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Abstract

In this paper, we propose a novel pseudospectral method to ap-
proximate accurately and efficiently the fractional Laplacian without
using truncation. More precisely, given a bounded regular function
defined over R, we map the unbounded domain into a finite one, then
we represent the function as a trigonometrical series. Therefore, the
central point of this paper is the computation of the fractional Lapla-
cian of an elementary trigonometric function.

As an application of the method, we also do the simulation of
Fisher’s equation with fractional Laplacian in the monostable case.

Keywords:
Fractional Laplacian, Pseudospectral methods, rational Chebyshev functions,
nonlocal Fisher’s equation, accelerating fronts

1 Introduction

In this paper we present a pseudospectral method that approximates the
one-dimensional fractional Laplacian operator of smooth functions on R, by
mapping R to a finite interval, and, thus, avoiding truncation.
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The fractional Laplacian operator, denoted as (−∆)α/2, is a generalization
of the integer-order Laplacian ∆ ≡ ∂2/∂x21 + . . . ∂2/∂x2d, with d being the
dimension. It appears in a number of applications (see, for instance, [1,
Table 1] and its references), and can be defined in different equivalent ways
[2]. In our case, we consider the following definition on R:

(−∆)α/2u(x) = cα

∫ ∞
−∞

u(x)− u(x+ y)

|y|1+α
dy, (1)

where α ∈ (0, 2), and

cα = α
2α−1Γ(1/2 + α/2)√

πΓ(1− α/2)
.

The equivalent definition in the Fourier side is

[(−∆)αu]∧(ξ) = |ξ|αû(ξ),

and, hence, when α = 2, we recover −∆u(x) = −uxx(x), whereas, when
α = 0, (−∆)0u = u. On the other hand, bearing in mind that the Hilbert
transform [3]

H(u)(x) =
1

π

∫ ∞
−∞

u(y)

x− y
dy

is defined in the Fourier side as [H(u)]∧(ξ) = −i sgn(ξ)û(ξ), it follows that,
when α = 1, [(−∆)1/2u]∧(ξ) = |ξ|û(ξ) = (−i sgn(ξ))(iξ)û(ξ), or, equivalently,
(−∆)1/2u(x) = H(ux)(x).

Remark that, in [2], the author indeed considers −(−∆)α/2u(x) in the
definition of the fractional Laplacian, to make it agree with the integer-order
Laplacian, when α = 2. The same sign convention is chosen in [4], where an
excellent and up-to-date introduction to the topic can be found.

In recent years, there has been an increasing interest in evolution equa-
tions that incorporate nonlocal operators and, in particular, nonlocal op-
erators that resemble a fractional power of the Laplacian or derivatives of
fractional order. There are many models where such operators appear, and
there is also an intrinsic mathematical interest in analyzing and simulating
such equations. The list of references is so vast that we will concentrate here
in the case where the fractional Laplacian appears instead of the usual term
of Brownian diffusion, and we will focus on the paradigm nonlinear equation
for this diffusion type, namely, Fisher’s equation with fractional Laplacian:

∂tu+ (−∆)α/2u = f(u), x ∈ R, t ≥ 0, (2)
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where, generically, f(u) = u(1− u) is the so-called monostable nonlinearity,
or f(u) = u(1 − u)(u − a), with a ∈ (0, 1), is the bistable nonlinearity. In
the case of classical diffusion, with α = 2, this is a paradigm equation for
pattern forming systems and reaction-diffusion systems in general (see the
classical references for the monostable case, [5], [6], [7], [8], [9], etc., and for
the bistable case, [10], [11], [12], [13], [14], etc.). The nonlocal version (2) has
been proposed as a reaction-diffusion system with anomalous diffusion (see
[15], [16] and [17]). Some fundamental analytical results appear in [18] and
[19] for more general nonlinear equations and in several dimensions. Our
main interest here is to simulate (2) as an illustration of a problem that
requires a very large spatial domain or the whole domain, when traveling
wave solutions ensue, since these travel in one direction and they do so with
a wave speed exponentially increasing in time in the monostable case (see
[20], [21] and [22]). In this regard, we will contrast the numerical results with
the analytical ones.

The structure of this paper is as follows. In Section 2, we propose a novel
method to compute accurately the fractional Laplacian (1) without using
truncation. More precisely, we rewrite the Laplacian in a more suitable way,
which requires at least C2 regularity; then, after mapping the original domain
R to [0, π] by using the change of variable x = L cos(s), with L > 0, s ∈ [0, π],
we expand u(s) ≡ u(L cos(s)) in Fourier series, and, at its turn, obtain the
Fourier series expansion of (−∆)α/2(eiks), which constitutes the central part
of this paper. We also show how to generate efficiently an operational matrix
Mα that can be applied to the coefficients of the Fourier expansion of u(s),
to approximate (−∆)α/2(u(s)) at the equally-spaced nodes

sj =
π(2j + 1)

2N
, 0 ≤ j ≤ N − 1. (3)

Later on, in Section 3, we test the proposed method for a couple of functions.
Finally, in Section 4 we apply our method to the numerical simulation of (2)
in the monostable case.

To the best of our knowledge, the numerical computation of the fractional
Laplacian without truncating the domain has not being done so far. How-
ever, the change of variable x = L cos(s) was applied successfully in [23] to
compute numerically a related nonlocal operator defined on the whole real
line. More precisely, in [23], from which we get several useful ideas, ∂xDα was
considered on R, where the operator Dα can be regarded as a left-sided frac-
tional derivative in the Caputo sense (see, for instance, [24]), with integration
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taken from −∞:

Dαu(x) =
1

Γ(1− α)

∫ x

−∞

ux(y)

(x− y)α
dy, α ∈ (0, 1). (4)

After defining u(s) ≡ u(L cos(s)), ∂xDα(u(s)) was approximated at the nodes
sj in (3) by the composite midpoint rule taken over the families of nodes

s
(m)
l =

π(2l + 1)

2m+1N
, 0 ≤ l ≤ 2mN − 1, m = 1, 2, . . . ,

although, in practice, only the indices l satisfying 2m−1(2j+1) ≤ l ≤ 2mN−1
were used, denoting as [∂xDα]m(u(s)) the resulting approximation. Then,
studying the errors of several functions with different types of decay and
applying Richardson extrapolation [25] to [∂xDα]m(u(s)), it was conjectured
that

‖[∂xDα]mu(x)− ∂xDαu(x)‖∞

=
c1(α)

m2−α +
c2(α)

m3−α +
c3(α)

m4−α +
c4(α)

m5−α +
c5(α)

m6−α + . . . ,
(5)

and, indeed, this formula yielded very accurate results, at least for the func-
tions considered. Remark that, in practice, u(s) was expanded in Fourier
series, so the extrapolation was really applied over [∂xDα]m(eiks), which en-
abled to create an operational matrix acting on the coefficients of the Fourier
expansion of u(s).

