific physical port. The advantage of using such an

approach is that enabling port mirroring does not require the modification of the current

network infrastructure; it’s only necessary to plug a capture device in an available physical

port and configure the port mirroring to that port. Inline taps provide a full view of the

network packets that move through the wire without any impact on the network data.

However, setting up this tool requires rupturing the connection. The advantage in using

such a tool compared to port mirroring is that port mirroring may have some packets

dropped if the routing device’s buffer is full or if the packets are malformed, while in the

case of inline tap, that problem does not occur.

2.6 PCAP file format

The majority of packet capture solutions, including TCPDump, stores the raw data into

a PCAP file format. Each PCAP file lies a fixed-length size global header containing

information about the file and the format of the packet records. The multiple fields that

the PCAP global header has are presented in detail on table 2.2.

Table 2.2: PCAP global header format, adapted from [38]

Designation Size
(bits)

Description

Magic num-
ber

32 Unsigned value used to identify the file endianness and also if the
timestamps on the file are in seconds and microseconds or seconds
and nanoseconds.

Major ver-
sion

16 Unsigned value that represents the major version of the PCAP
format.

Minor ver-
sion

16 Unsigned value that represents the minor version of the PCAP
format.

Reserved1 32 Currently unused bits, should be filled with zeros.
Reserved2 32 Currently unused bits, should be filled with zeros.
Snaplen 32 Unsigned value that represents the maximum size of the packet;

normally it’s a standard value (65535).
LinkType 32 Unsigned value that identifies the link layer header type; the different

types can be seen at https://www.tcpdump.org/linktypes.html.

The PCAP global header is followed by zero, one or many records (figure 2.1), where

22

https://www.tcpdump.org/linktypes.html

each record is composed of a fixed-length size packet header and the actual network packet

[39]. The packet header is essential to allow the retrieval of the correct information: it’s

possible to only save a specific size of the packet instead of the full content, therefore,

to retrieve that packet from the PCAP file, how does the reader application know the

actual length of the packet? If all the packets were not truncated it would be possible

by dissecting the packet and getting the length of each layer to get the entire packet; but

as they may be truncated it’s required extra information to know the exact length. And

that’s the use of the packet header: it not only tells the actual length of the packet but

also other information like the timestamp of that packet capture. A detailed description

of the fields of the packet header can be visualized on table 2.3.

Figure 2.1: PCAP file format, adapted from [39]

2.7 Tools

Sometimes, selecting the right tools for a certain task is not easy. Some tools perform

certain task better than others; some are more interoperable than others; some are the

best but for a specific context they won’t work; etc. When implementing a system to

perform the analysis of huge chunks of data, selecting the appropriate technologies and

tools is halfway towards a solid system [40]. Therefore it was conducted a literature review

23

Table 2.3: PCAP packet header format

Designation Size
(bits)

Description

Timestamp
(seconds)

32 Unsigned value integer representing the time when the packet was
captured. The value is the number of seconds that have elapsed
since the epoch time (1970-01-01 00:00:00 UTC).

Timestamp
(microseconds
or
nanoseconds)

32 Unsigned value integer representing the number of microseconds
or nanoseconds elapsed since the seconds specified before. The
specification of the value is microseconds or nanoseconds is defined
in the global header of the PCAP file.

Packet
captured
length

32 Unsigned value that indicates the number of octets captured from
the packet.

Original packet
length

32 Unsigned value that indicates the length of the packet when it was
transmitted through the network.

on the technologies and tools to help select the most adequate ones for the job. Provided

they were open-source. This way, the risk of the necessity of changing a tool while the

system is being implemented is reduced.

2.7.1 Capturing tools

The selection of the best network packet capturing tool is probably the hardest one. Many

tools are available to the public as open-source, but the majority can’t reach multi-Gbps

rates.

Scapy is a framework in Python very easy to use but, as Python is a high-level inter-

preted programming language, it does not produce very performant applications. Then,

Scapy can’t reach multi-Gbps capture rates and sufferers from very high CPU usage,

leaving no available resources to perform other operations like writing to disk or send the

information to another system [41].

nProbe is a great capturing tool that uses PF_Ring to reach 100 Gbps rates while

capturing packets [15] but it’s not free and thus can’t be considered for this work.

D. Álvarez et al. [42] performed a CPU usage comparison between TCPDump, Wire-

shark and Tshark when sniffing the network. While TCPDump keeps an average of 1% of

24

CPU usage, Wireshark and Tshark use 100% and 55% respectively. As such, TCPDump

was the selected tool to perform the network packet capture. Once the tool works on top

of the libpcap framework, it uses a Zero-Copy mechanism, reducing the data copies and

system calls, hence improving the overall performance.

2.7.2 Transportation tools

Apache Kafka is composed of servers and clients that perform event streaming between

each other. Event streaming is the practice of capturing data in real-time from one or

multiple sources and storing it for later retrieval. It works based on the Publish-Subscribe

model, where producers publish to the distributed queue and consumers subscribe to get

the data when they and the data are available [43].

Kafka is run as a cluster of one or more servers that can be placed on multiple data-

centers. Some of these servers, designated as brokers, form the storage layer, while others

continuously import and export data as event streams to integrate Kafka with other ex-

isting systems. A Kafka cluster offers fault tolerance in the case any of the servers fails. If

that befall, other servers will take over their work, ensuring continuous operation without

data loss [44].

The clients allow writing distributed services that read (consumers), write (producers)

and process streams of events in parallel, offering the same perks as the servers (fault-

tolerant and scalability).

Apache Kafka has the following functionalities [45]:

• Events are organized and stored in topics and can be consumed as often as needed;

• A topic can have zero or multiple producers and consumers;

• Topics are partitioned, allowing the disperse of a topic over several “buckets” located

on different (or the same) Kafka brokers;

• A topic can be replicated into other brokers, this way, multiple brokers have a copy

of the data, allowing the automatic failover to these replicas when a server fails;

25

• Kafka performance is constant regardless the data size.

Apache Flume offers the same Kafka perks but it uses the “push” model, where instead

of being the consumer to fetch the data, it’s the service that forwards the data to the

consumer [46].

D. Surekha et al. [47] and S. Mousavi et al. [15] uses Apache Kafka on their systems

because they defend that it is a fast, scalable and reliable messaging system with good

throughput, replication and fault tolerance.

Apache Kafka is selected for this work not only because many people use it but also

because Apache Flume may flood the messages as it pushes to the consumers regardless

if they are ready or not, instead of being them to fetch the data as it happens on Kafka.

For a public cloud solution, Amazon Kinesis is a good alternative as it can handle

hundreds of terabytes per hour of real-time data flow [48].

2.7.3 Storage tools

HDFS is one of the 60 components of the Apache Hadoop ecosystem, with the ability to

store large files in a distributed way, dividing the information in chunks across multiple

nodes, offering reliability and extreme fault-tolerance. It is based on the Google File

System [49] with the design of write-once-read-many [50]. This system is composed of

two main entities, one or more NameNodes and DataNodes. The NameNode stores the

metadata of the files and where the files’ chunks are located. It is also responsible to

inform the clients in which DataNodes the necessary chunks are stored. Files chunks get

replicated across the DataNodes reducing the risk of system failure in case of a DataNode

failure. The DataNodes are responsible for the storage and retrieval of data blocks as

needed [51]. Some examples where HDFS is used follow.

K. Madhu et al. [52], S. Mishra et al. [53], K. Aziz et al. [54] and R. Kamal et al.

[55] all perform real-time data analysis on tweets from Twitter that are stored in HDFS.

S. Kumar et al. [46] uses HDFS to store in real-time massive amounts of data produced

by autonomous vehicles sensors. J. Tsai et al. [56] analyse in real-time road traffic to

26

estimate future road traffic while the data is in HDFS.

Ceph is a reliable, scalable, fault-tolerant and distributed storage system [57]. It allows

to not only to store files but also objects and blocks.

Gluster File System is a scalable file system capable of storing petabytes of data in a

distributed way [58].

C. Yang et al. [59] made a study comparing the HDFS, Gluster FS and Ceph per-

formance while writing and reading files. According to their results, the authors find that

the performance of HDFS is better than the other two.

M. Tanaka et al. [60] project is to improve the performance of telescope data pro-

cessing, focusing on the scalability of parallel I/O usage. They discussed the following

tools to store the information: HDFS, IBM Spectrum Scale (a high-performance scale-out

parallel file system), Gluster FS and Gfarm FS (a distributed file system for large-scale

cluster computing). IBM Spectrum Scale provides high I/O performance by stripping

across nodes, while the remaining tools scale out by using the storage of worker nodes. In

their study, they compared IBM Spectrum Scale and Gfarm FS and they concluded that

Gfarm FS scales better when they have more than 16 nodes. They also point that HDFS

wouldn’t fit their needs as it can’t perform random writes, with Gfarm FS being a good

alternative in case of the need for random writes on the files.

S. Paul et al. [61] performed a study to compare the read and write operations on

different HDFS data blocks sizes (64MB, 128MB and 256MB). According to their study,

the best result is 256MB of block size. They also conclude that if they extend to higher

block and file size, the read and write operations will further improve.

HDFS was selected to support the distribution of files not only because it is vastly used

but also because it provides the necessary perks to provide a solid scalable distributed file

sharing solution. Also with version 3 of Hadoop, multiple NameNodes are supported redu-

cing the risk of system failure. There are also other storage tools like Apache Cassandra,

a distributed NoSQL database and Apache HBase, a big data distributed database that

supports tables with billions of rows and millions of columns, both of these tools work on

top of HDFS [62].

27

2.7.4 Stream process tools

Apache Spark is subdivided into two main modules: the Apache Spark Streaming and

Apache Spark engine. Apache Spark Streaming provides a high-level abstraction (DStream)

representing a continuous flow of data [63]. It receives the data from sources such as

Apache Kafka, Amazon Kinesis, etc. and sends the data to the Spark engine as micro-

batches to further processing [40]. Apache Spark is implemented in Scala and runs on

the Java Virtual Machine (JVM). It provides two options to run algorithms: i) as an

interpreter of Scala, Python or R languages that allows users to run queries on large

databases; ii) is to write applications on Scala and upload them to the master node for

execution [64]. Some examples where Apache Spark is used follow.

S. Mishra et al. [65] proposed a framework to predict congestions on multivariate

IoT data streams on a smart city scenario using Apache Spark to receive and process the

data from Apache Kafka. A. Saraswathi et al. [66] did also use Apache Kafka and Spark

to predict road traffic in real-time. Y. Drohobytskiy et al. [67] developed a real-time

multi-party data exchange using Apache Spark to obtain the data from Apache Kafka,

process it and store it into HDFS.

Apache Storm is a free, open-source real-time computation system capable of real-

time data processing [68] just like Apache Spark Streaming. J. Karimov et al. [69] and Z.

Karakaya et al. [70] both perform an experiment comparing Apache Storm, Apache Flink

and Apache Spark. With their results, they’ve concluded that Apache Spark outperforms

Apache Storm, being better to process incoming streaming data in real-time. Between

Apache Spark Streaming and Apache Flink, the selection is more difficult: they both have

their pros and cons and similar benchmark results.

According to the experiments of M. Tun et al. [19], the integration of Apache Kafka

and Apache Spark Streaming can have a better processing time and fault-tolerance on

huge amounts of data.

Apache Spark Streaming is the tool selected as it can have a good integration with

Apache Kafka, supporting real-time operations. Also, it uses in-memory computation

28

to perform stream processing and it recovers from node failure without any loss, some-

thing that Apache Flink and Apache Storm aren’t able to offer [19]. Besides, data can

be acquired from multiple different sources like Apache Kafka, Apache Flume, Amazon

Kinesis, etc.

2.7.5 Data process tools

Apache Hadoop MapReduce (based on Googles’ MapReduce [71]) is a framework for

writing programs that process multi-terabyte datasets in parallel on multi nodes offering

reliability, as well as fault-tolerance [72].

T. Sirisakdiwan et al. [73] introduces an Apache Spark framework for multiple het-

erogeneous data streams. They also perform experiments to observe which Spark job

scheduling is better for real-time processing, concluding that FAIR is faster than First In

First Out (FIFO).

D. Jayanthi et al. [74] compare the computation between MapReduce and Apache

Spark. With their experiment, they reported that Apache Spark overcomes the processing

speed drawback of MapReduce.

Apache Spark is up to 100 times faster than MapReduce since it uses in-memory pro-

cessing for large parallel processing [19] while MapReduce performs disk-based operations.

MapReduce’ approach to tracking tasks is based on heartbeats causing an unnecessary

delay while Apache Spark is event-driven [75].

Apache Spark is the tool selected as it focuses on the processing speed, while MapRe-

duce on the massive amounts of data [63]. Besides, Apache Spark contains a vast amount

of libraries to support data analysis.

There are several scientific and technological approaches that can be used to overcome

the challenges that real-time capture and analysis pose. The next chapter highlights the

approach followed in this work.

29

30

Chapter 3

Approach

This chapter will manifest the approach adopted to solve the original problem, presenting

the system architecture and explaining how it will operate.

3.1 Proposed system

It is important to design a system that respects the functional and security requirements

defined on section 2.4. This system (figure 3.1) was designed with the idea of fully

horizontal scalability with an easy way to add more physical resources whenever necessary.

If more packet capture devices are necessary it should be desirable to just plug in new

ones. Conversely, if more analysis services or algorithms are necessary, it should be simple

to just add them. That’s why the proposed architecture is also designed with the modular

principle in mind, subdividing the system into sub-systems allowing the easy adjustment

of a specific sub-system without changing the functionality of the rest of the system.

Furthermore, it also makes feasible the addition of more modules.

3.1.1 Network traffic capture module

This module captures the network traffic, as it flows through the routing devices. L. Sikos

[76] describes the four main ways to capture network traffic from switched networks:

31

Figure 3.1: Proposed system - components diagram

port-mirroring, hubbing out, inline tap and Address Resolution Protocol (ARP) cache

poisoning. But the last 3 goes against the functional requirements since hubbing out would

need to change the original network infrastructure and ARP cache poisoning would affect

the network behaviour. The remaining alternative is to use port mirroring. However,

not every switch or router supports this functionality, which has to be considered in a

case-to-case scenario.

Therefore, the port mirroring approach is used to send the network traffic to the

capture device (also known as network probe). The number of capture devices depends on

the situation. Nevertheless, the strategy is to place a capture device on switch devices that

possess endpoints connected to it. This way, in the case of Network Address Translation

(NAT), the system does not lose any information and know exactly from which host the

packets came from. In this module, only raw data is extracted, without any processing

on it.

3.1.2 Queuing module

While the network packets are being captured, they need to be transported to a central

storage or processing service. Some systems capture and store the packets locally on the

capture machine and only after they get transferred to another location for further analyse

(usually in PCAP format). However, this approach is not ideal, due to the delay between

the capture and the analysis. In fact, it does not allow near real-time assessment, delaying

32

the discovery of an attack that already happened, nulling the opportunity to prevent it.

An approach to achieve near real-time analysis and also prevent an attack or minimize

its damage is to capture the packets and send them right away to another service. This

way, while a service is capturing packets and sending, another is processing and analysing

the data. Considering the increasing size of organizations’ IT infrastructure, this is one

solution towards near real-time analysis. But, to achieve this goal the system must have

a way to transfer the data between services in a parallel manner.

This module objective is to provide mechanisms to have multiple producers (who

write the data) and consumers (who read the data) synchronized. This way, services

send data to the distributed queuing system while others consume it. Nevertheless, data

transportation must not flood the network. Moreover, if the queue is at full capacity and

can not keep with the data rate from the producers, the producers must have a way to

store the data locally and only send it when the queueing system is available.

3.1.3 Storage module

With a distributed queuing system, the data consuming hosts (analysis modules, classi-

fication, estimation, prevision, etc) consume the data directly from the distributed queue

in near real-time. The queue system will persist the data for a predefined period of time

(may also be set to unlimited time) and deletes the oldest records when it’s close to run-

ning out of space. Consequently, it can’t be used to persistently store the data, thus the

need for a data storage module. This module will consume the data on the queuing mod-

ule and store it with the appropriated meta-data. This way if a service requires data that

is no longer available in the queuing system, the storage system will upload the requested

data to the queue so other services may acquire it.

3.1.4 Analysis module

After the system possesses a continuous set of information available, the next step is to

analyse that data. The approach in this module is to consume the data in the queuing

33

module and process it using any kind of service to aid in the analysis (services such as

machine learning classifiers, dashboards, etc.). As the data is in a queuing module, it’s

possible to split the data throughout different host machines that are running the same

application, therefore reducing the computational load on them.

3.1.5 Technologies

TCPDump is used to capture all network packets in promiscuous mode. At the same time

that is capturing network data, it’s publishing it on the Apache Kafka cluster queuing

system. While the data is on the Apache Kafka sub-system, Hadoop HDFS will read

from it and store it persistently to not lose any relevant information. While the data is

being saved into HDFS, Apache Spark is also consuming the data in parallel, to perform

the analysis in near real-time. Figure 3.2 gives an overview of how the technologies are

distributed across the system.

Figure 3.2: Proposed system - technologies

3.2 Domain Generation Algorithms

Domain Generation Algorithms (DGA) are used by perpetrators to generate a large set

of domains (also known as malicious domains) so they may control their infected hosts

[77]. Even if a domain name gets blocked or is taken down, the infected hosts will just use

another. There are multiple lists of detected malicious DGA domains that can be consul-

ted to check if a given domain is malicious or not (also known as benign domains); but,

consulting those lists in real-time would be time-consuming; additionally, those lists are

uniquely useful to detect domains that were previously detected; in case a non-black-listed

34

malicious domain tries to communicate with a malicious host, the analyzer won’t be able

to detect it. Therefore the system must be able to detect malicious domains that were

never detected previously. To do so it must use an approach that is able to self-learn, like

one based on machine learning algorithms. Some works [78], [79] perform the detection

of such domains using machine learning with features. The problem with this approach

is that extracting such features is time-consuming and even worst the perpetrators can

create a DGA that takes into account these features in order to lower or null the accur-

acy of detection models. The approach in this system is to build a featureless machine

learning model where the only input required is the domain name; this way the model can

operate in near real-time and it solves the issue of the perpetrators lowering the detection

accuracy of the machine learning model. As the model will operate in near real-time,

when the analyzer detects a DGA malicious domain it can send notifications to the sys-

tem administrators or even block the connection (although blocking the connection, is

not a truly good approach as that information could be crucial in finding other infected

hosts). It should be noted that this DGA malicious domain detection is only a module of

the analysis system, which supports multiple different modules executed in parallel.

With the main architecture defined, the implementation also requires to consider the

limitations of the infrastructure and the configuration of all the modules within. This will

be the subject for the next chapter.

35

36

Chapter 4

Implementation

This chapter will explain the implementation of each system module, describing the prob-

lems encountered and how they got solved. It also presents the characteristics of the

test-bed used to host the services of the system.

To respect the functional and security requirements described in section 2.4 it was

created a fictional Certificate authority (CA) to generate certificates for the entire system;

this way, all the hosts could communicate by Secure Sockets Layer (SSL) security protocol

by trusting the CA.

4.1 Scenario

The architecture was deployed in the laboratory of infrastructures and communications

at ESTIG. There are two different networks present in the laboratory: one network (A)

is where the capture of the packets is performed and the other (B) is where the system

services are connected to; htis is similar to a real-scenario situation.

Network A has 2 physical devices connected to a Cisco Catalyst 2960-S switch, where

both of these devices have a gigabit NIC. The switch is configured with a Dynamic Host

Configuration Protocol (DHCP) service and the port mirroring is active, sending the

traffic of all the ports to an output port; the configuration of the Switch can be found on

appendix C listing C.1.

37

Network B is constituted by a total of 14 physical computers where 13 of them have the

same system specifications (listed on table 4.1) and the remaining one is the network probe

with different system specifications (table 4.3). In each of those 13 devices is running a

virtual machine (configurations on table 4.2) that is hosting a service node. All of these

devices are connected to a Cisco Catalyst 2960-L Switch.

In figure 4.1 it’s shown a logical representation of the test-bed components in the

laboratory. The capture module is composed of 1 machine, the queuing module by 5,

the storage module by 3 and the analysis module by 4. The Apache Zookeeper, Apache

Spark Master and Apache Hadoop Namenode are all running on the same virtual machine

since they do not need much computational power as these services only coordinate the

cluster. In a real scenario, those services should operate on separate machines and with

more than one instance, so they offer some fault tolerance. The network capture device,

aside from being connected to Network B to send the data, it’s also connected to the

switch of Network A, on the port-mirroring port so it may receive the network packets of

network A.

Table 4.1: Laboratory computers system specifications

Processor Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, 3192 Mhz, 6
Cores, 12 Logical Processors

RAM 16 GB
NIC Intel(R) Ethernet Connection (2) I219-V, 1 GB rate per port
Storage device SSD with 460 GB in size
Virtualization software VMware Workstation Pro 16.1.2

Table 4.2: Laboratory virtual machine specifications

Processor 2 processores with 2 cores each
RAM 8 GB
Network adapter Bridged mode
Storage device 50 GB (preallocated)
Operating system Ubuntu Server 20.04.3 LTS

38

Table 4.3: Network probe system specifications

Processor Intel(R) Core(TM) i7 CPU @ 2.67GHz, 4 Cores, 8 Logical Processors
RAM 24 GB
NIC Realtek 8111C PCI Express Gigabit Ethernet Controller (2)
Storage device SSD with 240 GB in size
Operating system Ubuntu Server 20.04.3 LTS

Figure 4.1: Computer laboratory diagram

39

4.2 Packet capture module

The main requirement for this module is to perform full packet capture at 1 Gb/s without

losing any network packets both on the header-only capture and full-packet capture.

Throughout the development of this module, multiple application versions were developed,

improving the performance and results from each version. A comparison between the 3

application versions can be found in section 5.1.

The first version was developed using Python version 3.9, the procedure was to open

TCPDump through a pipeline, read the standard output and write into the queuing

module. Needless to say that the application when up against a stress test it lost almost

all the packets both in a header-only and full packet-capture. The problem was, as the

application was capturing at a 1Gb/s line rate, it couldn’t keep up with the load between

getting the data and uploading it to the queuing module. A possible solution was to have

a data buffer structure hosted on the machine RAM and two separate threads, the writer

and the reader. As the name implies the writer thread is responsible for capturing the

network data and write to the data buffer and the reader thread, when available, to read

from the buffer and publish in the queuing module.

The second version (see listing E.1 in appendix E) had a little shift in the technology,

it was changed from Python to C (standard 17), the code was forked from https://

github.com/jmakov/gulp and changes were applied to enable the integration to the

queuing module. With this improvement, the application was now able to keep up with

the load but only in the headers-only capture, in full-packet capture, the reader thread

couldn’t keep up with the writer even with a data buffer so once the data buffer was filled

the application started to lose the packets.

The third version (see listing E.2 in appendix E) appeared to fix the problem from

version two, the technology was changed back to Python and now the data buffer was not

hosted in the machine RAM but on the disk. The application had the same threads, but

this time, the writer would use TCPDump to capture the network packets and write to

a file in the local disk, and the reader would read from that file and write to the queuing

40

https://github.com/jmakov/gulp
https://github.com/jmakov/gulp

module. With this change, the application is now able to perform a full-packet capture

at 1Gb/s losing a very low amount of network packets (if any).

The problem with version 3 is that it requires the capture machine to possess a large

amount of disk space, while version 2 didn’t as it hosts the data buffer on the machine’s

RAM. Now, the selection of the version depends on the requirement of the capture: in the

case of header-only capture it is recommended version 2; in the case of full-packet only

version 3 will succeed on the task.

The packet capture script accepts a different set of arguments (table 4.4) it; some para-

meters like Kafka connection configuration and SSL keys are not passed as a parameter

but stored in a configuration file that can be easily changed.

Table 4.4: Packet capture application arguments

Argument Description Default
value

Interface The network interface controller where packets will be
captured from. It is a mandatory parameter.

Filter (-f) TCPDump filter to be used on the capture.
Snaplen (-s) Max size of each packet in bytes. Value of 0 means full packet. 0
Topic (-t) Kafka topic where the data will be writen to. "packet-

capture"
Kafka chunk
size (-k)

Size in bytes of each Kafka message before being sent to the
cluster.

524288
(512 KiB)

As stated before, the final version of the packet capture script (listing E.2) is divided

into two different threads: the writer and the reader.

The writer thread has the following tasks. First of all, it starts TCPDump as a

subprocess, with the appropriate application arguments, and opens a pipe to read the

standard output of the summoned process. In turn, TCPDump will set the chosen NIC

into promiscuous mode and write all the packets that match the filter (if specified) to

a file (PCAP format) on the local disk. It’s the main thread that commands the write

thread when to start and when to stop the capture of the packets.

The task of the reader thread is as follows. First, it opens the file that is being written

by the writer thread and will read the file into chunks of a fixed size and publish them to

41

the queuing module until the file doesn’t have more data and the capture has stopped.

