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Abstract. The problem of learning over non-stationary ranking streams arises
naturally, particularly in recommender systems. The rankings represent the pref-
erences of a population, and the non-stationarity means that the distribution of
preferences changes over time. We propose an algorithm that learns the current
distribution of ranking in an online manner. The bottleneck of this process is a
rank aggregation problem.
We propose a generalization of the Borda algorithm for non-stationary ranking
streams. As a main result, we bound the minimum number of samples required to
output the ground truth with high probability. Besides, we show how the optimal
parameters are set. Then, we generalize the whole family of weighted voting rules
(the family to which Borda belongs) to situations in which some rankings are more
reliable than others. We show that, under mild assumptions, this generalization
can solve the problem of rank aggregation over non-stationary data streams.

Keywords: Preference learning · Rank aggregation · Borda · Evolving prefer-
ences · Voting · Concept Drift.

1 Introduction

In the rank aggregation problem, a population of voters cast their preferences over a set
of candidates by providing each a ranking of these candidates. The goal is to summarize
this collection of rankings S with one single ranking π. A classical formulation of rank
aggregation is to find the Kemeny ranking, the ranking that minimizes the number of
discrepancies with S. Unfortunately, finding the Kemeny ranking is NP-hard.

When the rankings are distributed according to the Mallows distribution Kemeny
is known to be the maximum likelihood estimator of one model parameter and the
Borda ranking a high-quality, low-cost approximation to the same parameter. Therefore,
besides in Optimization [8], rank aggregation has been studied in Computational Social
Choice [4] and Machine Learning [19, 26] extensively, generally in a batch setting.

In this paper, we challenge the standard batch learning setting and consider stream
learning [13, 18], which refers to learning problems for which the data is continuously
generated over time. This feature imposes severe computational complexity constraints
on the proposed learning algorithms. For instance, in contrast to batch learning, in
stream learning scenarios the data can no longer be completely stored, and the learning
algorithms must be computationally efficient (linear or even sub-linear), to the extreme
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of operating close to real-time. These computational complexity constraints usually lead
to models that are incrementally updated with the arrival of new data.

Besides, another major challenge when dealing with stream learning arises when
the source producing stream data evolves over time, which yields to non-stationary
data distributions. This phenomenon is known as concept drift (CD) [14]. In the stream
learning scenarios with CD, the models have to be able to adapt to changes (drifts) in the
data distribution (concept). We focus on this scenario that we call evolving preferences.

Problem statement. In this paper, we assume that the data is given as a stream of
rankings over n items representing the evolving preferences of a population of voters.
Rankings are i.i.d. according to a Mallows model (MM) -analogous to the Gaussian
distribution defined over the permutation space-: MM are parametrized by (i) a modal
ranking (representing the consensus of the population), and (ii) a parameter controlling
the variance. Therefore, a stream of rankings with concept drift is naturally modelled
by a sequence of MM with different modal rankings, i.e., an evolving MM. The goal
is to develop an estimate of the current modal ranking of the evolving MM with low
computational complexity and arbitrarily small error, that is able to deal with the CD
phenomenon.

Contributions. There are three main contributions in this paper.

– We adapt the Borda algorithm to the stream learning scenario in which the distri-
bution of the data changes, SL with CD. We denote this generalization of Borda
unbalanced Borda (uBorda).

– We theoretically analyze uBorda and provide bounds on the number of samples
required for recovering the last modal ranking of the evolving MM, in expectation
and with arbitrary probability. Moreover, we show how to set an optimal learning
parameter.

– We generalize whole families of voting rules 5 to manage evolving preferences.
Moreover, we show that this is a particular case of the scenario in which some voters
are more trusted than others. We denote this setting as unbalanced voting and show
the empirical performance of this approach.

Related work. Rank aggregation has been studied in Optimization [8], Computational
Social Choice [4] and Machine Learning [19, 26]. In the last decade, rank aggregation has
been studied in on-line environments. In particular, [27] proposed a ranking reconstruc-
tion algorithm based on the pairwise comparisons of the items with near optimal relative
loss bound. In [1], two efficient algorithms based on sorting procedures that predict the
aggregated ranking with bounding maximal expected regret where introduced. In [6]
an active learner was proposed that, querying items pair-wisely, returns the aggregate
ranking with high probability.