As we can see, the main difference between this paper and [23] is the
numerical computation of the corresponding nonlocal operator acting on a
single Fourier mode eiks. In this paper, we have not considered the extrap-
olation technique, because it appears to be more involved than in [23], and,
on the other hand, the method that we are proposing here is, in our opinion,
very accurate.

To the best of our knowledge, the use of spectral and pseudospectral
methods for approximating the Fractional Laplacian is limited to a few in-
stances in the literature: we remark the works [26], [27], and [28], where,
although a truncation of the domain is not explicitly given, the method re-
lays on the approximation of the fractional Laplacian by an operator on a
truncated domain.
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2 Computation of the fractional Laplacian for

regular functions

In the following pages, we will develop a new method to approximate nu-
merically (1). However, instead of working directly with (1), we will use the
representation given by the following lemma, which requires boundedness
and C2-regularity.

2.1 Equivalent form of the fractional Laplacian for reg-
ular functions

Lemma 2.1. Consider the twice continuous bounded function u ∈ C2b (R). If
α ∈ [1, 2), or α ∈ (0, 1) and limx→±∞ ux(x) = 0, then

(−∆)α/2u(x) =


1

π

∫ ∞
−∞

ux(y)

x− y
dy, α = 1,

cα
α(1− α)

∫ ∞
−∞

uxx(y)

|x− y|α−1
dy, α 6= 1.

(6)

Proof. Let us express first (1) as an integral over [0, ∞):

(−∆)α/2u(x) = cα

∫ ∞
0

u(x)− u(x− y) + u(x)− u(x+ y)

y1+α
dy

= cα

∫ ∞
0

∫ y

0

ux(x− z)− ux(x+ z)

y1+α
dz dy

= cα

∫ ∞
0

[
(ux(x− z)− ux(x+ z))

∫ ∞
z

1

y1+α
dy

]
dz

=
cα
α

∫ ∞
0

ux(x− z)− ux(x+ z)

zα
dz, (7)

where we have changed the order of integration. We distinguish three cases.
When α = 1, c1 = 1/π, so

(−∆)1/2u(x) =
1

π

∫ ∞
0

ux(x− y)− ux(x+ y)

y
dy =

1

π

∫ ∞
−∞

ux(y)

x− y
dy,
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i.e., (−∆)1/2u(x) is precisely the Hilbert transform [3] of ux(x), as mentioned
in the introduction. On the other hand, when α ∈ (1, 2),

(−∆)α/2u(x) =
cα
α

∫ ∞
0

ux(x− z)− ux(x) + ux(x)− ux(x+ z)

zα
dz

= −cα
α

∫ ∞
0

∫ z

0

uxx(x− y) + uxx(x+ y)

zα
dy dz

= −cα
α

∫ ∞
0

[
(uxx(x− y) + uxx(x+ y))

∫ ∞
y

1

zα
dz

]
dy

= − cα
α(α− 1)

∫ ∞
0

uxx(x− y) + uxx(x+ y)

yα−1
dy

=
cα

α(1− α)

∫ ∞
−∞

uxx(x+ y)

|y|α−1
dy =

cα
α(1− α)

∫ ∞
−∞

uxx(y)

|x− y|α−1
dy.

Finally, when α ∈ (0, 1), this last formula also holds, although the deduction
is slightly different, and limx→±∞ ux(x) = 0 is required. Indeed, from (7),

(−∆)α/2u(x) =
cα
α

∫ ∞
0

∫ ∞
z

uxx(x− y) + uxx(x+ y)

zα
dy dz

=
cα
α

∫ ∞
0

[
(uxx(x− y) + uxx(x+ y))

∫ y

0

1

zα
dz

]
dy

=
cα

α(1− α)

∫ ∞
0

uxx(x− y) + uxx(x+ y)

yα−1
dy

=
cα

α(1− α)

∫ ∞
−∞

uxx(y)

|x− y|α−1
dy,

which completes the proof of the lemma.

2.2 Mapping R to a finite interval

As with the computation of fractional derivatives in [23], one of the main
difficulties of approximating numerically (6) is the unboundedness of the
spatial domain. Hence, we follow the same approach as in [23], i.e., mapping
R to a finite interval, followed by the use of a series expansion in terms of
Chebyshev polynomials. Among the possible mappings, we use the so-called
algebraic map [29]:

ξ =
x√

L2 + x2
∈ [−1, 1]⇐⇒ x =

Lξ√
1− ξ2

∈ R, (8)

6



with L > 0. Then, we consider the Chebyshev polynomials of the first kind
Tk(ξ) over the new domain ξ ∈ [−1, 1]:

Tk(ξ) ≡ cos(k arccos(ξ)), ∀k ∈ Z. (9)

Therefore, introducing (8) into (9), we have the so-called rational Chebyshev
functions TBk(x) [29], which form a basis set for R:

TBk(x) ≡ Tk

(
x√

L2 + x2

)
, x ∈ R, ∀k ∈ Z. (10)

The rational Chebyshev functions are very adequate to represent functions
defined on R having different types of decay as x→ ±∞ (see [30] for a com-
parison of them with Hermite functions and sinc functions). Remark that
they are closely related to the Christov functions and the Higgins functions
[31], which are very adequate for computing numerically the Hilbert trans-
form (see for instance [32] and [33]) of functions in L2(R), although they are
not sufficient for representing the functions that we are considering in this
paper, which are not in L2(R).

In practice, we do not work directly with TBk(x) or with Tk(ξ), but rather
with a Fourier series expansion. Hence, we consider yet another change of
variable:

x = L cot(s) ∈ R⇐⇒ ξ = cos(s) ∈ [−1, 1]⇐⇒ s = arccos(ξ) ∈ [0, π],

such that Tk(ξ) = Tk(cos(s)) = cos(ks). Therefore, a series expansion in
terms of Chebyshev polynomials or rational Chebyshev functions is equiva-
lent to a cosine expansion.

