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Abstract

The 4th industrial revolution promotes the automatic inspection of all products towards a zero-defect and high-quality manufacturing. In this
context, collaborative robotics, where humans and machines share the same space, comprises a suitable approach that allows combining the
accuracy of a robot and the ability and flexibility of a human. This paper describes an innovative approach that uses a collaborative robot to
support the smart inspection and corrective actions for quality control systems in the manufacturing process, complemented by an intelligent
system that learns and adapts its behavior according to the inspected parts. This intelligent system that implements the reinforcement learning
algorithm makes the approach more robust once it can learn and be adapted to the trajectory. In the preliminary experiments, it was used a UR3
robot equipped with a Force-Torque sensor that was trained to perform a path regarding a product quality inspection task.
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1. Introduction

Collaborative robots, or Cobots, are becoming more and
more used since these robots can interact with humans in a
shared space according to ISO 15066:2016. Example of that
are industrial manipulators that are designed to handle, process
or manipulate the material. On the one side, the human has the
ability of a hand that can perform thorough work, with high de-
gree of dynamism. On the other side, the robot is well-known
on its excellent repeatability, force and indefatigable. Combin-
ing both strengths is the main objective of the Cobots appli-
cations. Due to the collision detection and avoidance based on
joint motors and sensors, humans and robots can work side by
side, getting the best out of each world. This approach is one
of the most topics addressed by the Industry 4.0 concept, and a
massive number of manufacturers is accepting this technology.
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One of the benefits that Cobots bring to the industrial com-
munity regards its programming that for many tasks can be eas-
ily achieved without write any line of code, instead the robot
can be taught by guiding it along a given path. If several years
ago, the manipulators require expert programmers to develop
the code for the robot, nowadays this task is facilitated since
the user can move the robot arm manually, just like a teaching
method for a new person. The main Cobot manufacturers allow
programming the robot in this way, like a teaching process. Dif-
ferent Learning from demonstration (LfD) methods can be done
with robotic manipulators, evidenced by [1], however, each of
these methods requires an adaptation to the work that will be
demonstrated. For example, using the Kinesthetic method, the
robots can learn by primitive motor actions. On the other hand,
if the objects being manipulated are large, distant or dangerous,
Kinesthetic orientation can be problematic [1]. Moreover, there
is still a gap in this approach once the robot controller uses all
joint torque information to handle the teaching movement, and
it stores the posture of the manipulator in the desired positions
of the end-effector. It is truth that adding a force sensor to the
end-effector helps this teaching procedure (since the controller
doesn’t need to estimate the force that the user is applying to the
robot). Moreover, there are some cases that it is crucial to store2351-9789 c© 2020 The Authors. Published by Elsevier Ltd.
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cINESC TEC - INESC Technology and Science, Porto, Portugal

Abstract

The 4th industrial revolution promotes the automatic inspection of all products towards a zero-defect and high-quality manufacturing. In this
context, collaborative robotics, where humans and machines share the same space, comprises a suitable approach that allows combining the
accuracy of a robot and the ability and flexibility of a human. This paper describes an innovative approach that uses a collaborative robot to
support the smart inspection and corrective actions for quality control systems in the manufacturing process, complemented by an intelligent
system that learns and adapts its behavior according to the inspected parts. This intelligent system that implements the reinforcement learning
algorithm makes the approach more robust once it can learn and be adapted to the trajectory. In the preliminary experiments, it was used a UR3
robot equipped with a Force-Torque sensor that was trained to perform a path regarding a product quality inspection task.

c© 2020 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the FAIM 2020.

