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Abstract

Exponential time integrators are well-established discretization methods for time semilin-
ear systems of ordinary differential equations. These methods use ϕ−functions, which are
matrix functions related to the exponential. This work introduces an algorithm to speed
up the computation of the ϕ−function action over vectors for 2D matrices expressed as
a Kronecker sum. For that, we present an auxiliary exponential-related matrix function
that we express using Kronecker products of 1D matrices. We exploit state-of-the-art im-
plementations of ϕ−functions to compute this auxiliary function’s action and then recover
the original ϕ−action by solving a Sylvester equation system. Our approach allows us to
save memory and solve exponential integrators of 2D+time problems in a fraction of the
time traditional methods need. We analyze the method’s performance considering different
linear operators and with the nonlinear 2D+time Allen-Cahn equation.

Keywords: ϕ−functions, Kronecker sum, exponential integrators, Sylvester equation,
Finite Element Method, semilinear parabolic problems

1. Introduction

Exponential integrators [22, 24, 31] are a class of time-marching methods that can deal
with stiff systems of ordinary differential equations (ODEs) of the form u′(t) = Au(t) +
f(t, u(t)). Here, A is a linear operator and f is nonlinear and possibly autonomous, i.e., it
does not depend explicitly on time. These type of methods include: exponential Runge-
Kutta methods [23], exponential Rosenbrock methods [8, 26], exponential multistep meth-
ods [25], exponential splitting schemes [19], and Lawson methods [27], among others. All
the exponential integrator methods are built in terms of the ϕ−functions

ϕp(A) =

∫ 1

0
e(1−θ)A θp−1

(p− 1)!
dθ, ∀p ≥ 1,
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which are functions related to the exponential of the matrix A, let ϕ0(A) = eA. Although the
idea of exponential integrators is classical, the increasing availability of robust and reliable
software to compute the action of matrix functions over vectors [21] has promoted their use
in the last decade in many areas, including: linear partial differential equations (PDEs) [30,
32, 33], nonlinear advection-diffusion-reaction problems [38], Vlasov-Poisson equations [12],
Navier-Stokes equations [28], financial applications [36], stochastic PDEs [29], phase-field
models [14], nonlinear Schödinger equation [5], and shallow water equations [15].

There exists a wide variety of methods to compute the action of exponential functions on
vectors. We refer to Higham’s recent catalogue [21] of the existing software. These methods
include Krylov subspace algorithms [16, 34], scaling-and-squaring algorithms [1, 6, 13],
truncated Taylor series [2], and Laguerre polynomials [37], among others.

Herein, we focus on systems of ODEs where matrix A can be decomposed in Kronecker
sum1 structure [18], i.e., A = Ax ⊗ Iy + Ix ⊗ Ay. Here, Ax and Ay are one-dimensional
matrices. We can find this setting after semidiscretizing in space certain 2D+time PDEs
with tensor-product finite element method (FEM) [41], isogeometric analysis (IGA) [3, 9, 11]
or finite differences [35]. In this setting, finite differences and certain spectral element
methods or FEM with tailored quadrature rules lead Kronecker sum structure with identity
matrices. In general, for FEM and IGA the linear operator is of the form A = M−1K where
M and K are the mass and stiffness matrices, respectively. Here, we obtain the Kronecker
sum structure with identities by inverting the 1D mass matrices and, therefore, the 1D
operators are of the form Ax = (Mx)−1Kx and Ay = (My)−1Ky.

This decomposition is possible when the spatial domain is a conformal mapping of a
rectangle, the material properties are constant, and the linear part of the system is the
advection-reaction-diffusion operator. For brevity, we focus on rectangular domains where
the coordinate axis of the domain aligns with the main axis of the rectangle. Among the
applications of interest that fullfil this requirement are the Schödinger equation [6], and
several phase-field models [17, 40] like the Burger’s equation or the Allen-Cahn equation.

The exponential function (ϕ0) preserves the Kronecker product structure [4], that is,
ϕ0(A) = ϕ0(Ax)⊗ϕ0(Ay). We generalize this decomposition in Kronecker products to any
ϕ−function in order to speed up the computations of the action ϕp(A)b where b is a vector
and p ≥ 1. For that, we proceed in the following steps:

a. we introduce an auxiliary matrix function Φp(A) = Apϕp(A);

b. using recurrence formulas, we express Φp(A) in terms of Φq(A
x), Φq(A

y) with q ≤ p;

c. we compute the actions Φq(A
x)b and Φq(A

y)b employing the existing software; and

d. we recover the original action ϕp(A)b from Φp(A)b solving Sylvester equations [20].

Our approach develops the mathematical tools to compute ϕp(A)b in terms of the action of
smaller 1D matrices using the existing software for evaluating ϕ−functions in the literature.

1The Kronecker sum is defined in the literature as Ax ⊕ Ay = Ax ⊗ Iy + Ix ⊗ Ay, where Ix and Iy are
identity matrices.
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We analyze the method’s performance for different linear and nonlinear 2D+time prob-
lems and different sizes of matrix A. We show that our approach leads to significant mem-
ory and computational time savings as we only operate with 1D matrices. The extension
of the Kronecker product decomposition we propose to 3D problems is straightforward. In
[7], the authors recently exploit the case p = 0 for both CPU and GPUs. However, our
method’s reliance on solving Sylvester-like systems of equations has shown the limitations
of the state-of-the-art solution strategies. First, the solution of Sylvester systems with large
non-symmetric matrices introduce significant numerical pollution due to the ill-conditioning
errors when p ≥ 4. We analyze this phenomenon in detail in Section 5. The ill-conditioning
affects the solution, making our approach’s extension to 3D difficult due to the lack of ro-
bust and reliable generalized Sylvester solvers. We partially overcome these limitations by
using a direct solver for the 2D and 3D equation systems rather than solving the Sylvester
system. This alternative involves assembling the 2D/3D matrix, which reduces the memory
savings. In terms of computational times, this alternative is slightly slower than solving
the Sylvester equations while it is still orders of magnitude faster than solving the original
exponential action of the 2D/3D matrix. Nevertheless, this alternative still induces some
round-off error for large matrices with higher p values. As the 3D case would require further
analysis, we limit our description and analysis to 2D+time problems.

