
Algebraic equations for constant width curves and
Zindler curves

David Rochera

BCAM – Basque Center for Applied Mathematics, Mazarredo 14, E-48009 Bilbao (Basque
Country), Spain

Abstract

An explicit method to compute algebraic equations of curves of constant width
and Zindler curves generated by a family of middle hedgehogs is given thanks to
a property of Chebyshev polynomials. This extends the methodology used by
Rabinowitz and Martinez-Maure in particular constant width curves to generate
a full family of algebraic equations, both of curves of constant width and Zindler
curves, defined by trigonometric polynomials as support functions.
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1. Introduction

A planar convex body K is called of constant width if its width, defined
as the distance between any pair of parallel supporting lines to K, is constant
regardless the direction in which we measure it. The boundary of K is a called
a curve of constant width. The circle is the most trivial example of this kind
of curves, but there are infinitely many more (see [10] for an introduction to
the topic). It is probably the Reuleaux triangle the most famous non-circular
example of a constant width curve, but there are several known methods to
construct smooth curves of constant width different from the circle, see e.g. [16],
[11] or [1], among others. Other classical approaches include their construction
as the involutes of some specific curves [6] or their generation by some support
functions [7, 15].

There is another kind of curves, maybe not as famous as constant width
curves but that has a very strong relationship with them. These are Zindler
curves [17]. The property that defines a Zindler curve is that all chords which
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cuts the curve perimeter (or area) into halves, have the same length. Zindler
curves are also the boundaries of figures of constant density that float in water
in equilibrium in any position [5].

It is known that there is a “duality” between curves of constant width and
Zindler curves (see [10] or [13]), in the sense that, under some convexity as-
sumptions, a right angle rotation of the constant length chord that describes
the width in the first case or that cuts the perimeter in a half in the second case
yields the other figure. The locus of all these midpoints also describes another
curve called the middle hedgehog, which is a projective hedgehog by construction
(see Figure 1).
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Figure 1: A curve of constant width α and its “dual” Zindler curve β. The midpoint curve γ
is the middle hedgehog.

Rabinowitz asked in [15] for algebraic equations describing non-circular con-
stant width curves. He found a quite complicated expression and he asked if
simpler expressions could be given. Recently, Martinez-Maure in [9] gave an
algebraic equation of a non-circular constant width curve which is simpler than
the one of Rabinowitz. This was done from a parameterization of the constant
width curve by a support function p(t) = 8 − sin(3 t). However, in any case,
it seems that the complexity of general algebraic equations is unavoidable for
trigonometric polynomial support functions, because Bardet and Bayen showed
in [2] that the minimum degree of an implicit equation defining a non-circular
constant width curve of this kind is 8. The interested reader can also see [4],
[12] and [14] for related works.

The objective of this short paper is to provide an explicit method to com-
pute the algebraic equation of any constant width curve or any Zindler curve
constructed from a middle hedgehog γ parameterized by a support function of
the kind

p(t) =
1

b
sin

(
n t

)
, (1)

where b ∈ R and n = 2 k+ 1, for k ∈ N. Note that the hedgehog γ is projective
because p(t) + p(t+ π) = 0 and that it will exhibit n cusps.
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The method we propose for finding the algebraic equation is based on the
same technique used by Rabinowitz in [15] and by Martinez-Maure in [9]. The
main contribution is to notice that thanks to the properties of Chebyshev poly-
nomials, a generalized version of the same procedure can be given explicitly to
get an algebraic equation for any k ∈ N. In addition, we provide an analogous
method to get similar conclusions in the case of Zindler curves.

The method is reduced to compute the resultant of two polynomials of de-
grees 2n + 2 and n + 1 (Theorems 1 and 2), so that symbolic computation is
usually needed to compute the algebraic equation. Moreover, as we increase n,
the degree of the algebraic equation increases too and it gets a wider and a more
complicated form.

Finally, we observe that the polynomials we use to compute the resultant
are very similar for pairs of “dual” curves (constant width curves and Zindler
curves), as well as the resulting algebraic equations. This seems particularly
clear in some examples, such as the one we consider in Section 5.