In order to express (6) in terms of s ∈ [0, π], we need the following
identities [29]:

ux(x) = −sin2(s)

L
us(s),

uxx(x) =
sin4(s)

L2
uss(s) +

2 sin3(s) cos(s)

L2
us(s),

(11)

where, with some abuse of notation, u(s) ≡ u(x(s)). Then, bearing in mind
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that dx = −L sin−2(s)ds, (6) becomes

(−∆)α/2u(s) =



− 1

Lπ

∫ π

0

us(η)

cot(s)− cot(η)
dη, α = 1,

cα
Lαα(1− α)

·
∫ π

0

sin2(η)uss(η) + 2 sin(η) cos(η)us(η)

| cot(s)− cot(η)|α−1
dη, α 6= 1,

(12)
or, equivalently,

(−∆)α/2u(s) =



sin(s)

Lπ

∫ π

0

sin(η)us(η)

sin(s− η)
dη, α = 1,

cα| sin(s)|α−1

Lαα(1− α)

·
∫ π

0

sinα(η)(sin(η)uss(η) + 2 cos(η)us(η))

| sin(s− η)|α−1
dη, α 6= 1.

(13)

2.3 Discretizing the mapped bounded domain

We discretize the interval s ∈ [0, π] in the nodes defined in (3):

sj =
π(2j + 1)

2N
⇐⇒ xj = L cot

(
π(2j + 1)

2N

)
⇐⇒ ξj = cos

(
π(2j + 1)

2N

)
,

such that s0 = π/(2N), sN−1 = π − π/(2N), sj+1 − sj = π/N , for all j.
Therefore, we avoid evaluating (12) directly at s = 0 and s = π. Even if we
do not use it in this paper, let us mention, for the sake of completeness, that
it is also possible to introduce a spacial shift in x, i.e.,

x = xc + L cot(s); (14)

so

xj = xc + L cot(sj) = xc + L cot

(
π(2j + 1)

2N

)
.

In general, along this paper, whenever we write u(xj), we refer to u(x) eval-
uated at x = xj, whereas, we write u(sj) to refer to u(x(s)) evaluated at
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sj. Therefore, with some abuse of notation, u(sj) ≡ u(xj). Observe that the
definition of sj in (3) does not depend on xc, whereas the definition of xj
does, which makes preferable to work with u(sj), especially when xc 6= 0 is
used. On the other hand, as mentioned above, since s ∈ [0, π], a cosine series
expansion is enough to represent u(s). However, we rather consider a more
general series expansion formed by eiks, with k ∈ Z, which is somehow easier
to implement numerically:

u(s) =
∞∑

k=−∞

û(k)eiks, s ∈ [0, π].

Hence, in order to determine the coefficients û(k), we have to extend the
definition of u(s) to s ∈ [0, 2π]. Note that an even expansion of u(s) at s = π
will yield precisely a cosine series.

Since it is impossible to work with infinitely many frequencies, we ap-
proximate u(s) as

u(s) ≈
N−1∑
k=−N

û(k)eiks, s ∈ [0, 2π]. (15)

Then, taking 0 ≤ j ≤ 2N − 1 in (3), we adopt a pseudospectral approach
(see [34] for a classical introduction to spectral methods in Matlab) to
determine uniquely the 2N coefficients û(k) in (15), i.e., we impose (15) to
be an equality at sj:

u(sj) ≡
N−1∑
k=−N

û(k)eiksj =
N−1∑
k=−N

û(k)eikπ(2j+1)/(2N)

=
2N−1∑
k=0

[
û(k)eikπ/(2N)

]
e2ijkπ/(2N). (16)

Equivalently, the (2N)-periodic coefficients û(k) are given by

û(k) ≡ e−ikπ/(2N)

2N

2N−1∑
j=0

u(sj)e
−2ijkπ/(2N). (17)

Note that the discrete Fourier transforms (16) and (17) can be computed
very efficiently by means of the fast Fourier Transform (FFT) [35]. On the
other hand, we apply systematically a Krasny filter [36], i.e., we set to zero
all the Fourier coefficients û(k) with modulus smaller than a fixed threshold,
which in this paper is the epsilon of the machine.

9



2.4 An explicit calculation of (−∆)α/2eiks

Since we are approximating u(s) by (15), the problem is reduced to comput-
ing (−∆)α/2eiks. In this section, we will prove the following theorem:

Theorem 2.2. Let α ∈ (0, 1) ∪ (1, 2), then

(−∆)α/2(eiks) =



cα| sin(s)|α−1

8Lα tan(πα
2

)

∞∑
l=−∞

ei2ls((1− α)k2 − 4kl)

·
Γ
(−1+α

2
+ |l|

)
Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

Γ
(
3−α
2

+ |l|
)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k even,

i
cα| sin(s)|α−1

8Lα

∞∑
l=−∞

ei2ls((1− α)k2 − 4kl)

· sgn(k
2
− l)

Γ
(−1+α

2
+ |l|

)
Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

Γ
(
3−α
2

+ |l|
)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k odd.

(18)
Moreover, when α = 1,

(−∆)1/2(eiks) =


|k| sin2(s)

L
eiks, k even,

ik

Lπ

(
−2

k2 − 4
−

∞∑
l=−∞

4 sgn(l)ei2ls

(k − 2l)((k − 2l)2 − 4)

)
, k odd.

(19)

Proof. We prove first the case α = 1. Introducing u(s) = eiks in (13), we get

(−∆)1/2(eiks) =
ik sin(s)

Lπ

∫ π

0

sin(η)eikη

sin(s− η)
dη.

When k ≡ 0 mod 2,∫ π

0

sin(η)eikη

sin(s− η)
dη = −eiks cos(s)

∫ π

0

eikηdη − eiks sin(s)

∫ π

0

cos(η)eikη

sin(η)
dη.