This article is organized as follows: Section 2 presents our model problem and the
definition of ϕ−functions in exponential time integrators. In Section 3, we exemplify a semi-
discretization in space by tensor product finite elements. We also provide two alternatives
for exploiting the Kronecker product structure of ϕ−functions when we express the matrix
system as a Kronecker sum. Section 4 describes the Algorithm for computing ϕ−functions of
Kronecker sum matrices using matrix products and solving Sylvester equations. In Section 5
we discuss the implementation and analyze the performance of our method comparing with
the classical routines to compute the action of ϕ−functions over vectors. We apply our
method to different linear operators and to solve the Allen-Cahn equation. In Section 6,
we summarize the conclusions and future work. Finally, in Appendix A we summarize the
definition and main properties of the Kronecker product of matrices and in Appendix B we
introduce the Sylvester equations.

2. Model problem and time discretization

We consider the following class of parabolic semilinear and autonomous system of ordi-
nary differential equations (ODEs){

U ′(t) +AU(t) =F (U(t)), ∀t ∈ I,
U(0) = U0,

(1)

where I = (0, T ] ⊂ R, A is a square matrix, and F (·) is a nonlinear vector.
Exponential integrators [24] are a wide-class of time integration methods to solve semi-
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linear problems (1). We build them in terms of the ϕ−functions
ϕ0(A) = eA,

ϕp(A) =

∫ 1

0
e(1−θ)A θp−1

(p− 1)!
dθ, ∀p ≥ 1,

(2)

where eA is

eA =
∞∑
k=0

Ak

k!
. (3)

An essential property of the exponential of a matrix is the following: If A and B are two
commutative matrices, it holds that

AB = BA =⇒ eA+B = eAeB = eBeA. (4)

The converse is not true in general.
These exponential functions (2) satisfy the following recurrence relation

ϕp+1(A) = A−1

(
ϕp(A)− 1

p!
I

)
. (5)

We consider a partition of the time interval

0 = t0 < t1 < . . . < tm−1 < tm,

with time step size τk = tk − tk−1, ∀k = 1, . . . ,m. There exist many exponential integra-
tors that employ the functions defined in (2), such as exponential multistage or multistep
methods. The simplest exponential time integrator is the exponential Euler method

Uk = ϕ0(−τkA)Uk−1 + τkϕ1(−τkA)F (Uk−1).

We refer to [24] for an extensive overview of these methods and to [21] for an overview of
the existing software.

3. Kronecker product structure

We focus on problems where the matrix A in (1) has a 2D Kronecker sum structure,

A = Ax ⊗ Iy + Ix ⊗Ay. (6)

Here, Ax and Ay are two smaller matrices than A, Ix and Iy are the identity matrices of
the appropriate size, and ⊗ denotes the Kronecker product of matrices (see Appendix A
for definitions and properties). In the following subsection, we show how we can obtain
a system like (1) with matrix A of form (6) after semi-discretization in space of 2D+time
partial differential equations (PDEs). Then, we exploit the Kronecker structure of the
ϕ−functions for these matrices.
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3.1. Semidiscretization in space

Let Ω = Ωx × Ωy ⊂ R2. We seek to solve the following problem

ut + β · ∇u− ε∆u+ αu = f(u), in Ω× I, (7)

with suitable boundary and initial conditions. Here, the linear operator is advection-
diffusion-reaction with constant coefficients β = (β1, β2), ε, and α.

We obtain a system like (1) after semidiscretizing (7) in space by a tensor-product finite
element method (FEM). We multiply (7) by suitable test functions v ∈ V , where V is a
Hilbert space and integrate over Ω∫

Ω
(utv + β · ∇uv − ε∆uv + αuv)dΩ =

∫
Ω
f(u)vdΩ.

Integrating by parts the diffusion term, we obtain∫
Ω

(utv + β · ∇uv + ε∇u · ∇v + αuv)dΩ =

∫
Ω
f(u)vdΩ. (8)

We select tensor-product trial and test functions; that is, we approximate the solution as

u(x, y, t) =

nx∑
i=1

ny∑
j=1

Uij(t)Ni(x)Nj(y)

and consider test functions of the form {Nk(x)Nl(y), k = 1, . . . , nx, l = 1, . . . , ny}. There-
fore, we obtain in (8)

(Mx⊗My)U ′+
((
β1R

x + εKx +
α

2
Mx
)
⊗My +Mx ⊗

(
β2R

y + εKy +
α

2
My
))

U = F (U).

