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Instituto Politécnico de Bragança, Portugal and INESC TEC, Porto, Portugal
jllima@ipb.pt

http://www.ifpr.edu.br

Abstract. The technological advances in Unmanned Aerial Vehicles
(UAV) related to energy power structure inspection are gaining visibil-
ity in the past decade, due to the advantages of this technique compared
with traditional inspection methods. In the particular case of power pylon
structure and components, autonomous UAV inspection architectures
are able to increase the efficacy and security of these tasks. This kind
of application presents technical challenges that must be faced to build
real-world solutions, especially the precise positioning and path following
for the UAV during a mission. This paper aims to evaluate a novel archi-
tecture applied to a power line pylon inspection process, based on the
machine learning techniques to process and identify the signal obtained
from a UAV-embedded planar Light Detection and Ranging - LiDAR sen-
sor. A simulated environment built on the GAZEBO software presents a
first evaluation of the architecture. The results show an positive detec-
tion accuracy level superior to 97% using the vertical scan data and
70% using the horizontal scan data. This accuracy level indicates that
the proposed architecture is proper for the development of positioning
algorithms based on the LiDAR scan data of a power pylon.
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1 Introduction

Power line pylon inspection is a regular task performed by energy enterprises
to ensure energy infrastructure systems’ operational security. Power line struc-
tures are robust constructions, but deterioration on their components demands
preventive maintenance to keep the quality service in power distribution. The
detailed pylon inspection is commonly executed by technicians that reach the
base of the energy pylon on foot and climb it to observe the details of its compo-
nents and structure while looking for defects that could compromise the system.
These tasks are hard to execute and risky because it is usually carried out with
the energy structure in regular operation.

The manufacture advances of small unmanned aircraft, specifically the multi-
rotor types, allows the proposition of new inspection techniques, including the
pylon detailed inspections based on this kind of vehicle embedded with regular
and thermal cameras. Unmanned Aerial Vehicles (UAV) started being used on
this kind of inspection in the last two decades, driven by the offer of cheap and
robust small aircraft on the global market. For detailed structure inspection,
multi-rotor aircraft presents some advantages, like static flight capability, vertical
landing, precise position reaching, and 3D path following, among others. This
kind of operation is commonly made with the aircraft remotely piloted by a
human operator. To achieve the detailed images properly, the aircraft must fly
near the pylon while performing a displacement around it, avoiding obstacles,
and keeping a security distance from the structure and components. It is a hard
process based on the pilot skills.

Recent research proposes the use of autonomous multi-rotor aircraft to
inspect the power line structure. The use of autonomous aircraft for detailed
pylon inspections offers some challenges for the proper operation, like precise
positioning and path following, effective obstacle detection and collision avoid-
ance, robust flight control and path planning for the operation, component defect
identification, among others. Autonomous flight demands a high accuracy posi-
tion system to be executed properly. The most common approach to providing
precise position data to UAV flight currently uses Differential Global Navigation
Satellite System (DGNSS). This technique is based on using the difference of
satellite signal received between two reception antennas, the first one is placed
in a static reference point, and the second one is placed on-board the aircraft, to
calculate a high accuracy position output data for the mobile module. The global
market presents a considerable number of small DGNSS hardware proper to be
used in small aircraft. The technique provides 1.0-cm level horizontal position
accuracy but is sensitive to the environment and operational conditions. To face
this problem, the proposition of additional position algorithms for UAV precise
flight is presented in the literature, mostly based on computer vision systems.

The precise positioning of the aircraft is essential to provide information to
the flight controller to assure flight security in a detailed inspection process. In
the specific case of the power line structure inspection, some specific challenges
are presented, like:
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– Energy power pylons are complex structure, composed of thin metallic com-
ponents, hard to detect by conventional sensors;

– High voltage energy that flows within the cables generates electromagnetic
interference in the navigation sensors of the aircraft during the inspection
operation;

– Presence of trees, civil constructions, and other similar objects around the
pylons and transmission corridors makes it hard to identify the correct posi-
tion of the UAV based on intelligent sensor data processing;

– The need for the aircraft flying close to the tower to obtain adequate images
and data for analysis brings high risky of collision, a serious problem to this
kind of application;

– Maintaining the aircraft’s position and orientation for the adequate acqui-
sition of images, due to the presence of gusts of wind and the uncertainty
present in the common positioning sensors, is a very demanding task for the
autonomous control system;

– DGNSS systems are sensitive to environmental characteristics, like coverage
of the receptor antenna, proper satellite signal reception, and data link WiFi
reception.