2. Definition of the curves and Chebyshev polynomials

2.1. Duality between curves of constant width and Zindler curves

Let γ : [0, 2π] → R2 be a projective hedgehog defined by a support function
p:

γ(t) = p(t) (cos t, sin t) + p′(t) (− sin t, cos t),

where p(t)+p(t+π) = 0. From it we can construct a curve α of constant width
2 a simply by taking the support function h(t) = a + p(t). This is equivalent
to constructing a continuous branch of the double offset to the hedgehog γ at
a distance a. This is, we go from each point γ(t) in a normal direction to γ a
distance a. The resulting parameterization of α can be written as

α(t) =
(
a+ p(t)

)
(cos t, sin t) + p′(t) (− sin t, cos t).

Analogously, given the same hedgehog we can construct a Zindler curve β for
a chord length 2 d simply by going from each point γ(t) in a tangent direction to
γ a distance d. This construction is related to tire-tracks of bicycles, where the
hedgehog γ represents the rear wheel of a bicycle tire-track and the Zindler curve
its front wheel (see e.g. [3]). However, the Zindler curve is not parameterized
by a support function. Instead, its parameterization can be written as

β(t) = p(t) (cos t, sin t) +
(
d+ p′(t)

)
(− sin t, cos t).

From now on, γ, α and β will be the curves defined above.
We must remark that there are some restrictions on the figures obtained

by these curves. A curve of constant width is usually assumed to be convex,
although some non-convex cases also exhibit a special kind of “constant width”,
as pointed out in [8], but this width does not correspond to the actual width of
the full figure. Non-convex figures can be avoided by setting a sufficiently high
value for a. Analogously, a Zindler curve must be such that the chords from
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which we construct the figure and that divides its perimeter into two halves cut
the curve at precisely two points (and not more). Similarly, this can be achieved
by setting a sufficiently high value for d.

2.2. A property of Chebyshev polynomials

We look for a method to compute algebraic equations for constant width
curves and Zindler curves generated by a middle hedgehog parameterized by
a support function (1). The core of our method is based on a property of
Chebyshev polynomials. Denote by Tn the Chebyshev polynomial of degree n.
These polynomials can be defined recursively as

T0(x) = 1,

T1(x) = x,

Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.

If n = 2 k + 1, for k ∈ N, recall that these polynomials satisfy that

cos(n t) = Tn

(
cos(t)

)
(2)

and
sin(n t) = (−1)k Tn

(
sin(t)

)
. (3)

The property we are referring to above is the following.

Lemma 1. If n is an odd natural number and x ∈ [0, 1], then

Tn

(√
1− x2

)
=

√
1− x2 pn−1(x),

where

pn−1(x) =

n−1
2∑

k=0

(
n

2 k

)
(−1)k x2k (1− x2)

n−2k−1
2 (4)

is a polynomial of degree n− 1 in x.

Proof. An explicit expression of Tn is given by

Tn(x) =

[n2 ]∑
k=0

(
n

2 k

)(
x2 − 1

)k
xn−2k,

where [ · ] denotes the integer part. In our case, we have that[n
2

]
=

n− 1

2
.

Thus,

Tn

(√
1− x2

)
=

n−1
2∑

k=0

(
n

2 k

)
(−1)k x2 k

(√
1− x2

)n−2k
.
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Since n− 2 k is odd, we get

Tn

(√
1− x2

)
=

√
1− x2

n−1
2∑

k=0

(
n

2 k

)
(−1)k x2k

(√
1− x2

)n−2k−1

=
√
1− x2

n−1
2∑

k=0

(
n

2 k

)
(−1)k x2k (1− x2)

n−2k−1
2

=
√
1− x2 pn−1(x),

which is what we wanted to prove.

3. Method for constant width curves

Let α : [0, 2π] → R2 be a parametric curve defined by a support function of
the kind

h(t) = a+ p(t) = a+
1

b
sin

(
n t

)
,

where n = 2 k + 1, for k ∈ N. Since h(t) + h(t + π) = 2 a, we have that α is a
curve of constant width 2 a.