(9)
The entries of the matrices in (9) are

Mx
ik =

∫
Ωx

Ni(x)Nk(x)dx,

Rxik =

∫
Ωx

N ′i(x)Nk(x)dx,

Kx
ik =

∫
Ωx

N ′i(x)N ′k(x)dx,

where My, Ry, and Ky have similar definitions. The entries of vector F (U) are

F (U)ij = f(Uij)M
x
ikM

y
jl,

where we interpolate the given external forcing using the FEM basis functions.
We denote

A = (Mx ⊗My)−1
((
β1R

x + εKx +
α

2
Mx
)
⊗My +Mx ⊗

(
β2R

y + εKy +
α

2
My
))

,
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and from the Kronecker product properties, we have

A = (Mx)−1
(
β1R

x + εKx +
α

2
Mx
)
⊗ Iy + Ix ⊗ (My)−1

(
β2R

y + εKy +
α

2
My
)
.

Finally, we obtain the ODE system (1) where A has Kronecker sum structure (6) with

Ax = (Mx)−1
(
β1R

x + εKx +
α

2
Mx
)
,

Ay = (My)−1
(
β2R

y + εKy +
α

2
My
)
.

3.2. Kronecker product structure of ϕ−functions

We now express ϕ−functions using Kronecker products when the matrix A is of the
form (6). First, we introduce an auxiliary exponential-related function. If we multiply (5)
by Ap+1, we obtain

Ap+1ϕp+1(A) = Apϕp(A)− 1

p!
Ap. (10)

We denote Φp(A) = Apϕp(A) and therefore relation (10) reads

Φp+1(A) = Φp(A)− 1

p!
Ap. (11)

We now express Φp(A) in terms of Φq(A
x) and Φq(A

y) with q ≤ p and A defined
in (6). For that, we employ the definition of the exponential of a matrix (3), the recurrence
relation (11), and the Kronecker product properties defined in Appendix A.

For the lowest order case (p = 0), property (4) and the exponential definition (3) imply

eA = eA
x⊗Iy+Ix⊗Ay

= eA
x⊗IyeI

x⊗Ay
= (eA

x ⊗ Iy)(Ix ⊗ eAy
) = eA

x ⊗ eAy
,

therefore, we have
Φ0(A) = Φ0(Ax)⊗ Φ0(Ay). (12)

For p ≥ 1, we give two alternatives in the following theorems.

Theorem 1. Let A = Ax ⊗ Iy + Ix ⊗Ay, it holds that

Φp(A) = Φp(A
x)⊗ Φp(A

y)

+ Φp(A
x)⊗

p−1∑
j=0

(Ay)j

j!

+

(
p−1∑
i=0

(Ax)i

i!

)
⊗ Φp(A

y)

+

p−1∑
i=1

p−1∑
j=p−i

(Ax)i

i!
⊗ (Ay)j

j!
, ∀p ≥ 1.

(13)

Proof. By induction over p (see Appendix C).
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Theorem 2. Let A = Ax ⊗ Iy + Ix ⊗Ay, it holds that:

• If p = 2r + 1 with r ≥ 0, then

Φp(A) =

r∑
j=0

(Ax)j

j!
⊗Φp−j(A

y)+

r∑
j=0

Φp−j(A
x)⊗ (Ay)j

j!
+Φr+1(Ax)⊗Φr+1(Ay), (14)

• If p = 2r with r ≥ 1, then

Φp(A) =

r−1∑
j=0

(Ax)j

j!
⊗ Φp−j(A

y) +

r−1∑
j=0

Φp−j(A
x)⊗ (Ay)j

j!
+ Φr(A

x)⊗ Φr(A
y), (15)

Proof. By induction over p (see Appendix C).

4. Algorithm

This section proposes an algorithm to compute the action ϕp(A)b when

A = Ax ⊗ Iy + Ix ⊗Ay

and b is a vector. First, we express

Ap ϕp(A)b︸ ︷︷ ︸
z

= Φp(A)b. (16)

Our goal is to solve (16) for z = ϕp(A)b so we proceed in the two steps: (a) to compute the
righ-hand side of (16) using either results from Theorem 1 or Theorem 2; and (b) to solve
for z in (16) by solving p Sylvester equations. For step (a), we employ the properties of
a Kronecker-product matrix acting a vector stated in Appendix A. We reshape the source
vector b that comes from the semi-discretization of the full 2D problem in space into a
matrix B where each column is a 1D source vector. For step (b) we employ the definition
of Sylvester equations in Appendix B.

Algorithm 1 shows how to compute the action ϕp(A)b employing the factorizations
of Theorem 2. The implementation of Algorithm 1 using Theorem 1 is straightforward.
Here, we reduce the computation of the action ϕp(A)b to products of 1D matrices and the
resolution of p Sylvester equations. Therefore, we achieve huge savings in both memory and
computational time as we are only computing the ϕ−functions of one dimensional matrices.
Finally, a simple strategy to accelerate and reduce the memory footprint of Algorithm 1 is
to merge steps 6-7, 9-10, 13-14 and 16-17 together to avoid the storage of matrices Φp(A

x)
and Φp(A

y) that are dense.
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Algorithm 1: Compute the action z = ϕp(A)b using Theorem 2

1 Input data: Ax, Ay, b, p, r;
// Compute the right-hand-side

2 Reshape vector b into matrix B;
3 Z = 0;
4 if p = 2r + 1 then
5 for j = 0, . . . , r do
6 Compute Φp−j(A

x) = (Ax)p−jϕp−j(A
x) and Φp−j(A

y) = (Ay)p−jϕp−j(A
y);

7 Z = Z + Φp−j(A
y)B

(
(Ax)j

j!

)T
+ (Ay)j

j! BΦp−j(A
x)T ;

8 end
9 Compute Φr+1(Ax) = (Ax)r+1ϕr+1(Ax) and Φr+1(Ay) = (Ay)r+1ϕr+1(Ay);

10 Z = Z + Φr+1(Ay)BΦr+1(Ax)T ;

11 else if p = 2r then
12 for j = 0, . . . , r − 1 do
13 Compute Φp−j(A

x) = (Ax)p−jϕp−j(A
x) and Φp−j(A

y) = (Ay)p−jϕp−j(A
y);

14 Z = Z + Φp−j(A
y)B

(
(Ax)j

j!

