Time Series Classifier Recommendation by a
Meta-Learning Approach

A. Abanda®*, U. Mori?, Jose A. Lozano®P

%Basque Center for Applied Mathematics (BCAM), Mazarredo Zumarkalea, 14, 48009
Bilbao, Spain
b Department of Computer Science and Artificial Intelligence, University of the Basque
Country UPV/EHU, Manuel de Lardizabal 1, 20018 Donostia-San Sebastian, Spain

Abstract

This work addresses time series classifier recommendation for the first time in
the literature by considering several recommendation forms or meta-targets:
classifier accuracies, complete ranking, top-M ranking, best set and best classi-
fier. For this, an ad-hoc set of quick estimators of the accuracies of the candidate
classifiers (landmarkers) are designed, which are used as predictors for the rec-
ommendation system. The performance of our recommender is compared with
the performance of a standard method for non-sequential data and a set of base-
line methods, which our method outperforms in 7 of the 9 considered scenarios.
Since some meta-targets can be inferred from the predictions of other more
fine-grained meta-targets, the last part of the work addresses the hierarchical
inference of meta-targets. The experimentation suggests that, in many cases, a
single model is sufficient to output many types of meta-targets with competitive
results.

Keywords: Time series classification, meta-learning, landmarkers, hierarchical

inference, meta-targets

*Corresponding author
Email addresses: aabanda@bcamath.org (A. Abanda), usue.mori@ehu.es (U. Mori),
ja.lozano@ehu.eus (Jose A. Lozano)

Preprint submitted to Pattern Recognition March 29, 2022



1. Introduction

Time series data mining is an increasing field of research due to the great
amount of time series data that is being collected every day from a wide range
of application domains, such as bioinformatics, engineering [1] or in the field of
energy [2]. A time series is an ordered sequence of observations and, in contrast
to standard data mining techniques, methods for time series mining need to deal
with this ordered nature [3]. In this way, the time series community has proposed
many specific methods for representing, indexing, clustering or classifying time
series, among other tasks [3]. This work focuses on time series classification
(TSC) 4].

As with other tasks, the growing interest in time series data mining has
given rise to an increase in the available TSC algorithms. According to the ”No
Free Lunch” theorem [5], no single algorithm can dominate all other algorithms
over all existing problems. In [4], Bagnall et al. proposed a categorization that
groups the time series classifiers by the type of characteristics that each classifier
focuses on in order to attempt to discriminate between the different classes of
a time series supervised classification problem. The authors stated that the
methods in each category should be specially suitable to a particular type of
problem or dataset. Even if some attempts have been made in this direction
[6], this hypothetical bijection between problem types and classifier types has
not been proved yet.

In this context, and given the large amount of proposed classifiers, from a
pragmatic user’s point of view, choosing a suitable classifier for a given prob-
lem is a difficult task. Furthermore, many of the state-of-the-art classifiers are
computationally expensive, which makes the approach of trying all of them
unaffordable. Algorithm recommendation is a challenge that has never been
explored in TSC. In non-temporal data mining, however, it is an area with a
long record within a specific field: meta-learning [7].

Meta-learning is usually described as the task of learning to learn, and it

includes any approach that exploits prior learning knowledge in order to learn



new tasks. Meta-learning systems were firstly proposed for model selection or
hyperparameter optimization, while nowadays it is also employed for few-shot
learning [8] in (deep) neural networks [9] , among other tasks. Our work fo-
cuses on the former application, in which the main goal is to provide automatic
recommendation on model selection to a non-expert user [10, 11, 12]. It is com-
monly used for classification [13] or clustering [14], but it has also been employed
for hyperparameter optimization [15]. The way meta-learning systems give ad-
vice about models is by exploiting meta-knowledge, i.e., knowledge that relates
the characteristics of datasets with the performance of the available algorithms
[7]. There are three main ways in which the meta-knowledge can be extracted
[7]: by employing simple, statistical and information-theoretic meta-features,
model-based meta-features, and landmarkers. The first type of meta-features
employ descriptive statistics or information-theoretic measures extracted from
the datasets, such as class entropy, to describe the datasets, while model-based
meta-features exploit parameters or characteristics found when applying a given
model to a dataset. For instance, if a decision tree is used to classify the in-
stances of a given dataset, some characteristics of the learned tree, such as the
depth, can be used to describe the dataset. Landmarkers, instead, are based
on the idea that the performance of fast and simple algorithms can be used to
predict the performance of other computationally more expensive algorithms.

Regarding the output of the recommendation system, also known as meta-
target, there are several ways in which it can be given. For example, the system
can recommend the best classifier, a set of good algorithms or a ranking. As
such, if the output of the meta-learning system is the best classifier, for instance,
the user is ”constrained” to use this algorithm and has no information about
the rest of the algorithms. If the meta-target is a complete ranking of all the
algorithms, contrarily, the user has much more information but, from a learning
point of view, the problem becomes more complex.

Despite its potential, the relationship between meta-learning and time series
is almost non-existent in the literature. Indeed, the few methods that exploit

meta-learning for time series data are focused on forecasting method recom-



mendation [16, 17, 18, 19, 20] or similarity measure selection for time series
clustering [21]. The aim of this work is to employ a meta-learning approach for
time series classifier recommendation. Since state-of-the-art meta-features are
designed for non-ordered data, we propose a novel set of 24 specific landmarkers
for TSC, which meet the requirements of being simple, fast and good predic-
tors of the performance of state-of-the-art TSC algorithms. We validate the
proposed landmarkers for classifier recommendation considering several types
of meta-targets. Finally, we explore the hierarchical inference of meta-targets;
some types of meta-targets are more fine-grained than others and, from the
prediction of these meta-targets, less fine-grained meta-targets can be inferred.
As such, we experimentally compare the two approaches for obtaining a given
meta-target: by direct prediction of the meta-target and by inference from the
predictions of more fine-grained meta-targets.

The rest of the work is organized as follows. In Section 2, our method for
time series classifier recommendation is described in two parts: meta-attributes
and meta-targets. The hierarchical inference of meta-targets is presented in
Section 3, while the experimentation is exposed in Section 4. Lastly, the main

conclusions of our work and future work are presented in Section 5.

2. Time Series Classifier Recommendation

The main objective of this work is to propose a time series classifier recom-
mendation (TSCR) system. Algorithm recommendation, as stated in [7], aims
at "saving time by reducing the number of algorithms tried out on a given prob-
lem with minimal loss in the quality of the results obtained when compared to
the best possible ones”.

From a practical point of view, the scheme of a TSCR system is shown in
Figure 1. Given a repository of supervised time series datasets and a set of
candidate classifiers, firstly, the accuracies of the candidate classifiers in those
datasets are calculated by evaluating each classifier in each dataset. Then, the

accuracies of the classifiers are employed to construct the meta-target. Sec-



ondly, a vector of meta-attributes is extracted from each dataset. Lastly, the
meta-attributes and meta-target are used to build the TSCR system employing
a meta-learner. Note that this is a supervised learning scenario and each meta-
target type requires a specific meta-learner. In this way, for a new time series
dataset -in which the accuracies of the candidate classifiers are unknown-, the
meta-attributes are extracted and passed to the TSCR, which outputs a clas-
sifier recommendation based on the chosen meta-target type. In the following
sections, the meta-attributes proposed and meta-targets considered in this work

are presented.

REPOSITORY OF
TRAINING DATABASES EVALUATION
—
1 5
2 :
w3
/;\
3 \
DBD i ; DATABASE
e 2 CHARACTERIZATION
w1
TRAINING SET
META-ATTRIBUTES META-TARGET
DB1
DBp

META-LEARNER

DATABASE
CHARACTERIZATION ” ‘ > METATTARGET

Figure 1: Meta-learning scheme for T'SC algorithm recommendation.