The writer needs to ensure to not publish a chunk where a packet may be split or the

analysis module will be unable to analyze the packets (explanation on section 4.3.1). On

figure 4.2 it’s presented a simple example of how the size of the chunk is calculated for

each message to be published. Even if the user chooses that each chunk is 525 bytes, the

chunk in this example can not be that size, as it would cut a network packet in half; so

for that message, the chunk must be 450 bytes on size and the packet 4 will belong to the

next chunk (note that this was only an example, network packets vary in size).

Figure 4.2: Selecting the size of the message to publish

For the reader to perform this operation, it must know how to decode the raw data

in the PCAP file, so it knows the size of each packet. The procedure is as follows: the

reader will get a fixed-sized chunk (size is specified by the user) from the file and will

interpret that chunk. The interpretation consists in reading each packet header of the

PCAP file (not to get confused by the network-packet header) and get the length of the

saved packet. If the header plus the actual packet fits into the message to be published,

then add it; otherwise, stop interpreting that chunk, publish the message, append the

leftover bytes to the next message and repeat the procedure.

42

4.3 Queuing module

For the queuing module, it’s used version 2.8.0 of Apache Kafka and version 3.7.0 of

Apache Zookeeper. Zookeeper is required to perform the leadership election of the Kafka

broker and the topics partition and to track the status of all the nodes in the cluster [80].

In future versions of Apache Kafka, it is planned to remove the need in using Apache

Zookeeper and instead use a self-managed quorum.

To aid in the installation of these services, a script has been written to install both

Apache Zookeeper and Kafka; this way, when it’s needed to insert a new machine to

participate in the processing, it’s only required to run the script with a privileged user on

the new node. The functionalities of the script are the following:

1. Upgrade the system;

2. Download and install the service;

3. Copy the service configuration file;

4. Copy the service manager configuration file; this way it becomes easier to manage

the service and it will start automatically when the node boots;

5. Copy the SSL files so the node is accepted in the cluster;

6. Start the service.

Appendix D contains the installation script, the service configuration file and the

service manager configuration file of the Zookeeper (listing D.1, D.2 and D.3 respectively)

and Kafka (listing D.4, D.5 and D.6 respectively).

4.3.1 Data flow

Messages are only ordered in Kafka per partition and when consuming a topic that pos-

sesses multiple partitions nothing guarantees that the message will be retrieved in the

same order that it was published. The only way to get the messages from a topic in the

43

same order is if that topic only had one partition, but that eliminates the perks of the

scalable queuing message eradicating also the requirements of this system.

On figure 4.3 is represented a simple example of how the producer and consumer work

in Apache Kafka. The producer will use a round-robin strategy to publish the messages

(publishing in circular order), but that doesn’t happen all the time and it may produce

two consecutive messages in the same partition; nonetheless, the important concept is

that the producer picks the partition where to write the messages. On the consumer, the

principle is the same: nothing guarantees that it will also use the round-robin approach

and like the producer, it will choose the partition to read from.

As the information is a set of sequential bytes, to be able to read the packet it’s

necessary to first read the packet header to know how many bytes the packet has and

then get that amount of bytes, in case of a packet is split between Kafka messages, its

retrieval becomes impossible as the packet header or the packet may be split into two

non-sequential messages.

And this is the reason why the packet capture application can not split the network

packets between messages, as described before, and can only produce messages with un-

sliced packets header plus the corresponding packet. Also, as described in section 2.6 the

packet header contains the time of when the packet was captured; this way, it’s possible

to re-order the packets while consuming them, not limiting the analyzers to perform a

connection flow analysis.

4.3.2 Message size and partitions

Apache Kafka wasn’t designed to handle large-size messages, not being recommended to

produce messages above 1 Megabyte (MB). But, what size should the message have to

obtain the best performance? To find that value experiments were conducted, comparing

the length of 128 Kibibytes (KiB), 256 KiB and 512 KiB; the results and discussion of

this experiment can be visualized in section 5.2.

When creating a Kafka topic it’s necessary to provide the number of partitions that the

44

Figure 4.3: Apache Kafka producer and consumer

topic will contain. The partitions may be distributed across Kafka nodes or on the same

host; it’s Kafka that decides which host will be responsible for the partitions, prioritizing

the ones with fewer partitions. But how many partitions a topic should have to give the

best performance? In theory, the more the better but is that true in practice and, does it

pay off/it’s necessary to allocate that extra partition in another Kafka node? Section 5.3

documents experiments to answer these questions, comparing the performance with one

to four partitions.

4.4 Persistence storage module

For the persistent storage module, version 3.2.2 of the Apache Hadoop was used. Like

Apache Kafka, two scripts have been written to aid in the installation process of the

service. One is for the installation of name nodes and the other for the data node. The

functionalities of the script are the same as the one for Apache Kafka (section 4.3). In

appendix D it can be found the installation script and service manager configuration

file of the name node (listing D.7 and D.8 respectively) and data node (listing D.9 and

D.10 respectively). Both name and data node share the same configuration files less the

security configurations. All of the configurations can be found on appendix D listings,

45

D.11, D.12, D.13, D.14, D.15 and D.16.

A performance experiment was conducted to know the delay of the system regarding

the storage of the network data in distributed files. The results and the discussion can

be found in section 5.4. The source code of the application that reads from a Kafka topic

and stores it into a file on the HDFS cluster can be found on appendix F listing F.1.

4.5 Analysis module

As specified on the system specifications, the analysis module is a cluster that is ready

to receive any kind of application to run and retrieve results. There are two different

ways to run applications: i) by submitting a Spark job to the Apache Spark cluster,

hosted by the analysis machines; ii) to submit a standalone application to one of the

analysis machines. For the Apache Spark cluster is used version 3.1.2. To ease in the

installation process two scripts have been written, for the installation of the master and

worker. Appendix D contains the installation script and service manager configuration

file of the master node (D.17 and D.18 respectively) and worker node (D.19 and D.20

respectively). Currently, are implemented two non-spark analysers, one that gives some

statistics about the captured network data (section 4.5.2) and the other that performs

the analysis trying to find malicious activity (section 4.5.3) with both sharing the same

application core (section 4.5.1).

4.5.1 Analyzer core

Every analysis application has something equivalent, and that is the application core. Its

function is to get the raw data that is stored on a Kafka topic and extract the relevant

information that will aid in the analysis.

The data is processed message by message. When the analyzer gets a message (also

designated as chunk) from Kafka it starts by looping the chunk: first it extracts the packet

header to know the exact length of the network packet and then it can retrieve the network

packet. After the retrieval of the packet, the core parser will analyze it layer by layer until

46

it reaches the last one. Since the network packets are captured from the ethernet layer

(layer 2 of the OSI model) the parser knows how to start the extraction process. It will

read which protocol is in the next layer; this way it can extract the information accordingly

to the protocol specification (available on RFC documents). After it finishes extracting

the information of the packet it will advance to the next until it reaches the end of the

chunk; when that happens it will fetch another one if available; otherwise, it will wait for

new data.

The core parser went trough three different versions. The first and second uses the

Python frameworks Scapy and PyPacket, respectively. The last one uses a parser imple-

mented from scratch (a custom parser). to decrease the time taken to parse the packets.

Section 5.5 documents an experiment to compare the offline performance of these three

parsers and on section 5.6 the performance overall system with the best parser is assessed.

4.5.2 Information analysis

This is one of the applications that run on the analysis cluster. Its functionality is as

follows: it counts the number of Transmission Control Protocol (TCP), User Datagram

Protocol (UDP), ARP and Internet Control Message Protocol (ICMP) packets and what

is the source and destination IP address most frequent in the packets. Each X seconds

(X is an integer value defined on the configuration file) the application will print the

information described above to the console. Its source code can be found on appendix

G, listing G.1. Listing 4.1, presents an example of the console output of the execution of

this application.

Listing 4.1: Example of the console output produced by the information analyzer applic-
ation

1 TCP packets: 375848, UDP packets: 769, ARP packets 30, ICMP packets 0

2 Top source IP: 10.0.0.10 with 313054 requests

3 Top destination IP: 10.0.0.11 with 313056 requests

4

47

5

6 TCP packets: 685274, UDP packets: 798, ARP packets 30, ICMP packets 0

7 Top source IP: 10.0.0.10 with 568343 requests

8 Top destination IP: 10.0.0.11 with 568345 requests

9

10

11 Packets analyzed: 686178

12 TCP packets: 685274, UDP packets: 798, ARP packets 30, ICMP packets 0

4.5.3 Malicious domain analysis

This is the other implemented analysis application, also coded on Python 3.9, that ex-

ecutes on the analysis cluster. It was taken the approach described in section 3.2; it is

used a featureless machine learning model to detect malicious domains in near real-time.

The stages of this application are as follows:

1. Analyze each message on the Kafka topic;

2. For each packet on the message, analyze the ones that match the DNS query packet

signature (RFC 1035);

3. For the match packets extracts the domain name and remove the subdomains and

the Top-level domain (TLD);

4. Query the machine learning with the extracted information and read the results;

5. Based on the result, check if the domain is benign or malicious and informs about

it in the console.

The last stage (5) is simply for testing purposes and may be effortlessly adjusted. In a

real scenario, the application should send a notification to the administrators or execute

48

another application to analyze the entire traffic of the host that executed the query. An

example of the console output of this application can be found on the listing 4.2.

Listing 4.2: Example of the console output produced by the malicious DGA analyzer
application

1 Loading the model...

2 Load complete...

3

4 Request 10.1.2.155 -> 10.1.2.1: www.google.pt is benign with prob. of

94.56%↪→

5 Request 10.1.2.155 -> 10.1.2.1: estig.ipb.pt is benign with prob. of

99.99%↪→

6 Request 10.1.2.155 -> 10.1.2.1: hcbbfehgoqlw.ru is DGA with prob. of

99.98%↪→

7 Request 10.1.2.155 -> 10.1.2.1: wykosev.com is DGA with prob. of 54.09%

8 Request 10.1.2.155 -> 10.1.2.1: fzcqvinskycattederifg.com is DGA with

prob. of 100%↪→

Dataset

The dataset (designated as the final mixed dataset) to train the machine learning model

is constituted by two columns: the domain and the class columns. The values on the

domain column are a string representing the domain name without the TLD and the

subdomains. The values on the column class are either 0, meaning the domain is benign,

or 1, meaning the domain is malicious.

Three different datasets were used, the Alexa, dataset containing only benign records; the

Bambenek dataset, containing only malicious domains; the Splunk dataset, containing a

mix of benign and malicious records. The number of records that each dataset contains

can be viewed on table 4.5.

A set of steps are executed in order to generate the final dataset (overview on figure 4.4).

49

Table 4.5: Number of records per dataset
Dataset Benign records Malicious records Total records
Alexa 1M 895,830 0 895,830
Bambenek DGA set 0 1,169,356 1,169,356
Splunk dataset 50,000 50,000 100,000
Final dataset 705,333 1,152,636 1,857,969

For the Alexa and Bambenek dataset, it is appended a new column for the identification

of the domain’ legitimacy: in the case of Alexa it will be appended a column with all

the values set to 0, and on the Bambenek dataset with all the values set to 1. After this

step, irrelevant columns will be dropped and they are ready to be joined. The Splunk

dataset contains both benign and malicious domains that have the format of text “legi”

or“dga”). In this case, instead of appending a new column, the values of the existing

ones are changed to 0 when the value is“legit" or 1 when the value is“dga". After each

dataset is properly formatted, they are joined together, originating a mixed dataset. To

generate the final mixed dataset, two more steps are required: the striping of the domain

name and the drop of duplicate rows. The dataset is a Pandas (Python framework)

DataFrame object; iterating each row in this format takes some time; the process can be

optimized by converting the dataset from the DataFrame object to a dictionary object;

this allows a much faster iteration of the row to strip the domain name, even if in the

end it’s necessary to perform two conversions (DataFrame to dictionary and dictionary

to DataFrame). After the dataset has the domains striped, the duplicated records are

dropped and the entire dataset is flushed (reordering of the rows). The source code (based

on https://github.com/sudo-rushil/dga-intel-web) of the dataset preparation for

the machine learning malicious domain detection model can be found in appendix G,

listing G.2.

Machine learning model

The model is built using the TensorFlow Python framework Keras API using the Long

short-term memory (LSTM) neural network architecture (the model architecture is similar

50

https://github.com/sudo-rushil/dga-intel-web

Figure 4.4: Steps to generate the final dataset to the malicious domains detection

51

to the one implemented by Yu B. et al [81]). As the domains names are a sequence of

characters, LSTM was the model chosen as it can successfully process sequences.

The input is passed through a learnable embedding vector, with 39 of input dimension

and 63 of input size, that converts each character into a 128-dimensional vector encoding

its information. The number 39 comes from the possible characters that can appear on

a domain name and the 63 corresponds to the max length of a domain name (without

the TLD and subdomains, per the specification on RFC 1035). After passing through

the embedding layer, it passes through a 1 dimension Convolutional Neural Network

(CNN) with the ReLu activation function and then it runs through the LSTM layer with

a dimension of 64 and is classified with a single dense layer using the SigMoid activation

function.

The input of the model consists of a size 63 integer array (max length of a domain name

without the subdomain and TLS); hence the string is converted to the array using a

static mapping, where each character corresponds to a letter; in case the domain does not

contain 63 characters, the rest of the array will be padded with zeros as the array must

always be the size of 63 as it is the input size expected by the model.

From the final mixed dataset, the model used 90 % of the data as the training data and 10

% as the testing data and the training was conducted for 6 epochs. The results regarding

the model can be found in section 5.7. The script that builds and trains the machine

learning model can be found on appendix G listing G.3.

52

Chapter 5

Experiments and discussion

This chapter reports the experiments performed, explaining its objectives and discussing

the results. Every experiment was conducted in the test-bed described in section 4.1.

These experiments were performed against the maximum network load (1Gb/s) allowed on

these hardware devices. This way it’s possible to know how much the system can handle

and how it will behave in the worst-case scenario (regarding the line rate). The devices

on network A (the ones where the traffic will be captured) were communicating at 1Gb/s,

which is the maximum bandwidth possible (the actual throughput during a 60 seconds

communication can be found in figure 5.1). The tool to generate the network load between

the two devices was the well-known Iperf3 application. To recap, it’s designated by full-

packet capture a network capture where each network packet is captured as is (minus the

layer 1 of the OSI model) and by headers-only capture, a network capture where only the

headers are captured (the OSI layer 1 is also not captured). In the following experiments

the headers-only capture has the packets truncated at 96 bytes, allowing to acquire the

data link, network and transport layers and also some bytes of the payload.

5.1 Packet capture

As described in section 4.2, before the final version of the packet capture application, the

system had two others. As already stated the first version (version 1) opens TCPDump

53

Figure 5.1: Network throughput between the two devices on network A during 60 seconds

as a subprocess and reads the network packets through a pipe; the second version (version

2) is implemented in C and uses a circular data buffer to temporarily store the network

data; the final version (version 3) uses the local disk as a data buffer. These versions were

compared in a first experiment.

The experiment was conducted with a Kafka topic containing one partition, with both

full-packet and headers-only capture. The duration of the network capture, for each

version was 60 seconds.

The comparison of the application versions regarding the number of captured and dropped

packets can be visualized on table 5.1. Figure 5.2 is a graphical representation focused

only on the packet loss.

Considering the results it’s possible to conclude that a data buffer is mandatory to capture

on a network with high bandwidth. Without it, the application can’t handle all the load

on a single thread as the publication of the message to the messaging queuing cluster

takes more time than capturing the network packets. With the introduction of a data

buffer, the application is now able to temporarily store the data on an efficient data

54

Table 5.1: Comparison of the three application versions, regarding the packet loss
Version Packets received Packets captured Packets dropped Packet loss (%)

Headers
only

1 4,860,868 778,435 4,071,554 84
2 3,166,955 3,166,815 0 0
3 4,980,088 4,979,413 0 0

Full
packet

1 4,904,166 225,345 4,677,604 95.4
2 3,944,170 2,608,671 1,335,499 33.86
3 4,931,720 4,930,747 775 0.02

Figure 5.2: Comparison between the three packet capture applications regarding the
packet loss

55

structure, this way the two threads (reader and writer) may work without waiting for

one another. However, is not always possible to lock a large-sized data structure into the

host’s RAM and when the buffer is full, network data will start to be lost. Nevertheless,

the application can now keep up with the load when performing the headers-only packet

capture. With the data buffer stored on disk (as a file) the application can perform the

full-packet capture although, this buffer is limited to the host’s disk size and once the

disk is full the operation will stop.

Each application version had an increase in performance being able to lose fewer packets.

Future experiments will be executed using version 3 of the packet capture application.

5.2 Kafka message size

On a real-time system, every second counts and every procedure must be optimized to

save the most time possible. As previewed in section 4.3.2, this experiment will answer

the question of what is the Kafka message size that offers better performance.

The experiment was conducted using a network probe to capture network packets and

produce the corresponding messages, and a host to perform the consumption (hosts spe-

cifications on section 4.1).

The parameters, under study is the message size with the following possible values:

• 131072 (217) bytes (128 KiB);

• 262144 (218) bytes (256 KiB);

• 524288 (219) bytes (512 KiB).

The output consists of 3 different values: upload delay, download delay and total delay

(on seconds). The upload delay is the time between the capture of the last network packet

to its publication on Kafka. Download delay is the time between the upload of the last

message to the consumption of that last message. The total delay is the sum of the upload

and download delay.

56

All the experiments were executed on a Kafka topic with two partitions, at full-packet

and headers-only packet capture.

Figure 5.3 presents the results of a single 300 seconds headers-only capture. It’s possible

to conclude that any of the three message sizes have a very low delay, not differing too

much from each other. Also, the delay does not grow and it’s practically constant since

on a 60 seconds capture the delays are essentially the same (figure 5.4). Now to determine

the best message size a capture of only 60 seconds will not suffice since the size with lower

delay changes even with the same experimental conditions, however, when performing a

capture of 300 seconds the best message size is always 128 KiB, this conclusion emerged

by performing five consecutive experiments whose the aggregated results can be consulted

on table 5.2. These results demonstrate that the size of 128KiB offers the lowest value on

the average of the results also, the standard deviation is low meaning that the values do

not differ too much from each experiment.

Table 5.2: Aggregation of five headers-only 300 seconds packet capture experiments
Average delay (seconds) Standard deviation (seconds)

Message size (KiB) Upload Download Total Upload Download Total
128 0.32 1.02 1.34 0.16 0.02 0.16
256 0.81 1.02 1.83 0.15 0.01 0.16
512 0.78 0.96 1.74 0.17 0.12 0.21

Figure 5.5 presents the results of a single 300 seconds full-packet capture. After analyzing

the chart, one can conclude that producing messages to Kafka in chunks of size 512 KiB

gives a better performance both on the upload and on the download. To better enforce

this conclusion it was performed five consecutive experiments whose the aggregated results

can be consulted on table 5.3. The size of 512 KiB offers the lowest average and the best

standard deviation, while on the other sizes the deviation is higher, meaning that the

system is not so stable.

Since there isn’t much difference in performance from the message size in the header-only

packet capture and the best size for the full-capture is 512 KiB, for future experiments it

will be used the size of 512 KiB for the messages.

57

Figure 5.3: Kafka consumer and producer delay in a headers-only packet capture at 1Gb/s
during a 300 seconds capture

Figure 5.4: Kafka consumer and producer delay on a headers-only packet capture at
1Gb/s during 60 seconds

Table 5.3: Aggregation of five full-packet 300 seconds packet capture experiments
Average delay (seconds) Standard deviation (seconds)

Message size (KiB) Upload Download Total Upload Download Total
128 82,60 21.19 103.79 19.25 5.42 15.21
256 82.43 69.55 151.98 24.53 10.08 29.14
512 65.66 1.21 66.88 1.82 0.32 2.06

58

Figure 5.5: Kafka consumer and producer delay in full-packet capture at 1Gb/s during a
300 seconds capture

5.3 Kafka partitions

This experiment was executed to answer the questions from section 4.3.2. The experiment

was performed in a duration of 60 seconds while publishing the messages to Kafka in

chunks of 512 KiB. To note that in this experiment every necessary Kafka node had only

one partition assigned.

After the analysis of the results (figure 5.6) we can see a tremendous improvement when

working with more than a single partition. We can also see that working with three

partitions is better than working with four. The ideal should be to allocate three partitions

per topic but to mention that the number of nodes in a Kafka cluster is limited so, the

number of partitions to allocate should be considered in a case-to-case scenario as there

isn’t any improvement in having multiple partitions if they are allocated on the same

Kafka node.

59

Figure 5.6: Consumer and producer delay on a 60 seconds 1Gb/s full-packet capture
regarding a different number of Kafka partitions assigned

5.4 HDFS performance

This experiment has the objective to know the system performance when the system is

capturing and storing the file persistently into the HDFS cluster. A comparison of the

performance when encryption is enabled between the clients and the nodes will also be

performed.

The experiments were executed with a Kafka topic containing two partitions, the messages

were published to Kafka in chunks of 512 KiB, two HDFS nodes available and the replica

of the distributed file was set to two, meaning that the file will be replicated in two nodes.

The upload delay is the time between the capture of the last network packet to its pub-

lication on Kafka. Download delay is the time between the upload of the last message to

the storage of that last message on the distributed file located on the HDFS cluster. The

total delay is the sum of the upload and download delay.

Figures 5.7 and 5.9 shows very low delay between the capture (headers-only) and the

insertion of the file on HDFS and can be consider a near real-time operation. Regarding

the security, even if working with plain text (without encryption between the client and

the nodes) has better performance, using it would compromise the security requirements

60

of this system (described in section 2.4).

On figures 5.8 and 5.10 it is represented the delay when performing and saving a full-packet

capture.

Figure 5.7: HDFS consumer and producer delay in a headers-only packet capture at 1Gb/s
during 60 seconds

As this module purpose is to store (and retrieve when necessary) the network data per-

sistently, there isn’t an issue if the operation doesn’t occur in near real-time as long as it

consumers all messages from Kafka without losing any.

5.5 Core parser stress test

This experiment was conducted in offline mode, meaning that instead of performing the

experiment connected to a live capturing system, it instead was executed reading a local

file, thus producing maximum bound results. The experiment was conducted with two

PCAP files. One of the files contains a full-packet capture (file A) carrying 5.708.800

packets with a total size of 10 GB. The other file (file B) contains a header-only (packets

truncated at 96 bytes) packet capture carrying 102.152.015 packets with a total size of

also 10 GB.

61

Figure 5.8: HDFS consumer and producer delay in full-packet capture at 1Gb/s during
60 seconds

Figure 5.9: HDFS consumer and producer delay in a headers-only packet capture at 1Gb/s
during 300 seconds

62

Figure 5.10: HDFS consumer and producer delay in full-packet capture at 1Gb/s during
300 seconds

The results of this experiment show which of the three parsers is faster and the average

of the processed packets per second. With figures 5.11 and 5.13 it is possible to conclude

that the custom parser is faster on processing both PCAP files. Also, on figures 5.12 and

5.14 it is presented the maximum of packets that each parser can process per second. The

custom parser has the best performance as it only parses the necessary information, while

the other two parse the entire packet, wasting computation resources and time extracting

information that is irrelevant to the analyzer. For these reasons the custom parser is the

one selected to be deployed within the core.

5.6 Core parser performance

While on section 5.5 were performed experiments on offline mode to find the fastest parser

for the core, now it’s time to find out if that parser can analyze the network data in near

real-time.

For this intent, two experiments were conducted one while capturing the headers-only

and the other while capturing the full packet, both with a duration of 300 seconds.

Figures 5.15 and 5.16 present the results of headers the only and full packet capture,

63

Figure 5.11: Runtime of the different core parsers when processing file B

Figure 5.12: Average of the processed packets per second of the different core parsers
when processing file B

64

Figure 5.13: Runtime of the different core parsers when processing file A

Figure 5.14: Average of the processed packets per second of the different core parsers
when processing file A

65

respectively. After analysing the data, one can say that while capturing only the headers

the system can analyse the data in near real-time with very low delay. In turn, while

capturing at full packet the analyzer can still keep up with the rate and have a very low

delay analyzing the packets, being the majority of the delay due to the upload from the

network probe to Kafka. Nevertheless, in the last situation the system took barely more

than 60 seconds to complete the task and such is still a good result to prevent some

network attacks. But it should be noted that this performance test is only about the core

parser (where it extracts relevant information), and there isn’t any kind of processing of

the extracted data.

Figure 5.15: Performance of the core parser while performing a headers-only packet cap-
ture

5.7 Machine learning model

The training of the model was performed in one of the analysis nodes taking about 7

minutes per epoch (6 in total) with a total of 42 minutes. It was used 10,000 records from

the testing dataset to evaluate the model relating the precision and the recall.

66

Figure 5.16: Performance of the core parser while performing a full-packet capture

Figure 5.17 show the confusion matrix describing the number of true positives, false

positives, true negatives and false negatives. A true positive (TP) value is when the

model classifies the value correctly as positive, a false positive (FP) is when the model

classifies as positive but the actual result is negative, a true negative (TN) is when the

model classifies the value correctly as negative and a false negative (FN) is when the

model classifies as negative but the result is in fact positive.