Considering these demands, the proposition of UAV positioning sys-
tems based on intelligent computational techniques is an interesting field of
application-oriented research. The main objective of this kind of technique is to
assure the aircraft control system keep the correct position and orientation, in
addition to the trajectory following during the flight. The present work proposes
an Artificial Intelligence-based architecture specifically designed for power pylon
detection, focused on developing a LiDAR positioning system for autonomous
detailed inspection Tasks. It is based on the processing of planar Light Detection
And Range (LiDAR) sensors data embedded on the aircraft. This paper presents
an initial evaluation of an architecture to detect a pylon in the UAV flight area;
it also identifies its direction using only the embedded LiDAR scan data. The
simulations were run in the virtual robotic environment GAZEBO, providing an
overview of the proposed technique’s performance.

The remaining of the paper is organized as follows: After this introduc-
tory section, Sect. 2 discusses the related work and highlights this work’s con-
tributions. Section 3 presents the general problem description is presented and
describes the proposed architecture. Section 4 presents the experimental setup
and simulation results, and Sect. 5 discusses the obtained results. Finally, Sect. 6
presents the conclusions and points out future works directions.

2 Related Works

The common technique to provide position data to UAV outdoor flight is the
use of DGNSS modules. This technique computes the phase difference between
two GNSS antennas to increase the accuracy of the positioning data output.
Nowadays, a considerable number of small-size DGNSS hardware is commer-
cially available, proper for UAV applications. The most used commercial flight
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controllers can work with these GNSS modules data to provide high accuracy
positions to the aircraft, allowing autonomous mission programming. This tech-
nique is one of the most common solutions to provide precise horizontal position-
ing to UAV but demands good operational conditions to work properly. Some
environment conditions, like the presence of obstacles, antenna shadowing, mag-
netic field interference, and cloudy weather conditions, may affect the system
accuracy significantly [19], justifying the development of complementary posi-
tioning solutions to integrate the UAV control system.

A common approach to propose UAV position and navigation data is using
computer vision algorithms that collect images based on regular or stereoscopic
cameras embedded on the UAV. Some review papers were published about this
subject, presenting the main applications and challenges about the practical use
of vision-based UAV control algorithms. This includes the influence of outdoor
light variation, difficult of identifying object clues in the images to provide data
information for the vision algorithms, and the high variability of the flight sites
composition and objects, making it hard to define a general image algorithm
processing for all kind of application [1,10,12].

Considering the specific area of energy power structure autonomous inspec-
tion, two kinds of computer vision algorithm approaches are found in the lit-
erature: (a) the power line following applications, used for a long-range and
long-distance visual inspection, and (b) the pylon detection and localization for
small distance detailed inspection operation.

The line following applications has the main objective of identifying the posi-
tion of the UAV related to the energy power cables and transmission structure
during its displacement along the lines when the aircraft capture images of the
energy cables and components for an overview of the structural conditions. In
this situation, the algorithm must keep the UAV navigation in the correct path
and distance from the structures during the aircraft displacement (10.0m to
50.0m commonly), using the images captured to provide information to the dis-
tance and orientation estimators, feeding the flight controller. Most proposals use
image processing techniques to extract the power line from an image and calcu-
late the position and orientation of the UAV related to it [2,6,9,11,13,14,18].

Another approach uses pylon detection and identification on images to pro-
vide a direction to the UAV displacement. In these cases, the vision algorithms
extract the pylon features from the image and calculate its position, feeding the
flight control hardware to pursuit the “target” and displace it to the next pylon.
An example of this approach is presented in the work [8].

Some works presented in the literature apply vision algorithms to provide
a high accuracy position data to the UAV related to the power pylon when
it executes the flight in small distances (2.0m to 6.0m commonly) to capture
detailed images of the structure components.

