

Chemical characterization and antioxidant proprieties of Myrciaria jaboticaba bioresidues

<u>Bianca R. Albuquerque^{1,2}, M. Inês Dias¹, Carla Pereira¹, Lillian Barros^{1*}, M. Beatriz P.P. Oliveira², Isabel C.F.R. Ferreira¹</u>

¹Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal ² REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal

Introduction

Jabuticaba (Myrciaria jaboticaba (Vall.) O. Berg) is a Brazilian berry very appreciated for *in natura* consumption. However, its epicarp is not normally consumed, and in manufacture of products from jabuticaba fruit, it is responsible for the generation of large amounts of residues [1,2]. The aimed in the characterization of the main bioactive compounds

Results

Table 1. Organic acids composition of jabuticaba epicarp.	
Organic acids	g/100 g dw
Oxalic acid	0.481±0.009
Quinic acid	0.554 ± 0.002
Malic acid	1.66 ± 0.01

and $1.2 \pm 0.1 \,\mu$ g/mL, for 120 and 180 min, respectively.

Conclusion

The results obtained in this study allowed to conclude that jabuticaba epicarp is a rich source of bioactive compounds, main anthocyanins, and also exhibits strong antioxidant activity, which makes it suitable to be used as a source of bioactive molecules for both food and pharmaceutical industries.

Acknowledgement

Foundation for Science and Technology (FCT, Portugal) for financial support by national funds FCT/MCTES to CIMO (UIDB/00690/2020); national funding by FCT, P.I., through the institutional scientific employment program-contract for M.I. Dias, L. Barros, and C. Pereira contract; and B. Albuquerque (SFRH/BD/136370/2018) PhD grant; ERDF through the Regional Operational Program North 2020, within the scope of Project NORTE-01-0145-FEDER-023289: DeCodE and project Mobilizador Norte-01-0247-FEDER-024479: ValorNatural®; FEDER-Interreg España-Portugal programme for financial support through the project 0377_Iberphenol_6_E.

References:

- S. K. T. Seraglio, et al., Food Chemistry, 239 (2018) 649. [1]
- P. Morales et al, Food Chemistry, 208 (2016) 220. [2]
- L. Barros et al., Journal Functional Foods, 5 (2013) 1753. [3]