5 Voting rules are functions that given a collections of rankings output the winner of the election
and generalize the notion of rank aggregation. We generalize the Weighted Tournament solutions
and Unweighted Tournament solutions families, from which Borda and Condorcet respectively
are the best known members.
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Evolving preferences have been considered from an axiomatic perspective by mod-
eling voters preferences with Markov decision processes [21], in fairness [12] and
matching [15]. In [23], the authors analyze the behavior of the preferences of a pop-
ulation of voters under the plurality rule. In [22] the authors assume that each user
preferences change over time. In contrast to the previous works, in this work we assume
a probabilistic setting using a MM that changes over the time for modeling the evolving
preferences of a population.

This paper is organized as follows: Section 2 includes the preliminaries of this paper.
Section 3 presents the generalization of Borda and its theoretical guarantees. Section 4
introduces the adaptation of a whole family of voting rules to the case in which some
voters are trusted more. Section 5 shows the empirical evaluation of the algorithms for
the rank aggregation on stream learning with concept drift. Finally, Section 6 summarizes
the main contributions of the work.

2 Preliminaries and notation

Permutations are a bijection of the set [n] = {1, 2, . . . , n} onto itself and are represented
as an ordered vector of [n]. The set of permutations of [n] is denoted by Sn. Permutations
will be denoted with the Greek letters σ or π and represent rankings, meaning that the
ranking of element i ∈ [n] in σ is denoted by σ(i). Rankings are used to represent
preferences and we say that item i is preferred to item j when it has a lower ranking,
σ(i) < σ(j).

One of the most popular noisy models for permutations is the Mallows model
(MM) [10, 20]. The MM is an exponential location-scale model in which the location
parameter (modal ranking) is a ranking denoted by π, and the scale (or concentration
parameter) is a non-negative real number denoted by θ. In general, the probability of any
ranking σ ∈ Sn under the MM can be written as:

p(σ) =
exp(−θ · d(σ, π))

ψ(θ)
, (1)

where d(·, ·) is a distance metric and ψ(θ) is a normalization factor that depends on the
location parameter θ. It has closed form expression for most interesting distances [16].

A random ranking σ drawn from a MM centered at π and with concentration param-
eter θ is denoted as σ ∼MM(π, θ). The expected rank of item i for σ ∼MM(π, θ) is
denoted by Eπ[σ(i)], or simply by E[σ(i)] when it is clear from the context. To model
preferences, the selected distance d(·, ·) for permutations is the Kendall’s-τ distance
(for other choice of distances see [16, 25]). This distance counts the number of pairwise
disagreements in two rankings,

d(σ, π) =
∑
i<j

I[(σ(i)− σ(j)) ∗ (π(i)− π(j)) < 0], (2)

where I is the indicator function.
Given a sample of rankings, the maximum likelihood estimation (MLE) of the

parameters of a MM is usually computed in two steps. First, the MLE of the modal
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ranking π is obtained. It corresponds to the Kemeny ranking [10] (see the following
sections for further details). Second, given the MLE of the modal ranking, the MLE of
the concentration parameter θ can be computed numerically.

2.1 Modeling evolving preferences: Evolving Mallows model

In this paper, we assume that the data is a stream of preferences, i.e., a sequence of
rankings and that our proposed algorithm has to update its estimate every time a new
ranking is received. The rankings in the sequence may not all come from the same
distribution, so in the next lines, we introduce a natural way of modeling preferences
that evolve dynamically over time.

Let σt for t ≥ 0 be the t− th ranking in the given sequence, being σ0 the current
ranking. We assume that the stream of rankings satisfy σt ∼ MMt(πt, θt), for t ≥ 0.
This sequence of models is denoted the evolving Mallows model (EMM).