The coefficient 1
b is just a scale factor. As higher is n, a higher value of a is

needed to get a convex curve. By setting a sufficiently low scale factor 1/b, the
full figure is scaled and, therefore, a smaller value of a is needed.

The next result describes the method to compute the algebraic equation for
this kind of constant width curves.

Theorem 1. The algebraic equation of the constant width curve α can be ob-
tained by computing the resultant of the polynomials

(1− s2)
(
a b+ (−1)k Tn(s)− n s pn−1(s)

)2 − b2 x2

and
s
(
a b+ (−1)k Tn(s)

)
+ n

(
1− s2

)
pn−1(s)− b y,

which are of degrees 2n + 2 and n + 1, respectively, and where pn−1 is the
polynomial defined by (4).

Proof. The explicit expression of the curve α(t) =
(
x(t), y(t)

)
is

x(t) =
1

b

[
cos(t)

(
a b+ sin(n t)

)
− n sin(t) cos(n t)

]
,

y(t) =
1

b

[
sin(t)

(
a b+ sin(n t)

)
+ n cos(t) cos(n t)

]
,

where remember that n = 2 k + 1, for k ∈ N.

5



We can expand the expression of the curve in terms of sin(t) and cos(t) using
(2) and (3) as follows:

x(t) =
1

b

[
cos(t)

(
a b+ (−1)k Tn

(
sin(t)

))
− n sin(t)Tn

(
cos(t)

)]
,

y(t) =
1

b

[
sin(t)

(
a b+ (−1)k Tn

(
sin(t)

))
+ n cos(t)Tn

(
cos(t)

)]
.

Let’s write now both equations only in terms of s = sin(t). For that, a substi-
tution of cos(t) by

√
1− s2 is also performed:

x(t) =
1

b

[√
1− s2

(
a b+ (−1)k Tn(s)

)
− n sTn

(√
1− s2

)]
,

y(t) =
1

b

[
s
(
a b+ (−1)k Tn(s)

)
+ n

√
1− s2 Tn

(√
1− s2

)]
.

Now, by Lemma 1, we can write

x(t) =
1

b

√
1− s2

[
a b+ (−1)k Tn(s)− n s pn−1(s)

]
,

y(t) =
1

b

[
s
(
a b+ (−1)k Tn(s)

)
+ n

(
1− s2

)
pn−1(s)

]
,

where pn−1 is the polynomial of degree n− 1 given by (4).
On the one hand, observe that x(t) is the product of

√
1− s2 by a polynomial

of degree n in s. On the other hand, y(t) is itself a polynomial of degree n+ 1
in s. We can square the first equation to get

b2 x2 = (1− s2)
(
a b+ (−1)k Tn(s)− n s pn−1(s)

)2
.

The second equation can be written as

b y = s
(
a b+ (−1)k Tn(s)

)
+ n

(
1− s2

)
pn−1(s).

From this, the statement follows, where the resultant is used to eliminate the
variable s.

4. Method for Zindler curves

A very similar method to the one described in the previous section also
works to obtain the algebraic equation of Zindler curves constructed from the
same middle hedgehog. The main difference from the previous case is that now
we must write the expressions in terms of c = cos(t) to get equations easy to
handle.

Theorem 2. The algebraic equation of the Zindler curve β can be obtained by
computing the resultant of the polynomials

(1− c2)
(
−b d− nTn(c) + (−1)k c pn−1(c)

)2 − b2 x2
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and
c
(
b d+ nTn(c)

)
+ (−1)k (1− c2) pn−1(c)− b y,

which are of degrees 2n + 2 and n + 1, respectively, and where pn−1 is the
polynomial defined by (4).

Proof. The explicit parametric expression of the curve β is

x(t) =
1

b

[
− sin(t)

(
b d+ n cos(n t)

)
+ cos(t) sin(n t)

]
,

y(t) =
1

b

[
cos(t)

(
b d+ n cos(n t)

)
+ sin(t) sin(n t)

]
.