Keywords: Collaborative Robots; Quality Control Systems; Reinforcement Learning; Human–robot Interaction; Actor-Critic; Robot Learning

1. Introduction

Collaborative robots, or Cobots, are becoming more and
more used since these robots can interact with humans in a
shared space according to ISO 15066:2016. Example of that
are industrial manipulators that are designed to handle, process
or manipulate the material. On the one side, the human has the
ability of a hand that can perform thorough work, with high de-
gree of dynamism. On the other side, the robot is well-known
on its excellent repeatability, force and indefatigable. Combin-
ing both strengths is the main objective of the Cobots appli-
cations. Due to the collision detection and avoidance based on
joint motors and sensors, humans and robots can work side by
side, getting the best out of each world. This approach is one
of the most topics addressed by the Industry 4.0 concept, and a
massive number of manufacturers is accepting this technology.

∗ Corresponding author. Tel.: +351-273-303-200 ; fax: +351-273-325-405.
E-mail address: brito@ipb.pt (Thadeu Brito ).

One of the benefits that Cobots bring to the industrial com-
munity regards its programming that for many tasks can be eas-
ily achieved without write any line of code, instead the robot
can be taught by guiding it along a given path. If several years
ago, the manipulators require expert programmers to develop
the code for the robot, nowadays this task is facilitated since
the user can move the robot arm manually, just like a teaching
method for a new person. The main Cobot manufacturers allow
programming the robot in this way, like a teaching process. Dif-
ferent Learning from demonstration (LfD) methods can be done
with robotic manipulators, evidenced by [1], however, each of
these methods requires an adaptation to the work that will be
demonstrated. For example, using the Kinesthetic method, the
robots can learn by primitive motor actions. On the other hand,
if the objects being manipulated are large, distant or dangerous,
Kinesthetic orientation can be problematic [1]. Moreover, there
is still a gap in this approach once the robot controller uses all
joint torque information to handle the teaching movement, and
it stores the posture of the manipulator in the desired positions
of the end-effector. It is truth that adding a force sensor to the
end-effector helps this teaching procedure (since the controller
doesn’t need to estimate the force that the user is applying to the
robot). Moreover, there are some cases that it is crucial to store2351-9789 c© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the FAIM 2020.

Available online at www.sciencedirect.com

Procedia Manufacturing 00 (2019) 000–000
www.elsevier.com/locate/procedia

30th International Conference on Flexible Automation and Intelligent Manufacturing (FAIM2021)
15-18 June 2021, Athens, Greece.

A Machine Learning Approach for Collaborative Robot Smart
Manufacturing Inspection for Quality Control Systems

Thadeu Britoa,∗, Jonas Queiroza, Luis Piardia, Lucas A. Fernandesb, José Limaa,c, Paulo Leitãoa
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the path between way-points. An example of this case is the
quality control inspection with a camera assembled to the ma-
nipulator body, this being an application that requires dynamic
trajectories performed by the manipulator, which is difficult to
be predicted by the Cobot programmer.

In this context the presented paper addresses a machine
learning methodology that, attached to a collaborative manip-
ulator, enables the human that share the space with the Cobot
to teach the desired path according to the task requirements.
This allows for the continuous and dynamic learning of Cobot,
without the need to stop the production process so that Cobot
adapts itself to another trajectory in a dynamic way, resulting in
a productivity boost. The preliminary results demonstrate that
the algorithm enabled the robot to perform the path indicated by
the operator through iterations with the force sensor attached to
the Cobot tool, and activities such as, for example, quality con-
trol, can benefit from this approach.

This paper is organized as follows: after a brief introduction,
section 2 presents the related work that stresses the reinforce-
ment learning, the Actor-Critic and the Deep Q-Learning al-
gorithms. Section 3 presents the system architecture where the
Universal Robot UR3, the 6 DoF sensor and the Learning strat-
egy are exhibited. The results are presented and discussed on
section 4, whereas section 5 rounds up the paper with conclu-
sion and points out the future work.