When two consecutive models, MMt+1(πt+1, θt+1) and MMt(πt, θt), differ on
their modal ranking, πt+1 6= πt, we say that at time t there has been a drift in the modal
ranking of the model. Under the Mallows models, the drifts in the modal ranking can be
interpreted as a change in the consensus preference of a population of voters. When the
concentration parameter changes over time, the drifts represent a change in the variability
of the preferences of a population around the consensus ranking. For the rest of the paper,
we focus on the scenario with drifts in the modal ranking.

Drifts can be classified as gradual and abrupt in terms of speed, being abrupt when a
change happens suddenly between two concepts, and gradual when there is a smooth
transition between both concepts. In this work, we have considered abrupt drifts in
what refers to the speed of change (rankings generated from the old concept disappear
suddenly and the new ones appear), and small-step/large-step (the Kendall’s-τ distance
between consecutive modal rankings is small/large).

3 Unbalanced Borda for stream ranking

In this section, we present a generalization of the well-known Borda count algorithm to
rank aggregation for the context of stream data with concept drift. We want to point out
that this approach is generalized in Section 4, for (1) the settings in which each ranking
in the sample is not equally relevant (e.g., the agents have different reliabilities), and (2)
for all the voting rules in the family of Weighted voting rules and Unweighted Voting
rules (C1 and C2 families) [4].

The Borda algorithm [3] is one of the most popular methods for aggregating a sample
of rankings, S, into one single ranking that best represents S. Borda ranks the items [n]
by their Borda score increasingly, where the Borda score B(i) is the average ranking of
each item i, for i = 1, ..., n:

B(i) =
1

|S|
∑
t∈S

σt(i).

Borda is the de-facto standard in the applied literature of rank aggregation. Firstly, it
has a computational complexity of O(n · (|S|+ log n)). Secondly, it is guaranteed to be
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a good estimator of the modal ranking when the samples are i.i.d. according to a MM: it
requires a polynomial number of samples with respect to n to return the modal ranking
of the MM with high probability [7]. In general, it is a 5-approximation to the Kemeny
ranking [8], which, unfortunately, has been shown to be NP-hard to compute [9].

We propose unbalanced Borda (uBorda) a generalization of Borda for the rank
aggregation problem in the context of streaming preferences. In uBorda, each ranking
σt has an associated weight ρt that is proportional to the relevance of the ranking in the
sample. The uBorda scores correspond to the weighted average of the given rankings. In
other words, uBorda is equivalent to replicating each ranking σt ρt times and applying
Borda.

In stream learning, votes arrive sequentially, at time-stamp t rank σt is received,
being t = 0 the most recent ranking of a possible infinite sequence of votes. In order for
uBorda to adapt to the concept drifts in the sequence, we propose to weight the ranking
σt by ρt for a given parameter ρ ∈ [0, 1]. This choice leads to the following Borda score
for each item i.

B(i) ∝
∑
t≥0

ρt · σt(i) (3)

Intuitively, using these specific weights the voting rule pays more attention to recent
rankings since ρt exponentially decreases as the antiquity t of the ranking σt increases.
The uBorda score can be incrementally computed as B(i) ∝ σ0(i) + ρ ·B1(i) where
B1(i) denotes the previous uBorda score, computed using σt for t ≥ 1. Thus, in this
streaming scenario, the uBorda scores can be updated incrementally in linear time O(n),
and the Borda algorithm has a computational time complexity of O(n log n), in the
worst case.

By setting ρ = 1 we recover the classic Borda. When 0 ≤ ρ < 1, uBorda can be
seen as a Borda algorithm that incorporates a forgetting mechanism to adapt the ranking
aggregation process to drifts in streaming data.

In subsequent sections, we will theoretically analyze the properties of uBorda for
ranking aggregation in streaming scenarios when the rankings are i.i.d. according to
an EMM. First, next lemma provides some known intermediate result regarding the
expected value of rankings obtained from a MM.

Theorem 1 ([11]) Given a sample S of permutations i.i.d. according to a MM(π, θ),
the Borda ranking is a consistent estimator of π.