A pylon distance estimation algorithm based on monocular image processing
is presented in [3]. It uses the UAV displacement based on the GPS and the air-
craft’s IMU (Inertial Measurement Unity) data to calculate the pylon position
using the image match points for two consecutive images. A position measure-
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ment error lower than 1.0m has been reported as a result (for the best samples)
of a 10.0m distance flight in real-world experiments, using a pylon model.

Another similar work proposes a “Point-Line-Based SLAM” technique based
on a monocular camera to calculate the center of the pylon. A 3D point cloud is
estimated from the monocular images at each algorithm interaction, providing
the capability to calculate the distance from the UAV and the pylon. The results
present an average position error of 0.72m [5].

Using LiDAR sensors to provide distance data for energy power inspection
is a good approach to solve problems related to the inspection tasks. The main
application of this kind of sensor in UAV energy power inspection is focused on
the mapping of the structures using the LiDAR point cloud data to reconstruct
the real conditions of the transmission lines [4,9,16,17].

Another approach that proposes a distance estimation of a pylon for a
detailed inspection application, based on a planar LiDAR sensor, is presented.
In the work, a planar LiDAR carried onboard by a multi-rotor aircraft collects
horizontal data from the pylon structure and uses such information to calcu-
late the geometric centroid of the pylon. One issue of this technique is that it
demands the aircraft to keep the alignment to the pylon to obtain proper data
to feed the position calculation. Also, the inclination of the measurement plane,
due to the movement of the aircraft, has a significant influence on the position
error calculated by the algorithm, as described in [15].

This brief state-of-art review shows that intelligent computing algorithms
based on a planar LiDAR sensor data can provide a significant contribution to
this specific area of application, especially when they are employed to identify
the pylon position/orientation and to calculate its distance from a UAV flying
close to it. The work described in the present paper is a first evaluation of the
application of machine learning algorithms to face the mentioned challenges.

3 Problem Description

The power pylon detailed inspection demands the UAV displacement around its
structure. In this operation, the technician goal is to achieve a close-up image of
the pylon components to verify their integrity. This operation requires that the
aircraft stays hovering close to the targets points, typically within 4.0m. The
robustness of the flight control depends on the correct evaluation of the UAV
position, in this case, with high accuracy. Although a centimeter-level accuracy
obtained by a DGNSS system is suitable for this operation, the malfunction of
this system demands the proposal of additional positioning systems to assure
the security of the flight, as explained earlier.

This work main goal is, as described below, to run an initial evaluation of a
positioning architecture based on an Artificial Intelligence algorithm to detect
an electric power pylon close to a UAV in short distances, in order to assist
the detailed pylon inspection tasks. Such an architecture is based on two planar
LiDAR sensors to scan, respectively, the horizontal and vertical planes. Each
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sensor scans provide a planar point signature data for intelligent algorithms, to
identify correctly the pylon within the flight area and to indicate its structure
orientation regarding to the UAV pose.

This research was based on the expertise of the local energy company tech-
nicians, which provided essential pieces of information regarding the real-world
UAV inspection process. The local company’s technicians perform the pylon
detailed inspection using a commercial remotely piloted aircraft that captures
images from the structure for a offboard post-processing evaluation.

The proposal of UAV-based autonomous pylon inspection architecture must
assure the capability of reproducing the human-piloted behavior, keeping the
flight security during the operation. An important demand regarding this is to
identify the presence of the pylon in front of the UAV and keep a secure distance
from the structure, to prevent a possible collision. The use of a LiDAR sensor
embedded on the UAV is a possible way to estimate the distance between the
aircraft and the pylon in close distances. To work properly the flight control sys-
tem must receive reliable information that the structure detected by the LiDAR
is the pylon, once there are several other possible objects in the flight area that
could be detected, generating a false distance estimation. Considering this, a
pylon detection and identification algorithm must be provided.

To face these challenges, this work proposes an architecture based on two
planar LiDAR sensors embedded on the UAV, to scan both the horizontal and
the vertical planes and feed AI algorithms. To allow the correct operation of the
algorithms, a predefined programmed behavior for the UAV was proposed. The
Fig. 1 shows the representation of the UAV proposed behavior for a inspection
process.