NEW DATABASE




2.1. Meta-Attributes

The characterization of a dataset is, probably, one of the challenges that
has attracted most attention in meta-learning, since the performance of a meta-
learning system highly depends on this characterization [22]. Indeed, meta-
attributes need to fulfil two crucial requirements: on the one hand, they need to
be fast to compute, and, on the other hand, they need to contain useful infor-
mation for discriminating between the performances of the candidate classifiers.
The definition of the meta-attributes highly depends on the specific task for
which the meta-learning system is built.

In the case of time series data, as mentioned earlier, there are rather few
works that have addressed the development of meta-attributes [16, 17, 18, 19,
20, 21]. In fact, most of these works focus on time series forecasting algorithm
recommendation [16, 17, 18, 19, 20]. In contrast to time series classification or
clustering, where a set of time series is needed, a time series forecasting prob-
lem is composed of a single time series. This is an important distinction from
the point of view of meta-learning, since, in the former case, meta-attributes
correspond to single time series, while in the latter, meta-attributes correspond
to a time series dataset. As far as we know, the only work in which time
series dataset characterization has been addressed is [21], where a set of meta-
attributes are proposed with the purpose of similarity measure selection for time
series clustering. However, this characterization is defined for unsupervised time
series datasets and can not be applied in our case, which focuses on supervised
time series datasets. This work focuses on the definition of meta-attributes for
supervised time series datasets.

In this context, most of the state-of-the-art meta-attributes are designed for
non-ordered instances and they become meaningless for describing time series
datasets. The most generalizable meta-attributes are landmarkers, since they
are quick estimators of the accuracies of the candidate classifiers and, hence,
can be defined for any type of task and data. As such, we propose a set of
landmarker-based meta-attributes for supervised time series datasets.

The design of landmarkers totally depends on the candidate classifiers con-



sidered in the meta-learning problem. In our case, the candidate classifiers have
been chosen from those that appear in the work by Bagnall et al. [4], since the
results obtained in their extensive experimentation are publicly available [23]
-as well as a Weka-compatible Java toolbox, tsmi [24], with the implementation
of most of the classifiers included in their work-. In this way, we choose as
candidate classifiers those that are included in [4] and implemented in the tsml
or sktime (and the extension for deep learning sktime-dl) [25] toolboxes. These
classifiers are: C4.5 decision tree (C45) [26], naive Bayes (NB) [27], Bayes Net-
work (BN) [28], support vector machines with linear (SVML) [29] and quadratic
kernel (SVMQ) [29], Rotation Forest (RotF) [30], Random Forest (RandF) [31]
, Multilayer Perceptron (MLP) [32], 1-NN with Euclidean distance (NN), 1-NN
with Dynamic Time Warping distance (DTW) [33], 1-NN with Weighted DTW
distance (WDTW) [34], 1-NN with Time Warp Edit distance (TWE) [35], 1-NN
with Move-Split—-Merge distance (MSM) [36], 1-NN with Complexity Invariant
distance (NN_CID) [37], 1-NN with Edit Distance with Weal Penalty (ERP)
[38], 1-NN with Derivative DTW (DD_DTW) [39], 1-NN with Derivative Trans-
form distance (DTD_C) [40], Time Series Forest (TSF) [41], Fast Shapelets (F'S)
[42], Shapelet Transform (ST) [43], Bag of Patterns (BOP) [44], and Bag of SFA
Symbols (BOSS) [45]. Additionally, even if they are not included in [4], we have
added two new benchmark deep learning classifiers: Resnet [46] and Inception-
Time [47] in order to have a more up-to-date set of candidate classifiers. In
this way, the list of candidate classifiers includes 24 heterogeneous time series
classifiers. The discarded classifiers from [4] are: Longest Common Subsequence
(LCSS) [48] (the tsml implementation does not reproduce the results), Elastic
Ensemble (EE) [49] (implementation with bugs), Time Series Bag-of-Features
(TSBF) [50] (not implemented in tsml), Learned Pattern Similarity (LPS) [51]
(implementation with bugs), Dynamic Time Warping Features (DTW_F) [52]
(code not available) and Collective of Transformation-Based Ensembles (COTE)
[53] (it is an ensemble of several TSC methods, so from an algorithm recom-
mendation point of view, it does not make sense to include it). Additionally, 3

classifiers have been discarded due to their high requirement of computational



resources: Logistic [54] (which requires more than 50GB of RAM memory in
the PigCVP dataset from the UCR repository [55]), and Learn Shapelets [56]
and SAX Vector Space Model (SAXVSM) [57] (which take more than 5 and
25 days to classify a single train/test split in the Crop dataset from the UCR,
correspondingly). Note that some of the considered classifiers (ST and BOSS,
for instance) are also ensembles, but they are ensembles of classifiers of the same
nature, while COTE is an ensemble of many types of different classifiers.

Given a candidate classifier C;, its landmarker L; is a quick estimator of
the accuracy obtained by C;. This quick estimator is generally obtained in two
ways: by running simplified versions of the candidate classifier [58] (algorithm
reduction), or by running the original algorithm in a subsample of the data,
obtaining the so-called subsampling landmarkers [59] (dataset reduction). In
both types of reductions, the greater the reduction, the higher the loss of relation
between the landmarker and the original algorithm [60], so striking a balance
between the level of reduction and the relation with the original algorithm is a
key aspect. Our approach exploits both types of reductions: first, subsampling
landmarkers are applied by evaluating the classifiers on a subsample of the
dataset. Given a time series dataset with N instances, we propose a stratified
subsample that depends on N. The proportion to which the dataset is reduced,
the subsample ratio (r), is shown in Table 1. We are dealing with supervised
datasets so, in those datasets in which the subsample ratio does not permit a
minimum number of instances of each class, the r specified in Table 1 is increased
by steps of 0.1 until N x r/NC > 10 or r = 0.8, where NC' is the number of
classes.

In the second step, an algorithm reduction is carried out for those clas-
sifiers that still take too long in the subsampled datasets. In order to iden-
tify the slow classifiers, we conduct the following analysis: we sort the 112
datasets from the UCR repository employed in this work by the dimension
(defined by N*L, where N is the number and L the length of the series)
and run the 24 classifiers in subsampled versions of the 5 largest datasets

(StarlightCurves, UWaveGestureLibraryAll, HandOutlines, MizedShapesRegu-



Table 1: The subsample ratio (r) applied to a time series dataset with N instances (before

the modification to ensure a minimum number of representatives of each class).

Intervals Subsample ratio (r)
N <100 0.80
100 < N < 300 0.60
300 < N < 800 0.40
800 < N < 1500 0.20
1500 < N < 5000 0.10
5000 < N 0.05

lar Train, and, NonInvasiveFetalECGThoraz1)!. If a classifier takes more than
30 minutes in any of the aforementioned datasets, it is considered a slow classi-
fier. In this way, we identify 7 slow classifiers: BOSS, DD_DTW, DTD_C, MLP,
ST, ResNet and InceptionTime, to which algorithm reductions are carried out.

Three types of algorithm reductions are proposed (summarized in Table 2) :

e Reducing the parameter range: in those cases in which a parameter is
set by a grid search, this grid search is deleted and, by default, the value
of the parameter is set to the middle of the search range (DD_DTW and
DTD_C). In the R parameter of the LS, however, some values in the search
range incur larger costs than others, so we set it to the computationally

least expensive value.

Reducing the iterative process/ensemble: for the classifiers that have an
iteration process (MLP, ResNet and InceptionTime), we limited the num-
ber of iterations. An analogous reduction is carried out for the ensembles

(BOSS).

e Setting a time limit: in the ST classifier, the training time can be directly

limited by the user, so we use this characteristic to reduce the computation

IThe computation times of the 24 classifiers in the 5 subsampled datasets are included as

supplementary material (Part I).



time.