Following, we show a proof sketch to present the main ideas behind this result and
introduce some new notation (see [11] for further details). The authors argue that, on
average and for π(i) < π(j), Borda6 will rank i above j iff Eπ[σ(i)] < Eπ[σ(j)]. They
reformulated the expression Eπ[σ(j)] < Eπ[σ(i)] in a more convenient way:

6 Note that, with a slight abuse in the notation, we are using σ indistinctly for a ranking and for a
random variable distributed according to a MM.
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∆ij = Eπ[σ(j)]− Eπ[σ(i)]

=
∑

{σ:σ(i)<σ(j)}

(σ(j)− σ(i))(p(σ)− p(στ)), (4)

where τ is an inversion of positions i and j. Clearly, the proof of Theorem 1 is equivalent
to showing that ∆ij > 0 for every i, j such that π(i) < π(j). To see this, note that
for the set of rankings {σ : σ(i) < σ(j)} it holds that (σ(j) − σ(i)) > 0. When p is
a MM(π, θ), due to the strong unimodality of MMs, we can also state that (p(σ) −
p(στ)) > 0. Thus, given a MM with parameters π and θ we have that ∆ij > 0 for every
i, j such that π(i) < π(j).

In the following Lemma, we provide an intermediate result that relates the expected
rankings of two MMs, MM(σ, θ) and MM(στ, θ), where τ represents an inversion of
positions i and j.

Lemma 2 Let σ a ranking distributed according to MM(π, θ). Let τ be an inversion
of i and j so that d(πτ, π) = 1. Using the definition on Equation (4), we can easily see
that Eπ[σ] and Eπτ [σ] are related as follows:

Eπτ [σ(i)] = Eπ[σ(j)] = Eπ[σ(i)] +∆ij

Eπτ [σ(j)] = Eπ[σ(i)]
(5)

3.1 Sample complexity for returning π0 on average

In this section, we analyze theoretically uBorda for ranking aggregation using stream data
distributed according to a EMM. We consider a possibly infinite sequence of rankings
for which the current modal ranking is π0 ant the last drift in the modal ranking has
occurred m batches before. We bound the number of batches since the last drift that
uBorda needs to recover the current modal ranking π0 on average.

Theorem 3 Let π(i) < π(j), and let τ be an inversion of i and j so that d(πτ, π) = 1.
Let σt be a (possibly infinite) sequence of rankings generated by sampling an EMM,
such that σt ∼MM(π, θ) for t ≥ m and σt ∼MM(πτ, θ) for m > t. Then, uBorda
returns the current ranking π0 = πτ in expectation when

m > logρ 0.5.

Proof. The uBorda algorithm ranks the items in k ∈ [n] w.r.t. the uBorda score B(k) =∑
t≥0 ρ

tσt(k). Thus, uBorda recovers the current ranking π0 if and only if the expression
E[
∑
t≥0 ρ

tσt(i)] < E[
∑
t≥0 ρ

tσt(j)] is satisfied for every pair i, j.

E[
∑
t≥0

ρtσ(i)] =
∑
t≥m

ρtEπ[σ(i)] +
∑
m>t

ρtEπτ [σ(i)] =
∑
t≥0

ρtEπ[σ(i)] +
∑
m>t

ρt∆ij

E[
∑
t≥0

ρtσ(j)] =
∑
t≥m

ρtEπ[σ(j)] +
∑
m>t

ρtEπτ [σ(j)] =
∑
t≥0

ρtEπ[σ(i)] +
∑
t≥m

ρt∆ij
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Therefore, the uBorda algorithm recovers the current ranking π0 in expectation if
and only if the next inequality holds:∑

t<m

ρt <
∑
t≥m

ρt

Thus, given m > 0, we can satisfy the previous inequality by selecting ρ according to
m > logρ 0.5, which concludes the proof.

Note that the right hand side expression decreases as ρ decreases, for ρ ∈ (0, 1],
and in the limit, limρ→0 logρ 0.5 = 0. The intuitive conclusion is that as ρ decreases
uBorda is more reactive, that is, in expectation it needs less samples to accommodate to
the drift. In other words, when ρ decreases uBorda quickly forgets the old preferences
and focuses on the most recently generated ones, so it can quickly adapt to recent drifts.
One might feel tempted of lowering ρ to guarantee that uBorda recovers the last modal
ranking in expectation. However, as we decrease ρ the variance on the uBorda score (see
Equation (3)) increases and, thus the variance of the ranking obtained with uBorda also
increases. In the next section, we will show how the confidence of our estimated modal
ranking decreases as ρ decreases. Besides, we will provide a lower bound on the number
of samples required by uBorda for recovering from a drift.