Two different AI algorithms have been evaluated to compare the pylon detec-
tion performance in the simulated environment: a Neural Network (NN), and a
Support Vector Machine (SVM). Both of these algorithms were chosen for being
well documented in the literature and widely applied in classification problems,
and, therefore, they are a good baseline for this evaluation. A deep Feed For-
ward Network (FFN) was designed in Python (v3.8.5) with the aid of the Keras
(v2.4.1) framework. The NN was build with three hidden dense layers, with the
first two being composed by 200 neurons each and a third layer composed by
5 neurons. Each layer uses the RelU activation function, and the output’s layer
generates the final result using the sigmoid activation function. The network
was trained for 50 epochs and with batch size of 32. Accuracy was chosen as the
evaluation metric, and the loss function used was binary crossentropy. Also, to
mitigate overfitting, the cross-validation technique was used, with the training
data being split in 10 sets. The network training was executed as an supervised
model, were each sample was tagged with the “pylon” or “not-pylon” boolean
parameter.

The Support Vector Machine (SVM) algorithm has been designed using
Python (v3.8.5) and the scikit-learn library. Two kernels for parameter esti-
mation have been used: the polynomial and the radial basis function (RBF).
Similar to the NN algorithm, the SVM algorithm training has been executed
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Fig. 1. State diagram showing the proposed UAV behavior for a inspection process.

in the supervised model using the binary parameter to classify the samples as
“pylon” or “not-pylon”.

4 Experimental Setup

To validate the architecture, several simulated scenarios containing an energy
pylon and/or other objects were developed. In each of them, samples of the
LiDAR were collected and fed to both an SVM and a NN algorithm. They
were evaluated using the following metrics: overall performance, performance on
each scenario, and execution time. The overall performance was evaluated using
mainly accuracy as a metric. The performance on each scenario was measured to
find the effects different scenarios may have on the detection ratio. And at last,
a time comparison between the algorithms will be shown, as time is a crucial
metric for applications running in embedded systems.

The validation experiments have been executed on a virtual environment
built within the Gazebo Multi-Robot Simulator, version 11.3.0 running on a
Ubuntu 20.04 Operating System with ROS Noetic Ninjemys. The Gazebo sim-
ulation software and the AI algorithms run on a PC equipped with an Intel i5
10400 processor, 16Gb RAM and a GPU NVIDIA GeForce 1660 Super with 6Gb
RAM. Two standard planar LiDAR sensor models have been used to scan the
horizontal and the vertical planes. These sensors have a 40.0-m range, sampling
rate of 5 samples per-second, and angle steps of 0.5◦. Also, for the horizontal
plane, the LiDAR sensor scans 360.0◦ around the UAV; for the vertical plane,
the sensor scans 90.0◦ on the front side of the UAV.
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Eight distinct scenarios were built to allow the data collection for the training
and evaluation of the horizontal AI algorithms, as shown in Fig. 2.

Fig. 2. Images of the experiment scenarios. a) Only a pylon in the field. b) Several
buildings and one pylon. c) Several trees and one pylon in the field. d) A complex
building structure, a water tank and one pylon. e) Several buildings, one pylon and
one tree. f) Several buildings; no pylon. g) Several trees in the field close from each
other; no pylon. h) A complex building structure, a water tank; no pylon.

A 3D STL pylon model from GRABCAD [7] website was imported to the
GAZEBO. To execute the data collection for the horizontal LiDAR, the sensor
was randomly displaced around the pylon on a range from 2.0m to 10.0m in dif-
ferent heights between 2.0m and 20.0m. The pylon height was set to 30.0m. For
all the experiments a practical approach was considered in the sensor horizontal
stabilization. It was defined that the LiDAR sensor was attached to a stabilized
gimbal that keeps the sensor always scanning in a horizontal or vertical plane.
A random horizontal alignment noise with 1.0-degree range was added to the
sensor position to simulate the stabilization error present on the gimbal mecha-
nism. Figure 3 shows an example of the horizontal point map LiDAR detection
on a simulation in a complex environment.