Table 2: Algorithm reductions carried out to the slow classifiers.

Classifier Parameter Default Reduced
BOSS MaxEnsembleSize 500 100
DD_DTW @ grid search in {0,0.01, ..., 1} 0.5
DTD.C e grid search in {0, 0.01, ..., 1} 0.5
MLP NumEpochs 500 50

ST time limit unlimited 5 minutes
ResNet NumEpochs 1500 200
InceptionTime NumEpochs 1500 200

To sum up, given a supervised time series dataset, we propose a set of 24
landmarkers to describe the dataset: 17 of them are based on dataset reductions,

while the rest are based on dataset and algorithm reductions.

2.2. Meta-target

The meta-target, also known as the recommendation, corresponds to the
output of the recommendation system. Five types of meta-targets are considered
in this work (summarized in Table 3): classifier accuracies, complete ranking,
top-M ranking, best set and best classifier. Each meta-target type gives rise to
a different TSCR system, in which both the meta-target in the training set and
meta-learner shown in Figure 1 must be specifically designed. We will refer to
the meta-learner associated to a given meta-target type as the specific meta-
learner (SML). The SMLs employed for each meta-target type are summarized
in Table 4. In the following lines, a brief overview of the considered meta-target

types is presented.

Classifier accuracies: this meta-target provides the accuracies obtained by
each candidate classifier in a given dataset. When building the training set

for learning this TSCR system, the values of the meta-targets for the training

10



Table 3: Summary of the considered meta-target types.

Meta-target Output type
C C ... C ... C
Classifier accuracies ! ? s r
091 087 ... 095 ... 0.72
. Cs C Co ... GCs
Complete ranking
1 2 N P
Cs C; C
Top-M ranking s ! :
1 2 3
Best subset {Cy, Cs}
Best Csg

instances are directly defined by the accuracies of the classifiers. This meta-
target type gives rise to a multi-output regression problem, and the SML chosen
for this problem is the linear multi-output regression. It is the most fine-grained
meta-target type, and the user is free to choose among the candidate classifiers

with the provided information.

Complete ranking: this meta-target provides an accuracy-based ranking of
the candidate classifiers in a given dataset. The values of the meta-targets in
the training set are obtained by converting the raw accuracies of the candidate
classifiers into a ranking. In case of ties, the best ranking position of the tied
classifiers is assigned to all the tied classifiers. This meta-target type requires
a ranking learning strategy, and the SML employed in this case is the K-NN
for rankings [13] (based on the Euclidean distance), commonly used in meta-
learning. From the user point of view, ranking recommendation is less fine-
grained than the classifier accuracies but still leaves the user with a great choice

since information regarding all the classifiers is provided.

11



Top-M ranking: in this case, the meta-target corresponds to the partial rank-
ing of the M best-performing classifiers in a given dataset. When building the
training set, the values of the meta-targets are obtained by converting the classi-
fier accuracies into a ranking and selecting the classifiers at the first M positions
(M is predefined by the user). The ties are handled in the same manner as for
complete rankings. Analogously to the case of complete rankings, the SML
employed for this meta-target type is the K-NN for rankings based on the Eu-
clidean distance. This meta-target type is less fine-grained than the complete

ranking since only the ranking of the M best-performing classifiers is provided.

Best subset: this meta-target provides the set of best-performing classifiers in
a given dataset. Establishing which algorithms perform well on a given dataset
is not straightforward, and it is usually defined in relative terms. A commonly
employed approach to obtain the values of the meta-targets in the training set
consists of defining a margin [61], such that the classifiers with accuracies within
this margin are considered applicable classifiers in the given dataset. We propose
a margin based on the proposal in [61], but enhanced to consider the range of

the accuracies obtained by the candidate classifiers in the given dataset:

Amax; @max — W(amax - amin)) (1)

where W is a user-defined parameter, while a,.x and @i, are the maximum and
minimum accuracies obtained by the candidate classifiers in the given dataset.
Note that, the greater W, the wider the interval and, hence, the larger the set
of applicable classifiers. The best set meta-target gives rise to a multi-label
classification problem, and, analogous to the ranking meta-targets, a K-NN
version -based on the Euclidean distance- for multi-label classification [62] is
employed as SML. This meta-target type is less fine-grained than the top-M
meta-target types since it does not provide a ranking, but an unordered set of

the applicable classifiers.

Best: this meta-target provides the best classifier among the candidate clas-

sifiers. The values of the meta-targets in the training set are obtained in a

12



Table 4: The specific meta-learner employed for each meta-target.

Meta-target SML

Classifier accuracies | Linear multi-output regression

Complete ranking K-NN for rankings

Top-M rankings K-NN for rankings
Best set K-NN for multi-label
Best K-NN for multi-class

straightforward manner. The best classifier meta-target gives rise to a multi-
class standard classification problem, and, for the sake of consistency, a K-NN
for multi-class problems is used. This meta-target type is the least fine-grained
meta-target, since it only provides the best performing classifier and gives no

information about the rest of the classifiers.

3. Hierarchical inference of meta-targets

In this section, we explore the hierarchical relationship between the different
meta-target types. Some meta-target types are more fine-grained than others
and this fact gives rise to a hierarchy. By using this hierarchy, instead of building
a specific TSCR system for each meta-target type, we investigate the approach
of inferring meta-targets from the predictions made by more fine-grained TSCR
systems.

Figure 2 shows the scheme of the hierarchical inference of the meta-target
MT; from the meta-target MT;, where MT; is a more fine-grained meta-target

than MT,. In Section 2.2, we showed how MT; and 1\//F1’/J(1) are predicted by

13



the associated TSCR; and TSCR; systems, correspondingly. In the hierarchical
inference, l\//ﬁ‘/]@) is obtained by transforming the prediction MT; made by

TSCR,;.
= — >
MT,

(3

Hierachical
inference

MT; (1) MT; (2)

%‘J

Figure 2: Scheme of the two approaches for obtaining MT;: (1) by employing the TSCR;
associated to MT; and (2) by hierarchical inference from the prediction of the MT; meta-

target.

More fine-grained information is learnt by TSCR,; than by TSCR;, so 1\//IT;(2)
could be expected to be more accurate than m(l) However, from a learning
point of view, the prediction of MT; is a harder task, and, therefore, more
errors could be committed, so the comparison of these two approaches can
shed some light on which learning strategy should be adopted when building a
recommendation system for TSC algorithms.

As far as we know, despite its interest, this point of view is still almost unex-
plored in the meta-learning community. In [63], the author inferred the expected
ranking and the expected best classifier from the predicted classifier accuracies,
but reported that the inferred versions seem to perform slightly worse than the
specific strategies. Bensusan et al. carried out a similar experiment in [64],
where a ranking is inferred from the predicted classifier accuracies. In the same
manner, the authors reported that even if the regression models obtained low

errors, the results of the inferred rankings were not very promising. Moreover,

14



not all the possible hierarchical dependencies are studied, but only a few pairs.
In this work, we explore all the feasible hierarchical inferences for the considered
meta-target types.

The feasible inferences for each meta-target type are shown in Table 5. From
classifier accuracies, all the meta-targets can be inferred: complete ranking,
top-M ranking, best set and best classifier. Complete ranking, top-M ranking
and best classifier transformations are straightforward, while, in the best set
transformation, the same procedure described in Section 2.2 is followed. A
complete ranking can be directly transformed into a top-M ranking and best
classifier. The best set, however, can not be inferred since the criterion employed
for the transformation is not applicable in rankings. In the same manner, a top-
M ranking can not be transformed into a best set, and from this meta-target,
only the best classifier can be inferred. From the best set, the only meta-target
that could be inferred (best classifier) is not feasible, due to the unordered
nature of the best set. The best classifier meta-target is the least fine-grained

meta-target, and hence, no meta-target can be inferred from it.