3.2 Sample complexity for returning π0 with high probability

In this section we consider a possibly infinite sequence of rankings and denote by π0
the current consensus of the model, which has generated the last m rankings. We bound
the value of m that uBorda needs to return π0 with high probability in Theorem 5 and
Corollary 6.

We present an intermediate result in Lemma 4, where we bound with high probability
the difference between the uBorda score and its expected value for a given sub sequence
of the stream of rankings. For this intermediate result we consider that there is no drift
in the sample.

Lemma 4 Let σr, σr+1, ..., σs be m = s− r + 1 rankings i.i.d. distributed according
to MM(π, θ). In the absence of drifts, the absolute difference between the uBorda score
for item i, (1−ρ) ·

∑s
t=r ρ

tσt(i), and its expectation E[(1−ρ)
∑s
t=r ρ

tσt(i)] is smaller
than

εsr = (n− 1)(1− ρ) ·

√
(ρ2r − ρ2s)
2 · (1− ρ2)

· log 2

δ
(6)

with, at least a probability of 1− δ,

P

(∣∣∣ s∑
t=r

ρt(σt(i)− E[σt(i)])
∣∣∣ ≤ εsr

)
≥ 1− δ
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The proof, which is omitted, uses the Hoeffding’s inequality and sums of geometric
series.

The next result gives a lower bound on the number of samples required for recovering
from a drift with high probability for a drift at distance 1. This result is generalized for
distance d drifts afterwards. The lower bound is given as a function of the concentration
of the underlying distribution θ and parameter ρ.

Theorem 5 Let π(i) < π(j) and let τ be an inversion of i and j so that d(πτ, π) = 1.
Let σt for t ≥ 0 be a (possibly infinite) sequence of rankings generated by sampling
an evolving MM, such that for t ≥ m then σt ∼ MM(π, θ) and for t < m then
σt ∼ MM(πτ, θ). The number of samples that uBorda needs to return the current
modal ranking π0 = πτ in expectation with probability 1− δ is at least

m > logρ

(
(1− ρ)2√
1− ρ2

n
√
0.5 log δ

∆ij
+ 0.5

)
(7)

where ∆ij is defined in Equation (4).

Proof. Following the idea in Theorem 3, the algorithm uBorda returns the current
ranking π0 = πτ in expectation when the expected uBorda score (see Equation (3)) of
element i is greater than of element j as

∞∑
t=m

ρtEπ[σ(j)] +
m−1∑
t=0

ρtEπτ [σ(j)] <
∞∑
t=m

ρtEπ[σ(i)] +
m−1∑
t=0

ρtEπτ [σ(i)], (8)

which is based on Equation (4). Equation (8) would be an accurate measure for the
sample complexity if the expected value did not deviate at all from the sum. However,
according to Lemma 4 we can upper bound the difference between the uBorda score as
shown in Lemma 4. Next, we make use of the definition in Equation (6) to define the
deviations of the uBorda score before the drift, ε∞m , and after the drift, εm−10 and let ε∞0 .
Note that the next inequality holds:

ε∞m + εm−10 ≥ ε∞0 (9)

Therefore, we can state that with probability 1− δ we have recovered from a drift
when the m satisfies

∞∑
t=m

ρtEπ[σ(j)] + ε∞m +

m−1∑
t=0

ρtEπτ [σ(j)] + εm−10 <

∞∑
t=m

ρtEπ[σ(i)]− ε∞m +

m−1∑
t=0

ρtEπτ [σ(i)]− εm−10 ,

which implies that with probability 1− δ uBorda will recover πτ when the following
expression holds:



Rank aggregation for non-stationary data streams 9

∆ij

m−1∑
t=0

ρt − 2εm−10 > ∆ij

∞∑
t=m

ρt + 2ε∞m

After some algebra, and using the result in Equation (9), we obtain the lower bound
for m

m−1∑
t=0

ρt∆ij −
∞∑
t=m

ρt∆ij > 2ε∞m + 2εm−10 > 2ε∞0

ρm − 1

ρ− 1
− ρm

1− ρ
>

ε∞0
∆ij

ρm >
ε∞0 (ρ− 1)

∆ij
+ 0.5

m > logρ

(
(ρ− 1)(1− ρ)√

1− ρ2
n
√
0.5 log δ−1

∆ij
+ 0.5

)
(10)

which concludes the proof.