For each position, the sensor captures a 360-degree planar point data and
store it into a vector. All samples for each scenario were stored and pos-processed,
indicating the presence or not presence of the pylon in the scenario. The training
set was composed of 80% of the collected samples and the test set was composed
of 20% of the collected samples.

Table 1 presents the results of the SVM algorithm versus the NN algorithm
for the horizontal LiDAR data experiment.

For the vertical data collection, the LiDAR sensor was configured in the same
conditions as the horizontal sensor, however, it scans a 90.0-degree range. A total
of 17500 samples have been captured and used as the training and test data. The
main difference for this data collection is that the sensor was keep pointed to the
pylon in the scenario with a pylon present to assure that the collected samples
contain the detection of the pylon segment. These samples have been tagged as
“pylon” to feed the training set. In the other scenarios, the sensor was randomly
placed in the space inside a 10.0-m radius from the center of the scene, and also
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Fig. 3. a) Simulation scene on GAZEBO showing the pylon, objects in the area and
the sensor scan. b) The point map of the horizontal LiDAR detection.

Table 1. SVM × NN comparing in horizontal LiDAR data set

Horizontal SVM

Training Set Evaluation

Horizontal NN

Training Set Evaluation

Predicted Result Predicted Result

True False True False

True 1830 166 True 1562 434Actual Result

False 179 825

Actual Result

False 416 588

Total of Samples: 3000

True

Readings
2655

Percentual

Accuracy
88.50%

True

Readings
2150

Percentual

Accuracy
71.67%

randomly directed to collect data from the structures and elements present in
the environment. These samples were tagged as “no pylon” to feed the training
set. From these datasets, 80% of the samples were used as the training dataset
and 20% for the test dataset. Table 2 presents the results of the SVM and NN
algorithms for the vertical LiDAR data experiment.

Table 2. SVM × NN comparing the vertical LiDAR data set

Vertical SVM

Training Set Evaluation

Vertical NN

Training Set Evaluation

Predicted Result Predicted Result

True False True False

True 1991 24 True 1997 38Actual Result

False 47 1438

Actual Result

False 60 1425

Total of Samples: 3500

True

Readings
3429

Percentual

Accuracy
97.97%

True

Readings
3420

Percentual

Accuracy
97.20%
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The performance of the NN and SVM algorithms for each kind of scenario is
shown in the Fig. 4.

Fig. 4. Accuracy performance of the SVM algorithm versus NN algorithm for the
different experimentation scenarios. SVMs had a better overall performance in every
scenario.

4.1 SVM × NN Time Performance

The time performance of the AI algorithm is an important parameter to the
practical application of the architecture. To evaluate this performance, the same
number of predictions were performed for each algorithm for both the horizontal
and vertical LiDAR datasets to calculate the average time for a single prediction.
As the real UAV will run using previously trained models, the training times will
not have influence in the UAV performance, and thus only the prediction times
were measured. The results are presented in Fig. 5.

5 Discussion

Considering the constructive characteristics of the energy pylon, which is com-
posed of thin metallic segments, the planar LiDAR data collected offers few
points to the AI algorithms processing. This is an important parameter to be
considered in training phase. The LiDAR sensors can capture points not only
from the face of the pylon but also from the back of the structure, and thus,
the point map is particularly different from other objects or buildings commonly
found in the surroundings of an energy transmission line area. In spite of the
LiDAR sensors being used for distance measurements mainly, the point signa-
ture generated in a pylon scanning in comparison with other objects. The results
obtained in our simulated experiments show the likelihood that the proposed
approach can provide suitable information to train an AI-based classification
algorithm for real-world applications.

As described earlier, the proposed architecture provides a way for the UAV to
detect a pylon present in the flight area and to rotate it to find pylon direction.
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Fig. 5. Time performance of the SVM algorithm versus NN algorithm for the horizontal
and vertical LiDAR data. The results show that the prediction times using the SVM
algorithm were much faster than their NN counterpart.

This allows the UAV to keep its front-side pointed to the pylon face during all the
inspection process. Moreover, assuring that the pylon exists in the environment
and the UAV is pointed to it, a more reliable distance measurement system
based on the LiDAR data readings could be implemented. The proposal of new
distance measurement algorithms is planned for the next steps of this research.