)T
+ (Ay)j

j! BΦp−j(A
x)T ;

15 end
16 Compute Φr(A

x) = (Ax)rϕr(A
x) and Φr(A

y) = (Ay)rϕr(A
y);

17 Z = Z + Φr(A
y)BΦr(A

x)T ;

18 end
// Solve the Sylvester equations

19 for i = 1, . . . , p do
20 Z = sylvester(Ay, (Ax)T , Z);
21 end
22 Reshape matrix Z into vector z;
23 Return: z;

Remark 1. In the 3D case, we can decompose A into

A = Ax ⊗ Iy ⊗ Iz + Ix ⊗Ay ⊗ Iz + Ix ⊗ Iy ⊗Az,

and we have that ϕ0(A) = ϕ0(Ax) ⊗ ϕ0(Ay) ⊗ ϕ0(Az). Thus, the expressions given in
Theorems 1 and 2 can also be extended to 3D. However, in the last step of Algorithm 1, we
need to solve a generalized Sylvester equation with three terms instead of two. This question
is out of the scope of this article and we will address in the future.

5. Numerical results

In this section, we first test the performance of our approach in terms of computational
times. For that, we compute the action U1 = ϕp(−τA)U0 for different matrices A coming
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from different spatial operators. We measure the error of our method when approximating
these actions with the MATLAB routine expmv() from Higham et al. [2]. The latter com-
putes the action of ϕ-functions on vectors for the full 2D matrix. For Algorithm 1, similarly
to [7], we require to explicitly compute ϕ−functions of small 1D matrices so we employ
the routine phipade() from [6]. We also employ the built-in MATLAB routine sylvester()
to solve the Sylvester equations. Then, we solve the 2D+time Allen-Cahn equation with
the exponential Euler method to test our method for approximating a non-linear transient
PDE. In all examples, we discretize the space variable with a FEM with piecewise linear
functions and use Lobatto quadrature to obtain diagonal mass matrices. The simulations
use a 2,4 GHz Intel Core i5 CPU with 16GB of RAM using MATLAB R2017b.

5.1. Heat equation

We consider the following 2D+time heat equation

∂u

∂t
− ε
(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t),

over Ω = (0, 1) × (0, 1) and I = (0, 1]. We consider homogeneous Dirichlet boundary
condition, ε = 1 and the source term corresponding to the following solution

u(x, y, t) = e−π
2t sin(πx) sin(πy).

In this case, matrix A is symmetric and has a Kronecker sum structure with Ax and Ay

having the same dimension. We track the time required to compute U1 = ϕp(−τA)U0 with
p = 0, 1, 3, 5. Here, we set τ = 1/16 and U0, the vector containing the spatial nodal points
of the exact solution when t = 0. Table 1 shows the times needed to compute U1 when we
employ the full 2D matrix and the expressions obtained for the 1D Kronecker product. From
these results, we can conclude that our approach significantly reduces the computational
times. The time reduces from one hour to four seconds (i.e., a reduction factor of 792).
Also, for the biggest matrix and lower order, we have a reduction factor of 27, 716.

p = 0 p = 1 p = 3 p = 5

Size A 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving

49 0.01 0.016 0.6 0.01 0.04 0.3 0.01 0.05 0.2 0.01 0.08 0.2
225 0.008 0.001 8.1 0.04 0.01 4.2 0.04 0.03 1.4 0.04 0.02 1.9
961 0.011 0.003 3.3 0.04 0.02 1.9 0.04 0.01 3.1 0.04 0.01 4.1

3,969 0.35 0.001 373 0.67 0.01 45 0.49 0.01 48 0.5 0.02 24
16,129 2.16 0.003 785 10.26 0.03 384 8.57 0.04 203 9.32 0.08 117
65,025 40.33 0.006 6,341 159.81 0.06 2,868 156.87 0.19 838 163.01 0.44 370
261,121 572.75 0.021 27,716 3,017.82 0.46 6,518 2,965.42 1.61 1,839 3,002.46 3.79 792

Table 1: Computational times in seconds for U1 = ϕp(−τA)U0 with p = 0, 1, 3, 5 solving the full 2D problem
and 1D Kronecker products for different sizes of A.

Figure 1 shows the following relative error

||Ufull1 − Ukron1 ||2
||Ufull1 ||2

, (17)
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Figure 1: Relative approximation error to U1 with p = 0, 1, 3, 5 for 1D Kronecker products.

where || · ||2 denotes the L2 error, Ufull1 is the result we obtain with the 2D matrix and
Ukron1 is the solution obtained with Kronecker products of 1D matrices. In this case, the
error of computing the action with 1D Kronecker products is negligible. Figure 1 shows
errors between high accuracy methods; thus, it becomes more difficult to achieve the same
accuracy as the pollution due to condition number increases as the problem size increases.

Size A Memory A (MB) Size Ax, Ay Memory Ax, Ay (MB) saving

49 0.0037 7 0.00037 4.94
225 0.018 15 0.0017 5.26
961 0.079 31 0.0073 5.37
3,969 0.33 63 0.0303 5.44
16,129 1.35 127 0.123 5.47
65,025 5.44 255 0.496 5.48
261,121 21.88 511 1.99 5.49

Table 2: Memory in MB used to store the full 2D matrices and the 1D matrices for different problem sizes.