2. Related work

Smart production is just one of the topics addressed to Indus-
try 4.0, through these new concepts the industry can leverage its
production, and also take a step ahead of its competitors in the
fight for the leadership of the global market [2]. The digitization
of an entire production line changes the value-added of the final
product and also the working environment. Among the various
technological changes, and the impacts of the new industrial
paradigm pointed out by [3], what stands out is the interaction
of human with the machine in Cyber-Physical Systems (CPS).
This type of interaction promises to bring to the inside of the
factories a series of economic and social opportunities, work
organization, business models and others. Therefore, this indus-
trial trend also has a substantial impact on academic research, in
which researchers try to find innovative and creative solutions
applying the entire theoretical concept acquired over the years.

Aware of the impacts that this transformation can trigger, in
[4] is demonstrate the potential of these global machine net-
works in the shop-floor environments. Considering the ware-
house, transport and logistics, procedures and fulfilment func-
tions, machines can work autonomously and fully collabora-
tively between humans and also between themselves. These
tasks are only possible when all sensors, devices, machines and
other enterprise assets are connected and fully synchronized. In
[5], there is a necessity to convert conventional machines (those
that are already working in factories) into self-aware and self-
learning machines. In this way, the companies can update in
the trends of the new industrial age, and consequently, remain
competitive in the global marketplace.

The use of industrial robotic applications in the handling of
tools or workpieces is an established practice in the industrial
sector [6]. However, many of these applications cannot work
adapting to the events that may arise. In other words, many of
the applications inherited from the third industrial revolution
are configured to be repetitive and fixed, which makes them
practically inflexible in terms of action (or motion) changes.
Described by [7], collaborative robots with learning techniques
can enhance even the most complex and stable markets, such as
the food industry, automotive, textile, among others. Integrat-
ing human flexibility into robotic applications with automation
efficiency has several approaches and techniques, among which
the Reinforcement Learning (RL) algorithms stand out.

2.1. Reinforcement Learning

Making collaborative robots capable of learning how to
move to pour liquids without knowing the final objective, that
is, free of fixed movements, in [8] reports two RLs methods that
exemplify the process of recognizing the object’s position and
approximate the tool to the endpoint. In this way, it is possible
to identify the object shape quickly and make the best decision
to move dynamically or pour the liquid. Applying RL is not al-
ways a simple approach, it is necessary to consider a series of
policy conditions, mainly for industrial manipulators with the
configuration of their joints in series. A work that addresses the
learning of the manipulator’s trajectory by RL through individ-
ual instructions is described in [9], where the approach uses
virtual reality sensors to instruct the robot’s movements, differ-
ent from the method described in this paper that uses touches
of the human in the force sensor to guide the manipulator. In
[10], two policy search algorithms are presented to make RL
in industrial manipulators more applicable, that is, without the
need for complex sensors. Through policy representations by
Dynamic Movement Primitives (DMPs), the learning based on
banned actions that the robot should not learn. Hence, avoid
obstacles in the work environment while still calculating paths
within the established restrictions. It is also possible to deter-
mine the RL by reference methods, demonstrated in [11], where
the manipulator must detect as quickly as possible deviations
that the applied model has concerning the environment model.
Therefore, inspect/correct robots may be able to learn what to
do according to the tasks of the scenario. Such situations, where
manipulators configured with RL are used to control the quality
of products through inspection, may have an infinite number of
input spaces, and consequently, will generate an infinite num-
ber of output actions. As a solution to this problem, the Actor-
Critic Algorithm could be a suitable approach to improve the
robot performance and enable it to continuously adapt to dy-
namic environments subject to a variety of possibles change and
tasks like those envisioned in the 4th industrial revolution mass
customization production paradigm.

2.2. Actor-Critic

To overcome the uncertainties and spaces for continuous
state-action spaces, policy gradient methods can be applied.
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Fig. 1: System Architecture of proposed approach.

This method has the technique of creating a baseline together
with the RL, making the algorithm dependent and with slow
convergence. Through a general algorithm to estimate the natu-
ral gradient, it is possible to generate learning in robots by tem-
poral difference or start-state reinforcement learning [12]. This
general algorithm works with two methods, the Critic which,
in a way, monitors the research choices made by Action. How-
ever, generating actions for manipulators using this method re-
quires a study of the building block of movement generation,
commonly called Motor Primitives [13]. Demonstrated by [14],
motor primitives can be an initial point for the robot to start
its learning, as exemplified in the task of imitating a baseball
player. The anthropomorphic manipulator manages to hit the
ball correctly (hit the point so that the ball reaches the greatest
possible distance) after some movements that imitate the motor
primitives inserted.