Table 5: Feasible hierarchical inferences.

Meta-target Feasible inferences

Classifier accuracies | Complete ranking, Top-M ranking

Best set, Best

Complete ranking Top-M ranking, Best

Top-M ranking Best

4. Experimentation

The experimentation is divided into four parts: in the first part, the experi-
mental set up is introduced, as well as the evaluation procedure employed for the
proposed methods. In the second part, the results obtained by the landmarkers
are analysed and compared to those obtained by the original classifiers. The ex-

perimental evaluation of the proposed TSCR systems is presented in the third

15



part. Lastly, the hierarchical inference of the meta-targets is experimentally

studied?.

4.1. Ezxperimental set-up

4.1.1. Datasets

The experimentation has been carried out employing datasets from the UCR
repository [55], a frequently used benchmark archive for evaluating time series
classification methods. This repository includes datasets with a great variety
of characteristics, such as different application domains, varying time series
lengths, number of classes, etcetera. In this work, we have decided to use
datasets of univariate equal-length time series; most of time series classifiers
can only be applied in datasets of this type and the need for meta-learning
becomes more evident in a context with a large number of candidate classifiers.
As such, the 112 datasets from the UCR with these characteristics have been

used.

4.1.2. Classifiers

All the experiments have been carried out in python with the help of the
sklearn library. For the classifier accuracies meta-target, the linear multi-output
regression included in the sklearn library is used. We set the number of neigh-
bours in the K-NN to 5 after preliminary experiments. For the top-M rankings,
we explore the results for M=3, M=5 and M=10. In the best subset prediction,
we need to establish the width of the margin for the best classifier, W, before-
hand. Figure 3 shows the number of labels by instance for the different values
of W we have considered. It can be seen that the number of labels increases as
W grows. We employed the K-NN version of the sklearn for multi-label classifi-
cation with K=5 as it obtains competitive results compared to other classifiers

and ensures consistency with the previous approaches. Lastly, regarding the

2The TSCR systems, as well as the code for reproducing all the experiments presented in

this work are available at https://gitlab.bcamath.org/aabanda/tscr.

16


https://gitlab.bcamath.org/aabanda/tscr

best classifier meta-target, Figure 4 shows the distribution of labels among the
112 datasets. It can be seen that InceptionTime is best performing classifier in
37 datasets, followed by ResNet, ST and BOSS (which are the best performing
classifiers in 15, 15 and 11 datasets, respectively). In fact, only 16 of the 24
algorithms win at least once, so it is a 16-class classification problem, for which
we employ the K-NN classifier for multi-class of the sklearn library with K=1,

set by preliminary experiments.

W = 0.05 W=0.1 W=0.2

30 20
g20 € g10
3 310 3
o o o

10

0 0 5 10 15 20 0 0 5 10 15 20 0 0 5 10 15 20
Number of labels by instance Number of labels by instance Number of labels by instance

Figure 3: Distribution of labels for the best set meta-target.

35
30
‘525
520
o
O 15
10
5
0
an+n ancasmzZOlHu b= w
SREIEOEE R §IF 2205 TLhz QhEE
mgmUQDD”" ‘5‘_22 Uﬁmcﬁ a> /o)
v B 0 Zccf n o=
& a g =
Classifier

Figure 4: Distribution of labels for the best classifier meta-target.

4.1.8. FEvaluation

Each meta-target type requires a suitable evaluation measure for the corre-
sponding output type. In the following, the metrics employed for each meta-
target type are presented (summarized in Table 6). For the classifier accuracies
meta-target, we employ the Mean Absolute Error (MAE), where A, and :4:

are the true and predicted accuracies of the candidate classifier ¢, and p is the

17



number of classifiers. In order to evaluate a complete ranking meta-target, we
employ a similarity measure based on the normalized Kendall’s 7 distance for
rankings -which measures the pairwise disagreements between two rankings-.
Specifically, given a Kendall’s 7 distance between two rankings r; and ro of
length n, 7(r1,72), we propose the similarity measure 7., which takes values
from 0 (for reverse rankings) to 1 (for identical rankings). There are several
ways for generalizing the Kendall’s 7 distance to top-M rankings [65]; a basic
generalization consists of, given two complete rankings r; and 79, considering all
the elements at positions higher than M are tied in both rankings, and comput-
ing the Kendall’s 7 distance between those partial rankings. In this way, given
two top-M rankings 7] and 74, if 7(r], %) is the Kendall’s 7 distance between
these partial rankings, we propose the similarity measure between top-M rank-
ings 7. This similarity measure takes values analogously to 7.. For the best set
meta-target, the evaluation measure used is the mean label-based accuracy, L,
where Yirye and Yj,eq are the set of true and predicted labels, correspondingly.
This metric takes values from 0 (when the intersection is zero) to 1 (when the
predicted set is equal to the true set). Finally, in the case of best classifier meta-
target, a weighted version of the F1 score (F1,,) is employed as the evaluation
measure: the F1 score is calculated for each label and then a weighted average
that takes into account the label frequency is computed. The F1,, score takes

values from 0 (worst prediction) to 1 (perfect prediction).

4.2. Analysis of the landmarkers

The estimations of the landmarkers have been obtained by executing the
classifiers in a stratified random train/test partition with the same proportions
as in [23]. Note that the accuracies obtained by the landmarkers may vary
depending on the run, due to the dataset reduction of the landmarkers, the
train/test split, and the randomness of classifier itself. Hence, with the aim of
avoiding noisy results, we have run 10 executions of the landmarkers, and we
have used the results obtained in each execution as input for the recommenda-

tion system. In this way, we have trained and evaluated 10 recommendation

18



Table 6: The meta-learner and evaluation metric employed for each meta-target type.

Meta-target Metric

Classifier accuracies | MAE = L 3°%_ |A, — Al

Complete ranking Te(ry,m) =1— %

Top-M rankings Tp(ri,ry) =1— %

_ YerueNYpredl

Best set L, = VeraeUYorea|
Best Fl, =10 wF1
w — T, =1 1 l

systems, one for each execution of the landmarkers. As a preliminary study, in
order to assess the quality of the proposed landmarkers, their accuracies and
computational times are analysed, with the objective of comparing them to
those obtained by the original classifiers.

Regarding the accuracies of the original classifiers, we employ the publicly
available results reported in [23]. In this experimentation, with the aim of esti-
mating the performances of the classifiers as accurately as possible, the authors
execute each classifier in 100 train/test stratified re-samples of each dataset
and report the mean accuracy values. Note that the accuracies of the original
classifiers are publicly available, but the computational time of the full process
(learning, parameter optimization and test phase) is not. In order to give some
insights into the computational cost of executing all the classifiers, we run the
24 original classifiers in the StarlightCurves and Crop datasets. The former is
one of largest datasets in the UCR, repository (9236 series of length 1024, with
3 classes), while the latter is a large dataset with many classes (24000 series of

length 46, with 24 classes). The total time spent for executing the 24 classifiers

19



is more than 12 days for the StarlightCurves dataset and almost 4 days for the
Crop dataset in a high performance computing cluster.