Table 2 shows the memory used in MB to store the 2D and 1D matrices of different sizes.
Routine expmv() allows sparse matrices while routine phipade() only admits dense matrices.
Therefore, the full 2D matrix is sparse, while we store the 1D matrices as dense matrices.
As a result of this implementation limitation, we observe a saving factor of memory storage
of 5.5; however, there is room for even larger memory savings using sparse 1D matrices.
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5.2. Transient Eriksson-Johnson problem

We consider the 2D + time Eriksson-Johnson problem [33]

∂u

∂t
+
∂u

∂x
− ε
(
∂2u

∂x2
+
∂2u

∂y2

)
= f(x, y, t),

over Ω = (−1, 0) × (−0.5, 0.5) and I = (0, 1]. We select the data of the problem in such a
way that the exact solution is

u(x, y, t) = Ce−ltx
(
y2 − 0.25

)
+
er1x − er2x

e−r1 − e−r2
cos(πy),

where r1,2 =
1±
√

4π2ε2

2ε
. Therefore, we have

f(x, y, t) = Ce−lt
(
(y2 − 0.25)(1− lx)− 2εx

)
,

with the following boundary and initial conditions
∂

∂x
u(−1, y, t) = Ce−lt

(
y2 − 0.25

)
+
r1e
−r1 − r2e

−r2

e−r1 − e−r2
cos(πy),

u(0, y, t) = u(x,−0.5, t) = u(x, 0.5, t) = 0,

u(x, y, 0) = Cx
(
y2 − 0.25

)
+
er1x − er2x

e−r1 − e−r2
cos(πy).

We set C = 10, l = 4 and ε = 10−2. For the space discretization, we select a non-
uniform mesh and therefore A is a sparse non-symmetric matrix. We compute the action
U1 = ϕp(−τA)U0, where U0 is the initial condition and τ = 1/16 is the time step size.

p = 0 p = 1 p = 3 p = 5

Size A 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving

56 0.01 0.038 0.3 0.05 0.04 1.1 0.06 0.06 0.9 0.05 0.09 0.6
240 0.003 0.003 1 0.01 0.02 0.5 0.01 0.03 0.3 0.01 0.01 0.6
992 0.055 0.006 9 0.02 0.03 0.6 0.02 0.01 1.3 0.02 0.02 1

4,032 0.064 0.005 13 0.17 0.01 16 0.16 0.02 8 0.15 0.04 4
16,256 0.781 0.021 37 2.28 0.03 71 2.24 0.08 27 2.31 0.18 13
65,280 13.32 0.056 237 40.04 0.16 244 40.33 0.55 73 40.33 1.26 32
261,632 184.35 0.206 895 799.03 1.16 687 792.33 4.04 196 775.39 9.36 83

Table 3: Computational times in seconds for U1 = ϕp(−τA)U0 with p = 0, 1, 3, 5 solving the full 2D problem
and 1D Kronecker products and Sylvester equations for different sizes of matrix A.

Table 3 shows the computational times in seconds for computing U1 with the action of
the full 2D matrix and Kronecker products of 1D matrices together with Sylvester equations
for different sizes of matrix A. Figure 2 reflects the relative error defined in (17). In this
case, we conclude that our approach is significantly faster; the largest A is 895 times faster
for the lowest p and 83 times faster for the higher p. However, relative errors perform
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p = 0 p = 1 p = 3 p = 5

Size A 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving 2D 1D⊗1D saving

56 0.01 0.019 0.5 0.05 0.06 0.8 0.06 0.06 1 0.05 0.11 0.5
240 0.003 0.003 1 0.01 0.01 0.6 0.01 0.03 0.3 0.01 0.02 0.5
992 0.055 0.005 11 0.02 0.05 0.4 0.02 0.02 0.9 0.02 0.03 0.6

4,032 0.064 0.003 19 0.17 0.02 9 0.16 0.04 4 0.15 0.08 2
16,256 0.781 0.027 29 2.28 0.07 35 2.24 0.18 13 2.31 0.43 5
65,280 13.32 0.05 267 40.04 0.31 127 40.33 0.96 42 40.33 1.87 22
261,632 184.35 0.217 849 799.03 2.47 323 792.33 6.05 131 775.39 12.39 63

Table 4: Computational times in seconds for U1 = ϕp(−τA)U0 with p = 0, 1, 3, 5 solving the full 2D problem
and 1D Kronecker products and 2D linear systems for different sizes of matrix A.
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Figure 2: Relative approximation error to U1 with p = 0, . . . , 5 for 1D Kronecker products and Sylvester
equations.

properly for p ≤ 3, but we observe significant errors for p ≥ 4 due to the ill-conditioning of
the Sylvester systems.

In order to reduce these errors, we now solve directly the 2D system in Algorithm 1
(step 20) instead of a Sylvester equation. As we assemble the full 2D matrix, we lose the
memory savings. Table 4 and Figure 3 show the computational times and relative errors
employing this approach and the original action of the full 2D matrix. Solving directly
the 2D system in Algorithm 1 is slightly slower than solving the Sylvester equations but
significantly faster than the original routine (63 times faster in the last experiment). In
terms of relative errors, they are small for p ≤ 3, and moderate for p = 4. We will further
study our method’s performance and how to solve the ill-conditioning problem for high p
and large non-symmetric matrices in the future.
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Figure 3: Relative approximation error to U1 with p = 0, . . . , 5 for 1D Kronecker products and 2D linear
equations.

5.3. Allen-Cahn equation

We consider the 2D Allen-Cahn equation from [10, 39]

ut = ∆u+
1

ε2
f(u),

where f(u) = u − u3. We set homogeneous Neumman boundary conditions over Ω =
(0, 1)× (0, 1), T = 0.02, ε = 0.01, and initial condition

u0(x, y) = tanh
0.25 + 0.1 cos(Nθ)−

√
(x− 0.5)2 + (y − 0.5)2

√
2α

,

where

θ(x, y) =


tan−1 y − 0.5

x− 0.5
, if x > 0.5,

π + tan−1 y − 0.5

x− 0.5
, otherwise.

The top-left subfigure of Figure 4 shows the initial condition for N = 7 and α = 0.75. We
solve the full 2D problem with the exponential Euler method [24]

Uk = ϕ0(−τA)Uk−1 + τϕ1(−τA)F (Uk−1), (18)

where, after the spatial discretization, A is the matrix of the Laplacian operator, F is the
nonlinear vector of f(u), and τ is the time-step size.