The Actor-Critic can be refined through feedbacks inserted
by a human, which makes the control of the robot more simpli-
fied. When using angular increments or decrements techniques,
the system developed by [15], selects new actions that are ver-
ified by the critic through the analysis of the error generated
by the reward (TD-Error). In this way, robotic agents can be
trained by signal impulses from humans. The RL techniques
with Actor-Critic can also be inserted directly into the controller
of a manipulator, demonstrated by [16], where the feedback sig-
nal from the controller of a UR5 manipulator is compensated by
learning an Actor-Critic without having to generate the system
model. It can also be used in cases of observability, where the
actor obtains images from a camera as input and the critic is
trained through states connected to a 3-layer neural network.
Thus, it is possible to train the manipulator in simulated mode
and then transfer the learning to the real robot which eliminates
the dangerous and expensive process that deep reinforcement
learning can cause [17]. In another real case of industrial manip-
ulator performing processes in food manufacturers with Deep
Reinforcement Learning is addressed by [18], where the robot
needs to identify the correct locations to inject brine into the
bacon pieces. It is possible, by applying the techniques of Deep
Deterministic Policy Gradient (DDPG), which is based on the

Deep Q-Networks (DQN), both uses two neural networks to es-
timate the action-value function [19].

3. System Architecture

In order to teach the robot the necessary path to perform a
collaborative activity with the human, it was developed the sys-
tem architecture shown in Figure 1. The hardware used in this
work integrates the necessary equipment to teach and commu-
nicate with the manipulator. The software, based on RL, aims
to enable the robot to learn the path desired by the user through
positive or negative reward policies.

The system used can be summarized in 7 different parts rep-
resented in Figure 1a. The first part (1), denotes the human re-
sponsible for collaboratively guiding the manipulator through
the desired trajectory within the R3 (Cartesian space) acting on
the robot tool. The operator will indicate to the robot, through
movements using end-effector, the path he/she wants the robot
to take. In (2) is the robot itself, which is a collaborative manip-
ulator. This manipulator is equipped with a Force-Torque sen-
sor FT-300 (3) capable of measuring force in the X, Y, and Z
directions of the Cartesian plane. Coupled with the force sen-
sor (4) is a cone-shaped 3D printed tool that the user can hold
and perform movements with the robot. This printed piece has
high rigidity, able to withstand the force exerted by the user
on the robot, this iteration of forces between the robot and the
user is represented by (5). Then, (6) represents RL algorithms,
which, depending on the movement performed by the human,
measured by the force sensor, will recognize the trajectory that
the manipulator must follow. Finally, (7) indicates the Modbus
TCP communication between the robot and the computer run-
ning the application. The robot sends the force data applied to
all axes, which is processed by the script, which will return the
desired trajectory, resulting in a path without the need to use a
human-machine interface or some level of programming, just
through the collaboration between the robot and the user.
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Fig. 2: The logic sequence of control and dynamic learning developed to perform quality inspections.

3.1. UR3 and sensor

The developed application is composed of several compo-
nents. The manipulator robot that is learning through forces
applied by the user refers to a Universal Robots UR3, a col-
laborative robot. Considering the characteristics of this robot, it
represents a potential tool to assist an operator in assembling or
inspecting a product. It is a small collaborative table-top robot
for light assembly tasks and automated workbench scenarios,
equipped with a control box and a programming user interface.
The robot weighs 11 kg, with a payload of 3 kg, 360-degree ro-
tation on all wrist joints, and infinite rotation on the end-joint.
These unique features make UR3 a flexible, lightweight, col-
laborative table-top robot to work side-by-side with humans in
a safe way.