For c = cos(t), we have

x(t) =
1

b

[
−
√

1− c2
(
b d+ nTn(c)

)
+ (−1)k c Tn

(√
1− c2

)]
,

y(t) =
1

b

[
c
(
b d+ nTn(c)

)
+ (−1)k

√
1− c2 Tn

(√
1− c2

)]
.

Now, by Lemma 1:

x(t) =
1

b

√
1− c2

[
−
(
b d+ nTn(c)

)
+ (−1)k c pn−1(c)

]
,

y(t) =
1

b

[
c
(
b d+ nTn(c)

)
+ (−1)k (1− c2) pn−1(c)

]
,

where pn−1 is the polynomial of degree n − 1 given by (4). Again, x(t) is
the product of

√
1− c2 by a polynomial of degree n in c and y(t) is itself a

polynomial of degree n+ 1 in c.
Finally, the desired algebraic equation is found by eliminating c from the

equations

b2 x2 = (1− c2)
(
−b d− nTn(c) + (−1)k c pn−1(c)

)2
and

b y = c
(
b d+ nTn(c)

)
+ (−1)k (1− c2) pn−1(c)

using a resultant.

5. Examples of algebraic equations

Consider now an example. Let γ : [0, 2π] → R2 be the middle hedgehog
parameterized by the support function

p(t) = − sin(3 t).

Here, b = −1 and k = 1.
Let’s compute the algebraic equation of the associated curve of constant

width α and the Zindler curve β for a = d = 8 using Theorems 1 and 2.
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In this case, the polynomial (4) has the form

p2(x) = 1− 4x2.

By Theorem 1, to compute the algebraic equation of α, we must compute the
resultant of the polynomials

−64 s8 + 64 s6 + 128 s5 − 128 s3 − 64 s2 − x2 + 64

and
8 s4 − 12 s2 − 8 s+ y + 3.

This produces the algebraic equation (3) given by Martinez-Maure in [9]:((
x2 + y2

)2
+ 8 y

(
y2 − 3x2

))2

+ 432 y
(
y2 − 3x2

) (
351− 10

(
x2 + y2

))
= 5673 + 28

(
x2 + y2

)3
+ 486

(
x2 + y2

) (
67

(
x2 + y2

)
− 567 · 18

)
.

We can also apply Theorem 2 to get the associated algebraic equation for
the Zindler curve β: we must compute the resultant of the polynomials

−64 c8 + 192 c6 + 128 c5 − 192 c4 − 256 c3 + 128 c− x2 + 64

and
8 c4 − 4 c2 − 8 c+ y − 1.

As we can see, there is a strong similarity with the polynomials above to compute
the algebraic equation of the constant width curve α. In fact, the resulting
algebraic equation for β is also very similar to that of α:((

x2 + y2
)2

+ 8 y
(
y2 − 3x2

))2

− 16 y
(
y2 − 3x2

) (
251 + 14

(
x2 + y2

))
= 553 + 28

(
x2 + y2

)3
+ 18

(
x2 + y2

) (
17

(
x2 + y2

)
+ 55 · 26

)
.

The curves α and β defined by the algebraic equations above can be visualized
in Figure 2.

6. Conclusions

We have provided an explicit method, very easy to implement in a Computer
Algebra System (CAS), to compute algebraic equations of a wide class of curves
of constant width and Zindler curves. The use of symbolic computation is
justified because of the complexity of the corresponding algebraic equations,
which can be obtained from a resultant.

Chebyshev polynomials constitute an elegant tool to implement the explicit
expressions which are needed to compute the resultant in a CAS. We must
mention that, by construction, the same method works for any hedgehog of
constant width and any generalized Zindler curve which is obtained from the
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Figure 2: The curve α of constant width 2 a = 16 and the Zindler curve β for a chord length
2 d = 16. The curve γ is the middle hedgehog.

same middle hedgehog. This is, there is actually no constraint on the real values
a and d to get the corresponding algebraic equation with the same method.

It would be interesting to see if similar methods are possible to get algebraic
equations in higher scenarios, such as in the case of surfaces of constant width or
the corresponding floating bodies in equilibrium in three dimensions. However,
as far as the author knows, there are still very few references regarding the
theoretical background for the latter case.
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