As we have homogeneous Neumann boundary conditions, the matrix A after the spatial
discretization with FEM is singular. Therefore, the Sylvester equation we solve to compute
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the action of ϕ1 has no unique solution. To overcome this problem, we add and subtract a
small reaction term to the problem

ut = ∆u+ ε2u+
1

ε2
f(u)− ε2u,

and instead of (18), for the Kronecker approach, we solve the following time-marching
scheme

Uk = ϕ0(−τÃ)Uk−1 + τϕ1(−τÃ)F̃ (Uk−1), (19)

where Ã is the matrix we obtain after the spatial discretization of the reaction-difussion
operator ∆+ ε2I and F̃ is the vector corresponding to the modified non-linear term f̃(u) :=
1
ε2
f(u)− ε2u.

We solve (18) and (19) for a mesh of 29 + 2 elements for space dimension and τ = 10−4.
Therefore, the full 2D matrix size is 264, 1962, whereas the 1D matrices are 5142. Figure 4
shows some snapshots of the solution we obtained with Algorithm 1. Here, we have a
star-shaped initial condition that converges to a circle and, finally, its radius shrinks. In
Figure 5 we can see that the relative error at each time step is around 1.7 · 10−6. Finally,
we conclude that the algorithm solving the full 2D matrix lasted around 57 minutes (3423
seconds) for the whole simulation and our method only 1.6 minutes (100 seconds), that is,
34 times faster.

6. Conclusions

This work proposes an algorithm for the fast computation of the action of ϕ−functions
over vectors when the matrix of the system has Kronecker sum structure. We introduce
an auxiliary matrix function Φp(A) = Apϕp(A) expressed as Kronecker products of smaller
matrices. We employ existing software to compute the action of this auxiliary function and
recover the original ϕ−action by solving Sylvester equations. Our approach computes the
action of ϕp(A) on a vector by computing only actions of smaller 1D matrices. We show
the performance of our method for different linear operators and the 2D+time Allen-Cahn
equation. We conclude that our approach is orders of magnitude faster (in some cases, up to
27,000 times faster) than solving the full 2D problem, and it is cheaper in terms of memory
(about 5.5 times) because we only deal with 1D matrices.

However, we observe high errors in the solution for p ≥ 4 in large non-symmetric matrices
when we solve the Sylvester equations, which are ill-conditioned. These errors decrease
orders of magnitude when we solve the corresponding 2D equations instead of the Sylvester
equations but are still considerable. We plan to study this case more in detail in the future.
We also plan to improve the memory savings by extending the software implementations
to allow sparse matrices rather than dense ones. Finally, our decomposition in Kronecker
products of the ϕ−functions is easily extendable to 3D problems. However, this approach
involves the resolution of a generalized Sylvester equation. We will explore this possibility
also as future work. Possible extensions of this work include: (a) a further study of our
approach for high-order methods (p ≥ 4); (b) decomposition in Kronecker products for
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Figure 4: Allen-Cahn solution snapshots obtained with Algorithm 1 for the exponential Euler time-marching
scheme.

ϕ−functions of 3D matrices with Kronecker sum structure; (d) combination of our method
with isogeometric analysis in space; (e) extension of our method to hyperbolic problems.
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Figure 5: Relative error at each time step for τ = 10−4.

Appendix A. Kronecker product

Definition. Let A ∈ Rp×q and B ∈ Rr×s, the Kronecker product A ⊗ B ∈ Rpr×qs is
defined as

A⊗B =


a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap1B · · · apqB

 .
Properties. The Kronecker product satisfies the following properties:

• A⊗ (B + C) = A⊗B +A⊗ C,

• (B + C)⊗A = B ⊗A+ C ⊗A,

• (λA)⊗B = A⊗ (λB) = λ(A⊗B), ∀λ ∈ R,

• (A⊗B)⊗ C = A⊗ (B ⊗ C),

• (A⊗B)(C ⊗D) = (AC)⊗ (BD),

• (A⊗B)−1 = A−1 ⊗B−1,

• (A⊗B)T = AT ⊗BT .

Kronecker product times a vector. Let x ∈ Rqs×1, in the following matrix-vector
multiplication

y = (A⊗B)x, (A.1)
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we have y ∈ Rpr×1. In order to avoid forming A ⊗ B explicitly, we need to reshape the
vectors x and y as

x =


x1

x2
...
xq

 , xi ∈ Rs, y =


y1

y2
...
yp

 , yi ∈ Rr.

and form the following matrices

X =
[
x1 x2 · · · xq

]
∈ Rs×q, Y =

[
y1 y2 · · · yp

]
∈ Rr×p.

It holds the following property

y = (A⊗B)x⇐⇒ Y = BXAT .

Therefore, to compute (A.1), we first reshape x into X, then we compute Y = BXAT and
finally, we reshape Y into y.

Appendix B. Sylvester equation

In (16), we need to compute z = ϕp(A)b from Φp(A)b, where b is a vector. After
computing the righ-hand-side of (13), we obtain an expression of the form

Ap ϕp(A)b︸ ︷︷ ︸
z

= w,

where w is another vector. For p = 1, we have Az = w, or equivalently

(Ax ⊗ Iy + Ix ⊗Ay)z = w.

If we reshape vectors z and w into matrices U and W , we obtain

Z(Ax)T +AyZ = W, (B.1)

which is a Sylvester equation [20]. For p > 1, we have to solve p Sylvester equations of
type (B.1).