Figure 5.17: Confusion matrix of the domain classifier of the machine learning model

67

The precision of a model tells the percentage of the classifications made by the model as

being correct. The recall tells how many of the positive cases were correctly classified by

the model.

The precision P given the number of true positives TP and the false positives FP can be

calculated by the formula 5.1:

P = TP

TP + FP
(5.1)

The recall R given the number of true positive TP and the false negative FN can be

calculated by the formula 5.2:

R = TP

TP + FN
(5.2)

The precision and recall of this model are 98.9 % and 98.2 % respectively, meaning that

it’s a solid model that can be deployed in a real scenario. Regarding the evaluation results,

the model classified 42 samples incorrectly as positive meaning that, in case the system

automatically drops the connection when it detects a malicious domain, it may block

important communications. Therefore it’s important to precisely decide what to do when

the system classifies domains as malicious. In the case of false negatives, the connection

transits without alarming the system, and that may be an issue since it allows malicious

communications.

New DGA algorithms, that generate new malicious domains that are harder to detect,

are always appearing. So, when a new algorithm is discovered, or when a new family

of malicious domains are captured, they should be appended to the training set and the

machine learning module should be retrained. This way, the system has always the best

possible detection rate. Nevertheless, not training the module with the newest data does

not mean that a new family of malicious domains are not detected; they still may be and

that is the usefulness of using machine learning to perform these kinds of detections. Now,

the module shouldn’t be trained in production as such takes a long period; therefore the

model should be trained outside the system and then the updated trained module should

68

be inserted into the system (stored on the HDFS cluster) so the analysers may update

theirs. Anyway, the detection rate is not 100 %. Consequently, to further improve the

malicious detection rate, the system needs to have multiple different analysis services.

69

70

Chapter 6

Conclusions and future work

This work, developed within the “CybersSEC IP - CYBERSecurity SciEntific Compet-

ences and Innovation Potential (NORTE-01-0145-FEDER-000044)” research project, de-

scribed and implemented an approach for network data capturing and analysis. The

conceptualization is based on relevant scientific literature, assessing the knowledge that

emerges from them, allowing to frame the system in contemporary IT infrastructures

and requirements. With this in mind, a flexible, scalable and practical architecture is

implemented, keeping a low impact on the network.

With the support of the experiment’s results, it is safe to say that the system can cap-

ture and analyze network data in near real-time when performing a headers-only packet

capture, generating a low computational load on the system. Regarding the full packet

capture when the maximum throughput is achieved, the system presents some delay that

may put at risk the requirement of near real-time. Nevertheless all the experiments were

performed in the worst-case scenario to stress the system to the fullest; in a real case

situation that won’t happen all the time.

The scalability and modularity are also assured: if additional analysis tools (modules)

are needed, these can be easily implemented, deployed and executed in parallel without

modifying the current system or other running applications, while all of them may use

the same information. During the implementation of this system, it wasn’t implemented

a Spark analyzer, although the system supports and is ready to receive them.

71

Concerning one of the analysis modules, the detection of malicious domains, the system

has a recall of 98 % being a reliable detection model. Besides the good accuracy it’s not

perfect as some of the malicious domains may not be detected. That said, to further

increase the detection of malicious activity, the system can and should have more than

one analyzer to detect malicious activity as it is prepared to run multiple modules on the

analyzer sub-system at the same time.

The proposed objectives of this project were fulfilled with intended results, the system is

able to capture and analyse network data in near real-time.

6.1 Future Work

Besides the work objectives being fulfilled the project is far from being completed. There

are still many pathways to explore, namely the following. Start to analyze the traffic in

a real network with 1Gb/s of maximum bandwidth and without generating the network

traffic. Instantiate the architecture in a test scenario, composed of IoT devices, regular

workstations, etc. to allow the assessment of the scalability and flexibility of the system.

Implement a connection flow analysis application in order to assess the system about the

functionality and performance on reordering the network data before performing analysis

(this way another set of malicious activity can be identified). Implement more analysis

applications to increase the chance of catching malicious activity. Improve the analysis

application so it may generate reports and apply certain automatic actions, like requesting

the hardware to block certain IP addresses (this way the system may also be an IPS).

Automatically select which data tier to capture (header-only or full-packet) based on the

type of attack, since not all of them need the full-packet information to be detected. It is

also planned to create and publish two more articles based on the presented work. The

first one, is almost finished and is related with the performance of the packet capture and

the other will be regarding the results of the analyzers.

72

Bibliography

[1] G. Coulouris, Distributed systems : concepts and design. Boston: Addison-Wesley,

2012, isbn: 978-1299999633.

[2] M. Efatmaneshnik, S. Shoval and L. Qiao, ‘A standard description of the terms

module and modularity for systems engineering,’ IEEE Transactions on Engineering

Management, vol. 67, no. 2, pp. 365–375, 2020. doi: 10.1109/TEM.2018.2878589.

[3] I. A. Ibrahim Diyeb, A. Saif and N. A. Al-Shaibany, ‘Ethical Network Surveillance

using Packet Sniffing Tools: A Comparative Study,’ International Journal of Com-

puter Network and Information Security, vol. 10, no. 7, pp. 12–22, Jul. 2018, issn:

20749090. doi: 10.5815/ijcnis.2018.07.02.

[4] E. Luke, ‘Defining and measuring scalability,’ in Proceedings of Scalable Parallel

Libraries Conference, 1993, pp. 183–186. doi: 10.1109/SPLC.1993.365568.

[5] M. Abercrombie, Is personal data the new gold? 2020. [Online]. Available: https:

/ / www . libf . ac . uk / news - and - insights / news / detail / 2020 / 05 / 22 / is -

personal-data-the-new-gold (visited on 09/06/2021).

[6] Lionel Sujay Vailsher, Global IoT and non-IoT connections 2010-2025, 2021. [On-

line]. Available: https://www.statista.com/statistics/1101442/iot-number-

of-connected-devices-worldwide/ (visited on 13/05/2021).

[7] Worldometer, World Population Projections - Worldometer, 2021. [Online]. Avail-

able: https://www.worldometers.info/world-population/world-population-

projections/ (visited on 13/05/2021).

73

https://doi.org/10.1109/TEM.2018.2878589
https://doi.org/10.5815/ijcnis.2018.07.02
https://doi.org/10.1109/SPLC.1993.365568
https://www.libf.ac.uk/news-and-insights/news/detail/2020/05/22/is-personal-data-the-new-gold
https://www.libf.ac.uk/news-and-insights/news/detail/2020/05/22/is-personal-data-the-new-gold
https://www.libf.ac.uk/news-and-insights/news/detail/2020/05/22/is-personal-data-the-new-gold
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
https://www.worldometers.info/world-population/world-population-projections/
https://www.worldometers.info/world-population/world-population-projections/

[8] S. Lysenko, K. Bobrovnikova, R. Shchuka and O. Savenko, ‘A cyberattacks detec-

tion technique based on evolutionary algorithms,’ in 2020 IEEE 11th International

Conference on Dependable Systems, Services and Technologies (DESSERT), 2020,

pp. 127–132. doi: 10.1109/DESSERT50317.2020.9125016.

[9] R. Johnson, 60 Percent of Small Companies Close Within 6 Months of Being

Hacked, 2019. [Online]. Available: https://cybersecurityventures.com/60-

percent-of-small-companies-close-within-6-months-of-being-hacked/

(visited on 13/05/2021).

[10] T. Akolawala, Data of Over 92 Percent LinkedIn Users Exposed in New Breach:

Report, Jun. 2021. [Online]. Available: https://gadgets.ndtv.com/apps/news/

linkedin- data- breach- hack- 700- million- 92- percent- users- personal-

information-sold-online-report-2475268.

[11] E. Kent, CD Projekt hit by "targeted cyber attack", 2021. [Online]. Available: https:

//www.eurogamer.net/articles/2021-02-09-cd-projekt-hit-by-targeted-

cyber-attack (visited on 13/05/2021).

[12] Stempel Jonathan and Finkle Jim, Yahoo says all three billion accounts hacked in

2013 data theft | Reuters, 2017. [Online]. Available: https://www.reuters.com/

article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-

in-2013-data-theft-idUSKCN1C82O1 (visited on 13/05/2021).

[13] Dan Swinhoe, The 15 biggest data breaches of the 21st century | CSO Online,

2021. [Online]. Available: https://www.csoonline.com/article/2130877/the-

biggest-data-breaches-of-the-21st-century.html (visited on 13/05/2021).

[14] P. Roquero, E. Magaña, R. Leira and J. Aracil, ‘Performance evaluation of client-

based traffic sniffing for very large populations,’ Computer Networks, vol. 166,

p. 106 985, Jan. 2020, issn: 13891286. doi: 10.1016/j.comnet.2019.106985.

[15] S. H. Mousavi, M. Khansari and R. Rahmani, ‘A fully scalable big data frame-

work for Botnet detection based on network traffic analysis,’ Information Sciences,

74

https://doi.org/10.1109/DESSERT50317.2020.9125016
https://cybersecurityventures.com/60-percent-of-small-companies-close-within-6-months-of-being-hacked/
https://cybersecurityventures.com/60-percent-of-small-companies-close-within-6-months-of-being-hacked/
https://gadgets.ndtv.com/apps/news/linkedin-data-breach-hack-700-million-92-percent-users-personal-information-sold-online-report-2475268
https://gadgets.ndtv.com/apps/news/linkedin-data-breach-hack-700-million-92-percent-users-personal-information-sold-online-report-2475268
https://gadgets.ndtv.com/apps/news/linkedin-data-breach-hack-700-million-92-percent-users-personal-information-sold-online-report-2475268
https://www.eurogamer.net/articles/2021-02-09-cd-projekt-hit-by-targeted-cyber-attack
https://www.eurogamer.net/articles/2021-02-09-cd-projekt-hit-by-targeted-cyber-attack
https://www.eurogamer.net/articles/2021-02-09-cd-projekt-hit-by-targeted-cyber-attack
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.reuters.com/article/us-yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-idUSKCN1C82O1
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html
https://doi.org/10.1016/j.comnet.2019.106985

vol. 512, pp. 629–640, Feb. 2020, issn: 00200255. doi: 10.1016/j.ins.2019.10.

018.

[16] P. Emmerich, M. Pudelko, S. Gallenmüller and G. Carle, ‘FlowScope: Efficient

packet capture and storage in 100 Gbit/s networks,’ in 2017 IFIP Networking Con-

ference, IFIP Networking 2017 and Workshops, vol. 2018-Janua, Institute of Elec-

trical and Electronics Engineers Inc., Jul. 2017, pp. 1–9, isbn: 9783901882944. doi:

10.23919/IFIPNetworking.2017.8264852.

[17] J. Uramova, P. Segec, M. Moravcik, J. Papan, T. Mokos and M. Brodec, ‘Packet

capture infrastructure based on Moloch,’ in ICETA 2017 - 15th IEEE International

Conference on Emerging eLearning Technologies and Applications, Proceedings, In-

stitute of Electrical and Electronics Engineers Inc., Nov. 2017, isbn: 9781538632963.

doi: 10.1109/ICETA.2017.8102538.

[18] M. Z. N. L. Saavedra and W. E. Yu, ‘Towards large scale packet capture and network

flow analysis on hadoop,’ in Proceedings - 2018 6th International Symposium on

Computing and Networking Workshops, CANDARW 2018, Institute of Electrical

and Electronics Engineers Inc., Dec. 2018, pp. 186–189, isbn: 9781538691847. doi:

10.1109/CANDARW.2018.00043.

[19] M. T. Tun, D. E. Nyaung and M. P. Phyu, ‘Performance Evaluation of Intrusion

Detection Streaming Transactions Using Apache Kafka and Spark Streaming,’ in

2019 International Conference on Advanced Information Technologies, ICAIT 2019,

Institute of Electrical and Electronics Engineers Inc., Nov. 2019, pp. 25–30, isbn:

9781728151731. doi: 10.1109/AITC.2019.8920960.

[20] A. M. Karimi, Q. Niyaz, Weiqing Sun, A. Y. Javaid and V. K. Devabhaktuni, ‘Dis-

tributed network traffic feature extraction for a real-time IDS,’ in 2016 IEEE In-

ternational Conference on Electro Information Technology (EIT), vol. 2016-Augus,

IEEE, May 2016, pp. 0522–0526, isbn: 978-1-4673-9985-2. doi: 10.1109/EIT.2016.

7535295.

75

https://doi.org/10.1016/j.ins.2019.10.018
https://doi.org/10.1016/j.ins.2019.10.018
https://doi.org/10.23919/IFIPNetworking.2017.8264852
https://doi.org/10.1109/ICETA.2017.8102538
https://doi.org/10.1109/CANDARW.2018.00043
https://doi.org/10.1109/AITC.2019.8920960
https://doi.org/10.1109/EIT.2016.7535295
https://doi.org/10.1109/EIT.2016.7535295

[21] F. L. Aryeh, B. K. Alese and O. Olasehinde, ‘Graphical analysis of captured net-

work packets for detection of suspicious network nodes,’ in 2020 International Con-

ference on Cyber Situational Awareness, Data Analytics and Assessment, Cyber

SA 2020, Institute of Electrical and Electronics Engineers Inc., Jun. 2020, isbn:

9781728166902. doi: 10.1109/CyberSA49311.2020.9139672.

[22] E. H. Do and V. N. Gadepally, ‘Classifying Anomalies for Network Security,’ in

ICASSP, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing - Proceedings, vol. 2020-May, Institute of Electrical and Electronics En-

gineers Inc., May 2020, pp. 2907–2911, isbn: 9781509066315.

[23] Y. T. Guo, Y. Gao, Y. Wang, M. Y. Qin, Y. J. Pu, Z. Wang, D. D. Liu, X. J.

Chen, T. F. Gao, T. T. Lv and Z. C. Fu, ‘DPI & DFI: A Malicious Behavior

Detection Method Combining Deep Packet Inspection and Deep Flow Inspection,’

in Procedia Engineering, vol. 174, Elsevier Ltd, Jan. 2017, pp. 1309–1314. doi:

10.1016/j.proeng.2017.01.276.

[24] A. Ulmer, D. Sessler and J. Kohlhammer, ‘NetCapVis: Web-based progressive visual

analytics for network packet captures,’ in 2019 IEEE Symposium on Visualization

for Cyber Security, VizSec 2019, Institute of Electrical and Electronics Engineers

Inc., Oct. 2019, isbn: 9781728138763. doi: 10.1109/VizSec48167.2019.9161633.

[25] X. Ye, S. Qiao, N. Han, K. Yue, T. Wu, L. Yang, F. Huang and C.-a. Yuan,

‘Algorithm for detecting anomalous hosts based on group activity evolution,’

Knowledge-Based Systems, vol. 214, p. 106 734, Feb. 2021, issn: 09507051. doi:

10.1016/j.knosys.2020.106734.

[26] H. Ichise, Y. Jin, K. Iida and Y. Takai, ‘Detection and Blocking of Anomaly DNS

Traffic by Analyzing Achieved NS Record History,’ in 2018 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference (APSIPA

ASC), IEEE, Nov. 2018, pp. 1586–1590, isbn: 978-9-8814-7685-2. doi: 10.23919/

APSIPA.2018.8659739.

76

https://doi.org/10.1109/CyberSA49311.2020.9139672
https://doi.org/10.1016/j.proeng.2017.01.276
https://doi.org/10.1109/VizSec48167.2019.9161633
https://doi.org/10.1016/j.knosys.2020.106734
https://doi.org/10.23919/APSIPA.2018.8659739
https://doi.org/10.23919/APSIPA.2018.8659739

[27] E. Longo, A. E. Redondi and M. Cesana, ‘Accurate occupancy estimation with WiFi

and bluetooth/BLE packet capture,’ Computer Networks, vol. 163, p. 106 876, Nov.

2019, issn: 13891286. doi: 10.1016/j.comnet.2019.106876.

[28] A. Lara and B. Ramamurthy, ‘OpenSec: Policy-Based Security Using Software-

Defined Networking,’ IEEE Transactions on Network and Service Management,

vol. 13, no. 1, pp. 30–42, Mar. 2016, issn: 1932-4537. doi: 10.1109/TNSM.2016.

2517407.

[29] A. Subahi and G. Theodorakopoulos, ‘Ensuring Compliance of IoT Devices with

Their Privacy Policy Agreement,’ in 2018 IEEE 6th International Conference on

Future Internet of Things and Cloud (FiCloud), IEEE, Aug. 2018, pp. 100–107,

isbn: 978-1-5386-7503-8. doi: 10.1109/FiCloud.2018.00022.

[30] P. Boonyopakorn, ‘Applying Data Analytics to Findings of User Behaviour Usage

in Network Systems,’ in 2018 International Conference on Information Technology

(InCIT), IEEE, Oct. 2018, pp. 1–6. doi: 10.23919/INCIT.2018.8584865.

[31] ‘A Survey on Network Security-Related Data Collection Technologies,’ IEEE Access,

vol. 6, pp. 18 345–18 365, Mar. 2018, issn: 21693536. doi: 10.1109/ACCESS.2018.

2817921.

[32] J.-P. A. Yaacoub, H. N. Noura, O. Salman and A. Chehab, ‘Digital Forensics vs.

Anti-Digital Forensics: Techniques, Limitations and Recommendations,’ Mar. 2021.

arXiv: 2103.17028. [Online]. Available: https://arxiv.org/abs/2103.17028v1%

20http://arxiv.org/abs/2103.17028.

[33] Y. Choi, J.-Y. Lee, S. Choi, J.-H. Kim and I. Kim, ‘Traffic storing and related inform-

ation generation system for cyber attack analysis,’ in 2016 International Conference

on Information and Communication Technology Convergence (ICTC), IEEE, Oct.

2016, pp. 1052–1057, isbn: 978-1-5090-1325-8. doi: 10.1109/ICTC.2016.7763366.

[Online]. Available: http://ieeexplore.ieee.org/document/7763366/.

77

https://doi.org/10.1016/j.comnet.2019.106876
https://doi.org/10.1109/TNSM.2016.2517407
https://doi.org/10.1109/TNSM.2016.2517407
https://doi.org/10.1109/FiCloud.2018.00022
https://doi.org/10.23919/INCIT.2018.8584865
https://doi.org/10.1109/ACCESS.2018.2817921
https://doi.org/10.1109/ACCESS.2018.2817921
https://arxiv.org/abs/2103.17028
https://arxiv.org/abs/2103.17028v1%20http://arxiv.org/abs/2103.17028
https://arxiv.org/abs/2103.17028v1%20http://arxiv.org/abs/2103.17028
https://doi.org/10.1109/ICTC.2016.7763366
http://ieeexplore.ieee.org/document/7763366/

[34] A. Horneman and N. Dell, ‘Smart Collection and Storage Method for Network

Traffic Data,’ Sep. 2014.

[35] D. Zhou, Z. Yan, Y. Fu and Z. Yao, A survey on network data collection, Aug. 2018.

doi: 10.1016/j.jnca.2018.05.004.

[36] J. Quittek, T. Zseby, B. Claise and S. Zander, Requirements for IP Flow Information

Export (IPFIX), 2004. [Online]. Available: https://datatracker.ietf.org/doc/

html/rfc3917 (visited on 13/05/2021).

[37] J. Parry, D. Hunter, K. Radke and C. Fidge, ‘A network forensics tool for precise

data packet capture and replay in cyber-physical systems,’ in Proceedings of the

Australasian Computer Science Week Multiconference, vol. 01-05-Febr, New York,

NY, USA: ACM, Feb. 2016, pp. 1–10, isbn: 9781450340427. doi: 10.1145/2843043.

2843047. [Online]. Available: http://dx.doi.org/10.1145/2843043.2843047%

20https://dl.acm.org/doi/10.1145/2843043.2843047.

[38] G. Harris and M. C. Richardson, Pcap capture file format. [Online]. Available:

https://tools.ietf.org/id/draft- gharris- opsawg- pcap- 00.html (vis-

ited on 10/10/2021).

[39] A. H. Medalla, M. Z. N. L. Saavedra, P. A. R. Abu andW. E. S. Yu, ‘Adapting block-

sized captures for faster network flow analysis on the hadoop ecosystem,’ in 2018

IEEE 4th International Conference on Computer and Communications (ICCC),

2018, pp. 1097–1103. doi: 10.1109/CompComm.2018.8780880.

[40] N. J. Venkatesan, E. Kim and D. R. Shin, ‘PoN: Open source solution for real-

time data analysis,’ in 2016 3rd International Conference on Digital Information

Processing, Data Mining, and Wireless Communications, DIPDMWC 2016, Insti-

tute of Electrical and Electronics Engineers Inc., Aug. 2016, pp. 313–318, isbn:

9781467393799. doi: 10.1109/DIPDMWC.2016.7529409.

78

https://doi.org/10.1016/j.jnca.2018.05.004
https://datatracker.ietf.org/doc/html/rfc3917
https://datatracker.ietf.org/doc/html/rfc3917
https://doi.org/10.1145/2843043.2843047
https://doi.org/10.1145/2843043.2843047
http://dx.doi.org/10.1145/2843043.2843047%20https://dl.acm.org/doi/10.1145/2843043.2843047
http://dx.doi.org/10.1145/2843043.2843047%20https://dl.acm.org/doi/10.1145/2843043.2843047
https://tools.ietf.org/id/draft-gharris-opsawg-pcap-00.html
https://doi.org/10.1109/CompComm.2018.8780880
https://doi.org/10.1109/DIPDMWC.2016.7529409

[41] M. Wahal, T. Choudhury and M. Arora, ‘Intrusion Detection System in Python,’

in Proceedings of the 8th International Conference Confluence 2018 on Cloud Com-

puting, Data Science and Engineering, Confluence 2018, Institute of Electrical and

Electronics Engineers Inc., Aug. 2018, pp. 348–353, isbn: 9781538617182. doi: 10.

1109/CONFLUENCE.2018.8442909.

[42] D. Álvarez Robles, P. Nuño, F. González Bulnes and J. C. Granda Candás, ‘Perform-

ance analysis of packet sniffing techniques applied to network monitoring,’ IEEE

Latin America Transactions, vol. 19, no. 3, pp. 490–499, 2021. doi: 10.1109/TLA.

2021.9447699.

[43] J. H. Moon and Y. T. Shine, ‘A study of distributed SDN controller based on apache

kafka,’ in Proceedings - 2020 IEEE International Conference on Big Data and Smart

Computing, BigComp 2020, Institute of Electrical and Electronics Engineers Inc.,

Feb. 2020, pp. 44–47, isbn: 9781728160344. doi: 10.1109/BigComp48618.2020.0-

101.

[44] K. Team, Documentation. [Online]. Available: https : / / kafka . apache . org /

documentation (visited on 20/09/2021).

[45] C. N. Nguyen, J.-S. Kim and S. Hwang, ‘Koha: Building a kafka-based distributed

queue system on the fly in a hadoop cluster,’ in 2016 IEEE 1st International Work-

shops on Foundations and Applications of Self* Systems (FAS*W), 2016, pp. 48–53.

doi: 10.1109/FAS-W.2016.23.

[46] S. Kumar and E. Goel, ‘Changing the world of Autonomous Vehicles using Cloud

and Big Data,’ in Proceedings of the International Conference on Inventive Com-

munication and Computational Technologies, ICICCT 2018, Institute of Electrical

and Electronics Engineers Inc., Sep. 2018, pp. 368–376, isbn: 9781538619742. doi:

10.1109/ICICCT.2018.8473347.

[47] D. Surekha, G. Swamy and S. Venkatramaphanikumar, ‘Real time streaming data

storage and processing using storm and analytics with Hive,’ in Proceedings of

79

https://doi.org/10.1109/CONFLUENCE.2018.8442909
https://doi.org/10.1109/CONFLUENCE.2018.8442909
https://doi.org/10.1109/TLA.2021.9447699
https://doi.org/10.1109/TLA.2021.9447699
https://doi.org/10.1109/BigComp48618.2020.0-101
https://doi.org/10.1109/BigComp48618.2020.0-101
https://kafka.apache.org/documentation
https://kafka.apache.org/documentation
https://doi.org/10.1109/FAS-W.2016.23
https://doi.org/10.1109/ICICCT.2018.8473347

2016 International Conference on Advanced Communication Control and Comput-

ing Technologies, ICACCCT 2016, Institute of Electrical and Electronics Engineers

Inc., Jan. 2017, pp. 606–610, isbn: 9781467395458. doi: 10.1109/ICACCCT.2016.

7831712.

[48] A. Toshniwal, K. S. Rathore, A. Dubey, P. Dhasal and R. Maheshwari, ‘Media

streaming in cloud with special reference to amazon web services: A comprehensive

review,’ in 2020 4th International Conference on Intelligent Computing and Control

Systems (ICICCS), 2020, pp. 368–372. doi: 10.1109/ICICCS48265.2020.9121097.

[49] S. Ghemawat, H. Gobioff and S.-T. Leung, ‘The google file system,’ in Proceedings

of the 19th ACM Symposium on Operating Systems Principles, Bolton Landing, NY,

2003, pp. 20–43.