Regarding the computational cost of the landmarkers, Figure (5a) shows the
time spent (in minutes) in applying all the landmarkers (in one execution) to the
112 datasets. It can be seen that, in 98 of the 112 datasets, the computation
of all the landmarkers takes less than an hour. Those datasets in which the
computation takes more than an hour are large datasets that contain many
classes, for which, in order to ensure a minimum number of representatives of
each class, the subsample ratio is not as small as in other datasets with similar
dimensions. In this way, the time reduction is especially significant for those
dataset with few classes. This is the case of StarlightCurves, for example, for
which the computation of all the landmarkers takes 44 minutes, compared to
the 12 days spent by the original classifiers. In the case of datasets with many
classes, the time reduction is not so great, even if it is still significant. In
the Crop dataset, for example, the computation of all the landmarkers takes
almost an hour (58 minutes), compared to the 4 days spent by the original
classifiers. Concerning the individual computation times of the landmarkers3,
in 80 of the 112 datasets, the slowest classifier is the ST classifier (which has
a time limitation), while BOSS, ResNet and RotF are slowest in 28, 3, and 1
dataset, respectively.

In order to explore the relation between the accuracies obtained by a land-
marker and those obtained by the corresponding original classifiers, we em-
ployed the Pearson correlation coefficient. For this, given a classifier, we have
computed the mean correlation between its accuracy and the accuracy obtained
by the corresponding landmarker in the 10 executions. The mean correlations

between the landmarkers and the original classifiers* are shown in Figure 5b.

3The cost of computing the 24 landmarkers in each dataset, including the slowest land-

marker and its corresponding time is included as supplementary material (Part II).
4The mean correlation of each landmarker and the corresponding classifier is included as

supplementary material (Part III).

20



It can be seen that most of the landmarkers have a high correlation with the
corresponding original classifiers; the mean correlation is 0.87. The landmarker
with the lowest correlation is the InceptionTime, which is one of the slowest
classifiers, so finding a suitable trade-off between computation time reduction
and relation with the original classifier is a hard task. Indeed, small changes
in the reduction grade result in a considerable increase in the time needed to
compute the landmarker. Taking into account that a correlation of 0.63, even if
not high, still means that there is a positive correlation between the landmarker

and the original classifier, we chose to prioritize the time over the correlation.

Time spent computing Mean accuracy correlations between
all the landmarkers landmarkers and original algorithms
30 6
25 5
.20 L4
o s
315 33
o o
10 2
5 1
0 0
0 50 100 150 200 0.6 0.7 0.8 0.9
Time (minutes) Correlation

(a) (b)

Figure 5: (a) Histogram of the time spent computing the landmarkers in the 112 dataset.
(b) Histogram of the mean correlations of the 24 landmarkers and the corresponding original

algorithms.

Another way of testing the correlation of the landmarkers and the original
classifiers is dataset-wise. Given a dataset, the results obtained by the land-
markers (in one execution) and the original classifiers in this dataset can be
compared visually to see whether or not they are related. Due to the lack of
space, only two examples® are shown in Figure 6. It can be seen that there
is a clear relation between the accuracies obtained by the original algorithms
and the corresponding landmarkers in the both datasets shown in the figure,

since they share a similar pattern. The landmarkers of both datasets are good

5The figures of the 112 datasets are included as supplementary material (Part IV).

21



potential predictors of classifier recommendations.

Landmarkers
—— Classifiers

ChlorineConcentration ElectricDevices
0.9 0.9
0.8 0.8
0.7
>0.7 >
o =
e £ 06
30.6 it
Ee £ 05
0.5 0.4
0.4 0.3

anHEnS0SanasnzZALLJORLUS & o anEnSU=anasmzZALlLJoHLUS & o
OW§<§ Em“-—'gzz—ﬂ‘szz"’"’gé 28 o‘n§<f§ Em“-—'gzz—‘c‘siz"“”gé 2o
BOZOURORW =377V PSS FERGS BOZURORW =57V CRSS FERGS
Q 53 2 Q50 I5EG> 2
g B zeg Yo =gg g B z2 0 2gg
> Q0 b= o > 0 = [v]
3 0 £ & 0 £

Figure 6: Accuracies obtained by the original 24 classifiers and the landmarkers in Chlo-

rineConcentration (left) and ElectricDevices (right) datasets.

4.3. TSCR

In this section, the proposed TSCR systems are experimentally evaluated.
Apart from the SMLs presented in Section 2.2, we present three additional
methods for each meta-target type: on the one hand, since classifier recom-
mendation has never been addressed before in TSC, in order to determine if
the results obtained by our methods are accurate or not, a baseline (BS) for
each meta-target type is presented. Moreover, in order to highlight the contri-
bution of the proposed landmarkers, the recommendation performance of the
landmarkers is compared with the recommendation performance of standard
meta-features for non-sequential data (MF). On the other hand, since not all
landmarkers necessarily have a great prediction power, a method that includes
a forward landmarker selection (SML_FLS) is considered. In the following, a

brief introduction to those methods is presented.

BS: since there are no state-of-the-art proposals, we consider a set of agnostic
methods that, for each meta-target type, outputs a constant prediction without
going through any learning process. This prediction is made based on the mean

values of the accuracies of the classifiers in the training set: given a training set

22



composed of n instances (datasets), let A = {a; ;} be the matrix of accuracies of
the candidate classifiers in the n datasets, where ¢ = 1,...,n refers to the index
of the dataset, and j = 1,...,24 refers to the index of the candidate classifier.
Hence, the constant output provided by the BS method for the classifier accura-
cies meta-target is the vector a = (@1, . ..,@21), where @, = = 3" | a;; refers
to the mean of the column j. For the rest of the meta-targets, the output is
obtained by applying procedure to build each meta-target (described in Section
2.2) to the vector a.

MF: In this method, instead of the landmarkers, standard meta-features for
non-sequential data are used as meta-attributes for the recommendation system.
Specifically, 73 standard meta-features (general, statistical and info-theoretical)
are extracted from each dataset employing the pymfe package [66] for Python.
These meta-features are used as input for the recommendation system, employ-

ing the corresponding meta-learner in each case.

SML_FLS: the followed forward landmarker selection (FLS) procedure is de-
scribed in Algorithm 1. The FLS starts with a random landmarker and, at each
iteration, adds the landmarker that improves the performance of the meta-
learner the most to the set of selected landmarkers, until there is no improve-
ment. The operator § depends on the meta-target type and is the result of
evaluating the predictions of the SML with the corresponding evaluation metric.
For complete ranking, top-M ranking, best set and best classifier meta-targets
the aim is to maximize ¢ (as in the pseudo-code), while for classifier accuracies
meta-target is evaluated in terms of error, so the aim is to minimize §.

From a general point of view, the evaluation procedure of the methods is the
following: for the BS and SML, a 10 times repeated 5-fold nested cross validation
[67] is carried out. For the forward selection, instead, a two-level nested cross
validation is performed: in the first level, a 10 times repeated 5-fold nested cross
validation is performed for evaluating the set of landmarkers, which have been
selected in an internal 3-fold nested cross validation of training sets of the first

level. The method starts with all the landmarkers once and selects the set of

23



Algorithm 1 Forward landmarker selection (FLS)

Input:

LM = set of all the landmarkers

0 = operator that computes the performance of a set of landmarkers
Output:

S = set of selected landmarkers

Algorithm:

Initialize S = one.random(LM)

candidate = argmax 0 (S U L;)
L,;ELM\S

while § (S U candidate) > § (S) do
S = S U candidate
if |S| = |LM]| then
break
else

candidate = argmax § (S U L;)
L,ELM\S

landmarkers that obtains the best performance in the 3-folds. In the case of the
methods depending on the landmarkers (SML and SML_FLS), this procedure
is repeated for each execution of the landmarkers.

The results obtained by the BS, MF, SML and SML_FLS approaches for the
considered meta-target types are shown in Table 7. The BS and MF methods
do not depend on the landmarkers, so we show the results for a single execution.
In the columns corresponding to SML and SML_FLS, the mean and standard
deviation (between parenthesis) of the results of 10 recommendation systems
(one for execution of the landmarkers) are shown. Recall that each meta-target
type is validated employing a different evaluation measure and, hence, the results
of different rows can not be compared with each other.