Appendix C. Proofs of Theorems 1 and 2

Proof of Theorem 1: By induction over p:

• We prove (13) for p = 1. From (11) and (12), we have

Φ1(A) = Φ0(A)− I = Φ0(Ax)⊗ Φ0(Ay)− Ix ⊗ Iy

= (Φ1(Ax) + Ix)⊗ (Φ1(Ay) + Iy)− Ix ⊗ Iy

= Φ1(Ax)⊗ Φ1(Ay) + Φ1(Ax)⊗ Iy + Ix ⊗ Φ1(Ay).
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• We assume (13) true for p − 1 and prove it for p. From (11) acting on Ax and Ay,
and the induction hypothesis

Φp(A) = Φp−1(A)− 1

(p− 1)!
Ap−1

= Φp−1(Ax)⊗ Φp−1(Ay)

+ Φp−1(Ax)⊗

p−2∑
j=0

(Ay)j

j!

+

(
p−2∑
i=0

(Ax)i

i!

)
⊗ Φp−1(Ay)

+

p−2∑
i=1

p−2∑
j=p−1−i

(Ax)i

i!
⊗ (Ay)j

j!
− 1

(p− 1)!
(Ax ⊗ Iy + Ix ⊗Ay)p−1,

again from (11) we have

Φp(A) =

(
Φp(A

x) +
(Ax)p−1

(p− 1)!

)
⊗
(

Φp(A
y) +

(Ay)p−1

(p− 1)!

)

+

(
Φp(A

x) +
(Ax)p−1

(p− 1)!

)
⊗

p−2∑
j=0

(Ay)j

j!


+

(
p−2∑
i=0

(Ax)i

i!

)
⊗
(

Φp(A
y) +

(Ay)p−1

(p− 1)!

)

+

p−2∑
i=1

p−2∑
j=p−1−i

(Ax)i

i!
⊗ (Ay)j

j!
− 1

(p− 1)!
(Ax ⊗ Iy + Ix ⊗Ay)p−1,

and equivalently

Φp(A) = Φp(A
x)⊗ Φp(A

y)

+ Φp(A
x)⊗

p−1∑
j=0

(Ay)j

j!

+

(
p−1∑
i=0

(Ax)i

i!

)
⊗ Φp(A

y)

+
(Ax)p−1

(p− 1)!
⊗ (Ay)p−1

(p− 1)!

+
(Ax)p−1

(p− 1)!
⊗

p−2∑
j=0

(Ay)j

j!

+

(
p−2∑
i=0

(Ax)i

i!

)
⊗ (Ay)p−1

(p− 1)!

+

p−2∑
i=1

p−2∑
j=p−1−i

(Ax)i

i!
⊗ (Ay)j

j!
− 1

(p− 1)!
(Ax ⊗ Iy + Ix ⊗Ay)p−1.

Employing the classical binomial expansion and the properties of the Kronecker prod-
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uct, we write the last term as

1

(p− 1)!
(Ax ⊗ Iy + Ix ⊗Ay)p−1 =

1

(p− 1)!

p−1∑
i=0

(
p− 1

i

)
(Ax ⊗ Iy)i(Ix ⊗Ay)p−1−i

=

p−1∑
j=0

(Ax)i

i!
⊗ (Ay)p−1−i

(p− 1− i)!
.

(C.1)

Eliminating the identity terms, we have

Φp(A) = Φp(A
x)⊗ Φp(A

y)

+ Φp(A
x)⊗

p−1∑
j=0

(Ay)j

j!

+

(
p−1∑
i=0

(Ax)i

i!

)
⊗ Φp(A

y)

+
(Ax)p−1

(p− 1)!
⊗ (Ay)p−1

(p− 1)!

+
(Ax)p−1

(p− 1)!
⊗

p−2∑
j=1

(Ay)j

j!

+

(
p−2∑
i=1

(Ax)i

i!

)
⊗ (Ay)p−1

(p− 1)!

+

p−2∑
i=1

p−2∑
j=p−1−i

(Ax)i

i!
⊗ (Ay)j

j!
−

p−2∑
j=1

(Ax)i

i!
⊗ (Ay)p−1−i

(p− 1− i)!
.

The last term above cancels out fixing j = p− 1− i in the previous term to obtain

Φp(A) = Φp(A
x)⊗ Φp(A

y)

+ Φp(A
x)⊗

p−1∑
j=0

(Ay)j

j!

+

(
p−1∑
i=0

(Ax)i

i!

)
⊗ Φp(A

y)

+
(Ax)p−1

(p− 1)!
⊗ (Ay)p−1

(p− 1)!

+
(Ax)p−1

(p− 1)!
⊗

p−2∑
j=1

(Ay)j

j!

+

(
p−2∑
i=1

(Ax)i

i!

)
⊗ (Ay)p−1

(p− 1)!

+

p−2∑
i=1

p−2∑
j=p−i

(Ax)i

i!
⊗ (Ay)j

j!
.
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Collecting terms, we have

Φp(A) = Φp(A
x)⊗ Φp(A

y)

+ Φp(A
x)⊗

p−1∑
j=0

(Ay)j

j!

+

(
p−1∑
i=0

(Ax)i

i!

)
⊗ Φp(A

y)

+
(Ax)p−1

(p− 1)!
⊗

p−1∑
j=1

(Ay)j

j!

+

p−2∑
i=1

p−1∑
j=p−i

(Ax)i

i!
⊗ (Ay)j

j!
.

Finally, adding the last two terms, we obtain (13).

Proof of Theorem 2: By induction over p:

• We first prove (14) and (15) for p = 1 and p = 2, respectively. We observe that (14)
coincides with (13) for p = 1, so we already proved that it holds. Now, from (11)
and (14) with p = 1, we obtain

Φ2(A) = Φ1(A)−A
= Φ1(Ax)⊗ Φ1(Ay) + Φ1(Ax)⊗ Iy + Ix ⊗ Φ1(Ay)−Ax ⊗ Iy − Ix ⊗Ay

= Φ1(Ax)⊗ Φ1(Ay) + (Φ2(Ax) +Ax)⊗ Iy + Ix ⊗ (Φ2(Ay) +Ay)−Ax ⊗ Iy − Ix ⊗Ay

= Φ1(Ax)⊗ Φ1(Ay) + Φ2(Ax)⊗ Iy + Ix ⊗ Φ2(Ay).