The previous result gives a bound for drifts at distance 1 and it is generalized in the
following Corollary for any drift.

Corollary 6 For τ a drift at distance d, the maximum rank difference for item i, is
|σ(i) − στ(i)| < d. For m as described in Theorem 5, after dm observed samples,
uBorda recovers the current central ranking with arbitrary high probability.

3.3 Choosing ρ optimally

In this section how to compute the value of ρ for recovering from a drift with high
probability after receiving m rankings.

Theorem 7 Letm be the number of rankings received after the last concept drift. uBorda
recovers the true ranking with probability (1 − δ) by using the forgetting parameter
value ρ∗ = argmaxρ f(ρ,m) that can be found numerically, where

f(ρ,m) =
2ρm − 1

ρ− 1

(√
ρ2m

1− ρ2
1− ρ
ρm

+

√
ρ2m − 1

ρ2 − 1

ρ− 1

ρm − 1

)
. (11)

The previous result provides the optimal value of ρ given the maximum delay allowed
for determining a change in the consensus preference, i.e., maximize the probability
of recovering the ground true ranking after m rankings. Moreover, it has a probability
of success as 1 − δ. A more basic approach to include this kind of expert knowledge
is to set a window of size m and consider only the last m rankings. In this case, the
probability of success can be found with classic quality results for Borda [7]. However,
our proposed uBorda has different advantages over traditional window approaches. First,
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uBorda allows handling and infinite sequence of permutations. This means that for every
pair of items that have not suffered a drift there is an infinity number of samples available.
Second, this analysis can be adapted to more general settings. In other words, this paper
considers the particular situation in which recent rankings are more relevant than old
ones but there are situations in which a subset of the rankings are more relevant than
other for different reasons. For example, because some voters provide rankings that are
more trustworthy than others. In this case, uBorda can be used as a rank aggregation
procedure in which expert agents have a larger weight.

4 Generalizing voting rules

So far we have adapted the Borda algorithm to perform rank aggregation when the
rankings lose importance over time. This section generalizes that setting in every possible
way. First, we consider families of algorithms (which include Borda and Condorcet).
Second, we consider that each ranking has different ”importance” (rather than decreasing
importance with time). 7

We propose a general framework and skip the search for statistical properties for the
voting rules, since it needs assumptions on the data generating process and is context-
dependent. Instead, we validate empirically the Condorcet rule in the experimental
section for the evolving preference setting, showing applicability and efficiency.

In particular, we are given a set of rankings S = {σv : v ∈ [m]} representing
the preferences of a set of voters, where each voter v < m has a weight wv ∈ R+

representing our confidence in σv . There are similar contexts in crowd learning scenarios
in which the weight of each voter is related to its reliability [17].

The most relevant voting rules are those in the Unweighted Tournament Solutions
family (C1 voting rules) and the Weighted Tournament Solutions family (C2 voting
rules [4]8). We generalize these voting rules by generalizing the frequency matrix upon
which all the rules in these families are defined. The weighted frequency matrix, N , is
the following summary statistic of the sample of rankings S.