First of all, it can be seen that the standard deviations are very low, which
means that the results are rather stable with respect to the execution of the

landmarkers. In the case of the classifier accuracies meta-target, it can be

24



Table 7: Results of the baselines (BS), specific meta-learners with meta-features as input
(MF), specific meta-learners with landmarkers (SML) as input, and specific meta-learners

with forward landmarker selection (SML_FLS) for the considered meta-target types.

Meta-target Metric | BS | MF SML SML_FLS
Classifier accuracies MAE | 0.15 | 0.14 | 0.07 (0.01) | 0.07 (0.01)
Complete ranking Te 0.73 | 0.73 | 0.75 (0.01) | 0.74 (0.01)
Top-M ranking M=3 0.37 | 0.31 | 0.48 (0.02) | 0.49 (0.01)
M=5 7, | 050 | 0.50 | 0.61 (0.01) | 0.60 (0.01)

M=10 0.63 | 0.64 | 0.69 (0.01) | 0.70 (0.01)

Best set  W=0.05 0.35 | 0.28 | 0.30 (0.01) | 0.29 (0.01)
W=0.1 Lo | 025 | 034 | 0.38(0.01) | 0.40 (0.01)

W=0.2 041 | 0.43 | 0.48 (0.02) | 0.49 (0.01)

Best Fl, | 0.17 | 0.27 | 0.20 (0.02) | 0.19 (0.01)

seen that, both the BS and the MF obtain worse results than the SML, while
the forward selection does not improve the performance obtained by the SML.
Additionally, the best performance obtained, 0.07, is the MAE of the prediction
of 24 classifier accuracies, which, taking into account the range of the accuracies,
is fairly accurate.

In the complete ranking prediction, the SML is the best performing approach
-closely followed by the BS and MF-, while the landmarker selection does not
improve the results. The good performance of the BS deserves attention; the BS
always predicts the mean ranking in the training set, so it can be deduced that
most of the rankings in the testing set are close to that mean ranking. In order
to explore this issue, we conduct the same experiment but, instead of computing
the overall performance of all the predicted rankings, the performance is eval-
uated separately for instances that have different similarities (7.) with respect
to the mean ranking in the training set. For each fold in the cross validation,
the percentiles Pos, P5g and Pr5 are extracted from the similarities between the
rankings in the training set and the mean ranking in the training set, and the

instances in the testing set are divided into 4 sets: S; is the set of test instances

25



with similarity within the range [Po, Pas), and So, S and Sy within [Pas Pso),
[Pso P7s) and [P75 Pigo], respectively. Figure 7 shows the mean performance
and standard deviation of the BS and SML for the different sets. It can be seen
that, as expected, the SML outperforms the BS in those instances with a true
ranking that is very dissimilar to the mean ranking in the training set. Even if
the average performances are similar (0.73 and 0.74), the SML distributes the

error more uniformly among the instances.

0.90
0.85

y 080 /
2 075 )
©
E 070
£ 0,65
=)
~ 0.60
—— sML
0.55 BS
0.50
S1 Sz S3 Sy
(26%) (25%) (24%) (25%)

Set of test instances
(percentage of instances in each set)

Figure 7: Performance depending on the similarity of an instance respect to the mean ranking

in the training set.

In the case of the top-M rankings, two main conclusions can be drawn:the
SML_FLS is the best approach in two of the three considered cases, and the
performances of all the meta-learners increases with M. These results are quite
reasonable since it is expected that predicting a top-10 ranking is an easier task
than predicting a top-3 ranking.

A similar pattern can be seen in the best set prediction: the performance
of the MF, SML and SML_FLS increases with W and, hence, with the number
of labels per instance, while the performance of the BS does not seem to follow
this trend. The forward selection improves the results of the SML for two of the
three considered W’s. The main difference with the results obtained for the top-
M rankings is that, in the best set prediction, for W=0.05 the BS outperforms
the rest of the approaches. A possible explanation for this fact is that, as Figure

3 shows, for W=0.05, most of the instances have very few labels. As shown in

26



Figure 4, InceptionTime, BOSS and ST are the best performing classifiers in
most of the datasets, so many of the instances contain these labels. Since BS
predicts the most frequent classifiers, it obtains good results due to the label
imbalance.

Lastly, regarding the best classifier meta-target, we handle the label imbal-
ance by the metric specified in Section 4.1.3. It can be seen that the MF is the
best performing approach, followed by the SML and SML_FLS methods.

Summarizing, the experimentation carried out shows that the SMLs are, in
7 out of 9 of the considered scenarios, the best performing TSCR, approaches.
In some cases, the corresponding BS obtains results that are similar -in a single
case better- to the SML, which we think is because there are some classifiers
that, in general, obtain better results than others, a fact that benefits the BS.
The approach that employs the standard meta-features as input outperforms
the landmarker-based approaches in a single case (best meta-target), and the
SML_FLS improves the results of the SML in several cases, which indicates that

all the landmarkers are informative in some cases, while in orders they are not.

4.4. Hierarchical inference of meta-targets

In this section, we experimentally compare the hierarchical inference of meta-
targets with the corresponding TSCR system in order to explore whether or
not a specific TSCR is needed. For each meta-target type, we chose the best
performing approach between the SML and the SML_FS (Table 7) for the hi-
erarchical inference. The experimental set up is the same as that specified in
Section 4.3.

Table 8 displays the means and standard deviations of the results obtained
for the 10 executions of the landmarkers in the hierarchical inference. Following
the scheme in Figure 2, the columns indicate the MT; meta-target, while the
rows refer to the inferred MT; meta-targets; the first column, for example,
displays the performances obtained for the different meta-target types inferred
from the predicted classifier accuracies. The results obtained by the SML of each

meta-target type are shown in the diagonal, while the x symbol reflects that

27



the inference is not feasible for this couple of meta-target types. Analogously to
Table 7, each meta-target type and, hence, each row, is evaluated employing a
different metric, so the results of different rows can not be compared with each
other.

Table 8: Results obtained for the hierarchical inference approach of the considered meta-

target types. Columns indicate the departing meta-target, while rows indicate the inferred

meta-target.

Classifier accuracies | Complete ranking Top-M ranking Best set Best
M =3,5,10 W =0.05, 0.1, 0.2
Classifier accuracies 0.07 (0.01)
Complete ranking 0.77 (0.01) 0.75 (0.01)
Top-M ranking M=3 0.61 (0.06) 0.49 (0.02) 0.49 (0.02)
M=5 0.61 (0.06) 0.61 (0.01) 0.61 (0.01)
M=10 0.63 (0.05) 0.70 (0.01) 0.70 (0.01)
Best set ' W=0.05 0.32 (0.01) 0.30 (0.01)
W=0.1 0.36 (0.01) x x 0.40 (0.01)
W=0.2 0.46 (0.01) 0.49 (0.01)
Best 0.27 (0.01) 0.20 (0.01) 0.20 (0.01) X 0.20 (0.02)

It can be seen that, in general, the inference obtains very competitive per-
formances, with low variability in the results. In fact, in most of the cases, the
results of our experimentation show that there is no need to employ a specific
TSCR system for each meta-target type, since almost equally or even better
results can be inferred from more fine-grained meta-targets. That means that,
in this problem, a single model is sufficient to obtain competitive results for
many meta-target types. For the complete ranking meta-target, for instance,
our experimentation suggests that a ranking learning method is not necessary
since even a better performance is obtained by inferring the rankings from the
predictions of the linear multi-output regression. An interesting pattern that is
observed for the top-M rankings meta-target is that, the smaller the parameter,
the better the results of the hierarchical inference (from the classifier accura-
cies) are compared to the SML. A possible explanation for this fact is that,
smaller parameters give rise to more fine-grained meta-targets (shorter partial
rankings), and these meta-targets seem to benefit from more fine-grained TSCR,

systems.