[50] B. P. Rao and N. N. Rao, ‘HDFS memory usage analysis,’ in Proceedings of the

International Conference on Inventive Computing and Informatics, ICICI 2017,

Institute of Electrical and Electronics Engineers Inc., May 2018, pp. 1041–1046,

isbn: 9781538640319. doi: 10.1109/ICICI.2017.8365298.

[51] Y. Tian and X. Yu, ‘Trustworthiness study of HDFS data storage based on trust-

worthiness metrics and KMS encryption,’ in Proceedings of 2021 IEEE Interna-

tional Conference on Power Electronics, Computer Applications, ICPECA 2021,

Institute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 962–966, isbn:

9781728190037. doi: 10.1109/ICPECA51329.2021.9362537.

[52] K. S. Madhu, B. C. Reddy, C. H. Damarukanadhan, M. Polireddy and N. Ravinder,

‘Real Time Sentimental Analysis on Twitter,’ in Proceedings of the 6th Inter-

national Conference on Inventive Computation Technologies, ICICT 2021, Insti-

tute of Electrical and Electronics Engineers Inc., Jan. 2021, pp. 1030–1034, isbn:

9781728185019. doi: 10.1109/ICICT50816.2021.9358772.

[53] S. Mishra, P. K. Shukla and R. Agarwal, ‘Location wise opinion mining of real time

twitter data using hadoop to reduce cyber crimes,’ in 2nd International Conference

80

https://doi.org/10.1109/ICACCCT.2016.7831712
https://doi.org/10.1109/ICACCCT.2016.7831712
https://doi.org/10.1109/ICICCS48265.2020.9121097
https://doi.org/10.1109/ICICI.2017.8365298
https://doi.org/10.1109/ICPECA51329.2021.9362537
https://doi.org/10.1109/ICICT50816.2021.9358772

on Data, Engineering and Applications, IDEA 2020, Institute of Electrical and Elec-

tronics Engineers Inc., Feb. 2020, isbn: 9781728157184. doi: 10.1109/IDEA49133.

2020.9170700.

[54] K. Aziz, D. Zaidouni and M. Bellafkih, ‘Real-time data analysis using Spark and

Hadoop,’ in Proceedings of the 2018 International Conference on Optimization and

Applications, ICOA 2018, Institute of Electrical and Electronics Engineers Inc., May

2018, pp. 1–6, isbn: 9781538642252. doi: 10.1109/ICOA.2018.8370593.

[55] R. Kamal, M. A. Shah, A. Hanif and J. Ahmad, ‘Real-time opinion mining of Twitter

data using spring XD and Hadoop,’ in ICAC 2017 - 2017 23rd IEEE International

Conference on Automation and Computing: Addressing Global Challenges through

Automation and Computing, Institute of Electrical and Electronics Engineers Inc.,

Oct. 2017, isbn: 9780701702618. doi: 10.23919/IConAC.2017.8082091.

[56] J. Tsai, T. Y. Chang, Y. H. Fang and E. S. Chang, ‘A Real-Time Traffic Flow

Prediction System for National Freeways Based on the Spark Streaming Technique,’

in 2018 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-

TW 2018, Institute of Electrical and Electronics Engineers Inc., Aug. 2018, isbn:

9781538663011. doi: 10.1109/ICCE-China.2018.8448998.

[57] C. F. Wu, T. C. Hsu, H. Yang and Y. C. Chung, ‘File placement mechanisms for

improving write throughputs of cloud storage services based on Ceph and HDFS,’

in Proceedings of the 2017 IEEE International Conference on Applied System In-

novation: Applied System Innovation for Modern Technology, ICASI 2017, Insti-

tute of Electrical and Electronics Engineers Inc., Jul. 2017, pp. 1725–1728, isbn:

9781509048977. doi: 10.1109/ICASI.2017.7988272.

[58] A. Kirby, B. Henson, J. Thomas, M. Armstrong and M. Galloway, ‘Storage and file

structure of a bioinformatics cloud architecture,’ in Proceedings - 2019 3rd IEEE

International Conference on Cloud and Fog Computing Technologies and Applica-

tions, Cloud Summit 2019, Institute of Electrical and Electronics Engineers Inc.,

81

https://doi.org/10.1109/IDEA49133.2020.9170700
https://doi.org/10.1109/IDEA49133.2020.9170700
https://doi.org/10.1109/ICOA.2018.8370593
https://doi.org/10.23919/IConAC.2017.8082091
https://doi.org/10.1109/ICCE-China.2018.8448998
https://doi.org/10.1109/ICASI.2017.7988272

Aug. 2019, pp. 110–115, isbn: 9781728131016. doi: 10.1109/CloudSummit47114.

2019.00024.

[59] C. T. Yang, W. H. Lien, Y. C. Shen and F. Y. Leu, ‘Implementation of a Software-

Defined Storage Service with Heterogeneous Storage Technologies,’ in Proceedings

- IEEE 29th International Conference on Advanced Information Networking and

Applications Workshops, WAINA 2015, Institute of Electrical and Electronics En-

gineers Inc., Apr. 2015, pp. 102–107, isbn: 9781479917747. doi: 10.1109/WAINA.

2015.50.

[60] M. Tanaka, O. Tatebe and H. Kawashima, ‘Applying Pwrake Workflow System and

Gfarm File System to Telescope Data Processing,’ in Proceedings - IEEE Interna-

tional Conference on Cluster Computing, ICCC, vol. 2018-Septe, Institute of Elec-

trical and Electronics Engineers Inc., Oct. 2018, pp. 124–133, isbn: 9781538683194.

doi: 10.1109/CLUSTER.2018.00024.

[61] S. Paul, N. Das and B. B. Sarkar, ‘Big data infrastructure: Storage considerations,’

in 2016 International Conference on Computing, Analytics and Security Trends

(CAST), IEEE, Dec. 2016, pp. 617–621, isbn: 978-1-5090-1338-8. doi: 10.1109/

CAST.2016.7915041.

[62] S. Zuozhi, M. Yunlang and Y. Yue, ‘Research on Condition Monitoring of Intelligent

Substation Equipment Based on Hadoop and MapReduce,’ in Proceedings - 10th

International Conference on Intelligent Computation Technology and Automation,

ICICTA 2017, vol. 2017-Octob, Institute of Electrical and Electronics Engineers

Inc., Oct. 2017, pp. 402–405, isbn: 9781538612309. doi: 10.1109/ICICTA.2017.96.

[63] Y. Benlachmi and M. L. Hasnaoui, ‘Big data and spark: Comparison with hadoop,’

in Proceedings of the World Conference on Smart Trends in Systems, Security and

Sustainability, WS4 2020, Institute of Electrical and Electronics Engineers Inc.,

Jul. 2020, pp. 811–817, isbn: 9781728168234. doi: 10.1109/WorldS450073.2020.

9210353.

82

https://doi.org/10.1109/CloudSummit47114.2019.00024
https://doi.org/10.1109/CloudSummit47114.2019.00024
https://doi.org/10.1109/WAINA.2015.50
https://doi.org/10.1109/WAINA.2015.50
https://doi.org/10.1109/CLUSTER.2018.00024
https://doi.org/10.1109/CAST.2016.7915041
https://doi.org/10.1109/CAST.2016.7915041
https://doi.org/10.1109/ICICTA.2017.96
https://doi.org/10.1109/WorldS450073.2020.9210353
https://doi.org/10.1109/WorldS450073.2020.9210353

[64] A. Verma, A. H. Mansuri and N. Jain, ‘Big data management processing with

Hadoop MapReduce and spark technology: A comparison,’ in 2016 Symposium on

Colossal Data Analysis and Networking (CDAN), IEEE, Mar. 2016, pp. 1–4, isbn:

978-1-5090-0669-4. doi: 10.1109/CDAN.2016.7570891.

[65] S. Mishra and C. Hota, ‘A REST Framework on IoT Streams using Apache Spark

for Smart Cities,’ in 2019 IEEE 16th India Council International Conference (IN-

DICON), IEEE, Dec. 2019, pp. 1–4, isbn: 978-1-7281-2327-1. doi: 10 . 1109 /

INDICON47234.2019.9029012.

[66] A. Saraswathi, A. Mummoorthy, A. Raman G.R. and K. Porkodi, ‘Real-Time Traffic

Monitoring System Using Spark,’ in 2019 International Conference on Emerging

Trends in Science and Engineering (ICESE), IEEE, Sep. 2019, pp. 1–6, isbn: 978-

1-7281-1871-0. doi: 10.1109/ICESE46178.2019.9194613.

[67] Y. Drohobytskiy, V. Brevus and Y. Skorenkyy, ‘Spark structured streaming: Cus-

tomizing kafka stream processing,’ in Proceedings of the 2020 IEEE 3rd Inter-

national Conference on Data Stream Mining and Processing, DSMP 2020, Insti-

tute of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 296–299, isbn:

9781728132143. doi: 10.1109/DSMP47368.2020.9204304.

[68] Z. Chen, N. Chen and J. Gong, ‘Design and implementation of the real-time gis data

model and sensor web service platform for environmental big data management with

the apache storm,’ in 2015 Fourth International Conference on Agro-Geoinformatics

(Agro-geoinformatics), 2015, pp. 32–35. doi: 10.1109/Agro- Geoinformatics.

2015.7248139.

[69] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen and V. Markl,

‘Benchmarking distributed stream data processing systems,’ in Proceedings -

IEEE 34th International Conference on Data Engineering, ICDE 2018, Institute

of Electrical and Electronics Engineers Inc., Feb. 2018, pp. 1519–1530, isbn:

9781538655207. doi: 10.1109/ICDE.2018.00169. eprint: 1802.08496.

83

https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.1109/INDICON47234.2019.9029012
https://doi.org/10.1109/INDICON47234.2019.9029012
https://doi.org/10.1109/ICESE46178.2019.9194613
https://doi.org/10.1109/DSMP47368.2020.9204304
https://doi.org/10.1109/Agro-Geoinformatics.2015.7248139
https://doi.org/10.1109/Agro-Geoinformatics.2015.7248139
https://doi.org/10.1109/ICDE.2018.00169
1802.08496

[70] Z. Karakaya, A. Yazici and M. Alayyoub, ‘A Comparison of Stream Processing

Frameworks,’ in 2017 International Conference on Computer and Applications

(ICCA), IEEE, Sep. 2017, pp. 1–12, isbn: 978-1-5386-2752-5. doi: 10 . 1109 /

COMAPP.2017.8079733.

[71] J. Dean and S. Ghemawat, ‘Mapreduce: Simplified data processing on large clusters,’

in OSDI’04: Sixth Symposium on Operating System Design and Implementation, San

Francisco, CA, 2004, pp. 137–150.

[72] M. Manwal and A. Gupta, ‘Big data and hadoop-A technological survey,’ in 2017

International Conference on Emerging Trends in Computing and Communication

Technologies, ICETCCT 2017, vol. 2018-Janua, Institute of Electrical and Elec-

tronics Engineers Inc., Feb. 2018, pp. 1–6, isbn: 9781538611470. doi: 10.1109/

ICETCCT.2017.8280345.

[73] T. Sirisakdiwan and N. Nupairoj, ‘Spark Framework for Real-Time Analytic of

Multiple Heterogeneous Data Streams,’ in 2019 2nd International Conference on

Communication Engineering and Technology (ICCET), IEEE, Apr. 2019, pp. 1–5,

isbn: 978-1-7281-1439-2. doi: 10.1109/ICCET.2019.8726886.

[74] D. Jayanthi and G. Sumathi, ‘Weather data analysis using spark — An in-memory

computing framework,’ in 2017 Innovations in Power and Advanced Computing

Technologies (i-PACT), vol. 2017-Janua, IEEE, Apr. 2017, pp. 1–5, isbn: 978-1-

5090-5682-8. doi: 10.1109/IPACT.2017.8245142.

[75] F. Chen, J. Liu and Y. Zhu, ‘A Real-Time Scheduling Strategy Based on Processing

Framework of Hadoop,’ in 2017 IEEE International Congress on Big Data (BigData

Congress), IEEE, Jun. 2017, pp. 321–328, isbn: 978-1-5386-1996-4. doi: 10.1109/

BigDataCongress.2017.48.

[76] L. F. Sikos, ‘Packet analysis for network forensics: A comprehensive survey,’ Forensic

Science International: Digital Investigation, vol. 32, p. 200 892, Mar. 2020, issn:

26662817. doi: 10.1016/j.fsidi.2019.200892.

84

https://doi.org/10.1109/COMAPP.2017.8079733
https://doi.org/10.1109/COMAPP.2017.8079733
https://doi.org/10.1109/ICETCCT.2017.8280345
https://doi.org/10.1109/ICETCCT.2017.8280345
https://doi.org/10.1109/ICCET.2019.8726886
https://doi.org/10.1109/IPACT.2017.8245142
https://doi.org/10.1109/BigDataCongress.2017.48
https://doi.org/10.1109/BigDataCongress.2017.48
https://doi.org/10.1016/j.fsidi.2019.200892

[77] H. Shahzad, A. R. Sattar and J. Skandaraniyam, ‘DGA Domain Detection using

Deep Learning,’ in 2021 IEEE 5th International Conference on Cryptography, Se-

curity and Privacy (CSP), IEEE, Jan. 2021, pp. 139–143, isbn: 978-1-7281-8621-4.

doi: 10.1109/CSP51677.2021.9357591.

[78] A. Soleymani and F. Arabgol, ‘A novel approach for detecting dga-based botnets

in dns queries using machine learning techniques,’ J. Comput. Networks Commun.,

vol. 2021, 4767388:1–4767388:13, 2021.

[79] F. Bisio, S. Saeli, P. Lombardo, D. Bernardi, A. Perotti and D. Massa, ‘Real-time

behavioral dga detection through machine learning,’ in 2017 International Carnahan

Conference on Security Technology (ICCST), IEEE, 2017, pp. 1–6.

[80] ‘A Study of Apache Kafka in Big Data Stream Processing,’ in 2018 Interna-

tional Conference on Information , Communication, Engineering and Technology

(ICICET), IEEE, Aug. 2018, pp. 1–3, isbn: 978-1-5386-5510-8. doi: 10 . 1109 /

ICICET.2018.8533771. [Online]. Available: https://ieeexplore.ieee.org/

document/8533771/.

[81] B. Yu, J. Pan, J. Hu, A. Nascimento and M. De Cock, ‘Character Level based

Detection of DGA Domain Names,’ in 2018 International Joint Conference on

Neural Networks (IJCNN), vol. 2018-July, IEEE, Jul. 2018, pp. 1–8, isbn: 978-

1-5090-6014-6. doi: 10.1109/IJCNN.2018.8489147. [Online]. Available: https:

//ieeexplore.ieee.org/document/8489147/.

85

https://doi.org/10.1109/CSP51677.2021.9357591
https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1109/ICICET.2018.8533771
https://ieeexplore.ieee.org/document/8533771/
https://ieeexplore.ieee.org/document/8533771/
https://doi.org/10.1109/IJCNN.2018.8489147
https://ieeexplore.ieee.org/document/8489147/
https://ieeexplore.ieee.org/document/8489147/

Appendix A

Original dissertation proposal

A1

 Curso de Mestrado em Informática

 Ano letivo de 2020/2021

Sistema de análise de redes de computadores para a identificação de
atividade maliciosa

Aluno: Rafael Cardoso de Oliveira

Orientador: Tiago Miguel Ferreira Guimarães Pedrosa

Coorientador: Rui Pedro Sanches de Castro Lopes

1 Objetivo

Esta dissertação visa criar uma solução para capturar, analisar e processar tráfego de rede, com o objetivo
de detetar anomalias, como possíveis ataques cibernéticos e/ou a presença de programas maliciosos que
prejudicam o bom funcionamento da rede. Será feita uma análise bibliográfica com o objetivo de
enquadrar tecnologicamente e cientificamente o trabalho a desenvolver e para servir de base para o
desenho de uma arquitetura fiável e escalável para a captura, armazenamento e análise do tráfego.

A analise do tráfego será feita desenvolvendo soluções que, através do comportamento da rede, permita
evidenciar situações de potencial atividade maliciosa na rede.

2 Detalhes

Hoje em dia, a maioria das empresas e organizações estão ligadas à internet e, muitas delas, possuem um
grande número de equipamentos interligados entre si formando uma ou várias redes. A complexidade e
dimensão das redes bem como as técnicas de ataque cada vez mais evoluídas, fazem com que seja difícil
verificar se existe atividade maliciosa dentro da rede de uma organização. Muitas delas sofrem ataques
cibernéticos sem que se apercebam. Existe igualmente um número bastante elevado de pequenas
empresas que encerram permanentemente pouco após um ataque cibernético. Sendo assim, é
fundamental, tanto para as pequenas como médias e grandes empresas ou organizações, um sistema que
seja capaz de automaticamente reportar para os administradores as atividades maliciosas detetadas.

3 Metodologia de trabalho

Inicialmente será efetuada uma análise bibliográfica, levantando o que atualmente a comunidade está a
fazer para resolver certos problemas relativamente à captura, armazenamento e análise de tráfego de rede.
De seguida, realizar o levantamento do estado da arte na perspetiva das tecnologias e arquiteturas que se
pretende utilizar.

A segunda fase será utilizar as informações levantadas na fase anterior para definir uma arquitetura de

A2

Appendix B

OL2A published paper

B1

A scalable, real-time packet capturing solution

Rafael Oliveira1[0000−0003−4997−4757], João P. Almeida1[0000−0002−1286−2527],
Isabel Praça2[0000−0002−2519−9859], Rui Pedro Lopes1[0000−0002−9170−5078], and

Tiago Pedrosa1[0000−0003−4873−2705]

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto
Politécnico de Bragança, Portugal {rafael.cardoso,jpa,rlopes,pedrosa}@ipb.pt

2 ISEP/GECAD Research Centre: Porto, Portugal
icp@isep.ipp.pt

Abstract. The evolution of technology and the increasing connectivity
between devices lead to an increased risk of cyberattacks. Good pro-
tection systems, such as Intrusion Detection System (IDS) and Intru-
sion Prevention System (IPS), are essential in trying to prevent, detect
and counter most of the attacks. However, the increasing creativity and
type of attacks raise the need for more resources and processing power
for the protection systems which, in turn, requires horizontal scalabil-
ity to keep up with the massive companies’ network infrastructure and
with the complexity of attacks. Technologies like machine learning, show
promising results and can be of added value in the detection and pre-
vention of attacks in real-time. But good algorithms and tools are not
enough. They require reliable and solid datasets to be able to effectively
train the protection systems. The development of a good dataset re-
quires horizontal-scalable, robust, modular and fault-tolerance systems,
so that the analyses may be done also in real-time. This paper describes
an architecture for horizontal-scaling capture architecture, able to collect
packets from multiple sources and prepared for real-time analysis. It de-
pends on multiple modular nodes with specific roles to support different
algorithms and tools.

Keywords: packet capture · packet storage · distributed system · ma-
chine learning.

1 Introduction

Each year the number of cyberattacks on both companies and individuals rise
exponentially, with only a few with the ability to defend themselves and prevent
the attacks [18]. To tackle this problem and to foster cyberattacks prevention, it
is necessary to use protection tools such as IDS and IPS. However, the number
and complexity of attacks pose a challenge to these tools, easily exhausting
their storage and processing capacity. Moreover, the sheer amount of data and
diversity of vectors of attacks requires systems and tools that are able to scale
horizontally, to react in real-time. For that, traffic capturing is fundamental even
though being disregarded in many research works [1, 3, 6, 12,17].

B2

2 Oliveira et al.

The concern with data capture, transportation and storage are as important
as data analysis for real-time analysis. This requires horizontal scalability, in a
robust and modular architecture. Moreover, the system must be designed in a
way that adding more machines should be an easy task. This paper presents an
architecture for a reliable and horizontally scalable packet capture system.

In section 2 some facts about the rise of the internet and cyberattacks are
described. Section 3 follows with the concepts and challenges in the packet cap-
ture process, how to achieve real-time analysis and some tools to perform the
capture. Section 4 presents the different application scenarios and the functional
and security requirements that a system should have. Section 5 describes the
design of the proposed system, how it works and what technologies it uses.

2 Network and cyberattacks

Nowadays, more and more devices are connected to the internet. It is foreseen
that, by the end of 2025, a total of around 8 billion people and 41.2 billion
devices are connected to the internet, with 10.3 billion non-IoT devices (laptops,
desktops, smartphones, etc.) [10,20].

With this huge number of devices connected to the Internet, the compa-
nies that provide online services (social media, banking, retail, cloud, etc), will
also need to expand to be able to keep up with the increasing demand. This
growth will consist in an expansion of the companies’ Information Technology
(IT) infrastructures, adding more servers and routing devices. This increase will
also result in a higher probability of suffering a cyberattack, with, eventually, the
whole IT infrastructure being compromised. The more devices that are connected
to the company infrastructure, the more the risk of suffering a cyberattack.

Cyberattacks are the main problem of the digital world and, according to
Lysenko et al. [13], they have generated financial damage of around 1.5 trillion
U.S. dollars in 2019. Small companies are the most fragile since around 60% of
them close within six months of an incident [7]. But this does not mean that
medium to large companies are safe from serious problems, since, for example,
leaked intellectual property or stolen user data can have a severe negative impact
on any company. CD Projekt, in Feb of 2021, got breached and all of the data
stolen (accounting, administration, HR) including the source code of multiple
projects (that were sold later by the hackers) not to mention the hours that
the employees were unable to work, costing the company even more money [8].
Yahoo, in 2016, announced that in 2013/2014 they suffered a security breach
compromising 3 billion user accounts [19], including real names, email addresses,
dates of birth and telephone numbers [2], at the time Yahoo was being purchased
by another company and after this announcement they lower the offer by 350
million U.S. dollars.

The number of cyberattacks is growing both in number and complexity. There
are always new ways of breaching and compromising the networks and with this
complexity, traditional IDS and IPS are no longer effective due to the lack of
successful detection and prevention of attacks and the ability to operate with

B3

A scalable, real-time packet capturing solution 3

complex IT infrastructure. Part of the issue is due to the necessity to capture
an increasing number of packets, and to forward them and process them in near
real-time.

Efficient data collection systems are, thus, necessary. They must be able to
capture data (explanation in this section) then, if the data is not stored in the
same machine, they must be transported and, finally, stored securely.

3 Packet capture

Cyberattacks perpetrators usually make efforts to cover their tracks during an
attack. Security researchers can find new ways to prevent cyberattacks the same
way attackers can adopt anti-forensic techniques trying to remain undetected
and without leaving traces.

Log files can be used to detect some attacks, such as massive unauthorized
accesses or failed logins. However, they are not enough in most situations, since
it is not possible to detect all kind of attacks and there is also the possibility of
those getting modified or erased, eluding the security team scrutiny.

There is only one thing that attackers (or anyone else) can never change or
purge and that is network traffic. As they can never be changed or removed, it
is the best candidate to perform a full-depth analysis of the network, to try to
identify who the attackers are, when the attack took place, for how long, with
what tools, and what was transferred. Nevertheless, as the network traffic is
volatile information, it only exists while transmitted, raising the need to capture
and store it in real-time.

As expected, the amount of network traffic is considerable, easily reaching
terabyte worth of space in a matter of seconds, making its collection and storage
a very expensive operation. Depending on what the security needs to know about
the network, it must select which type of data must be stored, from a byte in a
header to the full-packet capture.

3.1 Data transportation

In the impossibility of processing locally the data resulting from the packet cap-
ture process, it must be transported to a central storage or processing host. Some
systems capture and store the packets locally and only after they are transferred
to another location for further analyses (usually in PCAP format). However,
this approach is not ideal, due to the introduced delay between capturing and
analysis. In fact, it does not allow real-time assessment, delaying the discovery
of an attack that already happened.

An approach to achieve real-time analyses and also prevent an attack or
minimize its damage is to capture the packets and send them immediately to
another machine. This way, while a machine is capturing packets and sending
them, another one is processing and analysing them.

Nevertheless, it is important that data transportation do not flood the net-
work and if the receiver machine is overloaded, then, the captured machine must
have a way to buffer the packets locally.

B4

4 Oliveira et al.

3.2 Distributed data streaming

To achieve full horizontal scalability, it is fundamental that the destination is not
a single host, since it would compromise the possibility to increase the processing
power. So, data must be sent to a group of machines that works collectively, in
a synchronized way, distributing tasks and workloads.

S. Mousavi et al. [14] used, on their system, Apache Kafka or Redis as a
queuing system, to transport data from multiple sources and make them avail-
able to multiple destinations. Apache Kafka is a distributed event streaming,
capable of synchronizing multiple consumers and producers. Apache Kafka data
are modelled as logs and, since logs are events, they are impossible to change
or erase because they already happened, making the Apache Kafka reliable and
safe from modifications while the data is in the distributed queuing system.

J. Evermann et al. [5] used Amazon Kinesis, another example of a distributed
event stream, to process data on the fly, stating that they could process “tens
of millions of events per minute”.

3.3 Data collection

Depending on the architecture packet storage may or may not be necessary.
With a distributed data streaming system, the data consuming hosts (analyzing
modules, algorithms for DNS detection, classification, estimation, prevision, etc.)
may consume data directly from the queues in real-time. The queuing system,
normally, will persist the data for a predefined period of time and delete the
oldest if it runs out of space.