Nij =
∑
v<m

wvI[σv(i) < σv(j)], (12)

where wv is the weight of the preference σv . 9 The family of C2 functions are given as a
function of the majority margin matrix, wich is computed using the frequency matrix.
The generalized majority matrix, M , is computed using N as follows:

Mij = Nij −Nji = 2Nij −
∑
v<m

wv, (13)

Intuitively, M counts the difference on the weighting votes that prefer i to j and those
that prefer j to i. The Kemeny ranking can be formulated using the majority margins

7 We can say that some voters are more trusted than others.
8 Condorcet and Borda belong to C1 and C2 voting rules respectively.
9 By setting wv = 1 the standard frequency matrix is obtained.
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matrix in Equation (13) as follows

σK = arg min
σ∈Sn

∑
i,j∈[n]:σ(i)>σ(j)

Mij . (14)

The Kemeny ranking has been shown to maintain several interesting properties, such
as being a median permutation of the sample of rankings, and the MLE of the modal
ranking of the sample when the rankings are i.i.d. according to a Mallows model [10].
Unfortunately, the problem of computing the Kemeny ranking given a sample of rankings
S has been shown to be NP-hard [9]. Other interesting members of the family of the
C2 family are a pairwise query algorithm that returns the Kemeny ranking with high
probability [5], the ranked pairs method [24] and a 4/3-approximation of the Kemeny
ranking [2].

The C1 family or Unweighted Voting Rules family uses the unweighted version of
the graph defined by the majority margin matrix M . The most prominent member of this
family is Condorcet: A Condorcet winner for a collection of rankings is an alternative
i that defeats every other alternative in the strict pairwise majority sense. By stating it
as a function of Equation (13), we can define Condorcet for balanced and unbalanced
settings.

Definition 8 (Condorcet) The Condorcet winner is the item i for which Mij > 0
for all j. For convenience, we define the number of Condorcet victories of item i is
{|j| :Mij > 0}.

The Condorcet winner does not always exist, and this holds for both balanced
and unbalanced settings. This is known as the Condorcet paradox. We show strong
experimental results in the following section.

5 Experiments

In this section, we provide empirical evidence of the strengths of uBorda to deal with the
ranking aggregation problem in streaming scenarios. These experiments illustrate the
theoretical results for the estimation of the ground true ranking after a drift (Section 3.2)
and the tuning of the forgetting parameter ρ (Section 3.3). Moreover, we show its
applicability beyond the theoretical setting using different ranking models and several
voting rules (see Section 4). For each parameter configuration, the results are run 10 times
and the average is shown with a stroke line and the .95 confidence interval (λ = 0.05)
shadowed.

5.1 Rank aggregation for dynamic preferences with uBorda

This section analyses the performance of uBorda as a rank aggregation algorithm using
streaming data of rankings. We consider a synthetic stream of 300 rankings. The larger
m, the easier the learning problem from the statistical perspective and the sample size of
m = 20 per drift is challenging even in the classical non-drift setting [7]. The stream
of rankings has been sampled from an evolving ranking model that suffers concept
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Fig. 1. uBorda algorithm for Mallows model with large and small step drifts

drifts periodically. We have considered three types of evolving ranking models using
the Mallows model, Plackett-Luce and Generalized Mallows model10. We consider two
settings of each model, close to the uniform distribution or far from it. 11

Between one subsequence and the next one, there has been a drift on the ground true
ranking. The drift can be a small-step drift (drift at distance 1) or a large-step drift (the
distance randomly increases in a number between 1 and n). In every case, the distance
between the first and the last ground true ranking is maximal, n ∗ (n− 1)/2.

For the visualization of the results, each ranking in the sequence lays in the x axis,
and drifts are denoted with a grey vertical line in all plots. At each point of the sequence,
the uBorda ranking σ̂0 estimates the ground true ranking σ0 with the observed rankings
so far, and therefore, the y axis measures the Kendall’s-τ distance d(σ0, σ̂0).12 Therefore,
the smaller, the better.

Simulating the inclusion of expert knowledge in the experiment, we expect the rank
aggregation to recover from the drifts after m = 20 samples. Theorem 7 shows that

10 In the supplementary material.
11 For the Mallows, the expected distance (which is a function of the spread parameter) is 0.1 and

0.4 of the maximum distance. For Plackett-Luce the weights are wi = n− i and wi = en−i.
12 We follow the classical test-then-train strategy.
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Fig. 2. uBorda algorithm for Plackett-Luce model with large and small step drifts

finding the value for ρ that minimizes the probability of error for a given number o
samples is done by solving a convex optimization problem. For our choice of m = 20
the optimal ρ is 0.93. For comparison, we use different fading factors ρ ∈ {0.8, 0.93, 1},
each corresponding to a different line in the plot.