28



To sum up, in contrast to what Kalousis et al. [63] and Bensusan et al.
[64] reported, the results of our experimentation suggest that, given a meta-
target type, the hierarchical inference obtains results that are competitive with
the specific TSCR. The main conclusion of this finding is that, at least in our
scenario, a single linear multi-output regression is enough to infer almost all

the meta-target types with results that are competitive with the corresponding

SML.

5. Conclusion and future work

In this work, time series classifier recommendation has been addressed by
a meta-learning approach for the first time in the literature. The proposed
method consists of three main parts: landmarker-based time series supervised
dataset characterization, classifier recommendation and hierarchical inference of
the meta-targets.

In the first part, the temporal supervised dataset characterization is tackled
by the proposal of a set of 24 T'SC landmarkers, which are obtained by dataset
subsampling and algorithm reductions. The experimental analysis of the land-
markers show that they are fast to compute (in the StarlightCurves dataset, for
instance, the time is reduced from more than 12 days to 44 minutes), while the
accuracies obtained by the landmarkers are highly correlated to the results of
the original classifiers (mean correlation of 0.87).

Five standard meta-target types are considered: classifier accuracies, com-
plete ranking, top-M ranking, best set and best classifier. For each meta-target
type, four TSCR approaches are considered: two specific meta-learners (the
SML and the SML_FLS), as well as a baseline BS and an approach with standard
meta-features MF, for comparative purposes. The experimentation validates the
landmarkers we proposed since, in 7 of the considered 9 recommendations, the
SML outperforms the BS and MF, while the forward selection improves or equals
the results in 5 of 9 scenarios. Moreover, in those cases in which the BS obtains

competitive results, we prove that the proposed methods are more stable than

29



the BS -in the sense that they distribute the error more uniformly among the
datasets-.

In the last part of the work, the hierarchical inference of meta-targets is
addressed. This issue is an almost unexplored point of view in the meta-learning
literature, and the few works that have addressed it [63, 64] did not report
competitive results. In our work, by contrast, it is proved to be a promising
approach. Most of the meta-target types can be inferred from a single linear
multi-output regression, obtaining even better results than those obtained with
the corresponding TSCR system.

Regarding future work, the proposed TSCR systems could be extended to
other time series classification scenarios, such as multi-variate or unequal-length
time series classification. In addition, it would be interesting to find out which
characteristic of the time series datasets makes a classifier obtain better results
than others. This is a pending aspect in the TSC community and could be
addressed by the definition of meta-attributes that describe supervised time

series datasets, based on the characteristics that they contain.

Acknowledgements

This research is supported by the Basque Government through the BERC
2022-2025 program and by Spanish Ministry of Economy and Competitiveness
MINECO through BCAM Severo Ochoa excellence accreditation SEV-2017-

0718, as well as through project TIN2017-82626-R funded by (AEI/FEDER,

UE) and acronym GECECPAST. In addition, by the Research Group 1T1244-19
programs (Basque Government), PID2019-104966GB-100 (Spanish Ministry of
Economy, Industry and Competitiveness) and Elkartek projects 3KIA (KK2020,/00049),
SIGZE (KK-2021/00095) and ALUSMART (KK-2021/00065). A. Abanda is

also supported by the Grant BES-2016-076890. The authors would like to thank

the people who contributed to the UCR time series repository.

30



References

1]

[10]

E. Keogh, S. Kasetty, On the need for time series data mining bench-
marks, Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2002) 102.

Y. Pang, X. Zhou, J. Zhang, Q. Sun, J. Zheng, Hierarchical electricity
time series prediction with cluster analysis and sparse penalty, Pattern

Recognition 126 (2022) 108555.

P. Esling, C. Agon, Time-series data mining, ACM Computing Surveys 45
(2012) 1-34.

A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, The great time
series classification bake off: a review and experimental evaluation of recent
algorithmic advances, Data Mining and Knowledge Discovery 31 (2017)
606-660.

D. H. Wolpert, W. G. Macready, F. Analysis, No free lunch theorems for
search, Technical Report SFI-TR-95-02-010, The Santa Fe Institute (1996).

A. Bagnall, A. Bostrom, J. Large, J. Lines, Simulated data experiments for
time series classification part 1: accuracy comparison with default Settings,

arXiv preprint arXiv:1703.09480 (2017).
P. Brazdil, Metalearning: Applications to Data Mining, 2009.

H. Xu, J. Wang, H. Li, D. Ouyang, J. Shao, Unsupervised meta-learning
for few-shot learning, Pattern Recognition 116 (2021) 107951.

M. Huisman, J. N. V. Rijn, A. Plaat, A survey of deep meta-learning,
volume 54, Springer Netherlands, 2021. URL: https://doi.org/10.1007/
$10462-021-10004-4. do0i:10.1007/s10462-021-10004-4.

S. Y. Sohn, Meta Analysis of Classification Algorithms for Pattern Recog-
nition, IEEE Transactions on Pattern Analysis and Machine Intelligence

21 (1999) 1137-1144.

31


https://doi.org/10.1007/s10462-021-10004-4
https://doi.org/10.1007/s10462-021-10004-4
http://dx.doi.org/10.1007/s10462-021-10004-4

[11]

[16]

[17]

[18]

M. Reif, F. Shafait, M. Goldstein, T. Breuel, A. Dengel, Automatic clas-
sifier selection for non-experts, Pattern Analysis and Applications (2014)

83-96.

I. Khan, X. Zhang, M. Rehman, R. Ali, A Literature Survey and Empirical
Study of Meta-Learning for Classifier Selection, IEEE Access 8 (2020).

P. B. Brazdil, C. Soares, J. P. Da Costa, Ranking learning algorithms: using
IBL and meta-Learning on accuracy and time results, Machine Learning

(2003) 251-277.

R. G. F. Soares, D. S. A. D. Araujo, I. G. Costa, T. B. Ludermir, A. Schliep,
Ranking and selecting clustering algorithms using a meta-learning ap-
proach, IEEE International Joint Conference on Neural Networks (IEEE
World Congress on Computational Intelligence) (2008) 3729-3735.

M. Feurer, J. T. Springenberg, F. Hutter, Initializing bayesian hyperpa-
rameter optimization via meta-learning, Proceedings of the Twenty-Ninth

AAAT Conference on Artificial Intelligence (2014) 1128-1135.

M. Matijas, J. A. K. Suykens, S. Krajcar, Load forecasting using a multi-
variate meta-learning system, Expert Systems with Applications 40 (2013)
4427-4437.

C. Lemke, G. Bogdan, Meta-learning for time series forecasting and forecast

combination, Neurocomputing 73 (2016) 2006-2016.

X. Wang, K. Smith-miles, R. Hyndman, Rule induction for forecasting
method selection : meta-learning the characteristics of univariate time se-

ries, Neurocomputing 72 (2009) 2581-2594.

R. Prudéncio, T. Ludermir, Using machine learning techniques to combine

forecasting methods (2004) 1122-1127.

T. B. Ludermir, R. B. Cavalcante, Selection of time series forecasting

models based on performance information (2004) 2-7.

32



[21]

23]

[24]

[26]

[27]

[28]

[29]

U. Mori, A. Mendiburu, J. A. Lozano, Similarity measure selection for
clustering time series databases, IEEE Transactions on Knowledge and

Data Engineering 28 (2016) 181-195.