As said before, data collection systems are systems that capture, transmit
and store network packets. This kind of systems allows the security team to
detect network attacks by searching for abnormal patterns.

P. Emmerich et al. [4] implemented a custom local queuing data structure
queue of queues. Their system can capture and store packets in 100Gbit/s net-
works (120Gbit/s was reached in their experiments). The problem with their
solution is that it is not a distributed solution, which can be a bottleneck since
they capture and store packets in a local file.

P. Roquero et al. [16] present a scalable data collection system, capturing
packets in multiple points of a network and sending them to multiple receivers
for analysis. Data capture is performed by a swarm of software probes, that
have to be installed in all the network computers. This requires access to each
computer and individual installation and configuration, and it would be difficult
to implement due to the need for authorization to install the software in critical
servers, and the impossibility to install it in IoT devices, embedded systems, and
others.

Data capture rely on specialized tools, that can be both software or hardware-
based. Software-based packet capture tools consist of several subsystems. The
packets flow starts at the Network Card Interface (NIC) and ends up in the
userspace subsystem. If any problem occurs in any of the subsystems, packet

B5

A scalable, real-time packet capturing solution 5

loss will most likely occur [9]. Some examples are nProbe, ntopng, netsniff-ng,
TCPDump and Scapy.

Hardware-based tools are usually more expensive than software-based tools.
Data Acquisition and Generation (DAG) cards are devices to capture network
packets with filters at the hardware level. In routing devices that have port mir-
roring activated, they send a copy of every packet that crosses that routing device
to a specific physical port. Port mirroring can be enabled without modifying the
network infrastructure.

4 Application scenarios

In addition to security auditing and processing, data collection is also important
for many other applications. Managing the network is one of them, analysing the
retransmission rate of the packets, the loss of connectivity, or network failures
detection. It is also possible to monitor the networks’ Quality of Service (QoS)
[16].

Many kinds of malware perform malicious behaviours like, collecting infor-
mation, compromising the systems, etc, throughout the network. Therefore, it
is essential to also find existing malware in the network and not to just focus
on what may come from the outside. S. Pudukotai et al. [15] perform malware
analysis using machine learning with an accuracy of 92.21%.

Network data can even be used to compute an estimation of the occupancy of
a room. E. Longo et al. [11] made a system with cheap Wi-Fi sniffers to capture
Wi-Fi network packets. Then, with only Wi-Fi frames, they can estimate the
occupancy of a given room.

H. Lin et al. [9] presents a set o functional and security requirements that a
data collection should meet, among which we highlight the following functional
requirements: it must be flexible and scalable; it must be capable of dynamically
knowing which data to filter and capture; it must be automatic in terms of
adaptability; it must be able to store collected data.

Concerning the last functional requirement, we defend that storage of the
packets, on a real-time analysis system, may be just for a couple of seconds,
while the system has time to perform the needed operations. After that, it might
not be necessary to keep them stored.

Taking into account the security requirements [9] we highlight the following:
it must be able to prevent data loss and ensure data integrity during the capture
and transmission; it must be able to verify the integrity and authenticity of the
collected data; it must protect the data against unauthorized users.

5 Proposed system

It is important to design a system that respects the functional and security
requirements defined above. This system was designed with the idea of fully
horizontal scalability with an easy way to add more physical resources. If more

B6

6 Oliveira et al.

packet capture devices are necessary, it should be possible just to plug in new
ones. If more analysis services or algorithms are necessary, it should be easy to
add them, and the same happens for the data transport (Fig. 1).

Fig. 1. Components diagram

The number of capture devices depends on the situation. Nevertheless, the
strategy is to place a capture device on switch devices that have endpoints
connected to it. This way, in the case of Network Address Translation (NAT),
the system does not lose any information and knows exactly where the packets
came from.

The port mirror approach will be used to make a copy of every packet that
crosses that routing device, in a way it’s not necessary to modify the current
structure of the network. After the capture devices are in place, the system uses
the software tool TCPDump to capture the network packets (it captures all pack-
ets, not only TCP). The newest versions already use the zero-copy mechanism,
which is a good candidate to perform the capture of the packets.

While packets are being captured, they will not be saved locally on that
machine, instead, they’ll be placed on a local Apache Kafka buffer.

After the system possesses a good continuous dataset of information available
in the Apache Kafka ecosystem, any other system (with the right authorization)
may consume them, process them and produce results. With that data we can
feed any kind of service: it can be sent to dashboard services to monitor the
network in real-time, or to a storage system, or to an IDS that uses a set of
machine learning algorithms in order to classify the traffic and detect attacks.
Again, a solid dataset, growing in real-time, is crucial to develop decision tools
and intelligent services to support the security teams.

6 Conclusion

In this work, an approach for network data capturing is presented. The con-
ceptualization is based on relevant scientific literature, assessing the knowledge
that emerges from them, and that allows to frame the system in contemporary
IT infrastructures and requirements. With this in mind, a flexible, scalable and
practical architecture is suggested, keeping a low impact on the network.

B7

A scalable, real-time packet capturing solution 7

We are currently testing the system performance, concerning the network
packet capture and streaming to the Apache Kafka cluster.

The next steps include instantiating the architecture in a test scenario, com-
posed of IoT devices, regular workstations, laptops and different servers. This
will allow the assessment of the scalability and flexibility of the suggested archi-
tecture.

Acknowledgment

This work was partially supported by the Norte Portugal Regional Operational
Programme(NORTE 2020), under the PORTUGAL 2020 Partnership Agree-
ment, through the European Regional Development Fund (ERDF), within project
“CybersSeCIP” (NORTE-01-0145-FEDER-000044).

References

1. Cordero, C.G., Hauke, S., Muhlhauser, M., Fischer, M.: Analyzing flow-
based anomaly intrusion detection using Replicator Neural Networks. In:
2016 14th Annual Conference on Privacy, Security and Trust, PST 2016.
pp. 317–324. Institute of Electrical and Electronics Engineers Inc. (2016).
https://doi.org/10.1109/PST.2016.7906980

2. Dan Swinhoe: The 15 biggest data breaches of the 21st century — CSO Online
(2021), https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-
the-21st-century.html

3. Do, E.H., Gadepally, V.N.: Classifying Anomalies for Network Secu-
rity. In: ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings. vol. 2020-May, pp. 2907–2911.
Institute of Electrical and Electronics Engineers Inc. (may 2020).
https://doi.org/10.1109/ICASSP40776.2020.9053419

4. Emmerich, P., Pudelko, M., Gallenmüller, S., Carle, G.: FlowScope: Efficient
packet capture and storage in 100 Gbit/s networks. In: 2017 IFIP Net-
working Conference, IFIP Networking 2017 and Workshops. vol. 2018-Janua,
pp. 1–9. Institute of Electrical and Electronics Engineers Inc. (jul 2017).
https://doi.org/10.23919/IFIPNetworking.2017.8264852

5. Evermann, J., Rehse, J.R., Fettke, P.: Process discovery from event stream
data in the cloud - A scalable, distributed implementation of the flexible
heuristics miner on the amazon kinesis cloud infrastructure. In: Proceedings
of the International Conference on Cloud Computing Technology and Sci-
ence, CloudCom. vol. 0, pp. 645–652. IEEE Computer Society (jul 2016).
https://doi.org/10.1109/CloudCom.2016.0111

6. Guo, Y.T., Gao, Y., Wang, Y., Qin, M.Y., Pu, Y.J., Wang, Z., Liu, D.D.,
Chen, X.J., Gao, T.F., Lv, T.T., Fu, Z.C.: DPI & DFI: A Malicious Behavior
Detection Method Combining Deep Packet Inspection and Deep Flow Inspec-
tion. In: Procedia Engineering. vol. 174, pp. 1309–1314. Elsevier Ltd (jan 2017).
https://doi.org/10.1016/j.proeng.2017.01.276

7. Johnson, R.: 60 Percent of Small Companies Close Within 6 Months of Being
Hacked (2019), https://cybersecurityventures.com/60-percent-of-small-companies-
close-within-6-months-of-being-hacked/

B8

8 Oliveira et al.

8. Kent, E.: CD Projekt hit by ”targeted cyber attack” (2021),
https://www.eurogamer.net/articles/2021-02-09-cd-projekt-hit-by-targeted-
cyber-attack

9. Lin, H., Yan, Z., Chen, Y., Zhang, L.: A Survey on Network Security-
Related Data Collection Technologies. IEEE Access 6, 18345–18365 (mar 2018).
https://doi.org/10.1109/ACCESS.2018.2817921

10. Lionel Sujay Vailsher: Global IoT and non-IoT connections 2010-2025 (2021),
https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-
worldwide/

11. Longo, E., Redondi, A.E., Cesana, M.: Accurate occupancy estimation with WiFi
and bluetooth/BLE packet capture. Computer Networks 163, 106876 (nov 2019).
https://doi.org/10.1016/j.comnet.2019.106876

12. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., Saberian, M.: Deep
packet: a novel approach for encrypted traffic classification using deep learning.
Soft Computing 24(3), 1999–2012 (feb 2020). https://doi.org/10.1007/s00500-019-
04030-2, https://doi.org/10.1007/s00500-019-04030-2

13. Lysenko, S., Bobrovnikova, K., Shchuka, R., Savenko, O.: A cyberattacks detec-
tion technique based on evolutionary algorithms. In: 2020 IEEE 11th International
Conference on Dependable Systems, Services and Technologies (DESSERT). pp.
127–132 (2020). https://doi.org/10.1109/DESSERT50317.2020.9125016

14. Mousavi, S.H., Khansari, M., Rahmani, R.: A fully scalable big data framework
for Botnet detection based on network traffic analysis. Information Sciences 512,
629–640 (feb 2020). https://doi.org/10.1016/j.ins.2019.10.018

15. Pudukotai Dinakarrao, S.M., Sayadi, H., Makrani, H.M., Nowzari, C., Rafati-
rad, S., Homayoun, H.: Lightweight Node-level Malware Detection and Network-
level Malware Confinement in IoT Networks. In: Proceedings of the 2019 De-
sign, Automation and Test in Europe Conference and Exhibition, DATE 2019.
pp. 776–781. Institute of Electrical and Electronics Engineers Inc. (may 2019).
https://doi.org/10.23919/DATE.2019.8715057

16. Roquero, P., Magaña, E., Leira, R., Aracil, J.: Performance evaluation of client-
based traffic sniffing for very large populations. Computer Networks 166, 106985
(jan 2020). https://doi.org/10.1016/j.comnet.2019.106985

17. Saini, P.S., Behal, S., Bhatia, S.: Detection of DDoS attacks using ma-
chine learning algorithms. In: Proceedings of the 7th International Confer-
ence on Computing for Sustainable Global Development, INDIACom 2020.
pp. 16–21. Institute of Electrical and Electronics Engineers Inc. (mar 2020).
https://doi.org/10.23919/INDIACom49435.2020.9083716

18. Sobers, R.: Data Breach Response Times: Trends and Tips (2020),
https://www.varonis.com/blog/data-breach-response-times/

19. Stempel Jonathan, Finkle Jim: Yahoo says all three billion accounts hacked
in 2013 data theft — Reuters (2017), https://www.reuters.com/article/us-
yahoo-cyber/yahoo-says-all-three-billion-accounts-hacked-in-2013-data-theft-
idUSKCN1C82O1

20. Worldometer: World Population Projections - Worldometer (2021),
https://www.worldometers.info/world-population/world-population-projections/

B9

Appendix C

Switch configurations

Listing C.1: Cisco switch configuration

1 ip dhcp pool 1

2 network 10.0.0.0 255.255.255.0

3 !

4 ip dhcp excluded-address 10.0.0.1 10.0.0.9

5 !

6 vlan 5

7 name mirroring

8 !

9 vlan 10

10 name management

11 !

12 interface GigabitEthernet1/0/20

13 switchport mode access

14 !

15 interface GigabitEthernet1/0/21

16 switchport mode access

17 !

18 interface GigabitEthernet1/0/22

19 switchport access vlan 5

20 switchport mode access

21 !

22 interface GigabitEthernet1/0/24

23 switchport access vlan 10

24 switchport mode access

25 !

26 interface Vlan1

C1

27 ip address 10.0.0.1 255.255.255.0

28 !

29 interface Vlan10

30 ip address 10.1.1.1 255.255.255.0

31 !

32 monitor session 1 source vlan 1

33 monitor session 1 destination interface Gi1/0/22 encapsulation replicate

C2

Appendix D

Services deployment

Listing D.1: Zookeeper installation script

1 #!/bin/bash

2 apt update

3 apt install default-jdk openjdk-8-jdk -y

4

5 cat ../hosts >> /etc/hosts

6

7 cd /opt

8 wget https://mirrors.up.pt/pub/apache/zookeeper/

9 zookeeper-3.7.0/apache-zookeeper-3.7.0-bin.tar.gz

10

11 tar -xzf apache-zookeeper-3.7.0-bin.tar.gz

12 rm apache-zookeeper-3.7.0-bin.tar.gz

13 mv apache-zookeeper-3.7.0-bin apache-zookeeper

14 chmod 777 apache-zookeeper -R

15

16 cd - > /dev/null

17 cp zoo.cfg /opt/apache-zookeeper/conf/.

18 cp zookeeper.service /etc/systemd/system/.

19 mkdir -p /data/zookeeper

20 chmod 777 -R /data

21

22 mkdir -p /ssl

23 chmod 777 /ssl -R

24 cp ../ssl/* /ssl/.

25

26 systemctl daemon-reload

D1

27 systemctl enable zookeeper

28 systemctl start zookeeper

29

30 echo 'Done.'

Listing D.2: Zookeeper configuration file

1 tickTime = 2000

2 dataDir = /data/zookeeper

3 initLimit = 5

4 syncLimit = 2

5 serverCnxnFactory=org.apache.zookeeper.server.NettyServerCnxnFactory

6 admin.enableServer=false

7 secureClientPort=2281

8 ssl.clientAuth=need

9 ssl.keyStore.location=/ssl/zookeeper.keystore.jks

10 ssl.keyStore.password=estigestig

11 ssl.trustStore.location=/ssl/kafka.truststore.jks

12 ssl.trustStore.password=estigestig

Listing D.3: Zookeeper service manager configuration file

1 [Unit]

2 Description=Zookeeper Daemon

3 Documentation=http://zookeeper.apache.org

4 Requires=network.target

5 After=network.target

6

7 [Service]

8 Type=forking

9 WorkingDirectory=/opt/apache-zookeeper

10 ExecStart=/opt/apache-zookeeper/bin/zkServer.sh start /opt/apache-zookeeper/conf/zoo.cfg

11 ExecStop= /opt/apache-zookeeper/bin/zkServer.sh stop /opt/apache-zookeeper/conf/zoo.cfg

12 ExecReload=/opt/apache-zookeeper/bin/zkServer.sh restart /opt/apache-zookeeper/conf/zoo.cfg

13 TimeoutSec=30

14 Restart=on-failure

15

16 [Install]

17 WantedBy=default.target

Listing D.4: Kafka installation script

D2

1 #!/bin/bash

2

3 if [$# -eq 0]

4 then

5 printf "Missing broker id.\nUsage: $0 <id>\n"

6 exit

7 fi

8

9 node_id=$1

10

11 apt update

12 apt install default-jdk openjdk-8-jdk -y

13

14 cat ../hosts >> /etc/hosts

15

16 cd /opt

17 wget https://dlcdn.apache.org/kafka/2.8.0/kafka_2.13-2.8.0.tgz

18 tar -xzf kafka_2.13-2.8.0.tgz

19 rm kafka_2.13-2.8.0.tgz

20 mv kafka_2.13-2.8.0 apache-kafka

21 chmod 777 apache-kafka -R

22

23 cd - > /dev/null

24 sed -e "s/\${id}/$node_id/" server.properties > /opt/apache-kafka/config/server.properties

25 cp kafka.service /etc/systemd/system/.

26 mkdir -p /data/kafka-logs

27 chmod 777 -R /data

28

29 mkdir -p /ssl

30 chmod 777 /ssl -R

31 cp ../ssl/* /ssl/.

32

33 systemctl daemon-reload

34 systemctl enable kafka

35 systemctl start kafka

36

37 echo 'Done.'

Listing D.5: Kafka configuration file

1 broker.id=${id}

2 listeners=SSL://:9093

D3

3 security.inter.broker.protocol=SSL

4 advertised.host.name=kafka${id}.msisc.com

5 advertised.listeners=SSL://kafka${id}.msisc.com:9093

6

7 num.network.threads=3

8 num.io.threads=8

9 socket.send.buffer.bytes=102400

10 socket.receive.buffer.bytes=102400

11 socket.request.max.bytes=104857600

12 log.dirs=/data/kafka-logs

13 num.partitions=1

14

15 num.recovery.threads.per.data.dir=1

16 offsets.topic.replication.factor=1

17 transaction.state.log.replication.factor=1

18 transaction.state.log.min.isr=1

19

20 log.retention.hours=168

21 log.segment.bytes=1073741824

22 log.retention.check.interval.ms=300000

23

24 zookeeper.connect=zookeeper.msisc.com:2281

25 zookeeper.clientCnxnSocket=org.apache.zookeeper.ClientCnxnSocketNetty

26 zookeeper.ssl.client.enable=true

27 ssl.client.auth=required

28 ssl.keystore.location=/ssl/kafka${id}.keystore.jks

29 ssl.keystore.password=estigestig

30 zookeeper.ssl.keystore.location=/ssl/kafka${id}.keystore.jks

31 zookeeper.ssl.keystore.password=estigestig

32 ssl.truststore.location=/ssl/kafka.truststore.jks

33 ssl.truststore.password=estigestig

34 zookeeper.ssl.truststore.location=/ssl/kafka.truststore.jks

35 zookeeper.ssl.truststore.password=estigestig

Listing D.6: Kafka service manager configuration file

1 [Unit]

2 Description=Apache Kafka Broker

3 Documentation=http://kafka.apache.org/documentation.html

4

5 [Service]

6 Type=simple

7 Environment="JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64"

D4

8 ExecStart=/opt/apache-kafka/bin/kafka-server-start.sh /opt/apache-kafka/config/server.properties

9 ExecStop=/opt/apache-kafka/kafka-server-stop.sh

10

11 [Install]

12 WantedBy=multi-user.target

Listing D.7: Hadoop name node installation script

1 #!/bin/bash

2

3 apt update

4 apt install default-jdk openjdk-8-jdk -y

5 cat ../../hosts >> /etc/hosts

6

7 cd /opt

8 wget https://dlcdn.apache.org/hadoop/common/hadoop-3.2.2/hadoop-3.2.2.tar.gz

9 tar -xzf hadoop-3.2.2.tar.gz

10 rm hadoop-3.2.2.tar.gz

11 mv hadoop-3.2.2 apache-hadoop

12 chmod 777 apache-hadoop -R

13

14 cd - > /dev/null

15

16 cd ..

17 cp core-site.xml hadoop-env.sh hdfs-site.xml /opt/apache-hadoop/etc/hadoop/

18 /opt/apache-hadoop/bin/hdfs namenode -format

19

20 cd - > /dev/null

21

22 chmod +x start-hdfs.sh stop-hdfs.sh

23 cp start-hdfs.sh stop-hdfs.sh /opt/apache-hadoop/

24 cp hadoop.service /etc/systemd/system/.

25

26 mkdir -p /ssl

27 chmod 777 /ssl -R

28 cp ../../ssl/* /ssl/.

29

30 systemctl daemon-reload

31 systemctl enable hadoop

32 systemctl start hadoop

33

34 echo 'Done.'

D5

Listing D.8: Hadoop name node service manager configuration file

1 [Unit]

2 Description=HDFS Daemon

3 Documentation=http://zookeeper.apache.org

4 Requires=network.target

5 After=network.target

6

7 [Service]

8 Type=forking

9 WorkingDirectory=/opt/apache-hadoop/bin/

10 ExecStart=/opt/apache-hadoop/start-hdfs.sh

11 ExecStop=/opt/apache-hadoop/stop-hdfs.sh

12

13 TimeoutSec=30

14 Restart=on-failure

15

16 [Install]

17 WantedBy=default.target

Listing D.9: Hadoop data node installation script

1 #!/bin/bash

2

3 apt update

4 apt install default-jdk openjdk-8-jdk -y

5

6 cat ../../hosts >> /etc/hosts

7 cd /opt

8 wget https://dlcdn.apache.org/hadoop/common/hadoop-3.2.2/hadoop-3.2.2.tar.gz

9 tar -xzf hadoop-3.2.2.tar.gz

10 rm hadoop-3.2.2.tar.gz

11 mv hadoop-3.2.2 apache-hadoop

12 chmod 777 apache-hadoop -R

13

14 cd - > /dev/null

15

16 cp yarn-site.xml /opt/apache-hadoop/etc/hadoop/

17

18 cd ..

19 cp core-site.xml hadoop-env.sh hdfs-site.xml /opt/apache-hadoop/etc/hadoop/

D6

20 /opt/apache-hadoop/bin/hdfs datanode -format

21

22 cd - > /dev/null

23

24 cp hadoop.service /etc/systemd/system/.

25

26 mkdir -p /ssl

27 chmod 777 /ssl -R

28 cp ../../ssl/* /ssl/.

29

30 systemctl daemon-reload

31 systemctl enable hadoop

32 systemctl start hadoop

33

34 echo 'Done.'

Listing D.10: Hadoop data node service manager configuration file

1 [Unit]

2 Description=HDFS Daemon

3 Documentation=http://zookeeper.apache.org

4 Requires=network.target

5 After=network.target

6

7 [Service]

8 Type=forking

9 WorkingDirectory=/opt/apache-hadoop/bin/

10 ExecStart=/opt/apache-hadoop/bin/hdfs --daemon start datanode

11 ExecStop=/opt/apache-hadoop/bin/hdfs --daemon stop datanode

12

13 TimeoutSec=30

14 Restart=on-failure

15

16 [Install]

17 WantedBy=default.target

Listing D.11: Hadoop name and data node configuration file (core-site.xml)

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

D7

4 <property>

5 <name>fs.defaultFS</name>

6 <value>hdfs://hadoop-master.msisc.com:9000</value>

7 </property>

8 <property>

9 <name>hadoop.ssl.require.client.cert</name>

10 <value>false</value>

11 </property>

12 <property>

13 <name>hadoop.ssl.hostname.verifier</name>

14 <value>DEFAULT</value>

15 </property>

16 <property>

17 <name>hadoop.ssl.keystores.factory.class</name>

18 <value>org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory</value>

19 </property>

20 <property>

21 <name>hadoop.ssl.server.conf</name>

22 <value>ssl-server.xml</value>

23 </property>

24 <property>

25 <name>hadoop.ssl.client.conf</name>

26 <value>ssl-client.xml</value>

27 </property>

28 </configuration>

Listing D.12: Hadoop name and data node node configuration file (hdfs-site.xml)

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

4 <property>

5 <name>dfs.permissions</name>

6 <value>false</value>

7 </property>

8 <property>

9 <name>dfs.namenode.name.dir</name>

10 <value>/opt/apache-hadoop/data/nameNode</value>

11 </property>

12 <property>

13 <name>dfs.datanode.data.dir</name>

14 <value>/opt/apache-hadoop/data/dataNode</value>

15 </property>

D8

16 <property>

17 <name>dfs.replication</name>

18 <value>2</value>

19 </property>

20 <property>

21 <name>dfs.http.policy</name>

22 <value>HTTPS_ONLY</value>

23 </property>

24 <property>

25 <name>dfs.client.https.need-auth</name>

26 <value>false</value>

27 </property>

28 <property>

29 <name>dfs.namenode.https-address</name>

30 <value>hadoop-master.msisc.com:50470</value>

31 </property>

32 </configuration>

Listing D.13: Hadoop name and data node configuration file (mapred-site.xml)

1 <?xml version="1.0"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

4 <property>

5 <name>mapreduce.jobhistory.http.policy</name>

6 <value>HTTPS_ONLY</value>

7 </property>

8 <property>

9 <name>mapreduce.jobhistory.webapp.https.address</name>

10 <value>hadoop-master.msisc.com:19889</value>

11 </property>

12 <property>

13 <name>mapreduce.ssl.enabled</name>

14 <value>true</value>

15 </property>

16 <property>

17 <name>mapreduce.shuffle.ssl.enabled</name>

18 <value>true</value>

19 </property>

20 </configuration>

Listing D.14: Hadoop name and data node configuration file (yarn-site.xml)

D9

1 <?xml version="1.0"?>

2 <configuration>

3 <property>

4 <name>yarn.resourcemanager.hostname</name>

5 <value>hadoop-master.msisc.com</value>

6 </property>

7 <property>

8 <name>yarn.http.policy</name>

9 <value>HTTPS_ONLY</value>

10 </property>

11 <property>

12 <name>yarn.log.server.url</name>

13 <value>https://hadoop-master.msisc.com:19889</value>

14 </property>

15 <property>

16 <name>yarn.resourcemanager.webapp.https.address</name>

17 <value>hadoop-master.msisc.com:8089</value>

18 </property>

19 <property>

20 <name>yarn.nodemanager.webapp.https.address</name>

21 <value>0.0.0.0:8090</value>

22 </property>

23 </configuration>

Listing D.15: Hadoop name node configuration file (ssl-server.xml)

1 <?xml version="1.0"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

4 <property>

5 <name>ssl.server.truststore.location</name>

6 <value>/ssl/kafka.truststore.jks</value>

7 </property>

8 <property>

9 <name>ssl.server.truststore.password</name>

10 <value>estigestig</value>

11 </property>

12 <property>

13 <name>ssl.server.truststore.type</name>

14 <value>jks</value>

15 </property>

16 <property>

D10

17 <name>ssl.server.truststore.reload.interval</name>

18 <value>10000</value>

19 </property>

20 <property>

21 <name>ssl.server.keystore.location</name>

22 <value>/ssl/hadoop-master.keystore.jks</value>

23 </property>

24 <property>

25 <name>ssl.server.keystore.password</name>

26 <value>estigestig</value>

27 </property>

28 <property>

29 <name>ssl.server.keystore.keypassword</name>

30 <value>estigestig</value>

31 </property>

32 <property>

33 <name>ssl.server.keystore.type</name>

34 <value>jks</value>

35 </property>

36 <property>

37 <name>ssl.server.exclude.cipher.list</name>

38 <value>TLS_ECDHE_RSA_WITH_RC4_128_SHA,SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA,

39 SSL_RSA_WITH_DES_CBC_SHA,SSL_DHE_RSA_WITH_DES_CBC_SHA,

40 SSL_RSA_EXPORT_WITH_RC4_40_MD5,SSL_RSA_EXPORT_WITH_DES40_CBC_SHA,

41 SSL_RSA_WITH_RC4_128_MD5</value>

42 </property>

43 </configuration>

Listing D.16: Hadoop data node configuration file (client-server.xml)

1 <?xml version="1.0"?>

2 <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

3 <configuration>

4 <property>

5 <name>ssl.client.truststore.location</name>

6 <value>/ssl/kafka.truststore.jks</value>

7 </property>

8 <property>

9 <name>ssl.client.truststore.password</name>

10 <value>estigestig</value>

11 </property>

12 <property>

13 <name>ssl.client.truststore.type</name>

D11

14 <value>jks</value>

15 </property>

16 <property>

17 <name>ssl.client.truststore.reload.interval</name>

18 <value>10000</value>

19 </property>

20 <property>

21 <name>ssl.client.keystore.location</name>

22 <value>/ssl/hadoop-master.keystore.jks</value>

23 </property>

24 <property>

25 <name>ssl.client.keystore.password</name>

26 <value>estigestig</value>

27 </property>

28 <property>

29 <name>ssl.client.keystore.keypassword</name>

30 <value>estigestig</value>

31 </property>

32 <property>

33 <name>ssl.client.keystore.type</name>

34 <value>jks</value>

35 </property>

36 </configuration>

Listing D.17: Spark-master installation script

1 #!/bin/bash

2

3 apt update

4 apt install default-jdk openjdk-8-jdk -y

5

6 cat ../../hosts >> /etc/hosts

7

8 cd /opt

9 wget https://mirrors.up.pt/pub/apache/spark/spark-3.1.2/spark-3.1.2-bin-hadoop3.2.tgz

10 tar -xzf spark-3.1.2-bin-hadoop3.2.tgz

11 rm spark-3.1.2-bin-hadoop3.2.tgz

12 mv spark-3.1.2-bin-hadoop3.2 apache-spark

13 chmod 777 apache-spark -R

14

15 cd - > /dev/null

16

17 cp spark-master.service /etc/systemd/system/.

