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CROSS-DIFFUSION EFFECTS ON STATIONARY PATTERN1

FORMATION IN THE FITZHUGH-NAGUMO MODEL2

Abstract. We investigate the formation of stationary patterns in the Fitz-

Hugh-Nagumo reaction-diffusion system with linear cross-diffusion terms. We
focus our analysis on the effects of cross-diffusion on the Turing mechanism.

Linear stability analysis indicates that positive values of the inhibitor cross-

diffusion enlarge the region in the parameter space where a Turing instability is
excited. A sufficiently large cross-diffusion coefficient of the inhibitor removes

the requirement imposed by the classical Turing mechanism that the inhibitor

must diffuse faster than the activator. In an extended region of the parameter
space a new phenomenon occurs, namely the existence of a double bifurcation

threshold of the inhibitor/activator diffusivity ratio for the onset of patterning
instabilities: for large values of inhibitor/activator diffusivity ratio, classical

Turing patterns emerge where the two species are in-phase, while, for small

values of the diffusion ratio, the analysis predicts the formation of out-of-phase
spatial structures (named cross-Turing patterns). In addition, for increasingly

large values of the inhibitor cross-diffusion, the upper and lower bifurcation

thresholds merge, so that the instability develops independently on the value
of the diffusion ratio, whose magnitude selects Turing or cross-Turing patterns.

Finally, the pattern selection problem is addressed through a weakly nonlinear

analysis.

1. Introduction. Diffusion driven instability is one of the fundamental mecha-3

nisms responsible of spatial pattern formation in different fields, such as ecology,4

biology and physics of plasma [10, 18, 24, 26, 46]. Classical Turing patterns are5

stationary-in-time spatially periodic structures which arise when two interacting6

substances spread at different diffusion ranges [50]. The Turing mechanism requires7

the coupling of a local self-enhancing reaction with a counter long-range process8
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[19], and it is supported by reaction-diffusion systems where an autocatalytic acti-1

vator interacts with a rapidly diffusing inhibitor [36]. More recently, the formation2

of spatial structures has been investigated in reaction-diffusion systems with non-3

linear diffusion terms or with a non-diagonal matrix of diffusion coefficients (linear4

cross-diffusion), which account for the fact that a gradient in one species concen-5

tration can induce a flux of the other species [23, 42, 52, 56].6

In this work, we shall investigate the impact of the linear cross-diffusion terms7

on the onset of stationary nonhomogeneous structures in the following FitzHugh-8

Nagumo (FHN)-type system [1, 2]:9

∂u

∂t
= u(1− u2)− (1− βu)v +∇2u+ dv∇2v , (1.1)

∂v

∂t
= ε (γu− v − a) + du∇2u+ d∇2v,

where u(x, t) and v(x, t) are the activator and the inhibitor species, respectively,10

being x ∈ Ω ⊂ Rn with n = 1 or 2. The parameter d is the ratio between the11

diffusion coefficients of v and u, respectively, and the parameters du and dv are12

the cross-diffusion coefficients. The parameters ε, β, γ and a characterize the local13

reaction dynamics: ε is the ratio between the typical timescales of the two species, γ14

and a control the number of intersections and the relative position of the nullclines,15

0 ≤ β < 1 is a small parameter which breaks the symmetry (u→ −u, v → −v, a→16

−a). The coefficient a is a real-valued parameter and all the other parameters are17

nonnegative. The system (1.1) will be supplemented with initial conditions and18

homogeneous Neumann boundary conditions.19

The model (1.1) in the symmetric case β = 0 and with d = du = dv = 0 is20

known as the FHN system and was introduced in [11, 41] to describe the neuronal21

communication mechanism along the nerve axon. The variable u, representing the22

electrical potential, is the excitatory variable and mimics the propagation of the23

action potential; the variable v acts as a controller related to the opening of the ion24

channels. Assuming a shorter length scale of coupling of v with respect to u, the25

diffusion of v is set equal to zero.26

Although the FHN system originally goes back to the theoretical description27

of nerve pulse transmission, a model of the same class can be also derived in the28

context of population dynamics to reproduce prey-predator behavior in aquatic29

ecosystems. The details of the derivation are given in Appendix A. In this framework30

the variables (u, v) represent the small-amplitude deviations from the coexistence31

equilibrium and can therefore assume also negative values. The reaction kinetics32

proposed in (1.1) is a slightly modified form of the system (A.12)-(A.13) derived in33