The first integral is trivial, and the second can be calculated explicitly, too:∫ π

0

cos(η)eikη

sin(η)
dη =

i sgn(k)

2

∫ 2π

0

cos(η) sin(|k|η)

sin(η)
dη

=

{
0, k = 0,

iπ sgn(k), k ∈ 2Z\{0};

10



which is easily proved by induction on 2N, bearing in mind that sin(2η) =
2 sin(η) cos(η), and that sin((|k|+ 2)η)− sin(|k|η) = 2 sin(η) cos((|k|+ 1)η).
Therefore,∫ π

0

sin(η)eikη

sin(s− η)
dη =

{
−π cos(s), k = 0,

−iπ sgn(k) sin(s)eiks, k ∈ 2Z\{0};
(20)

from which follows the first part of (19). On the other hand, when k ≡
1 mod 2, eikη is not periodic in η ∈ [0, π], and there seems to be no compact
formula for (−∆)1/2(eiks), as in k ≡ 0 mod 2. Hence, we have to consider a
series expansion for (−∆)1/2(eiks); more precisely, we write

sin(s)

∫ π

0

sin(η)eikη

sin(s− η)
dη =

∞∑
l=−∞

ckle
i2ls, (21)

with ckl given by

ckl =
1

π

∫ π

0

[
sin(s)

∫ π

0

sin(η)eikη

sin(s− η)
dη

]
e−i2lsds

=
1

π

∫ π

0

sin(η)eikη
[∫ π

0

sin(s)e−i2ls

sin(s− η)
ds

]
dη,

where we have changed the order of integration. The inner integral is given
by (20): ∫ π

0

sin(s)e−i2ls

sin(s− η)
ds =

{
π cos(η), l = 0,

−iπ sgn(l) sin(η)e−i2lη, l ∈ Z\{0}.

Hence,

ckl =


∫ π

0

sin(η) cos(η)eikηdη =
−2

k2 − 4
, l = 0,

−i sgn(l)

∫ π

0

sin2(η)ei(k−2l)ηdη =
−4 sgn(l)

(k − 2l)((k − 2l)2 − 4)
, l 6= 0,

from which we conclude the second part of (19).
We consider now α 6= 1. Introducing u(s) = eiks in (13), we get

(−∆)1/2(eiks) =
cα| sin(s)|α−1

Lαα(1− α)

∫ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1
dη.

(22)

11



Then, as in (21), we consider a series expansion:∫ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1
dη =

∞∑
l=−∞

dkle
i2ls, (23)

with dkl given by

dkl =
1

π

∫ π

0

[∫ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη

| sin(s− η)|α−1
dη

]
e−i2lsds

=
1

π

∫ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))eikη
[∫ π

0

e−i2ls

| sin(s− η)|α−1
ds

]
dη

=
1

π

[∫ π

0

e−i2ls

sinα−1(s)
ds

] [∫ π

0

sinα(η)(−k2 sin(η) + 2ik cos(η))ei(k−2l)ηdη

]
=

1

π
I1 · I2, (24)

where we have changed again the order of integration. Integrals of the type of
I1 and I2 can be explicitly calculated by means of standard complex-variable
techniques (see for instance [37, p. 158], for a classic reference). On the other
hand, we have used Mathematica [38], which computes them immediately
(after, occasionally, very minor rewriting). The expression for I1 is

I1 =
e−i2πl((2i)α + (−2i)αei2πl)π csc(πα)Γ

(−1+α−2l
2

)
4Γ(−1 + α)Γ

(
3−α−2l

2

)
= −

2α−1 cos(πα
2

)Γ(2− α)Γ
(−1+α

2
− l
)

Γ
(
3−α
2
− l
) , (25)

where we have used the well-known Euler’s reflection formula Γ(z)Γ(1−z) =
π/ sin(πz). Moreover, applying twice Euler’s reflection formula,

Γ(z)

Γ(w)
=

Γ(z)Γ(1− z)Γ(1− w)

Γ(w)Γ(1− w)Γ(1− z)
=

sin(πw)

sin(πz)

Γ(1− w)

Γ(1− z)
. (26)

Therefore, for l ∈ Z,

Γ
(−1+α

2
− l
)

Γ
(
3−α
2
− l
) =

sin
(
π
(
3−α
2
− l
))

sin
(
π
(−1+α

2
− l
)) Γ

(
1−

(
3−α
2
− l
))

Γ
(
1−

(−1+α
2
− l
)) =

Γ
(−1+α

2
+ l
)

Γ
(
3−α
2

+ l
) ,

(27)
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so the value of I1 does not depend on the sign of l, and we can replace the
appearances of l in (25) by −l, |l| or −|l|. In this paper, we consider the last
option, getting

I1 = −
2α−1 cos(πα

2
)Γ(2− α)Γ

(−1+α
2

+ |l|
)

Γ
(
3−α
2

+ |l|
) , (28)

which is more convenient from an implementation point of view, as we will
explain in Section 2.5. Likewise, the expression for I2 is

I2 = −2−2−αe−iπ(α+4l)/2((−1)k + eiπ(α+2l))

·
k((−1 + α)k + 4l)π csc(πα)Γ

(−1−α+k−2l
2

)
Γ(−α)Γ

(
3+α+k−2l

2

)
=


πα(1− α)((−1 + α)k2 + 4kl)Γ

(−1−α
2

+ k
2
− l
)

22+α sin(πα
2

)Γ(2− α)Γ
(
3+α
2

+ k
2
− l
) , k even,

i
πα(1− α)((−1 + α)k2 + 4kl)Γ

(−1−α
2

+ k
2
− l
)

22+α cos(πα
2

)Γ(2− α)Γ
(
3+α
2

+ k
2
− l
) , k odd.

Then, applying again (26), we get expressions similar to (27):

Γ
(−1−α

2
+ k

2
− l
)

Γ
(
3+α
2

+ k
2
− l
) =


Γ
(−1−α

2
−
(
k
2
− l
))

Γ
(
3+α
2
−
(
k
2
− l
)) , k even,

−
Γ
(−1−α

2
−
(
k
2
− l
))

Γ
(
3+α
2
−
(
k
2
− l
)) , k odd.

Hence, we obtain an equivalent but more convenient expression of I2, con-
taining absolute values as in (28):

I2 =


πα(1− α)((−1 + α)k2 + 4kl)Γ

(−1−α
2

+
∣∣k
2
− l
∣∣)

22+α sin(πα
2

)Γ(2− α)Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k even,

i sgn(k
2
− l)

πα(1− α)((−1 + α)k2 + 4kl)Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

22+α cos(πα
2

)Γ(2− α)Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k odd.

(29)
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Putting (28) and (29) together,

dkl =



cot(πα
2

)α(1− α)((1− α)k2 − 4kl)

·
Γ
(−1+α

2
+ |l|

)
Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

8Γ
(
3−α
2

+ |l|
)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k even,

i sgn(k
2
− l)α(1− α)((1− α)k2 − 4kl)

·
Γ
(−1+α

2
+ |l|

)
Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

8Γ
(
3−α
2

+ |l|
)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) , k odd.