D12

18

19 mkdir -p /ssl

20 chmod 777 /ssl -R

21 cp ../../ssl/* /ssl/.

22

23 systemctl daemon-reload

24 systemctl enable spark-master

25 systemctl start spark-master

26

27 echo 'Done.'

Listing D.18: Spark-master service manager configuration file

1 [Unit]

2 Description=Apache Spark

3 Documentation=http://kafka.apache.org/documentation.html

4

5 [Service]

6 Type=forking

7 Environment="JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64"

8 ExecStart=/opt/apache-spark/sbin/start-master.sh --host spark-master.msisc.com

9 ExecStop=/opt/apache-spark/sbin/stop-master.sh

10

11 [Install]

12 WantedBy=multi-user.target

Listing D.19: Spark-worker installation script

1 #!/bin/bash

2

3 apt update

4 apt install default-jdk openjdk-8-jdk -y

5

6 cat ../../hosts >> /etc/hosts

7

8 cd /opt

9 wget https://mirrors.up.pt/pub/apache/spark/spark-3.1.2/spark-3.1.2-bin-hadoop3.2.tgz

10 tar -xzf spark-3.1.2-bin-hadoop3.2.tgz

11 rm spark-3.1.2-bin-hadoop3.2.tgz

12 mv spark-3.1.2-bin-hadoop3.2 apache-spark

13 chmod 777 apache-spark -R

D13

14

15 cd - > /dev/null

16

17 cp spark-slave.service /etc/systemd/system/.

18

19 mkdir -p /ssl

20 chmod 777 /ssl -R

21 cp ../../ssl/* /ssl/.

22

23 systemctl daemon-reload

24 systemctl enable spark-slave

25 systemctl start spark-slave

26

27 echo 'Done.'

Listing D.20: Spark-worker service manager configuration file

1 [Unit]

2 Description=Apache Spark

3 Documentation=http://kafka.apache.org/documentation.html

4

5 [Service]

6 Type=forking

7 Environment="JAVA_HOME=/usr/lib/jvm/java-1.11.0-openjdk-amd64"

8 ExecStart=/opt/apache-spark/sbin/start-worker.sh spark://spark-master.msisc.com:7077

9 ExecStop=/opt/apache-spark/sbin/stop-master.sh

10

11 [Install]

12 WantedBy=multi-user.target

D14

Appendix E

Packet capture application versions

source code

Listing E.1: Packet capture version 2 application complete source-code

1 #define _GNU_SOURCE

2 #ifdef linux

3

4 #include <syscall.h>

5

6 #endif

7

8 #include <time.h>

9 #include <sys/time.h>

10 #include <unistd.h>

11 #include <pthread.h>

12 #include <stdio.h>

13 #include <stdlib.h>

14 #include <pcap.h>

15 #include <strings.h>

16 #include <string.h>

17 #include <errno.h>

18 #include <signal.h>

19 #include <sched.h>

20 #include <sys/file.h>

21 #include <sys/mman.h>

22 #include <sys/resource.h>

23 #include <fcntl.h>

E1

24 #include <limits.h>

25 #include <sys/wait.h>

26 #include "settings.h"

27 #include <sys/stat.h>

28

29 #include <librdkafka/rdkafka.h>

30

31 #define gettid() syscall(__NR_gettid) /* missing in headers? */

32 #define MAXPKT 16384 /* larger than any jumbogram */

33 #define SNAP_LEN 65535 /* apparently what tcpdump uses for -s 0 */

34 #define WRITESIZE 65536 /* usual write chunk size - must be 2^N (what we want: 524288) */

35 #define PACKET_BUFFER_TIMEOUT 1000 /* set at 1000 works (original is 0)*/

36 #define GRE_HDRLEN 50 /* Cisco GRE encapsulation header size */

37 #define READ_PRIO -15 /* niceness value for Reader thread */

38 #define WRITE_PRIO 10 /* niceness value for Writer thread */

39 #define READER_CPU 1 /* assign Reader thread to this CPU */

40 #define WRITER_CPU 0 /* assign Writer thread to this CPU */

41 #define POLL_USECS 1000 /* ring full/empty poll interval */

42 #ifdef RHEL3

43 # define my_sched_setaffinity(a,b,c) sched_setaffinity(a, c)

44 #else

45 # define my_sched_setaffinity(a, b, c) sched_setaffinity(a, b, c)

46 #endif /* RHEL3 */

47 #define V_WIDTH 10 /* minimum size of -V ps status field */

48 #define TEMPLATE "/gulp.XXXXXX" /* mktemp template for files in -o dir */

49

50 #define RMEM_MAX "/proc/sys/net/core/rmem_max" /* system tuning */

51 #define RMEM_DEF "/proc/sys/net/core/rmem_default" /* system tuning */

52 #define RMEM_SUG 4194304 /* suggested value */

53 FILE *procf;

54 int rmem_def = RMEM_SUG, rmem_max = RMEM_SUG; /* check tuning */

55

56 int WriteSize = WRITESIZE; /* desired size for aligned writes */

57 int snap_len = SNAP_LEN; /* requested limit on packet capture size */

58 int d_snap_len = SNAP_LEN; /* actual limit on packet capture size */

59 int poll_usecs = POLL_USECS; /* ring full/empty poll interval */

60 int packet_buffer_timeout = PACKET_BUFFER_TIMEOUT;

61 int just_copy = 0; /* read from stdin instead of eth# */

62 int captured = 0; /* number of packets captured for stats */

63 int ignored = 0; /* number of packets !decapsulated for stats */

64 int maxbuffered = 0; /* maximum number of bytes ring buffered */

65 int ringsize = RINGSIZE; /* ring buffer size */

66 int gre_hdrlen = 0; /* decapsulation header length */

67 char *dev = "eth1"; /* capture interface device name */

E2

68 char *filter_exp = ""; /* decapsulation filter expression */

69 char *buf; /* pointer to the big malloc'd ring buffer */

70 int volatile start, end; /* index of first, next byte in buf */

71 int volatile boundary = -2; /* index in buf to start a new output file */

72 int push, eof; /* flags for inter-thread communication */

73 char *progname; /* argv[0] for error messages from threads */

74 int warn_buf_full = 1; /* unless reading a file, warn if buf fills */

75 pcap_t *handle = 0; /* packet capture handle */

76 struct pcap_stat pcs; /* packet capture filter stats */

77 int got_stats = 0; /* capture stats have been obtained */

78 char *id = "@(#) Gulp RCS $Revision: 1.58-crox $"; /* automatically maintained */

79 int check_eth = 1; /* check that we are capturing from an Ethernet device */

80 int would_block = 0; /* for academic interest only */

81 int check_block = 0; /* use select to see if writes would block */

82 int yield_if_blocking = 0; /* experimental: may help on uniprocessors */

83 char *ps_stat_ptr = 0; /* loc to display buf percentage used */

84 int ps_stat_len = 0; /* initial length of -V arg */

85 int xlock = 0; /* set if exclusive lock requested */

86 int lockfd; /* open descriptor to file to lock */

87 char *odir = 0; /* requested output directory name */

88 char wfile[PATH_MAX]; /* output filename */

89 char *oname = "pcap"; /* requested output file name */

90 int tflag = 0; /* append timestamp to the file name */

91 int filec = 0; /* output file number */

92 struct pcap_file_header fh; /* begins every pcap file */

93 int split_after = 10; /* start new output file after # ringbufs */

94 int split_seconds = 0; /* start new output file after # seconds */

95 time_t bdry_time = 0; /* packet capture output file open time */

96 int time_split = 0; /* 1 when time() - bdry_time > split_seconds */

97 int max_files = 0; /* upper bound on filec */

98 int volatile reader_ready = 0; /* reader thread no longer needs root */

99 char *zcmd = NULL; /* processes each savefile using a specified command */

100 int zflag = 0;

101

102 /* logging purposes */

103 struct tm *date_info;

104 time_t raw_time;

105 struct timeval CAPTURE_STARTED;

106 struct timeval CAPTURE_ENDED;

107 struct timeval KAFKA_ENDED;

108 int PACKETS_CAPTURED, PACKETS_DROPPED, PACKETS_RECEIVED_BY_FILTER;

109

110

111 static void child_cleanup(int); /* to avoid zombies, see below */

E3

112 void kafka_produce_message(char *, int);

113

114 rd_kafka_t *rk;

115

116 /*

117 * put data onto the end of global ring buffer "buf"

118 */

119 void append(char *ptr, int len, int bdry) {

120 static int just_wrapped = 0;

121 static int wrap_cnt = 0;

122 int avail, used;

123 static int warned = -1;

124 used = end - start;

125 if (used < 0) used += ringsize;

126 if (used > maxbuffered) maxbuffered = used;

127 avail = ringsize - used;

128

129 while (len >= avail) { /* ring buffer is full, wait */

130 if (warned < push) {

131 warned = push;

132 if (warn_buf_full)

133 fprintf(stderr, "%s: ring buffer full\n", progname);

134 }

135 usleep(poll_usecs);

136 used = end - start;

137 if (used < 0) used += ringsize;

138 avail = ringsize - used;

139 if (eof) return;

140 }

141 if (len > 0 && len < avail) { /* ring buffer space available */

142 if (bdry && (split_seconds != 0) && ((time(NULL) - bdry_time) >= split_seconds)) {

143 time_split = 1;

144 }

145 if (end + len <= ringsize) { /* no wrap to beginning needed */

146 memcpy(buf + end, ptr, len);

147 } else { /* append wraps */

148 int c = ringsize - end;

149 memcpy(buf + end, ptr, c);

150 memcpy(buf, ptr + c, len - c);

151 }

152 if (end + len >= ringsize) {

153 end += len - ringsize;

154 just_wrapped = 1;

155 } else {

E4

156 end += len;

157 }

158 if (time_split || (just_wrapped && bdry)) {

159 if (just_wrapped) {

160 wrap_cnt++;

161 just_wrapped = 0;

162 }

163 if (odir && (wrap_cnt >= split_after || time_split)) {

164 while (boundary >= 0) { /* last split still pending */

165 if (warned < push) {

166 warned = push;

167 if (warn_buf_full)

168 fprintf(stderr, "%s: ring buffer full\n", progname);

169 }

170 usleep(poll_usecs);

171 }

172 /*

173 * Tell Writer to start a new file. Boundary is now < 0 so

174 * last split is complete. Set boundary BEFORE appending file

175 * header; the write can't happen until the data is appended.

176 */

177 boundary = end;

178 wrap_cnt = 0;

179 bdry_time = time(NULL);

180 time_split = 0;

181 if (!just_copy) append((char *) &fh, sizeof(fh), 0);

182 }

183 }

184 }

185 }

186

187 #ifndef JUSTCOPY

188

189 void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet) {

190 struct pcap_pkthdr ph = *header;

191 if (ph.caplen >= gre_hdrlen) { /* sanity test */

192 ++captured;

193 ph.caplen -= gre_hdrlen;

194 ph.len -= gre_hdrlen;

195

196 if (sizeof(long) > sizeof(int) && sizeof(int) > sizeof(short)) {

197 struct timeval_32 {

198 int tv_sec;

199 int tv_usec;

E5

200 } tv32;

201 tv32.tv_sec = ph.ts.tv_sec;

202 tv32.tv_usec = ph.ts.tv_usec;

203 append((char *) &tv32, sizeof(tv32), 0);

204 append((char *) &ph + sizeof(struct timeval),

205 sizeof(struct pcap_pkthdr) - sizeof(struct timeval), 0);

206 } else

207 append((char *) &ph, sizeof(struct pcap_pkthdr), 0);

208 append((char *) packet + gre_hdrlen, ph.caplen, 1);

209 } else

210 ++ignored;

211 }

212

213 #endif /* JUSTCOPY */

214

215 void cleanup(int signo) {

216 eof = 1;

217 if (just_copy == 1 || got_stats) return;

218 #ifndef JUSTCOPY

219 #ifndef RHEL3

220 pcap_breakloop(handle);

221 #endif

222 if (pcap_stats(handle, &pcs) < 0) {

223 if (strcmp(dev, "-")) /* ignore message if input is stdin */

224 (void) fprintf(stderr, "pcap_stats: %s\n", pcap_geterr(handle));

225 } else got_stats = 1;

226 #ifdef RHEL3

227 pcap_close(handle);

228 #endif /* RHEL3 */

229 #endif /* JUSTCOPY */

230 }

231

232 /*

233 * This thread reads stdin or the network and appends to the ring buffer

234 */

235 void *Reader(void *arg) {

236 #ifndef JUSTCOPY

237 char errbuf[PCAP_ERRBUF_SIZE]; /* error buffer */

238 struct bpf_program fp; /* compiled filter program */

239 bpf_u_int32 mask; /* subnet mask */

240 bpf_u_int32 net; /* ip */

241 int num_packets = -1; /* number of packets to capture */

242 #endif

243 #ifdef CPU_SET

E6

244 int rtid = gettid(); /* reader thread id */

245 cpu_set_t csmask;

246 CPU_ZERO(&csmask);

247 CPU_SET(READER_CPU, &csmask);

248 if (my_sched_setaffinity(rtid, sizeof(cpu_set_t), &csmask) != 0) {

249 fprintf(stderr, "%s: Reader could not set cpu affinity: %s\n",

250 progname, strerror(errno));

251 }

252 if (setpriority(PRIO_PROCESS, rtid, READ_PRIO) != 0) {

253 fprintf(stderr, "%s: Reader could not set scheduling priority: %s\n",

254 progname, strerror(errno));

255 }

256 #else

257 replace with equivalent code for your OS or delete and run less optimally

258 #endif

259

260 #ifdef USE_SIGNAL

261 signal(SIGINT, cleanup);

262 signal(SIGPIPE, cleanup);

263 #else

264 struct sigaction sa;

265 sa.sa_handler = cleanup;

266 sigemptyset(&sa.sa_mask);

267 sa.sa_flags = 0; /* allow signal to abort pcap read */

268

269 sigaction(SIGINT, &sa, NULL);

270 sigaction(SIGPIPE, &sa, NULL);

271 #endif /* USE_SIGNAL */

272

273 if (just_copy) {

274 static char rbuf[MAXPKT];

275 int c;

276 reader_ready = 1;

277 while (!eof && (c = read(0, rbuf, MAXPKT)) != 0) {

278 if (c > 0) append(rbuf, c, 1);

279 }

280 }

281 #ifndef JUSTCOPY

282 else {

283

284 /*

285 * get network number and mask associated with capture device

286 * (needed to compile a bpf expression).

287 */

E7

288 if (strcmp(dev, "-") && pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {

289 fprintf(stderr, "%s: Couldn't get netmask for dev %s: %s\n",

290 progname, dev, errbuf);

291 net = 0;

292 mask = 0;

293 }

294

295 /* open capture device */

296 if (!strcmp(dev, "-")) {

297 handle = pcap_open_offline(dev, errbuf);

298 #ifndef RHEL3

299 int sfd = -2;

300 if (handle) sfd = pcap_get_selectable_fd(handle);

301 if (sfd >= 0 && lseek(sfd, 0, SEEK_CUR) >= 0) {

302 warn_buf_full = 0; /* input is a file, don't warn */

303 }

304 #endif /* RHEL3 */

305 } else

306 handle = pcap_open_live(dev, d_snap_len, 1, packet_buffer_timeout, errbuf);

307 if (handle == NULL) {

308 fprintf(stderr, "%s: Couldn't open device %s: %s\n",

309 progname, dev, errbuf);

310 exit(EXIT_FAILURE);

311 }

312

313 reader_ready = 1;

314

315 /* make sure we're capturing on an Ethernet device */

316 if (check_eth == 1 && pcap_datalink(handle) != DLT_EN10MB) {

317 fprintf(stderr, "%s: %s is not an Ethernet\n", progname, dev);

318 exit(EXIT_FAILURE);

319 }

320

321 /* compile the filter expression */

322 if (pcap_compile(handle, &fp, filter_exp, 0, net) == -1) {

323 fprintf(stderr, "%s: Couldn't parse filter %s: %s\n",

324 progname, filter_exp, pcap_geterr(handle));

325 exit(EXIT_FAILURE);

326 }

327

328 /* apply the compiled filter */

329 if (pcap_setfilter(handle, &fp) == -1) {

330 fprintf(stderr, "%s: Couldn't install filter %s: %s\n",

331 progname, filter_exp, pcap_geterr(handle));

E8

332 exit(EXIT_FAILURE);

333 }

334

335 /*

336 * emit pcap file header

337 */

338

339 #ifndef RHEL3

340 char tmpstr[] = "/tmp/gulp_hdr.XXXXXX";

341 int tmpfd = mkstemp(tmpstr);

342 if (tmpfd >= 0) {

343 pcap_dumper_t *dump = pcap_dump_fopen(handle, fdopen(tmpfd, "w"));

344 if (dump)

345 pcap_dump_close(dump);

346 tmpfd = open(tmpstr, O_RDONLY); /* get pcap to create a header */

347 if (tmpfd >= 0)

348 read(tmpfd, (char *) &fh, sizeof(fh));

349 if (tmpfd >= 0)

350 close(tmpfd);

351 unlink(tmpstr);

352 fh.snaplen = snap_len; /* snaplen after any decapsulation */

353 }

354 #endif /* RHEL3 */

355 if (fh.magic != 0xa1b2c3d4) { /* if the above failed, do this */

356 fprintf(stderr, "%s: using canned pcap header\n", progname);

357 fh.magic = 0xa1b2c3d4;

358 fh.version_major = 2;

359 fh.version_minor = 4;

360 fh.thiszone = 0;

361 fh.sigfigs = 0;

362 fh.snaplen = snap_len;

363 fh.linktype = 1;

364 }

365

366 append((char *) &fh, sizeof(fh), 0);

367

368 /* register the start of the capture */

369 gettimeofday(&CAPTURE_STARTED, NULL);

370

371 fprintf(stderr, "Capturing...\n");

372

373 /* now we can set our callback function */

374 pcap_loop(handle, num_packets, got_packet, NULL);

375

E9

376 gettimeofday(&CAPTURE_ENDED, NULL);

377

378 fprintf(stderr, "\n%d packets captured\n", captured);

379 PACKETS_CAPTURED = captured;

380

381 if (ignored > 0) {

382 fprintf(stderr, "%d packets ignored (too small to decapsulate)\n",

383 ignored);

384 }

385 if (got_stats) {

386 (void) fprintf(stderr, "%d packets received by filter\n", pcs.ps_recv);

387 (void) fprintf(stderr, "%d packets dropped by kernel\n", pcs.ps_drop);

388 PACKETS_RECEIVED_BY_FILTER = pcs.ps_recv;

389 PACKETS_DROPPED = pcs.ps_drop;

390

391 /*

392 * if packets dropped, check/warn if pcap socket buffer is too small

393 */

394 if (pcs.ps_drop > 0) {

395 procf = fopen(RMEM_DEF, "r");

396 if (procf) {

397 fscanf(procf, "%d", &rmem_def);

398 fclose(procf);

399 }

400 procf = fopen(RMEM_MAX, "r");

401 if (procf) {

402 fscanf(procf, "%d", &rmem_max);

403 fclose(procf);

404 }

405 if (rmem_def < RMEM_SUG || rmem_max < RMEM_SUG) {

406 fprintf(stderr, "\nNote %s may drop fewer packets "

407 "if you increase:\n %s and\n %s\nto %d or more\n\n",

408 progname, RMEM_MAX, RMEM_DEF, RMEM_SUG);

409 }

410 }

411 }

412 if (check_block) {

413 if (would_block)

414 fprintf(stderr, "select reports writes would have blocked\n");

415 else

416 fprintf(stderr, "select reports writes would not have blocked\n");

417 }

418 /* cleanup */

419 pcap_freecode(&fp);

E10

420 #ifndef RHEL3

421 pcap_close(handle);

422 #endif /* RHEL3 */

423

424 }

425 #endif /* JUSTCOPY */

426 fprintf(stderr, "ring buffer use: %.1lf%% of %d MB\n",

427 100.0 * (double) maxbuffered / (double) (ringsize), ringsize / 1024 / 1024);

428

429 eof = 1;

430

431 /* logs */

432

433 struct stat st = {0};

434 if (stat("logs", &st) == -1) {

435 mkdir("logs", 0600);

436 }

437

438 char file_name[100];

439 sprintf(file_name, "logs/producer_%d-%d-%d:%d_%d_%d.json", 1900 + date_info->tm_year, 1 +

date_info->tm_mon,↪→

440 date_info->tm_mday, date_info->tm_hour, date_info->tm_min, date_info->tm_sec);

441

442 FILE *json_file = fopen(file_name, "w");

443 fprintf(json_file, "{\n\"method\": \"gulp\",\n\"capture_started\": %ld.%ld,\n", CAPTURE_STARTED.tv_sec,

444 CAPTURE_STARTED.tv_usec);

445 fprintf(json_file, "\"capture_ended\": %ld.%ld,\n", CAPTURE_ENDED.tv_sec, CAPTURE_ENDED.tv_usec);

446 fprintf(json_file, "\"kafka_ended\": %ld.%ld,\n", KAFKA_ENDED.tv_sec, KAFKA_ENDED.tv_usec);

447 fprintf(json_file, "\"snaplen\": %d,\n", snap_len);

448 fprintf(json_file, "\"kafka_chunks_bytes\": %d,\n", WriteSize);

449 fprintf(json_file, "\"packets_captured\": %d,\n", PACKETS_CAPTURED);

450 fprintf(json_file, "\"packets_dropped\": %d,\n", PACKETS_DROPPED);

451 fprintf(json_file, "\"packets_received_by_filter\": %d\n}", PACKETS_RECEIVED_BY_FILTER);

452 fclose(json_file);

453

454 fflush(stderr);

455 pthread_exit(NULL);

456 }

457

458 /*

459 * Post-process capture files after they have been rotated

460 * (copied from tcpdump)

461 */

462 static void child_cleanup(int signo) {

E11

463 wait(NULL);

464 }

465

466 void process_savefile(char filename[PATH_MAX]) {

467 pid_t pid;

468

469 if (!(zflag && strlen(filename)))

470 return;

471

472 pid = fork();

473 if (pid == -1) {

474 fprintf(stderr, "process_savefile: fork(): %s\n", strerror(errno));

475 return;

476 } else if (pid > 0) {

477 /* parent process */

478 return;

479 }

480

481 /* set to lowest priority */

482 #ifdef NZERO

483 setpriority(PRIO_PROCESS, 0, NZERO - 1);

484 #else

485 setpriority(PRIO_PROCESS, 0, 19);

486 #endif

487 execlp(zcmd, zcmd, filename, (char *) NULL);

488 /* exec*() return only on failure */

489 fprintf(stderr, "process_savefile: execlp(%s, %s): %s\n", zcmd, filename, strerror(errno));

490 exit(EXIT_FAILURE);

491 }

492

493 /*

494 * Redirect standard output into a new capture file in the specified directory.