• If p = 2r + 1, we suppose it is true for p− 1 = 2r. From (11) and (15), we have

Φ2r+1(A) = Φ2r(A)− 1

(2r)!
A2r

=
r−1∑
j=0

(Ax)j

j!
⊗ Φ2r−j(A

y) +
r−1∑
j=0

Φ2r−j(A
x)⊗ (Ay)j

j!
+ Φr(A

x)⊗ Φr(A
y)

− 1

(2r)!
(Ax ⊗ Iy + Ix ⊗Ay)2r,

again from (11) and (C.1), we obtain

Φ2r+1(A) =
r−1∑
j=0

(Ax)j

j!
⊗
(

Φ2r+1−j(A
y) +

1

(2r − j)!
(Ay)2r−j

)

+

r−1∑
j=0

(
Φ2r+1−j(A

x) +
1

(2r − j)!
(Ax)2r−j

)
⊗ (Ay)j

j!

+

(
Φr+1(Ax) +

1

r!
(Ax)r

)
⊗
(

Φr+1(Ay) +
1

r!
(Ay)r

)
−

2r∑
i=0

(Ax)i

i!
⊗ (Ay)2r−i

(2r − i)!
,
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or equivalently, rearranging terms, we obtain

Φ2r+1(A) =
r∑
j=0

(Ax)j

j!
⊗ Φ2r+1−j(A

y) +
r∑
j=0

Φ2r+1−j(A
x)⊗ (Ay)j

j!
+ Φr+1(Ax)⊗ Φr+1(Ay)

+
r−1∑
j=0

(Ax)j

j!
⊗ (Ay)2r−j

(2r − j)!
+

r−1∑
j=0

(Ax)2r−j

(2r − j)!
⊗ (Ay)j

j!
+

(Ax)r

r!
⊗ (Ay)r

r!

−
2r∑
i=0

(Ax)i

i!
⊗ (Ay)2r−i

(2r − i)!
.

Adding the 4th and 6th terms together and performing a change of indexes (2r−j = i)
in the 5th term, we obtain

Φ2r+1(A) =
r∑
j=0

(Ax)j

j!
⊗ Φ2r+1−j(A

y) +
r∑
j=0

Φ2r+1−j(A
x)⊗ (Ay)j

j!
+ Φr+1(Ax)⊗ Φr+1(Ay)

+

r∑
j=0

(Ax)j

j!
⊗ (Ay)2r−j

(2r − j)!
+

2r∑
i=r+1

(Ax)i

i!
⊗ (Ay)2r−i

(2r − i)!

−
2r∑
i=0

(Ax)i

i!
⊗ (Ay)2r−i

(2r − i)!
.

Finally, the last three terms above cancel out, which results in (14) as claimed.

• If p = 2r, we suppose it is true for p− 1 = 2r − 1. From (11) and (14), we have

Φ2r(A) = Φ2r−1(A)− 1

(2r − 1)!
A2r−1

=
r−1∑
j=0

(Ax)j

j!
⊗ Φ2r−1−j(A

y) +
r−1∑
j=0

Φ2r−1−j(A
x)⊗ (Ay)j

j!
+ Φr(A

x)⊗ Φr(A
y)

− 1

(2r − 1)!
(Ax ⊗ Iy + Ix ⊗Ay)2r−1.

Employing (11) in the first two terms and (C.1) in the last one, we have

Φ2r(A) =
r−1∑
j=0

(Ax)j

j!
⊗
(

Φ2r−j(A
y) +

1

(2r − 1− j)!
(Ay)2r−1−j

)

+
r−1∑
j=0

(
Φ2r−j(A

x) +
1

(2r − 1− j)!
(Ax)2r−1−j

)
⊗ (Ay)j

j!

+ Φr(A
x)⊗ Φr(A

y)−
2r−1∑
i=0

(Ax)i

i!
⊗ (Ay)2r−1−i

(2r − 1− i)!
,
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or equivalently,

Φ2r(A) =

r−1∑
j=0

(Ax)j

j!
⊗ Φ2r−j(A

y) +

r−1∑
j=0

Φ2r−j(A
x)⊗ (Ay)j

j!
+ Φr(A

x)⊗ Φr(A
y)

+
r−1∑
j=0

(Ax)j

j!
⊗ (Ay)2r−1−j

(2r − 1− j)!
+

r−1∑
j=0

(Ax)2r−1−j

(2r − j − 1)!
⊗ (Ay)j

j!

−
2r−1∑
i=0

(Ax)i

i!
⊗ (Ay)2r−1−i

(2r − 1− i)!
.

Finally, by changing the indexes i = 2r − 1− j in the 5th term above, we obtain

Φ2r(A) =

r−1∑
j=0

(Ax)j

j!
⊗ Φ2r−j(A

y) +

r−1∑
j=0

Φ2r−j(A
x)⊗ (Ay)j

j!
+ Φr(A

x)⊗ Φr(A
y)

+
r−1∑
j=0

(Ax)j

j!
⊗ (Ay)2r−1−j

(2r − 1− j)!
+

2r−1∑
i=r

(Ax)i

i!
⊗ (Ay)2r−1−i

(2r − 1− i)!

−
2r−1∑
i=0

(Ax)i

i!
⊗ (Ay)2r−1−i

(2r − 1− i)!
.

The last three terms above cancel out, and we obtain (15).
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