(30)

Therefore, bearing in mind (22) and (23), we get (18), which concludes the
proof of the theorem.

Remark: under the change of variable x = cot(s), the cosine-like and sine-
like Higgins functions [31] are precisely cos(2ks) and sin((2k + 2)s), which
are eigenfunctions of the Hilbert transform [32]. Therefore, the first part of
(19) follows also from the results in [32].

2.5 Constructing an operational matrix

As explained above, in order to compute (−∆)α/2u(x) for a given function
u(x), we first represent it as (15), then we apply Theorem 2.2 to each basic
function eiks. In this paper, we have opted for a matrix approach, i.e., we have
constructed a differencing matrix Mα ∈ M(2N)×(2N)(C) based on Theorem
2.2, such that

 (−∆)α/2u(s0)
...

(−∆)α/2u(s2N−1)

 ≈Mα ·



û(0)
...

û(N − 1)
û(−N)

...
û(−1)


, (31)

where the nodes sj are defined in (3). It is vital to underline that, by choosing
the appropriate strategy, the speed in the construction of Mα, and therefore,
in the numerical computation of (−∆)α/2u(x), can be increased by several
orders of magnitude. Furthermore, the matrix needs to be computed just
once, and then it can be reused whenever needed.
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In order to generate Mα, we compute (−∆)α/2(eiks) according to The-
orem 2.2, for k ∈ {−N, . . . N − 1}. Moreover, from (13), (−∆)α/2(ei0s) =
(−∆)α/2(1) = 0, and

(−∆)α/2(eiks) = (−∆)α/2(e−iks),

so we only need to calculate the cases with k > 0. Finally, bearing in
mind that û(−N) = û(N), but (−∆)α/2(e−iNs) 6= (−∆)α/2(eiNs), we impose
(−∆)α/2(e−iNs) = 0, so the obtention of Mα is reduced to considering k ∈
{1, . . . , N − 1}.

Note that the implementation of Theorem 2.2 offers two difficulties: the
need to evaluate the gamma function a very large number of times when
α 6= 0, and the fact that l is taken all over Z.

With respect to the gamma function, a fast and accurate implementation
is usually available in every major scientific environment, such as Matlab
[39], which we use in this paper. More precisely, in Matlab, it is computed
by the command gamma, which is based on algorithms outlined in [40]. How-
ever, using solely gamma to evaluate (18) is not numerically stable, because of
the quick growth of gamma (for instance, gamma(172) yields infinity); there-
fore, even for rather small values of l, we get spurious NaN results, because
we are dividing infinity by infinity. One possible solution would be to use
the command Matlab gammaln, which computes the natural logarithm of
the gamma function, ln Γ, i.e., the so-called log-gamma function:

Γ
(−1+α

2
+ |l|

)
Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

Γ
(
3−α
2

+ |l|
)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) ≡ exp

[
ln Γ

(−1+α
2

+ |l|
)

+ ln Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)− ln Γ

(
3−α
2

+ |l|
)
− ln Γ

(
3+α
2

+
∣∣k
2
− l
∣∣)] ;

bear in mind that gammaln is not defined for negative values, so minor rewrit-
ing would be necessary in a few cases. However, in general, a much more
convenient solution is to use the basic property Γ(z + 1) = zΓ(z):

Γ
(−1+α

2
+ |l|

)
Γ
(
3−α
2

+ |l|
) ≡ −3+α

2
+ |l|

1−α
2

+ |l|
·

Γ
(−3+α

2
+ |l|

)
Γ
(
1−α
2

+ |l|
)

Γ
(−1−α

2
+
∣∣k
2
− l
∣∣)

Γ
(
3+α
2

+
∣∣k
2
− l
∣∣) ≡ −3−α

2
+
∣∣k
2
− l
∣∣

1+α
2

+
∣∣k
2
− l
∣∣ · Γ

(−3−α
2

+
∣∣k
2
− l
∣∣)

Γ
(
1+α
2

+
∣∣k
2
− l
∣∣) ,

(32)
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where we consider separately the expressions containing |l|, and those con-
taining |k/2− l|, because, for |l| � 1,

−3+α
2

+ |l|
1−α
2

+ |l|
≈ 1,

−3−α
2

+
∣∣k
2
− l
∣∣

1+α
2

+
∣∣k
2
− l
∣∣ ≈ 1,

so the factorizations in (32) are extremely stable from a numerical point of
view. We apply recursively (32), until |l| = 0, and |k/2 − l| = 0 (if k even)
or |k/2− l| = 1/2 (if k odd). Therefore, for any l and k, the evaluations of Γ
needed to compute the left-hand sides of (32) are just those in the quotients
Γ((−1 + α)/2)/Γ((3 − α)/2), Γ((−1 − α)/2)/Γ((3 + α)/2) (if k even), and
Γ(−α/2)/Γ(2 + α/2) (if k odd). Hence, taking into account that Γ appears
also in the definition of cα, it follows that the global number of evaluations
of Γ needed to compute (18) is very small, although, unfortunately, it does
not seem possible to remove completely all the evaluations of Γ.

Bearing in mind the previous arguments, in order to approximate (18),
we precompute recursively the right-hand sides of (32) for a large enough
number of values, then store them in their respective vectors:

Γ
(−1+α

2
+ |l|

)
Γ
(
3−α
2

+ |l|
) ≡ Γ

(−1+α
2

)
Γ
(
3−α
2

) |l|−1∏
m=0

−1+α
2

+m
3−α
2

+m
, ∀|l| ∈ N,

Γ
(
−1−α

2
+ |l̃|

)
Γ
(

3+α
2

+ |l̃|
) ≡ Γ

(−1−α
2

)
Γ
(
3+α
2

) |l̃|−1∏
m=0

−1−α
2

+m
3+α
2

+m
, ∀|l̃| ∈ N,

Γ
(
−α
2

+ |l̃|
)

Γ
(

2 + α
2

+ |l̃|
) ≡ Γ

(−α
2

)
Γ
(
2 + α

2

) |l̃|−1∏
m=0

−α
2

+m

2 + α
2

+m
, ∀|l̃| ∈ N,

(33)

where the second expression is used in the cases with k even, and the third
one, in the cases with k odd. Remark that the usage of absolute values makes
trivial the computational evaluation of the vectors thus generated, because
|l|, |k/2 − l| (if k even), and |k/2 − l| + 1/2 (if k odd) are precisely their
respective indices.