Figure 1 shows the results of uBorda for the Mallows model and the particular
configuration can be seen in the title. When a drift occurs (after each vertical grid-line),
the error increases for every choice of ρ. However, differences in the value of ρ cause
critical differences in the behavior of uBorda: while ρ = 1 (the classic Borda algorithm)
gets an increasing error with a larger sample, ρ < 1 can adapt to the drifts, consistently
with the findings in the previous sections.

When ρ = 0.93 uBorda has the most accurate results. As shown in Theorem 7, this
value maximizes the probability of recovering from a drift in 20 samples among the
parameter values considered. Moreover, after these 20 samples, it recovers the ground
true ranking with an error smaller than 0.1. Choosing ρ = 0.8 makes uBorda forget
quicker the previous permutations and this can lead to a situation in which too few of the
last permutations are considered to estimate the consensus. The more chaotic behavior
of the smallest value of ρ = 0.8 (remind the logarithmic scale for the Y-axis) is related
to this phenomenon in which few permutations are contributing to the estimation of the
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Fig. 3. Condorcet algorithm for Mallows and Plackett-Luce models

consensus, i.e., uBorda is aggregating a small number of rankings. Finally, for ρ = 1
uBorda is equivalent to Borda and does not forget the past rankings. That leads to an
increasing error as new concept drifts occur because uBorda is not able to accommodate
the changes in the consensus ranking of the evolving Mallows model.

Figure 2 show the results obtained with an evolving Plackett-Luce model. The
conclusions are similar to those obtained for the evolving Mallows model. Since Plackett-
Luce implies a transitivity pairwise matrix of the marginals, Borda is an unbiased
estimator of the central ranking in a non-evolving setting [11]. For ρ < 1 uBorda can
adapt to the changes in the ground true ranking, while the error of Borda (i.e., uBorda
with ρ = 1) increases after each drift. The supplementary material shows similar results
for other parameter setting and probability models in the probabilistic ranking literature.

5.2 Condorcet winner in dynamic preferences

Section 4 generalizes families of voting rules to the unbalanced voting (and evolving pref-
erences) setting. In this section, we validate empirically the most relevant member of the
C1 family, Condorcet (see Definition 8). In a similar setting to the previous experiments,
we consider the Plackett-Luce and the Mallows models -since both possess a Condorcet
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winner. For each model, we consider the same peaked and disperse distributions, and the
results are in Figure 3. Drift i, represented as the i-th vertical line, is a swap between
the first and the i-th item. A Condorcet winner will have n− 1 = 9 Condorcet victories
(y axis), therefore, the higher, the better. We show the results of 4 different settings of
our algorithms, ρ = [.7, .8, .9, 1].

In all the experiments, when ρ = 1 the Condorcet Victories of the winner item strictly
decreases with each drift. When the forgetting parameter ρ < 1 the Condorcet Victories
also decrease but recover after observing some rankings from the same distribution. This
recovery is faster for smaller values of ρ, as we show theoretically for Borda in Section 3,
and with higher variance also increases. Further experiments in the Supplementary
material.

6 Conclusions

Stream learning with concept drift is an online learning setting where the distribution of
the preferences changes with time. We denote as uBorda the version of Borda in which
the voters have different weights and show that it can be computed efficiently, handling
a possibly infinite sequence of rankings in linear space and quasi-linear time complexity.
A detailed analysis leads to several contributions. First, we bound the number of samples
required by uBorda to output the current ground truth modal ranking with high probability.
Second, we show how to include expert knowledge to the uBorda. We generalize
generalize families of functions (including Borda and Condorcet) to the situation in
which some voters are more reliable than others. We call this scenario unbalanced voting
and allow arbitrary reliability values for the voters. This work, specially Section 4, opens
natural research lines in the context of weighted voting. We plan to study statistical
properties of the different voting rules in the context of expert vs non-expert voters.
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