Comparing the two AI algorithms fed with the horizontal data has shown
an accuracy of 88.50% for the SVM against 71.67% for the NN. For this exper-
iment’s scenarios, the results indicate that the SVM algorithm is better than
the NN considering only the accuracy metric. Also the SVM algorithm aver-
age processing time for each prediction is about significantly smaller than the
NN processing time. It is important to remember that, to be employed in real-
world applications, this architecture intends to be deployed on UAV’s onboard
embedded computing system, which may present limited hardware resources
and performance. Therefore, the choice of which algorithm should compose the
detection architecture must be considered carefully.

The vertical LiDAR data have shown a similar performance between the
SVM and NN algorithms, with an accuracy of 97.97% and 97.20%, respectively.
The vertical scan of the pylon allows detecting more segments of the structure,
offering a detailed signal signature as input to the AI algorithms.

Different kind of scenarios presents different performances for the algorithms,
as expected. It is possible to observe that in the specific case where a significant
number of trees are present in the area, the accuracy of the algorithms has a
significant reduction. Besides that, in a real-world application, the algorithm
will operate in a distance not greater than 10.0-meter from the pylon, where the
presence of trees is not common. Also is possible to observe in the Fig. 4 that
the SVM algorithm provides better performance for all the evaluations.

Comparing the processing time performance, the SVM processing is five times
longer than the NN processing. This impacts the detection algorithm execution
frequency, which, in turn, imposes a speed constraint to the aircraft displacement
speed.
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6 Conclusions and Future Works

This work goal was to evaluate the use of AI-based algorithms to compose an
architecture capable of detecting a power pylon structure in the flight area of a
UAV used for detailed inspection applications. Such an architecture must offer
a reliable response about the direction of the pylon, by detecting its structure
using a planar LiDAR sensor aligned to the vertical plane of the aircraft.

Although a planar LiDAR scan data may provide less information to feed an
AI-based detection algorithm (in comparison with, e.g., an image-based dataset),
the results obtained in the simulated environment present good potential for a
real-world architecture implementation. The obtained accuracy ranged from 70%
to 99%, depending on the arrangement and applied AI algorithm. It is possible
to state intuitively that the processing time of LiDAR samples is considerably
shorter than an image. Therefore, the proposed pylon detecting architecture
based on LiDAR sensors data can be deployed to the UAV’s onboard embedded
computing system.

The algorithm comparison has shown that the SVM-based architecture pro-
vides better results than the NN-based architecture for this kind of application.
These results indicate that the construction of real-world application architec-
ture will probably present better results by using this kind of algorithm. Also, the
SVM processing time was significantly smaller than the NN one, which probably
will be reproduced in a real-world situation.

This work pioneers in proposing an approach based on LiDAR data and
IA-based classification algorithms to detect energy power pylons to the best of
our knowledge. Two popular AI algorithms have been evaluated for this task.
Although computer vision algorithms are probably the most common approach
to detecting a pylon in the captured images, those algorithms are used to cal-
culate the distance between the pylon and the UAV or provide visual odometry.
However, the amount of data provided by a single image is huge compared to a
planar LiDAR data sample, demanding not only a higher amount of processing
and memory resources but also an additional financial cost to build the embed-
ded computing system. Thus, it is possible to say that using an architecture
such as the one proposed in this work has a good potential to be implemented in
real-world applications. It demands less processing time while providing reliable
information about the presence of a pylon in the flight area and its direction
related to the UAV pose. This work is the first step towards implementing a
position algorithm based on the measurements of the pylon structure captured
by the LiDAR sensors.

The results presented in this work represent a first evaluation of the IA-based
algorithms to detect a electric pylon based on LiDAR point scans. Future work
will evaluate the real-world performance of the proposed architecture using data
collected from a scale-size pylon and LiDAR sensors carried onboard of a small-
size quad-rotor aircraft. A distance evaluation algorithm based on the LiDAR
readings is also foreseen as future work. Such a system intends to provide relative
positioning data to the UAV flight controller.
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