With respect to l spanning Z, we decompose it as l = l1N + l2, with
l1 ∈ Z, and l2 ∈ {−N/2, . . . , N/2 − 1}; note that we take l2 between −N/2
and N/2−1, rather than between 0 and N−1, because the numerical results
appear to be slightly more accurate in that way. Then, we observe that

ei2lsj = ei2(l1N+l2)π(2j+1)/(2N) = (−1)l1ei2l2sj ,
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i.e., aliasing occurs when evaluating ei2ls in the actual nodes. Therefore,
we truncate l1, i.e., take l1 ∈ {−llim, . . . , llim}, for llim a large nonnegative
integer. Then, (18) becomes

(−∆)α/2(eiksj) ≈



cα| sin(sj)|α−1

8Lα tan(πα
2

)

N/2−1∑
l2=−N/2

[
llim∑

l1=−llim

ak,l1,l2

]
ei2l2sj , k even,

i
cα| sin(sj)|α−1

8Lα

N/2−1∑
l2=−N/2

[
llim∑

l1=−llim

ak,l1,l2

]
ei2l2sj , k odd,

(34)
where

ak,l1,l2 =



(−1)l1((1− α)k2 − 4k(l1N + l2))

·
Γ
(−1+α

2
+ |l1N + l2|

)
Γ
(−1−α

2
+
∣∣k
2
− l1N − l2

∣∣)
Γ
(
3−α
2

+ |l1N + l2|
)

Γ
(
3+α
2

+
∣∣k
2
− l1N − l2

∣∣) , k even,

(−1)l1((1− α)k2 − 4k(l1N + l2)) sgn(k
2
− l1N − l2)

·
Γ
(−1+α

2
+ |l1N + l2|

)
Γ
(−1−α

2
+
∣∣k
2
− l1N − l2

∣∣)
Γ
(
3−α
2

+ |l1N + l2|
)

Γ
(
3+α
2

+
∣∣k
2
− l1N − l2

∣∣) , k odd.

(35)
In this way, since we have used (33) to precompute the appearances of Γ and
have stored them in three vectors, the computation of

llim∑
l1=−llim

ak,l1,l2

is reduced to sums and products and can be done in a very efficient way.
Remark that, from the decomposition l = l1N+ l2, it follows that, in order to
generate the whole matrix Mα, the minimum length of the vectors generated
from (33) is respectively (llim + 1/2)N + 1, (llim + 1)N and (llim + 1)N .

Finally, we perform the sum over l2 in (34). Since

ei2l2sN−1−j = e−i2l2sj , ei2l2sj+N = ei2l2sj ,

it is enough to compute (34), for with j ∈ {0, . . . , N/2− 1}, and extend the
results until j = 2N − 1, by means of those symmetries. Alternatively, it is
possible to use the FFT, too.
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Let us finish this section by mentioning that the case α = 1 in (19)
presents no difficulty. When k is even, it is trivial to implement, and when
k is odd, we factorize and truncate l, as when α 6= 1, obtaining

(−∆)1/2(eiksj) ≈


|k| sin2(sj)

L
eiksj , k even,

ik

Lπ

 −2

k2 − 4
−

N/2−1∑
l2=−N/2

[
llim∑

l1=−llim

bk,l1,l2

]
ei2l2sj

 , k odd,

(36)
with

bk,l1,l2 =
4(−1)l1 sgn(l1N + l2)

(k − 2(l1N + l2))((k − 2(l1N + l2))2 − 4)
.

3 Numerical tests

We have first considered two functions with polynomial decay:

u1(x) =
x2 − 1

x2 + 1
, u2(x) =

2x

x2 + 1
,

where the first one tends to 1 as O(1/x2), and the second one tends to 0 as
O(1/x). Under the change of variable x = cot(s), with L = 1, these functions
become respectively u1(s) = cos(2s) and u2(s) = sin(2s), i.e., the real and
imaginary parts of ei2s, so we have computed the fractional Laplacian of
u1(x)+ i u2(x). Using Mathematica applied to (7), and further simplifying
the result by hand, we get

(−∆)α/2(u1(x) + i u2(x)) = − 2Γ(1 + α)

(1 + i x)1+α
,

or, in the s variable,

(−∆)α/2(ei2s) = − 2Γ(1 + α)

(1 + i cot(s))1+α
= −2Γ(1 + α)(−i sin(s)eis)1+α; (37)

note that, when α = 1, we recover (19). In general, it seems possible to
compute explicitly (−∆)α/2(eiks) when k is even, at least for small values of
k, although the complexity of the resulting expressions quickly grows with k,
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and it does not follow an evident pattern. On the other hand, we have been
unable to obtain a compact formula for (−∆)α/2(eiks), when k is odd.

Taking different values of N and llim, we have approximated numerically
(−∆)α/2(ei2s), which we denote as [(−∆)α/2]num(ei2s), by means of (34), with-
out generating the whole matrix Mα, for α ∈ {0.01, 0.02, . . . , 1.99}, except for
the case α = 1, which is trivial (altogether, 1998 different values of α). Then,
we have compared the results with their exact value of [(−∆)α/2]exact(e

i2s)
given by (37), and computed the discrete L∞-norm of the error as a function
of α. In Table 1, we show the maximum global value of the norm considering
all α, i.e.,

max
α
‖[(−∆)α/2]num(ei2s)− [(−∆)α/2]exact(e

i2s)‖∞

= max
α

max
j

∣∣[(−∆)α/2]num(ei2sj)− [(−∆)α/2]exact(e
i2sj)

∣∣ , (38)

for different values of N and llim. For comparison purposes, we also offer
ltotal ≡ (2llim + 1)N , which is the exact number of values of l taken, i.e.,
l ∈ {−ltotal/2, . . . , ltotal/2 − 1}. The results reveal that the value of llim
necessary to achieve an error of the order of 5 · 10−13 slowly decreases as
N is doubled, but, more importantly, the accuracy of the method does not
deteriorate, as N increases.