J. Kanda, A. D. Carvalho, E. Hruschka, C. Soares, P. Brazdil, Neurocom-
puting Meta-learning to select the best meta-heuristic for the Traveling
Salesman Problem : A comparison of meta-features, Neurocomputing 205

(2016) 393-406.

A. Bagnall, J. Lines, W. Vickers, E. Keogh, The UEA and UCR Time

Series Classification Repository, http://www.timeseriesclassification.com.

J. Large, J. Lines, G. Oastler, M. Middlehurst, M. Flynn, A. Bostrom,
P. Schéfer, C. Wei Tan, A. Bagnall, UEA time series classification weka-
compatible Java toolbox, https://github.com/uea-machine-learning/tsml

(2017).

M. Loning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, F. J. Kirily,
sktime: A Unified Interface for Machine Learning with Time Series, 2019.

J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers (1993).

G. H. John, P. Langley, Estimating continuous distributions in bayesian
classifiers, in: Eleventh Conference on Uncertainty in Artificial Intelligence,

Morgan Kaufmann, San Mateo, 1995, pp. 338-345.

I. BenGal, Bayesian networks, in: Bayesian networks, Encyclopedia of

Statistics in Quality and Reliability, 2008.

C. Cortes, V. Vapnik, Support-vector networks, Machine learning (1995)
273-297.

J. J. Rodriguez, L. I. Kuncheva, C. J. Alonso, Rotation forest: A new
classifier ensemble method, IEEE transactions on pattern analysis and

machine intelligence (2006) 1619-1630.

33



[31]

[32]

[33]

[34]

[35]

L. Breiman, Random forests, Machine learning (2001) 5-32.

H. Taud, J. F. Mas, Multilayer perceptron (mlp), Geomatic Approaches
for Modeling Land Change Scenarios (2018) 451-455.

D. Berndt, J. Clifford, Using dynamic time warping to find patterns in
time series, Workshop on Knowledge Knowledge Discovery in Databases

398 (1994) 359-370.

Y. S. Jeong, M. K. Jeong, O. A. Omitaomu, Weighted dynamic time
warping for time series classification, Pattern Recognition 44 (2011) 2231-

2240.

P. F. Marteau, Time Warp Edit Distance with Stiffness Adjustment for
Time Series Matching, TEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 31 (2009) 306-318.

A. Stefan, D. G. Athitsos V, The move-split-merge metric for time series,

IEEE Transactions on Knowledge and Data Engineering (2013) 1425-1438.

G. E. Batista, E. J. Keogh, O. M. Tataw, V. M. De Souza, Cid: an efficient
complexity-invariant distance for time series, Data Mining and Knowledge

Discovery (2014) 634-669.

L. Chen, R. Ng, On The Marriage of Lp-norms and Edit Distance, Pro-
ceedings of the Thirtieth international conference on Very large data bases

(2004) 792-803.

T. Gorecki, M. Luczak, Using Derivatives in Time Series Classification,

Data Mining and Knowledge Discovery (2013) 310-331.

T. Gérecki, Using derivatives in a longest common subsequence dissimi-
larity measure for time series classificatio, Pattern Recognition Letters 45

(2014) 99-105.

H. Deng, G. Runger, E. Tuv, M. Vladimir, A time series forest for classifi-

cation and feature extraction, Information Sciences 239 (2013) 142-153.

34



[42]

[43]

[44]

[51]

T. Rakthanmanon, E. Keogh, Fast Shapelets: A Scalable Algorithm for
Discovering Time Series Shapelets, Proceedings of the 13th ICDM Inter-
national Conference on Data Mining (2013) 668-676.

J. Hills, J. Lines, E. Baranauskas, J. Mapp, A. Bagnall, Classification
of time series by shapelet transformation, Data Mining and Knowledge

Discovery 28 (2014) 851-881.

J. Lin, R. Khade, Y. Li, Rotation-invariant similarity in time series using
bag-of-patterns representation, Journal of Intelligent Information Systems

39 (2012) 287-315.

P. Schifer, The BOSS is concerned with time series classification, Data

Mining and Knowledge Discovery (2015) 1505-1530.

Z. Wang, W. Yan, T. Oates, Time series classification from scratch with
deep neural networks: A strong baseline, In 2017 International joint con-

ference on neural networks (IJCNN) (2017) 1578-1585.

B. Fawaz, H. I.and Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. We-
ber, F. Petitjean, Inceptiontime: Finding alexnet for time series classifica-

tion, Data Mining and Knowledge Discovery (2020) 1936-1962.

D. S. Hirschberg, Algorithms for the longest common subsequence problem,

Journal of the ACM (JACM) (1977) 664-675.

J. Lines, A. Bagnall, Time series classification with ensembles of elastic
distance measures, Data Mining and Knowledge Discovery (2015) 29(3),
565-592.

R. G. Baydogan, M. G., E. Tuv, A bag-of-features framework to classify
time series, IEEE transactions on pattern analysis and machine intelligence

(2013) 35(11), 2796-2802.

M. G. Baydogan, G. Runger, Time series representation and similarity
based on local autopatterns, Data Mining and Knowledge Discovery (2016)
30(2), 476-509.

35



[52]

[54]

[55]

[56]

[61]

[62]

[63]

R. J. Kate, Using dynamic time warping distances as features for improved
time series classification, Data Mining and Knowledge Discovery 30 (2015)

283-312.

A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with
COTE: The collective of transformation-based ensembles, IEEE Transac-
tions on Knowledge and Data Engineering 27 (2016) 1548-1549.

S. le Cessie, J. van Houwelingen, Ridge estimators in logistic regression,

Applied Statistics 41 (1992) 191-201.

Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. E. Batista,
The UCR time series classification archive (2015).

J. Grabocka, N. Schilling, M. Wistuba, L. Schmidt-Thieme, Learning time-
series shapelets (2014) 392-401.

P. Senin, S. Malinchik, SAX-VSM : Interpretable Time Series Classification
Using SAX and Vector Space Model (2013) 1175-1180.

H. Bensusan, C. Giraud-carrier, Discovering Task Neighbourhoods through

Landmark Learning Performances A Set of Landmarkers (2000).

C. Soares, J. Petrak, P. Brazdil, Sampling-based relative landmarks : sys-
tematically test-driving algorithms before choosing (2001) 88-95.

R. Leite, P. Brazdil, Improving progressive sampling via meta-learning on

learning curves (2004) 250-261.

L. Todorovski, S. Dzeroski, Experiments in meta-level learning with ILP

(1999) 98-106.

M.-l. Zhang, Z.-h. Zhou, M L-KNN : A lazy learning approach to multi-
label learning, Pattern Recognition 40 (2007) 2038-2048.

A. Kalousis, Algorithm Selection via Meta-Learning, Ph.D. thesis, Univer-
sity of Geneva, 2002.

36



[64] H. Bensusan, A. Kalousis, Estimating the predictive accuracy of a classifier

(2001) 25-36.

[65] R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, STAM Journal
on discrete mathematics 17 (2003) 134-160.

[66] E. Alcobaca, F. Siqueira, A. Rivolli, L. P. F. Garcia, J. T. Oliva, A. C.
P. L. F. de Carvalho, Mfe: Towards reproducible meta-feature extraction,

Journal of Machine Learning Research 21 (2020) 1-5.

[67] M. Stone, Cross-validatory choice and assessment of statistical predictions,
Journal of the Royal Statistical Society, Series B (Statistical Methodology)
(1974) 36(2):111-147.

37



	Introduction
	Time Series Classifier Recommendation
	Meta-Attributes
	Meta-target

	Hierarchical inference of meta-targets
	Experimentation
	Experimental set-up
	Datasets
	Classifiers
	Evaluation

	Analysis of the landmarkers
	TSCR
	Hierarchical inference of meta-targets

	Conclusion and future work