Table 1: Specifications of the FT300 Force-Torque sensor

Feature Value Unit

Measure Range FX, FY, FZ +/- 300 N
Measure Range MX, MY, MZ +/- 30 N.m
Data Output Rate 100 Hz
Weight 0.3 kg

The UR3 robot is equipped with a Force-Torque sensor
FT300 of 6 DoF. Table 1 presents the specifications of this sen-
sor. The data FX, FY and FZ represents the measure of force
in each direction. The variables MX, MY and MZ are the mo-
ments that can be measured.

3.2. Learning strategy

In inspection tasks to determine the quality of a product, un-
foreseen events can sometimes arise in the workspace of a ma-
nipulator’s movements. Causing a series of problems and gen-
erating significant losses for industrial production. In this case,
a user can guide the effector of the manipulator to teach which
movement would be necessary to inspect each occasion. Us-
ing the sensor described in section 1, the operator can transfer
his knowledge to the manipulator using only a single sensor, as
shown in Figure 1b.

By reading the force data from the sensor and knowing the
Cartesian position of the tool, the developed learning algorithm
can collect information, and based on that, generates the points
that the robot must inspect. Considering that the operating space
is continuous, use a Neural Network represents a suitable solu-
tion to learn the states-actions in this space (i.e., a given po-
sition - a point in XYZ coordinate, or a path represented by a
sequence of positions). The performed path will comprise a set
of sequential points (position in XYZ axis) that will be repeated
along the time, according to each kind of task. Based on that
temporal dependency, the neural network can use LSTM (Long
Short-Term Memory) neurons that are capable of learning tem-
poral patterns and predicting events where it is needed to obtain
a certain precision. Therefore, these data must be analyzed first
by a neural network, since it is a dynamic environment and has
multiple data (Fx, Fy and Fz). In other words, this means that
the movement’s prediction needs to be performed according to
the previous actions, which is how manipulators perform their
motions.

The structure developed in this work is controlled only by
the touch sensor, that is, the operator guides the robot for new
movements and doesn’t configure it through the Teach Pendant.
Or even when the operator wants the manipulator to stop or start
the inspection previously learned. Thus, Figure 2 demonstrates
in a flowchart format, the logic of control and dynamic learn-
ing developed. Where the starting point defines the robot’s wait
for some operator action on the touch sensor. At this point, the
manipulator may be unlearned or just stopped. If the operator
performs a constant force higher than 1.5 N and lasting at least 1
second, the learning algorithm is automatically activated. Dur-
ing learning mode, samples from inspection points are collected
for 0.5 seconds. This sampling is only stopped when the oper-
ator stops to apply force on the sensor with a result of 1.5 N.
Then, these samples are sent to the Neural Network to learn the
movements that the operator taught, creating a baseline for the
movements/path that the robot should perform, which should be
improved with the Reinforcement Learning approach. As soon
as the motions are determined, the algorithm returns to the ini-
tial state (waiting for force in sensor). At this moment, if the
operator wants to make a new Guide, it is possible, and conse-
quently, new learning is performed. But if the operator applies
only one touch (resulting force high than 1.5 N and lasting less
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than 1 second), the system checks whether there is any learn-
ing in the robot. If so, the manipulator starts to perform the
learned inspection movement repeatedly until some stop force
is applied to the torque sensor. If this happens, the manipulator
return to the state’s wait (starting point). There is still the possi-
bility that the manipulator is in action waiting mode (commonly
when is power-up recent), receiving only the touch and has not
learned any inspection. In this case, the robot issues an alert and
returns to the standby mode.

3.3. Control with Learning

In the “Loop with Learning”, the algorithm will continu-
ously collect the sensor information. Based on the current tool
position, it will use the trained Neural Network to predict the
next position and derive the distance that the robot needs to
move. A movel command (move to position - linear in tool-
space) is sent to the robot, and after its execution, the loop
starts again. During this loop, the data from the torque sensor
is also collected and analyzed in order to correct/improve the
trajectory based on the user feedback. In this context, the Re-
inforcement Learning algorithm should be applied, where the
next movement needs to include the predicted value plus an in-
crement given by force applied by the user.