N llim ltotal Error llim ltotal Error
4 300 4244 4.8893 · 10−12 530 4244 5.0268 · 10−13

8 240 6888 4.9423 · 10−12 430 6888 4.8097 · 10−13

16 200 11536 4.8413 · 10−12 360 11536 4.9461 · 10−13

32 170 19232 4.5606 · 10−12 300 19232 5.0138 · 10−13

64 140 32064 4.9236 · 10−12 250 32064 5.0184 · 10−13

128 120 53888 4.5427 · 10−12 210 53888 5.0219 · 10−13

256 100 92416 4.6956 · 10−12 180 92416 5.0570 · 10−13

512 80 154112 5.7013 · 10−12 150 154112 5.0823 · 10−13

1024 70 287744 4.8721 · 10−12 140 287744 5.2887 · 10−13

Table 1: Maximum global error, given by (38), between the numerical ap-
proximation of (−∆)α/2(ei2s), given by (34), and its exact value, given by
(37). We have considered different values of N and, for each N , a couple of
values of llim. For comparison purposes, we also offer the total number of
values of l considered, ltotal ≡ (2llim + 1)N .
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In order to better understand the choice of llim on the accuracy of the
results, we have approximated (−∆)α/2(ei2s), for llim ∈ {0, 1, . . . , 1000}, and
have plotted in Figure 1 the corresponding maximum global error given by
(38). As we can see, the errors quickly decay from llim = 0, with an error
of 3.1960 · 10−3, to llim = 210, with an error of 5.0219 · 10−13, from which it
remains constant up to infinitesimal variations. This is important, because
it shows that (34) is numerically stable, even for larger values of llim. A
practical consequence of this is that, in case of doubt, it is safe to take a
rather large value of llim.

0 100 200 300 400 500 600 700 800 900 1000
10-14
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10-10

10-8

10-6

10-4

10-2

Figure 1: Maximum global error for N = 128, as a function of llim.

Let us consider now a function with Gaussian decay,

u3 = exp(−x2),

such that (see, for instance, [4, pp. 29-30]).

(−∆)α/2u3(x) =
2αΓ(1/2 + α/2)√

π
1F1(1/2 + α/2, 1/2, −x2), (39)

where 1F1 is the Kummer confluent hypergeometric function, which can
be evaluated accurately, among others, by Matlab (with the command
hypergeom) and Mathematica (with the command Hypergeometric1F1),
even if its evaluation is extremely time-consuming.

In this example, we have generated the whole matrix Mα applied to the
Fourier expansion (15) of u3(s), as in (31). Remember that, since s ∈ [0, π],
we have to extend it to s ∈ [0, 2π]. In general, the most common option is an
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even extension at s = π, which yields a function that is at least continuous
in s ∈ [0, 2π], and can be represented as a cosine series in s. However, in
some cases, there are extensions that are smoother than the even one (see
v.g. [41] and [42]), causing the Fourier coefficients in (15) to decay faster.
This is not a minor point, because, even if (−∆)α/2(eiks) can be computed
accurately as we have seen in the previous example, the overall quality of the
results depends also on the adequacy of the representation (15).

In this example, since u3(x) tends to zero as x → ±∞ (or s → 0+ and
s → π−), we have considered both an even and an odd extension at s = π,
i.e., such that u3(π

+) = u3(π
−) and u3(π

+) = −u3(π−), respectively. For
this function, in the even case, we also have that u3(s + π) = u3(s), which
implies that only even frequencies appear in (15); whereas in the odd case,
u3(s+π) = −u3(s), so only odd frequencies appear in (15). As a consequence,
besides comparing two types of extensions, we are also testing the even and
odd cases in (34) and (36).

We have approximated (−∆)α/2u3(x) for α ∈ {0.01, 0.02, . . . , 1.99} (in-
cluding the case α = 1), for L = 1, llim = 500, and different values of N . In
Table 2, we give the maximum global errors computed as in (38). As we can
see, the even extension provides only slightly better results, and the errors
quickly decays, as N increases.

N Error (even) Error (odd)
4 3.8426 · 10−1 4.8492 · 10−1

8 1.1222 · 10−1 1.3210 · 10−1

16 1.4269 · 10−2 1.7825 · 10−2

32 4.0393 · 10−4 4.7926 · 10−4

64 1.4351 · 10−6 1.6891 · 10−6

128 1.5947 · 10−10 1.8755 · 10−10

256 8.3982 · 10−12 2.5453 · 10−11

Table 2: Maximum global error, between the numerical approximation of
(−∆)α/2(e−x

2
), and its exact value, given by (39), for different values of N ,

considering an even extension and an odd extension. llim = 500.

Even if we have taken so far L = 1, this is usually by no means the
best option, as we can see in Figure 2, where we have plotted the maximum
global error for N = 64, and L ∈ {0.1, 0.2, . . . , 10}. The results for the even
extension and the odd extension are again similar, and the best errors are
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achieved in both cases at L = 4.6, and are respectively 3.8400 · 10−13 and
3.9466 · 10−13. Therefore, a good choice of L can improve drastically the
accuracy of the results.
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Figure 2: Maximum global error for N = 64, and L ∈ {0.1, 0.2, . . . , 1},
considering an even extension and an odd extension.

Although there are some theoretical results [43], the optimal value of L
depends on more than one factor: number of points, class of functions, type
of problem, etc (see also [30, 23]). For instance, in the case of (−∆)α/2, the
best choice of L might depend on α, too. However, a good working rule of
thumb seems to be that the absolute value of a given function at the extreme
grid points is smaller than a threshold. On the other hand, the Fourier
representation (15), together with (14), makes straightforward to change L
(and xc or N). Let us recall that, given a function u(x), we are considering
a spectral interpolant such that

u(x) ≈
N−1∑
k=−N

û(k)eik arccot((x−xc)/L), (40)

and, to determine {û(k)} we ask (40) to be an equality at the nodes xj =
xc+L cot(sj), which yields (17). Therefore, if we choose new values of L and
xc, say Lnew and xc,new, and want to approximate u(x) at the correspond-
ing nodes xnew,j = xc,new + Lnew cot(sj) by using spectral interpolation, it is
enough to evaluate the right-hand side of (40) at those nodes:

u(xnew,j) ≈
N−1∑
k=−N

û(k)eik arccot((xc,new−xc+Lnew cot(sj))/L),
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where, when 0 ≤ j ≤ N − 1, we consider the arccot function to be defined
in [0, π), and, when N ≤ j ≤ 2N − 1, to be defined in [π, 2π). Moreover,
from {u(xnew,j)}, we obtain the corresponding {ûnew(k)} by using again a
pseudospectral approach, i.e., by imposing that (40) with the updated Lnew
and xc,new is an equality at x = xj,new, for all j:

u(xnew,j) =
N−1∑
k=−N

ûnew(k)eik arccot((xnew,j−xc,new)/Lnew),

so the coefficients ûnew(k) are given by (17), introducing u(xnew,j) in the
place of u(sj), and taking Lnew and xc,new. Then,

u(x) ≈
N−1∑
k=−N

ûnew(k)eik arccot((x−xc,new)/Lnew),

Finally, (40) allows also changing N ; e.g., if N is increased, we just add some
extra û(k) equal to zero; if it is decreased, we remove some û(k). In all the
cases considered, it is important to choose the new values of L, xc and N , in
such a way that there is no loss of accuracy.