495 *

496 * In case Gulp is running setuid root, try to prevent a user from

497 * overwriting system files. This is accomplished by creating output files

498 * with random temporary names in a directory to which the user has write

499 * access and subsequently renaming them to names unlikely to cause trouble.

500 */

501 int newoutfile(char *dir, int num) {

502 char tfile[PATH_MAX]; /* output temp filename */

503 char ofile[PATH_MAX]; /* output real filename */

504 if (access(dir, W_OK) != 0) {

505 if (access(dir, F_OK) != 0) {

506 fprintf(stderr, "%s: -o dir does not exist: '%s'\n",

E12

507 progname, dir);

508 return (0);

509 }

510 fprintf(stderr, "%s: can't create files in '%s'\n", progname, dir);

511 return (0);

512 }

513 snprintf(tfile, sizeof(tfile), "%s%s", dir, TEMPLATE);

514 if (tflag) {

515 // snprintf(ofile, sizeof(ofile), "%s/%s%lld.%03d", dir, oname, (long long int)time(NULL), num);

516 char outstr[200];

517 time_t t;

518 struct tm *tmp;

519 const char *fmt = "%Y%m%d%H%M%S";

520

521 t = time(NULL);

522 tmp = gmtime(&t);

523 if (tmp == NULL) {

524 perror("gmtime error");

525 exit(EXIT_FAILURE);

526 }

527

528 if (strftime(outstr, sizeof(outstr), fmt, tmp) == 0) {

529 fprintf(stderr, "strftime returned 0");

530 exit(EXIT_FAILURE);

531 }

532

533 snprintf(ofile, sizeof(ofile), "%s/%s_%s.pcap", dir, oname, outstr);

534 } else {

535 snprintf(ofile, sizeof(ofile), "%s/%s%03d.pcap", dir, oname, num);

536 }

537 int tmpfd = mkstemp(tfile);

538 fchown(tmpfd, getuid(), -1); /* in case running setuid */

539 if (tmpfd >= 0) {

540 if (freopen(tfile, "w", stdout) == NULL) {

541 fprintf(stderr, "%s: can't create output file: '%s'\n",

542 progname, tfile);

543 return (0);

544 }

545 dup2(tmpfd, fileno(stdout)); /* try to use the initial fd */

546 close(tmpfd);

547 rename(tfile, ofile);

548 if (odir) process_savefile(wfile);

549 /* wfile = ofile; */

550 snprintf(wfile, sizeof(wfile), "%s", ofile);

E13

551 return (1);

552 } else {

553 fprintf(stderr, "%s: can't create: '%s'\n", progname, tfile);

554 return (0);

555 }

556 return (0); /* some error */

557 }

558

559 /*

560 * This thread copies the ring buffer to stdout in WriteSize chunks

561 * or every second (or so) whichever happens first.

562 */

563 void *Writer(void *arg) {

564 int n;

565 int used;

566 int writesize;

567 int done = 0;

568 int pushed = 0; /* value of "push" at last write */

569 #ifdef CPU_SET

570 int wtid = gettid(); /* Writer thread id */

571 cpu_set_t csmask;

572 CPU_ZERO(&csmask);

573 CPU_SET(WRITER_CPU, &csmask);

574 if (my_sched_setaffinity(wtid, sizeof(cpu_set_t), &csmask) != 0) {

575 fprintf(stderr, "%s: Writer could not set cpu affinity: %s\n",

576 progname, strerror(errno));

577 }

578 if (setpriority(PRIO_PROCESS, wtid, WRITE_PRIO) != 0) {

579 fprintf(stderr, "%s: Writer could not set scheduling priority: %s\n",

580 progname, strerror(errno));

581 }

582 #else

583 replace with equivalent code for your OS or delete and run less optimally

584 #endif /* CPU_SET */

585

586 if (geteuid() != getuid()) {

587 while (!reader_ready) usleep(poll_usecs);

588 seteuid(getuid()); /* drop setuid privilege */

589 }

590

591 if (tflag) {

592 if (max_files && max_files != 1000) {

593 fprintf(stderr, "%s: -W will be set to 1000 because -t is also set\n", progname);

594 }

E14

595 max_files = 1000;

596 }

597

598 if (odir && !newoutfile(odir, filec++)) {

599 exit(1);

600 }

601

602 while (!done) {

603 used = end - start;

604 if (used < 0) used += ringsize;

605 if (start & (WriteSize - 1))

606 writesize = WriteSize - (start & (WriteSize - 1)); /* re-align */

607 else

608 writesize = WriteSize;

609 while (used < WriteSize) {

610 if (eof) {

611 done = 1;

612 used = end - start;

613 if (used < 0) used += ringsize;

614 writesize = used;

615 break;

616 } else if (push > pushed + 1) {

617 writesize = used;

618 if (used) break;

619 }

620 usleep(poll_usecs);

621 used = end - start;

622 if (used < 0) used += ringsize;

623 }

624 n = ringsize - start; /* short write at end of ring? */

625 if (n < writesize) writesize = n; /* write remainder next loop */

626 if (check_block) {

627 /*

628 * this is mostly of academic interest

629 */

630 fd_set w_set;

631 struct timeval timeout;

632 timeout.tv_sec = 0;

633 timeout.tv_usec = 0;

634 FD_ZERO(&w_set);

635 FD_SET(1, &w_set);

636 if (select(2, NULL, &w_set, NULL, &timeout) != -1) {

637 if (!FD_ISSET(1, &w_set)) {

638 would_block = 1;

E15

639 if (yield_if_blocking) {

640 writesize = 0; /* next iteration will try again */

641 sched_yield();

642 }

643 }

644 }

645 }

646 if (writesize > 0) {

647 if (start < boundary && start + writesize >= boundary) {

648 writesize = boundary - start;

649 }

650

651 // writesize = write(1, buf + start, writesize);

652 kafka_produce_message(buf + start, writesize);

653 }

654 if (writesize == -1 && errno == EINTR) writesize = 0;

655 if (writesize < 0) {

656 fprintf(stderr, "%s: fatal write error: %s\n",

657 progname, strerror(errno));

658 eof = 1;

659 fflush(stderr);

660 pthread_exit(0);

661 }

662 start += (start + writesize >= ringsize) ? writesize - ringsize : writesize;

663 if (start == boundary) {

664 if (max_files && filec >= max_files) filec = 0;

665 newoutfile(odir, filec++);

666 boundary = -2;

667 }

668 pushed = push;

669 }

670 if (odir) process_savefile(wfile);

671

672

673 fprintf(stderr, "Flushing final messages\n");

674 rd_kafka_flush(rk, 10 * 1000 /* wait for max 10 seconds */);

675

676 gettimeofday(&KAFKA_ENDED, NULL);

677

678 /* If the output queue is still not empty there is an issue

679 * with producing messages to the clusters. */

680 if (rd_kafka_outq_len(rk) > 0)

681 fprintf(stderr, "%% %d message(s) were not delivered\n", rd_kafka_outq_len(rk));

682

E16

683 /* Destroy kafka producer instance */

684 rd_kafka_destroy(rk);

685

686 pthread_exit(NULL);

687 }

688

689 void usage() {

690 fprintf(stderr,

691 "\n"

692 "Usage: %s [--help | options]\n"

693 " --help\tprints this usage summary\n"

694 " supported options include:\n"

695 #ifdef JUSTCOPY

696 " (This binary was compiled with JUSTCOPY so some options are unavailable)\n"

697 #else /* JUSTCOPY */

698 " -d\tdecapsulate Cisco ERSPAN GRE packets (sets -f value)\n"

699 " -f \"...\"\tspecify a pcap filter - see manpage and -d\n"

700 " -i eth#|-\tspecify ethernet capture interface or '-' for stdin\n"

701 " -s #\tspecify packet capture \"snapshot\" length limit\n"

702 " -F\tskip the interface type (Ethernet) check\n"

703 #endif /* JUSTCOPY */

704 " -r #\tspecify ring buffer size in megabytes (1-1024)\n"

705 " -c\tjust buffer stdin to stdout (works with arbitrary data)\n"

706 " -x\trequest exclusive lock (to be the only instance running)\n"

707 " -X\trun even when locking would forbid it\n"

708 " -v\tprint program version and exit\n"

709 " -Vx...x\tdisplay packet loss and buffer use - see manpage\n"

710 " -p #\tspecify full/empty polling interval in microseconds\n"

711 " -q\tsuppress buffer full warnings\n"

712 " -z #\tspecify write blocksize (even power of 2, default 65536)\n"

713 " for long-term capture\n"

714 " -o dir\tredirect pcap output to a collection of files in dir\n"

715 " -n name\tfilename (default: pcap)\n"

716 " -t\tappend a timestamp to the filename\n"

717 " -C #\tlimit each pcap file in -o dir to # times the (-r #) size\n"

718 " -G #\trotates the pcap file every # seconds\n"

719 " -W #\toverwrite pcap files in -o dir rather than start #+1 (max_files)\n"

720 " -Z postrotate-command\trun 'command file' after each rotation\n"

721 " and some of academic interest only:\n"

722 " -B\tcheck if select(2) would ever have blocked on write\n"

723 " -Y\tavoid writes which would block\n"

724 "\n", progname);

725 }

726

E17

727 void kafka_produce_message(char *message, int length) {

728 rd_kafka_resp_err_t err;

729

730 retry:

731 err = rd_kafka_producev(

732 /* Producer handle */

733 rk,

734 /* Topic name */

735 RD_KAFKA_V_TOPIC(KAFKA_TOPIC),

736 /* Make a copy of the payload. */

737 RD_KAFKA_V_MSGFLAGS(RD_KAFKA_MSG_F_COPY),

738 /* Message value and length */

739 RD_KAFKA_V_VALUE(message, length),

740 /* Per-Message opaque, provided in

741 * delivery report callback as

742 * msg_opaque. */

743 RD_KAFKA_V_OPAQUE(NULL),

744 /* End sentinel */

745 RD_KAFKA_V_END);

746

747 if (err) {

748 /*

749 * Failed to *enqueue* message for producing.

750 */

751 fprintf(stderr, "%% Failed to produce to topic %s: %s\n", KAFKA_TOPIC, rd_kafka_err2str(err));

752

753 if (err == RD_KAFKA_RESP_ERR__QUEUE_FULL) {

754 fprintf(stderr, "Local queue full, flushing messages and trying again...\n");

755 rd_kafka_poll(rk, 500/*block for max 1000ms*/);

756 goto retry;

757 }

758 }

759

760 rd_kafka_poll(rk, 0/*non-blocking*/);

761 }

762

763 /*

764 * This thread starts the other two and then wakes every half second

765 * to increment a variable the writer uses to decide if it should flush.

766 * Flushing greatly facilitates interactive use and testing tcpdump filters.

767 */

768 int main(int argc, char *argv[], char *envp[]) {

769

770 /* log purpose */

E18

771 raw_time = time(NULL);

772 time(&raw_time);

773 date_info = localtime(&raw_time);

774

775 // kafka init

776 char error_buffer[512];

777 rd_kafka_conf_t *conf;

778 conf = rd_kafka_conf_new();

779

780 if (rd_kafka_conf_set(conf, "bootstrap.servers", KAFKA_BROKERS, error_buffer, sizeof(error_buffer)) !=

781 RD_KAFKA_CONF_OK) {

782 fprintf(stderr, "Kafka config error: %s\n", error_buffer);

783 exit(1);

784 }

785

786 rd_kafka_conf_set(conf, "security.protocol", KAFKA_SECURE_PROTOCOL, error_buffer,

sizeof(error_buffer));↪→

787 rd_kafka_conf_set(conf, "ssl.certificate.location", CERTIFICATE_LOCATION, error_buffer,

sizeof(error_buffer));↪→

788 rd_kafka_conf_set(conf, "ssl.key.location", CERTIFICATE_KEY_LOCATION, error_buffer,

sizeof(error_buffer));↪→

789 rd_kafka_conf_set(conf, "ssl.ca.location", CA_CERTIFICATE_LOCATION, error_buffer,

sizeof(error_buffer));↪→

790

791 rk = rd_kafka_new(RD_KAFKA_PRODUCER, conf, error_buffer, sizeof(error_buffer));

792 if (!rk) {

793 fprintf(stderr,

794 "%% Failed to create kafka producer: %s\n", error_buffer);

795 exit(1);

796 }

797

798 pthread_t threads[2];

799 int rc, t, c, errflag = 0;

800 extern char *optarg;

801 extern int optind;

802 int bitmask;

803

804 start = end = eof = 0;

805 progname = argv[0];

806 #ifdef JUSTCOPY

807 just_copy = 1;

808 #endif

809

810 /* pick up default interface to sniff from ENV if present */

E19

811 if (getenv("CAP_IFACE"))

812 dev = getenv("CAP_IFACE");

813

814 if (argc > 1 && strcmp(argv[1], "--help") == 0)

815 ++errflag;

816 else

817 #ifndef JUSTCOPY

818 while ((c = getopt(argc, argv, "BFXYcdqtvxf:i:p:r:s:z:V:o:n:C:G:W:Z:")) != EOF)

819 #else /* JUSTCOPY */

820 while ((c = getopt(argc, argv, "BXYcqtvxp:r:z:V:o:n:C:G:W:Z:")) != EOF)

821 #endif /* JUSTCOPY */

822 {

823 switch (c) {

824 case 'B':

825 check_block = 1; /* use select to avoid write blocking */

826 break;

827 case 'F':

828 check_eth = 0; /* don't check that we are capturing from an */

829 break; /* Ethernet device */

830 case 'Y':

831 check_block = 1;

832 yield_if_blocking = 1; /* don't issue blocking writes */

833 break;

834 case 'V': /* produce periodic drop,ring stats */

835 ps_stat_ptr = optarg;

836 if (ps_stat_ptr[0] == '-') {

837 fprintf(stderr, "%s: %s is suspicious as argument of -V\n",

838 progname, ps_stat_ptr);

839 errflag++;

840 }

841 ps_stat_len = strlen(ps_stat_ptr);

842 break;

843 case 'c':

844 just_copy = 1; /* just read from stdin and buffer */

845 break;

846 case 'd':

847 gre_hdrlen = GRE_HDRLEN;/* decapsulate Cisco GRE */

848 filter_exp = "proto gre";

849 break;

850 case 'f':

851 filter_exp = optarg;

852 break;

853 case 'i': /* specify ethernet device name */

854 dev = optarg;

E20

855 break;

856 case 'p': /* specify polling sleep u_secs */

857 t = atoi(optarg);

858 if (t < 0 || t > 1000000) {

859 fprintf(stderr, "%s: -p number must be 0-1000000\n",

860 progname);

861 ++errflag;

862 } else poll_usecs = t;

863 break;

864 case 'q': /* warnings can be annoying */

865 warn_buf_full = 0;

866 break;

867 case 'r':

868 t = atoi(optarg); /* specify ring size in MB */

869 if (t < 1 || t > 1024) {

870 fprintf(stderr, "%s: -r number must be 1-1024\n",

871 progname);

872 ++errflag;

873 } else ringsize = t * 1024 * 1024;

874 break;

875 case 's': /* specify snapshot length */

876 t = atoi(optarg);

877 if (t <= 0 || t > SNAP_LEN) t = SNAP_LEN;

878 snap_len = t;

879 break;

880 case 'v':

881 fprintf(stderr, "%s\n", id + 5);

882 exit(0);

883 break;

884 case 'x':

885 xlock = 1; /* request exclusive lock */

886 break;

887 case 'X':

888 xlock = -1; /* disregard locking conflicts */

889 break;

890 case 'z':

891 t = atoi(optarg); /* specify goal write size 2^n */

892 // default on for condition was 65536. why? is limited?

893 for (bitmask = 1; bitmask <= 1048576; bitmask *= 2) {

894 if (t == bitmask)

895 WriteSize = t;

896 }

897 if (WriteSize != t) {

898 fprintf(stderr, "%s: -z number must be a power of 2\n",

E21

899 progname);

900 errflag++;

901 }

902 break;

903 case 't':

904 tflag = 1;

905 break;

906 case 'n':

907 oname = optarg;

908 break;

909 case 'o':

910 odir = optarg;

911 if (strlen(odir) >= PATH_MAX - strlen(TEMPLATE) - 1) {

912 fprintf(stderr, "%s: -o name too long: %s\n",

913 progname, odir);

914 errflag++;

915 }

916 break;

917 case 'C':

918 split_after = atoi(optarg);

919 if (split_after < 1) {

920 fprintf(stderr, "%s: -C # must be 1 or greater\n",

921 progname);

922 errflag++;

923 }

924 break;

925 case 'G':

926 split_seconds = atoi(optarg);

927 if (split_seconds < 1) {

928 fprintf(stderr, "%s: -G # must be 1 or greater\n",

929 progname);

930 errflag++;

931 }

932 break;

933 case 'W':

934 max_files = atoi(optarg);

935 if (max_files < 1) {

936 fprintf(stderr, "%s: -W # must be 1 or greater\n",

937 progname);

938 errflag++;

939 }

940 break;

941 case 'Z':

942 zcmd = optarg;

E22

943 zflag = 1;

944 break;

945 default:

946 errflag++;

947 break;

948 }

949 }

950 if (errflag || optind < argc) {

951 usage();

952 exit(1);

953 }

954

955 /* to avoid zombies when using -Z */

956 (void) sigset(SIGCHLD, child_cleanup);

957

958 /*

959 * if -d is spcified, -s refers to decapsulated sizes, make it happen

960 */

961 d_snap_len = snap_len + gre_hdrlen;

962 if (d_snap_len <= 0 || d_snap_len > SNAP_LEN)

963 d_snap_len = SNAP_LEN;

964

965 /*

966 * Advisory locking logic

967 */

968 if ((lockfd = open("/proc/self/exe", O_RDONLY)) < 0) {

969 fprintf(stderr, "%s: Warning: couldn't open lockfile so not locking\n",

970 progname);

971 } else {

972 if (flock(lockfd, ((xlock == 1 ? LOCK_EX : LOCK_SH) | LOCK_NB)) == -1) {

973 if (xlock < 0) {

974 fprintf(stderr, "%s: Warning: overriding locking\n",

975 progname);

976 } else {

977 fprintf(stderr, "%s: Exiting due to lock conflict\n",

978 progname);

979 exit(1);

980 }

981 }

982 }

983

984 buf = malloc(ringsize + 1);

985 if (!buf) {

986 fprintf(stderr, "%s: Malloc failed, exiting\n", progname);

E23

987 exit(1);

988 }

989

990 if (mlock(buf, ringsize + 1) != 0) {

991 fprintf(stderr, "%s: Warning: could not lock ring buffer into RAM\n",

992 progname);

993 }

994

995 rc = pthread_create(&threads[0], NULL, &Reader, NULL);

996 if (rc) {

997 fprintf(stderr, "%s: pthread_create error\n", progname);

998 exit(1);

999 }

1000

1001 rc = pthread_create(&threads[1], NULL, &Writer, NULL);

1002 if (rc) {

1003 fprintf(stderr, "%s: pthread_create error\n", progname);

1004 exit(1);

1005 }

1006

1007 while (!eof) {

1008 usleep(500000);

1009 push += 1;

1010 /*

1011 * emit some stats which may be useful while testing

1012 * if argument to -V is big enough to write into, do so

1013 * else write to stdout.

1014 */

1015 if (ps_stat_ptr) {

1016 char sbuf[V_WIDTH + 1];

1017 int drop_symb = 0;

1018 int used = end - start;

1019 if (used < 0) used += ringsize;

1020 #ifndef JUSTCOPY

1021 if (handle && pcap_stats(handle, &pcs) >= 0) {

1022 int d = pcs.ps_drop;

1023 /* count how many decimal digits are in the drop count */

1024 for (drop_symb = 0; drop_symb < 9; ++drop_symb) {

1025 if (d == 0) break;

1026 d /= 10;

1027 }

1028 }

1029 #endif /* JUSTCOPY */

1030 if (ps_stat_len >= V_WIDTH) { /* put stats in arg list */

E24

1031 sprintf(sbuf, "%1.1d %.0lf,%.0lf%%",

1032 drop_symb, /* a digit from 0-9 */

1033 100.0 * (double) used / (double) (ringsize),

1034 100.0 * (double) maxbuffered / (double) (ringsize));

1035 sprintf(ps_stat_ptr, "%-*s", ps_stat_len, sbuf);

1036 } else { /* puts stats on stderr */

1037 fprintf(stderr,

1038 "pkts dropped: %d, ring buf: %.1lf%%, max: %.1lf%%\n",

1039 (drop_symb > 0 ? pcs.ps_drop : 0),

1040 100.0 * (double) used / (double) (ringsize),

1041 100.0 * (double) maxbuffered / (double) (ringsize));

1042 }

1043 }

1044 }

1045

1046 fflush(stderr);

1047 pthread_exit(NULL);

1048 }

Listing E.2: Packet capture version 3 application complete source-code

1 from confluent_kafka import Producer

2 from configs import *

3 import subprocess

4 import threading

5 import datetime

6 import signal

7 import json

8 import time

9 import re

10 import os

11

12 PCAP_HEADER_SIZE = 24

13 PCAP_PACKET_HEADER_SIZE = 16

14

15 producer = Producer({

16 'bootstrap.servers': BOOTSTRAP_SERVERS,

17 'security.protocol': 'SSL',

18 'ssl.certificate.location': CERTIFICATE_LOCATION,

19 'ssl.key.location': CERTIFICATE_KEY_LOCATION,

20 'ssl.ca.location': CA_LOCATION

21 })

22

E25

23 tcpdump_process = None

24

25 TCPDUMP_FINISHED = False

26

27 # logging

28 if not os.path.exists('logs'):

29 os.mkdir('logs')

30

31 date = datetime.datetime.now()

32 LOG_FILE = f'logs/producer_{date.year}-{date.month}-{date.day}:' \

33 f'{date.hour}_{date.minute}_{date.second}.json'

34

35 log_capture_started = None

36 log_capture_ended = None

37 log_tcpdump_packets_captured = None

38 log_tcpdump_packets_dropped = None

39 log_tcpdump_packets_received_by_filter = None

40 log_kafka_ended = None

41 log_pcap_sh1 = None

42

43

44 def signal_handler(sig, frame):

45 if tcpdump_process is not None:

46 tcpdump_process.terminate()

47

48

49 def start_writer():

50 global tcpdump_process, TCPDUMP_FINISHED, log_capture_ended, log_capture_started,

log_tcpdump_packets_captured, \↪→

51 log_tcpdump_packets_dropped, log_tcpdump_packets_received_by_filter

52

53 log_capture_started = time.time()

54

55 tcpdump_process = subprocess.Popen(

56 ['tcpdump', TCPDUMP_FILTER, '-i', NIC, '-s', str(TCPDUMP_SNAPLEN), '-w', PCAP_FILE_NAME],

57 stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)

58

59 # wait for the process to close somehow (maybe unnecessary since stdout.read waits for the output)

60 tcpdump_process.wait()

61

62 tcpdump_output = tcpdump_process.stdout.read()

63

64 TCPDUMP_FINISHED = True

65

E26

66 log_capture_ended = time.time()

67

68 # get statistics written on stdout by TCPDump

69 re_result = re.findall("\n[0-9]+", str(tcpdump_output))

70 log_tcpdump_packets_captured = int(re_result[0])

71 log_tcpdump_packets_received_by_filter = int(re_result[1])

72 log_tcpdump_packets_dropped = int(re_result[2])

73

74 print(f"TCPDump has finished")

75 print("Publishing the rest of the data...")