Fig. 3: Update Actor-Critic Model.

In this context, the Actor-Critic algorithm should follow the
approach illustrated in Figure 3. The state that the Actor-Critic
must receive is defined as the end-effector positions, that is,
the Cartesian positions of the UR3 tool. Therefore, the Actor
will determine the actions according to the generated distances
(robot motion). It is up to Critic to evaluate the actions taken
(the error) to receive the reward. Thus, it is essential to always
update the Actor-Critic model while the manipulator is carrying
out the inspection process.

The update of the Actor-Critic model must be done while the
robot is inspecting the parts. Then, if the user touches the robot
during its movement, and the applied force is not in the oppo-
site direction of the movement, the next action should receive
an increment, and the model should be updated. The update will
consider the state that leads to the action that was being per-
formed. The Critic model will be updated with a small negative
reward, while the Actor model will be updated with the state
incremented according to the applied force. The same happens
when a force is applied in the opposite direction, but in this
case, the robot should stop and wait for a guide (update learn)
or touch (continue with the next step), and a big negative re-
ward should be applied, while the state should be updated with
a smaller distance to move in the given state.

4. Results

The preliminary experiments focused on the development of
the main control and learning strategy (Figure 2) and its inte-
gration with the robot. In this context, the efforts focused on the
development of the Actor Neural Network of the Actor-Critic
Reinforcement Learning algorithm, i.e., the one that should be
responsible for predicting the next action to be performed based
on the current observed state.

4.1. Experiment Settings

In this experiment, the proposed system architecture
was implemented using Python. The data processing and
Machine-Learning was performed based on widely used li-
braries, like NumPy and Keras (TensorFlow as the back-
end). The interface with the UR3 robot was developed
based on the URX library (from Universal Robots -
https://github.com/SintefManufacturing/python-urx). Another
interface was developed to connect and retrieve the data stream
from the Robotic Force-Torque sensor (FT-300). However, the
FT-300 provides six DoF, only three DoFs were used for this ex-
periment: the force on the X, Y and Z axis to measure the force
of human during the procedure of interacting with the robot
to teach the path. In this sense, the end-effector orientation is
fixed to avoid complex measurements from Force-Torque sen-
sor. Although the robot is connected with an industrial PC, the
prototype and all the experiments were executed in a external
PC with Windows 10, i7-8750H, 16GB RAM, GeForce GTX
1050Ti.

The focus of the preliminary experiments is to develop the
Actor model. In this context, a Neural Network was chosen
to support the representation of the continuous space and ac-
tion. Furthermore, given the temporal characteristics of the en-
vironment, i.e., the execution of a path requires to perform a
sequence of move actions, it was chosen an architecture based
on LSTM neurons. Table 2 describes the architecture used for
the Actor model. This configuration was reached after some in-
teractions, and does not represent a fine tuned choice for the
complete problem solution.
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Fig. 4: Dataset obtained with a square-shaped path guided by a human. Position (m) and force (N).

Table 2: Specifications of the actor model neural network.

Feature Value

LSTM layers 2
Optimizer Adam
Learn Rate 0.001
Loss Function Mean Squared Error
Input 3
Output 3
Neurons per layer 100
Epochs 100
Functions Activation relu, relu,sigmoid

The test consists of simulating movements of a quality in-
spection task, through an operator moving the end-effector of
the UR3 to any points. As shown in the Figure 5, the objec-
tive of the experiment is to train the robot to perform quality
inspection tasks according to the points determined by the op-
erator. For instance, an inspection task may consist in the robot
to carry a product to be inspected in a given position, where
there is an inspection equipment, then rotate this object to in-
spect different angles. The same object can be moved to another
position, to another inspection equipment, and finally, show it
to the operator for some final check.