4 Numerical experiments for (2)

As an illustration of the method presented in Section 2, we will simulate nu-
merically the one-dimensional nonlinear evolution equation (2) in the monos-
table case, i.e., with the following nonlinear source term:

f(u) = u(1− u). (41)

The zeros of (41) correspond to stationary states, u ≡ 1 being stable and
u ≡ 0 being unstable. We recall that in the local case with α = 2, which
corresponds to the integer-order Laplacian, a solution of (2) may take the
form of a traveling wave front as t increases, thus traveling with constant
speed. Such fronts travel to the right, approximating u = 1, as x → −∞,
and u = 0, as x → ∞. Such solutions settle as the stable state invades
the unstable one [44]. The wave speed depends on the decay in the tail of
the initial condition, and is greater for slower decays (see e.g. [45], [46] and
others).
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For α ∈ (0, 2), we expect front solutions that travel to the right, invading
u = 0 soon after initiating the evolution, with an initial condition u0(x)
that satisfies u0(x) → 1, as x → −∞, and u0(x) → 0, as x → ∞. Unlike
in the local case, these fronts do not travel with constant speed, but with
a speed that increases exponentially with t (see [22]); more precisely, one
expects c(t) ∼ exp(σ t) with σ = f ′(0)/α or faster for slow decaying initial
conditions, and σ = f ′(0)/(1 + α), for fast decaying ones.

We restrict ourselves to the example of slow decaying (according to [22])
initial conditions; more precisely, we consider

u(x, 0) =

(
1

2
− x

2
√

1 + x2

)α
.

In order to check that, for α ∈ (0, 2), the propagation has indeed speed that
increases exponentially with time, we track the evolution of x0.5(t), which
denotes the value of x such that u(x, t) = 0.5. and gives an approximation
of the position of the front. To obtain x0.5, we apply a bisection method: we
find the value of j for which u(xj+1) < 0.5 < u(xj); then, we approximate
u((xj+uj+1)/2) by spectral interpolation, etc., until convergence is achieved.
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Figure 3: α = 0.5, 0.55, . . . , 1.95, L = 103/α3, ∆t = 0.01 and N = 1024. Left:
x0.5(t) against t. Right: ln(x0.5(t)) against t, and the corresponding least-
square fitting lines. In both subfigures, the curves are ordered according to
α: the left-most ones correspond to α = 0.5, and the right-most ones, to
α = 1.95.
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In all the numerical experiments, we have considered an even extension
at s = π, which is enough for our purposes, taken llim = 500 in (34), and
used the classical fourth-order Runge-Kutta scheme (see for instance [47, p.
226]) to advance in time. We have done the numerical simulation for α =
0.5, 0.55, . . . , 1.95, taking ∆t = 0.01 and N = 1024. Since the exponential
behavior of x0.5(t) appears earlier for smaller α, larger values of L appear
to be convenient in that case. In this example, after a couple of trials, we
have found that taking L = 1000/α3 produces satisfactory results. On the
left-hand side of Figure 3, we have plotted x0.5(t) against t. On the right-
hand side of Figure 3, we have plotted ln(x0.5(t)) against t, omitting the
initial times, so the exponential regime is clearly observable; in all cases, the
points are separated by time increments of 0.1, and, for each value of α, the
accompanying line is precisely the least-square fitting line, which shows that
the linear alignment is almost perfect.

In Figure 4, we have plotted, with respect to α the slopes of the least-
square fitting lines corresponding to the right-hand side of Figure 3, which
we denote as σ0.5; observe that the colors of the stars are in agreement with
their corresponding curves in Figure 3. We have also plotted the curve 1/α,
using a dashed-dotted black line. The results show that the agreement of
σ0.5 with respect to 1/α improves, as α → 2−: on the one hand, when
α = 0.5, σ0.5 = 1.9346, and 1/0.5 = 2; on the other hand, when α = 1.95,
σ0.5 = 0.51277, and 1/1.95 = 0.51282. Therefore, the numerical experiments
seem to suggest that

x0.5(t) ∼ eσ0.5t ∼ et/α =⇒ c(t) ≈ x′0.5(t) ∼ et/α,

which is in good agreement with [22], because, from (41), f ′(0) = 1.
In order to see whether the results for α = 0.5 can be improved, we

have repeated the simulations for that case, taking L = 10000, ∆t = 0.01,
N = 8192. Even if, at first sight, these values could be deemed excessive,
they are not, because we are able to reach t = 9, instant at which x0.5(9)
is greater than 107. Indeed, in order to capture accurately the exponential
behavior, it is convenient to advance until times as large as possible. On
the left-hand side of Figure 5, we have plotted x0.5(t), for t ∈ [0, 9]; on the
right-hand side, ln(x0.5(t)), for t ∈ [5, 9], obtaining again an almost perfect
linear fitting. Furthermore, in this case, σ0.5 = 1.9865, which is remarkably
closer to the predicted value 1/0.5 = 2 than in Figure 4. Therefore, in order
to approximate accurately σ0.5 for values of α smaller than 0.5, it will be
convenient to take even larger values of N and L.
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Figure 4: Slopes of the least-square fitting lines, as obtained in the right-
hand side of Figure 3; the colors of the stars are in agreement with their
corresponding curves in Figure 3. The dashed-dotted black curve is the plot
of 1/α.
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Figure 5: α = 0.5, L = 104, ∆t = 5 · 10−3, and N = 8192. Left: x0.5(t)
against t ∈ [0, 9]. Right: ln(x0.5(t)) against t ∈ [5, 9], and the corresponding
least-square fitting line.
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[19] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians II: Exis-
tence, uniqueness, and qualitative properties of solutions, Transactions
of the American Mathematical Society 367 (2) (2015) 911–941.

[20] H. Engler, On the speed of spread for fractional reaction-diffusion equa-
tions, International Journal of Differential Equations16 pages.

28
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