76

77

78 def start_reader():

79 global log_kafka_ended

80

81 pcap_skipped = False

82

83 pcap_file = open(PCAP_FILE_NAME, 'rb')

84 left_overs = b''

85

86 while True:

87 chunk = left_overs + pcap_file.read(

88 KAFKA_MESSAGE_SIZE - len(left_overs)) # join the left overs and the new data

89 left_overs = b''

90

91 if chunk == b'' and TCPDUMP_FINISHED:

92 break

93

94 if chunk == b'':

95 continue

96

97 pointer = 0

98

99 while len(chunk) > pointer: # loop while we can fetch data

100

101 if not pcap_skipped:

102 chunk = chunk[PCAP_HEADER_SIZE:] # remove the file header

103 pcap_skipped = True

104

105 if len(chunk) < pointer + PCAP_PACKET_HEADER_SIZE: # can we not get the packet header?

106 # left_overs = chunk[pointer:]

107 break

108

109 caplen = int.from_bytes(chunk[pointer + 8:pointer + 12], 'little')

E27

110

111 if len(chunk) < pointer + PCAP_PACKET_HEADER_SIZE + caplen: # can we not get packet header +

the packet?↪→

112 # left_overs = chunk[pointer:]

113 break

114

115 pointer += PCAP_PACKET_HEADER_SIZE + caplen # move the pointer for the next packet header

116

117 left_overs = chunk[pointer:]

118 # we can't fetch more data, so publish the message and lets get another chunk

119 try:

120 if chunk[:pointer] != b'':

121 producer.produce(KAFKA_TOPIC, chunk[:pointer]) # lets write the chunk, start to the

pointer↪→

122

123 except BufferError:

124 print('Local queue full, flushing messages and trying again')

125 producer.flush()

126 producer.produce(KAFKA_TOPIC, chunk[:pointer])

127 finally:

128 producer.poll(0)

129

130 print('Flushing final messages...')

131 producer.flush()

132 log_kafka_ended = time.time()

133

134

135 # start the capture as a thread

136 thread_capture = threading.Thread(target=start_writer)

137 thread_capture.start()

138

139 # let the tcpdump start first

140 time.sleep(0.3)

141 thread_publish = threading.Thread(target=start_reader)

142 thread_publish.start()

143

144 signal.signal(signal.SIGINT, signal_handler)

145 print('Press Ctrl+C to stop the capture')

146 signal.pause()

147

148 thread_capture.join()

149 thread_publish.join()

150

151 # script ended

E28

152 log_end_time = time.time()

153

154 print(

155 f'\nPackets captured: {log_tcpdump_packets_captured}\nPackets dropped: {log_tcpdump_packets_dropped}'

156 f'\nPackets received by filter: {log_tcpdump_packets_received_by_filter}'

157)

158

159 print('\nGenerating logs...')

160

161 capinfo = subprocess.check_output(f"capinfos {PCAP_FILE_NAME} -M", shell=True, text=True)

162 log_pcap_total_packets = re.findall("Number of packets: +[0-9]+", capinfo)[0]

163 log_pcap_total_packets = int(re.findall("[0-9]+", log_pcap_total_packets)[0])

164

165 log_pcap_average_packet_rate = re.findall("Average packet rate: +[0-9]+[.]?[0-9]*", capinfo)[0]

166 log_pcap_average_packet_rate = float(re.findall("[0-9]+[.]?[0-9]*", log_pcap_average_packet_rate)[0])

167

168 log_pcap_size_bytes = re.findall("File size: +[0-9]+", capinfo)[0]

169 log_pcap_size_bytes = int(re.findall("[0-9]+", log_pcap_size_bytes)[0])

170

171 log_pcap_data_size_bytes = re.findall("Data size: +[0-9]+", capinfo)[0]

172 log_pcap_data_size_bytes = int(re.findall("[0-9]+", log_pcap_data_size_bytes)[0])

173

174 log_output = {

175 'method': 'file',

176 'capture_started': log_capture_started,

177 'capture_ended': log_capture_ended,

178 'snaplen': TCPDUMP_SNAPLEN,

179 'packets_captured': log_tcpdump_packets_captured,

180 'packets_dropped': log_tcpdump_packets_dropped,

181 'packets_received_by_filter': log_tcpdump_packets_received_by_filter,

182 'kafka_ended': log_kafka_ended,

183 'kafka_chunks_bytes': KAFKA_MESSAGE_SIZE,

184 'pcap_packets': log_pcap_total_packets,

185 'pcap_average_packet_rate_sec': log_pcap_average_packet_rate,

186 'pcap_size_bytes': log_pcap_size_bytes,

187 'pcap_data_size_bytes': log_pcap_data_size_bytes,

188 'full_capinfo_log': capinfo

189 }

190

191 with open(LOG_FILE, 'w') as f:

192 json.dump(log_output, f, indent=4)

E29

Appendix F

Persistent network data application

source code

Listing F.1: Persistent network data application complete source-code

1 from confluent_kafka import Consumer

2 from requests import Session

3 from hdfs import Client

4 from configs import *

5 import threading

6 import datetime

7 import signal

8 import json

9 import time

10 import sys

11 import os

12

13 FILE_NAME = sys.argv[1]

14

15 PCAP_GLOBAL_HEADER = b'\xd4\xc3\xb2\xa1\x02\x00\x04\x00\x00' \

16 b'\x00\x00\x00\x00\x00\x00\x00\x00\x00' \

17 b'\x04\x00\x01\x00\x00\x00'

18

19 FILE_FULL_PATH = (DIRECTORY if DIRECTORY[-1] == '/' else DIRECTORY + '/') + FILE_NAME

20

21 CONSUMING = True

22

23 # logging

F1

24 if not os.path.exists('logs'):

25 os.mkdir('logs')

26

27 date = datetime.datetime.now()

28 LOG_FILE = f'logs/persistent_storage_{date.year}-{date.month}' \

29 f'-{date.day}:{date.hour}_{date.minute}_{date.second}.json'

30 log_start_time = None

31 log_end_time = None

32

33

34 class SecureClient(Client):

35

36 def __init__(self, url, cert=None, verify=True, **kwargs):

37 session = Session()

38 if ',' in cert:

39 session.cert = [path.strip() for path in cert.split(',')]

40 else:

41 session.cert = cert

42 session.verify = verify

43 super(SecureClient, self).__init__(url, session=session, **kwargs)

44

45

46 client = SecureClient(HADOOP_URI, cert=PEMFILE, verify=False)

47

48

49 def signal_handler(sig, frame):

50 global CONSUMING

51

52 CONSUMING = False

53

54

55 def packets_consumer():

56 global log_start_time, log_end_time

57

58 with client.write(FILE_FULL_PATH) as writer:

59

60 writer.write(PCAP_GLOBAL_HEADER)

61

62 consumer = Consumer({

63 'bootstrap.servers': BOOTSTRAP_SERVERS,

64 'group.id': GROUP_ID,

65 'auto.offset.reset': 'earliest',

66 'security.protocol': 'SSL',

67 'ssl.certificate.location': CERTIFICATE_LOCATION,

F2

68 'ssl.key.location': CERTIFICATE_KEY_LOCATION,

69 'ssl.ca.location': CA_LOCATION

70 })

71

72 consumer.subscribe(KAFKA_TOPICS)

73

74 log_start_time = time.time()

75

76 while True:

77 message = consumer.poll(POOL_WAIT)

78

79 if not CONSUMING and message is None:

80 break

81

82 if message is None:

83 continue

84

85 writer.write(message.value())

86

87 consumer.close()

88 writer.flush()

89

90 log_end_time = time.time()

91

92

93 thread_consumer = threading.Thread(target=packets_consumer)

94 thread_consumer.start()

95

96 signal.signal(signal.SIGINT, signal_handler)

97 print('Press Ctrl+C to stop consuming')

98 signal.pause()

99

100 thread_consumer.join()

101

102 log_output = {

103 'start_time': log_start_time,

104 'end_time': log_end_time

105 }

106

107 with open(LOG_FILE, 'w') as f:

108 json.dump(log_output, f, indent=4)

F3

Appendix G

Analysis module applications source

code

Listing G.1: Information analyzer source-code

1 import threading

2 import datetime

3 import signal

4 import time

5 import json

6 import os

7 from confluent_kafka import Consumer

8 from ipaddress import IPv4Address, IPv6Address

9 from pcap import *

10 from configs import *

11

12 PCAP_HEADER_SIZE = 24

13 PCAP_PACKET_HEADER_SIZE = 16

14

15 IPV4 = b'\x08\x00'

16 IPV6 = b'\x86\xdd'

17 ARP = b'\x08\x06'

18 ICMP = b'\x01'

19 TCP = b'\x06'

20 UDP = b'\x11'

21

22 ETHERNET_SIZE = 14

23 IPV4_SIZE = 20

G1

24 IPV6_SIZE = 40

25 ARP_SIZE = 28

26 TCP_SIZE = 20

27 UDP_SIZE = 8

28

29 PCAP_GLOBAL_HEADER_SKIPPED = True

30

31 LEFT_OVERS = b''

32

33 CONSUMING = True

34

35 TOTAL_PACKETS = 0

36 TCP_PACKETS = 0

37 UDP_PACKETS = 0

38 ARP_PACKETS = 0

39 ICMP_PACKET = 0

40

41 START_DATE = datetime.datetime.now()

42 START_TIME = None

43 END_TIME = None

44

45 # key is the ip, value is the number of requests

46 SOURCE_IP_ADDRESSES = {}

47 DESTINATION_IP_ADDRESSES = {}

48

49 if not os.path.exists('logs'):

50 os.mkdir('logs')

51

52

53 def signal_handler(sig, frame):

54 global CONSUMING

55

56 CONSUMING = False

57

58

59 def kafka_consumer():

60 global END_TIME, START_TIME

61

62 consumer = Consumer({

63 'bootstrap.servers': BOOTSTRAP_SERVERS,

64 'group.id': GROUP_ID,

65 'auto.offset.reset': 'earliest',

66 'security.protocol': 'SSL',

67 'ssl.certificate.location': CERTIFICATE_LOCATION,

G2

68 'ssl.key.location': CERTIFICATE_KEY_LOCATION,

69 'ssl.ca.location': CA_LOCATION

70 })

71

72 consumer.subscribe([KAFKA_TOPIC])

73

74 START_TIME = time.time()

75

76 while True:

77 message = consumer.poll(POOL_WAIT)

78

79 if not CONSUMING and message is None:

80 break

81

82 if message is None:

83 continue

84

85 handle_chunk(LEFT_OVERS + message.value())

86

87 END_TIME = time.time()

88

89 consumer.close()

90

91 print(f'Unprocessed bytes: {len(LEFT_OVERS)}')

92

93

94 def handle_chunk(chunk):

95 global PCAP_GLOBAL_HEADER_SKIPPED, LEFT_OVERS

96

97 LEFT_OVERS = b''

98

99 pointer = 0

100

101 while pointer < len(chunk):

102 if pointer + PCAP_PACKET_HEADER_SIZE > len(chunk):

103 LEFT_OVERS = chunk[pointer:]

104 break

105

106 raw_header = chunk[pointer:pointer + PCAP_PACKET_HEADER_SIZE]

107

108 caplen = int.from_bytes(raw_header[8:12], 'little')

109

110 pointer += PCAP_PACKET_HEADER_SIZE # advance to the actual packet

111

G3

112 if pointer + caplen > len(chunk):

113 LEFT_OVERS = raw_header + chunk[pointer:] # also include the pcap packet header

114 break

115

116 handle_packet(chunk[pointer:pointer + caplen]) # get the packet

117

118 pointer += caplen

119

120

121 def handle_packet(packet):

122 global TOTAL_PACKETS

123

124 if len(packet) < ETHERNET_SIZE:

125 print('Invalid ethernet packet')

126 return

127

128 TOTAL_PACKETS += 1

129

130 mac_dst = packet[:6].hex(':')

131 mac_src = packet[6:12].hex(':')

132

133 protocol = packet[12:14]

134

135 upper_layer = packet[14:]

136

137 if protocol == IPV4 and len(upper_layer) >= IPV4_SIZE: # sanity test

138 handle_ipv4_packet(upper_layer)

139 elif protocol == IPV6 and len(upper_layer) >= IPV6_SIZE:

140 handle_ipv6_packet(upper_layer)

141 elif protocol == ARP and len(upper_layer) >= ARP_SIZE:

142 handle_arp_packet(upper_layer)

143 else:

144 pass # unknown protocol or malefactor one

145

146

147 def handle_ipv4_packet(packet):

148 ip_src = str(IPv4Address(packet[12:16]))

149 ip_dst = str(IPv4Address(packet[16:20]))

150

151 if ip_src in SOURCE_IP_ADDRESSES:

152 SOURCE_IP_ADDRESSES[ip_src] = SOURCE_IP_ADDRESSES[ip_src] + 1

153 else:

154 SOURCE_IP_ADDRESSES[ip_src] = 1

155

G4

156 if ip_dst in DESTINATION_IP_ADDRESSES:

157 DESTINATION_IP_ADDRESSES[ip_dst] = DESTINATION_IP_ADDRESSES[ip_dst] + 1

158 else:

159 DESTINATION_IP_ADDRESSES[ip_dst] = 1

160

161 protocol = packet[9:10]

162 upper_layer = packet[IPV4_SIZE:]

163

164 if protocol == TCP and len(upper_layer) >= TCP_SIZE:

165 handle_tcp_packet(upper_layer)

166 elif protocol == UDP and len(upper_layer) >= UDP_SIZE:

167 handle_udp_packet(upper_layer)

168 elif protocol == ICMP and len(upper_layer) >= 1:

169 handle_icmp_packet(upper_layer)

170 else:

171 pass # unknown protocol or malefactor one

172

173

174 def handle_ipv6_packet(packet):

175 ip_src = str(IPv6Address(packet[8:24]))

176 ip_dst = str(IPv6Address(packet[24:40]))

177

178 if ip_src in SOURCE_IP_ADDRESSES:

179 SOURCE_IP_ADDRESSES[ip_src] = SOURCE_IP_ADDRESSES[ip_src] + 1

180 else:

181 SOURCE_IP_ADDRESSES[ip_src] = 1

182

183 if ip_dst in DESTINATION_IP_ADDRESSES:

184 DESTINATION_IP_ADDRESSES[ip_dst] = DESTINATION_IP_ADDRESSES[ip_dst] + 1

185 else:

186 DESTINATION_IP_ADDRESSES[ip_dst] = 1

187

188 protocol = packet[6:7]

189 upper_layer = packet[IPV6_SIZE:]

190

191 if protocol == TCP and len(upper_layer) >= TCP_SIZE:

192 handle_tcp_packet(upper_layer)

193 elif protocol == UDP and len(upper_layer) >= UDP_SIZE:

194 handle_udp_packet(upper_layer)

195 elif protocol == ICMP and len(upper_layer) >= 1:

196 handle_icmp_packet(upper_layer)

197 else:

198 pass # unknown protocol or malefactor one

199

G5

200

201 def handle_arp_packet(packet):

202 global ARP_PACKETS

203

204 ARP_PACKETS += 1

205

206 # print('arp packet')

207

208

209 def handle_tcp_packet(packet):

210 global TCP_PACKETS

211

212 TCP_PACKETS += 1

213

214 # print('tcp packet')

215

216 port_src = int.from_bytes(packet[:2], 'big')

217 port_dst = int.from_bytes(packet[2:4], 'big')

218

219

220 def handle_udp_packet(packet):

221 global UDP_PACKETS

222

223 UDP_PACKETS += 1

224

225 # print('udp packet')

226

227 port_src = int.from_bytes(packet[:2], 'big')

228 port_dst = int.from_bytes(packet[2:4], 'big')

229

230

231 def handle_icmp_packet(packet):

232 global ICMP_PACKET

233

234 ICMP_PACKET += 1

235

236 # print('icmp packet')

237

238

239 def reporter():

240 last_packets_count = TOTAL_PACKETS

241

242 while CONSUMING:

243 time.sleep(REPORTER_DELAY)

G6

244

245 # print only if new data has arrived

246 if last_packets_count >= TOTAL_PACKETS:

247 continue

248

249 last_packets_count = TOTAL_PACKETS

250

251 print(f'TCP packets: {TCP_PACKETS}, UDP packets: {UDP_PACKETS}, ARP packets {ARP_PACKETS}, '

252 f'ICMP packets {ICMP_PACKET}')

253

254 if SOURCE_IP_ADDRESSES:

255 top1_source_ip = max(SOURCE_IP_ADDRESSES, key=SOURCE_IP_ADDRESSES.get)

256 print(f'Top source IP: {top1_source_ip} with {SOURCE_IP_ADDRESSES[top1_source_ip]} requests')

257

258 if DESTINATION_IP_ADDRESSES:

259 top1_destination_ip = max(DESTINATION_IP_ADDRESSES, key=DESTINATION_IP_ADDRESSES.get)

260 print(

261 f'Top destination IP: {top1_destination_ip} with

{DESTINATION_IP_ADDRESSES[top1_destination_ip]} '↪→

262 f'requests\n\n')

263

264

265 if __name__ == '__main__':

266 thread_consumer = threading.Thread(target=kafka_consumer)

267 thread_consumer.start()

268

269 thread_reporter = threading.Thread(target=reporter)

270 thread_reporter.start()

271

272 signal.signal(signal.SIGINT, signal_handler)

273 print('Press Ctrl+C to stop consuming')

274 signal.pause()

275 thread_consumer.join()

276 thread_reporter.join()

277

278 # kafka_consumer()

279 print(f'Packets analyzed: {TOTAL_PACKETS}')

280 print(f'TCP packets: {TCP_PACKETS}, UDP packets: {UDP_PACKETS}, ARP packets {ARP_PACKETS}, '

281 f'ICMP packets {ICMP_PACKET}')

282

283 log_output = {

284 'start_time': START_TIME,

285 'end_time': END_TIME,

286 'total_packets': TOTAL_PACKETS

G7

287 }

288

289 LOG_FILE = f'logs/custom_parser_analyzer_{START_DATE.year}-' \

290 f'{START_DATE.month}-{START_DATE.day}:{START_DATE.hour}' \

291 f'_{START_DATE.minute}_' \

292 f'{START_DATE.second}.json'

293

294 with open(LOG_FILE, 'w') as f:

295 json.dump(log_output, f, indent=4)

Listing G.2: Dataset preperation source-code

1 import pandas as pd

2 import numpy as np

3

4

5 def load_data():

6 domains = pd.read_csv('datasets/domains.csv')

7 domains.drop(['RootObject.subclass'], axis=1, inplace=True)

8 columns = {'RootObject.class': 'pred', 'RootObject.domain': 'domain'}

9 domains.rename(columns=columns, inplace=True)

10

11 for i in range(domains.shape[0]):

12 if domains['pred'][i] == 'legit':

13 domains['pred'][i] = 0

14 else:

15 domains['pred'][i] = 1

16

17 return domains[['domain', 'pred']]

18

19

20 def strip(domain_name):

21 domain_name = domain_name.lower()

22 name_chunks = domain_name.split('.')

23

24 if len(name_chunks) == 1:

25 return domain_name

26 else:

27 return name_chunks[-2]

28

29

30 def preprocess(data):

31 df_dict = data.to_dict('records')

G8

32

33 for row in df_dict:

34 row['domain'] = strip(row['domain'])

35

36 new_data = pd.DataFrame.from_dict(df_dict)

37

38 # drop duplicates and return

39 return new_data.drop_duplicates(subset=['domain'])

40

41

42 domains = load_data().sample(frac=1)

43 domains['domain'] = domains['domain'].astype(str)

44

45 domains_2 = pd.read_csv('datasets/dga.txt', index_col=False, names=['junk', 'domain', 'junk1', 'junk2'],

46 skiprows=15)

47 domains_2 = domains_2.drop(['junk', 'junk1', 'junk2'], axis=1)

48 domains_2['domain'] = domains_2['domain'].astype(str)

49

50 domains_3 = pd.read_csv('datasets/top-1m.csv', names=['domain'], index_col=0).reset_index(drop=True)

51 domains_3['domain'] = domains_3['domain'].astype(str)

52

53 pred_2 = np.ones(domains_2.shape[0], dtype=int)

54 pred_3 = np.zeros(domains_3.shape[0], dtype=int)

55

56 domains_2['pred'] = pred_2

57 domains_3['pred'] = pred_3

58

59 domain_data = pd.concat([domains, domains_2, domains_3], ignore_index=True, sort=True)

60

61 domain_data = preprocess(domain_data)

62

63 domain_data = domain_data.sample(frac=1).reset_index(drop=True)

64 domain_data.to_csv('datasets/domain_data.csv', index=False)

Listing G.3: Model training source-code

1 from tensorflow.keras.layers import Input, LSTM, Dropout, Embedding, Dense, Conv1D, MaxPooling1D

2 import tensorflow as tf

3 import pandas as pd

4 import numpy as np

5

6 EPOCHS = 6

7 TESTING_PERCENTAGE = 10 # 0-100

G9

8

9 # the max length a label can have in the domain (https://www.rfc-editor.org/rfc/rfc1035)

10 MAX_DOMAIN_LENGTH = 63

11

12 char2idx = {'-': 0, '.': 1, '0': 2, '1': 3, '2': 4, '3': 5,

13 '4': 6, '5': 7, '6': 8, '7': 9, '8': 10, '9': 11,

14 '_': 12, 'a': 13, 'b': 14, 'c': 15, 'd': 16, 'e': 17,

15 'f': 18, 'g': 19, 'h': 20, 'i': 21, 'j': 22, 'k': 23,

16 'l': 24, 'm': 25, 'n': 26, 'o': 27, 'p': 28, 'q': 29,

17 'r': 30, 's': 31, 't': 32, 'u': 33, 'v': 34, 'w': 35,

18 'x': 36, 'y': 37, 'z': 38}

19

20

21 def load_tf_dataset(domains):

22 lines = []

23 for i, line in enumerate(domains.iloc[:, 0]):

24 lines.append([char2idx[c] for c in line])

25

26 # pad the rest with 0 so they all have the same length

27 tensor = tf.keras.preprocessing.sequence.pad_sequences(lines, maxlen=MAX_DOMAIN_LENGTH, padding='post')

28 targets = np.array(domains.iloc[:, 1], dtype=np.int32)

29

30 data = tf.data.Dataset.from_tensor_slices(tensor)

31 pred = tf.data.Dataset.from_tensor_slices(targets)

32 dataset = tf.data.Dataset.zip((data, pred))

33

34 return dataset

35

36

37 def create_model():

38 domain_input = Input(shape=(MAX_DOMAIN_LENGTH,), dtype='int32', name='domain_input')

39 embedding = Embedding(input_dim=39, output_dim=128, input_length=MAX_DOMAIN_LENGTH,

40 batch_input_shape=[1500, None])(domain_input)

41 conv = Conv1D(filters=128, kernel_size=3, padding='same', activation='relu', strides=1)(embedding)

42 pool = MaxPooling1D(pool_size=2, padding='same')(conv)

43 lstm = LSTM(64, return_sequences=False)(pool)

44 drop = Dropout(0.5)(lstm)

45 output = Dense(1, activation='sigmoid')(drop)

46 model = tf.keras.Model(inputs=domain_input, outputs=output)

47 return model

48

49

50 domains = pd.read_csv('datasets/domain_data.csv', dtype={0: str}, keep_default_na=False)

51

G10

52 training_percentage = 100 - TESTING_PERCENTAGE

53 training_range = int(len(domains) * (training_percentage / 100))

54

55 dataset = load_tf_dataset(domains[:training_range])

56 test_dataset = load_tf_dataset(domains[training_range:])

57

58 dataset = dataset.batch(1500, drop_remainder=True)

59 test_dataset = test_dataset.batch(1500, drop_remainder=True)

60

61 # building model

62 model = create_model()

63 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

64

65 accuracy = []

66 losses = []

67

68 for i in range(EPOCHS):

69 history = model.fit(dataset)

70

71 accuracy.append(history.history['accuracy'])

72 losses.append(history.history['loss'])

73

74 print('accuracy between epochs')

75 print(accuracy)

76 print('losses between epochs')

77 print(losses)

78

79 model.evaluate(test_dataset)

80 model.save('models/dga_classifier.h5')

G11

	Introduction
	Problem statement
	Objectives
	Document structure
	Contributions
	Acknowledgments

	Background
	Literature review methodology
	Data collection
	Method of analysis

	Literature review
	Other application scenarios
	Functional and security requirements
	Packet capture
	Network data tiers
	Data capture tools

	PCAP file format
	Tools
	Capturing tools
	Transportation tools
	Storage tools
	Stream process tools
	Data process tools

	Approach
	Proposed system
	Network traffic capture module
	Queuing module
	Storage module
	Analysis module
	Technologies

	Domain Generation Algorithms

	Implementation
	Scenario
	Packet capture module
	Queuing module
	Data flow
	Message size and partitions

	Persistence storage module
	Analysis module
	Analyzer core
	Information analysis
	Malicious domain analysis

	Experiments and discussion
	Packet capture
	Kafka message size
	Kafka partitions
	HDFS performance
	Core parser stress test
	Core parser performance
	Machine learning model

	Conclusions and future work
	Future Work

	Original dissertation proposal
	OL2A published paper
	Switch configurations
	Services deployment
	Packet capture application versions source code
	Persistent network data application source code
	Analysis module applications source code