Fig. 5: Force training with the user holding the Force-Torque sensor.

4.2. Training baseline Neural Network

The approach in this work considers the possibility of the
robot learning a path based on human supervision, instead of let
the robot to find an optimal path by itself based on a set of goal
points and unlimited number of trial-and-fail interactions. In
this context, a baseline path should be provided by the user that
will work with the robot in the same workspace. This means
that, at the beginning, the robot will wait for the user to guide it
to perform a path, one or few times, creating a baseline that the
control algorithm will use during operations, while the learning
algorithm will continuously improve based on user feedback.

In this situation, when the Guide mode (Figure 2) is enabled,
the system starts to collect several points along the path. These
points represent the states (i.e., the observations) that at the end
of the Guide mode will be used to train the Actor model. Fig-
ure 4 (top) illustrates the collected points, where the robot is
guided to perform a squared-shape path (3 times) along X-Y
axes. The chart in the bottom of the Figure 4 illustrates the force
applied in the three axes along the path and can be used to de-
termine the move speed in different segments. Therefore, the
blue line (movement guided on the X-axis) represents the points
collected from one of the faces of the created square. In duality

Fig. 6: The square-shaped path used for training.
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Fig. 7: Trained dataset and prediction results of the baseline model for a square-shaped path.

with this blue line, there is the red line (movement guided on
the Y-axis). These two opposing lines demonstrate the configu-
ration of the straight lines made by the user in the X-Y plane.
Consequently, the green line does not have many variations due
to the movement configuration not having components on the
Z-axis. The movement’s 3D path view representation is illus-
trated in Figure 6. In this figure, the path starts in the top-centre
of the working space, where the robot is initially positioned.
Then it is guided down to the corner, where the desired path is
repeated three times. The figure also illustrates the force vectors
applied during the guiding.

From the dataset created, the learning algorithm based on the
LSTM Neural Network starts to process points for the UR3 to
perform in the closest possible way to the movements that the
user previously taught. These points are indicated with Carte-
sian coordinates, where the robot increments from one position
to another. In this way, the movel command is configured with
the distance from one point to the other. Figure 7 (bottom) illus-
trates the performance of the baseline model (along 4 interac-
tions) after being trained with the dataset illustrated in Figure 7
(top). The dashed lines are the predictions performed based on
the current state (solid lines, i.e., tool position). The poor per-
formance showed to repeat the guided path is mainly given by
the few amounts of samples used for the model training, as well
as the need to fine tune the algorithm’s parameters. However,
the idea is with few supervised samples obtain an approximated
model that can be dynamically improved, so the user does not
need to repeat the complete path several times. It also enables
the dynamic change of segments without the need to retrain all
the path. The predicted movement’s 3D path view representa-
tion is illustrated in Figure 8. There is illustrated that the trained
model could approximate the training data points, leading to a
path that smooth the path of the corner.

Fig. 8: The square-shaped path used for training and the predicted path.

5. Conclusions and Future work

This paper addressed a machine learning that attached to a
collaborative manipulator enabled the user to teach the desired
path with significant precision. Unlike the teaching system that
is distributed with the robot, the developed system enables dy-
namic teaching and operation, where the user can interact and
change the path on-the-fly. In this way, it allows the human to
interact with the robot to guide it on a new path, as soon as
unexpected situations arise during the quality inspection, us-
ing the force sensor attached to the robot. The reinforcement
learning and the Actor Neural Network methodology proved
preliminary solutions for the initial problem. It is also noticed
at the results section that the proposed system is able to support
the smart inspection and corrective actions for quality control
systems in the manufacturing process, complemented by an in-
telligent system that learns and adapts its behaviour according
to the inspected part. As future work direction, it is pointed to
develop the Critic model and integrate it with the Actor, as well
as to use the six DoF from the torque sensor instead of three.
Finally, an implementation in a real environment factory should
be implemented emphasizing the character of the problem.
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