Appendix A, in the sense that in (1.1) have been neglected cubic predation terms34

and a more general linear dependence in the v-nullcline has been introduced. The35

motivation for the choice of the reaction term as in (1.1) stems from the fact that36

it seems to be ‘a kind of normal form’ [44] and it has turned out to be very useful37

for the study of general features of spatiotemporal pattern formation.38

In the modeling of chemical reactions or population dynamics, several authors39

have considered generalizations of the diffusion terms, choosing a positive value of40

the coefficient d in (1.1) to indicate a random diffusivity for the inhibitor [34, 53],41

or introducing cross-diffusion terms to account for evasion-pursuit mechanisms [30,42

31, 37, 57, 60, 61, 62].43
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In this paper, we assume d, du and dv > 0 to describe the following interaction:1

both species diffuse randomly; moreover, the u species tends to segregate from the2

v species and vice versa. In predator-prey systems, this choice of the cross-diffusion3

terms models a hunting strategy of the predator, consisting into heading to low4

density areas of the prey to maximize its hunting success, see [17, 47, 49]. Moreover,5

we focus on the case where the parameters of the reaction term are chosen in the6

monostable regime also known as oscillatory regime, leaving for future investigation7

the study in the excitable and bistable regimes (see the details of this classification8

in Section 2).9

In absence of cross-diffusion, the study of classical Turing patterns for the monos-10

table FHN system on regular domains is complete [63, 14]. In [14] the authors proved11

that the Turing bifurcation is always supercritical and derived the equations for the12

amplitude of the emerging patterns on 1D and 2D rectangular domains. In this13

work we prove that the presence of cross-diffusion terms significantly impacts on14

the pattern forming properties of the system. The first result is that the inclusion of15

cross-terms can relax or even remove the constraints imposed by the Turing mech-16

anism on the diffusivity ratio. The well-established Turing condition for pattern17

formation, in fact, requires that, if the reaction kinetics is of activator-inhibitor18

form, the inhibitor must diffuse much faster than the activator. This restriction19

has been considered a major obstruction in explaining biological patterns since it20

makes the parameter region where patterning can occur typically too small to be21

compatible with the experimental robustness of patterns across a variety of scales22

and environments. The solutions proposed to overcome this problem usually con-23

sider an increased number of species [9, 27], domain growth [51], or the introduction24

of noise [54]. The inclusion in the model of cross-diffusion terms has also proven25

to be effective in enlarging the parameter region where diffusive instabilities arise,26

see [15, 32, 28, 21]. In this paper we show that the two cross-diffusion terms play27

opposite roles in the patterning process: while the presence of the inhibitor cross-28

diffusion helps in setting the instability by broadening the Turing space, an increase29

of the activator cross-diffusion reduces its width. Any positive value of the inhibitor30

cross-diffusion has the effect of lowering the self-diffusivity ratio instability thresh-31

old, whose value can be either greater, equal to, or less than unity, depending on32

the strength of the inhibitor cross-diffusion. Therefore, allowing for positive cross-33

diffusion of the inhibitor species removes the requirement of different diffusivities34

prescribed by the Turing mechanism.35

A second important result, descending from the inclusion of cross-diffusion terms,36

is the occurrence of a new phenomenon, not observed in reaction-diffusion systems37

yet, namely, the existence of a double bifurcation threshold of d for the onset of38

diffusive instabilities. In fact, if the inhibitor cross-diffusion coefficient du is suf-39

ficiently large, the pattern forms for values of d external to the interval [d−c , d
+
c ],40

i.e. not only for values of the self-diffusion ratio above the threshold d+c (as in the41

classical Turing mechanism), but also when the diffusion ratio d is below the lower42

threshold d−c . In the latter case, in fact, the diffusive instability is driven by the43

cross-diffusion of the inhibitor that escapes high concentration areas of the activa-44

tor. One therefore needs a higher self-diffusion rate of the activator with respect to45

that of the inhibitor to maintain the pattern. This mechanism is opposite to what46

is prescribed by the classical Turing theory, which requires the inhibitor diffusing47

much faster than the activator. We have named cross-Turing patterns the station-48

ary structures arising for small values of d that are originated by the presence of49
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the cross-diffusion terms. We show that the patterns arising for values of d above1

the threshold d+c (Turing patterns) are in-phase, namely, the peaks and the troughs2

of the two species overlap on the spatial domain. The cross-Turing patterns, i.e.3

those originating below -threshold, are always out-of-phase, the concentration of the4

activator being higher in regions of low inhibitor concentration.5

For very large values of the inhibitor cross-diffusion, a third scenario appears. The6

formation of the pattern is induced by the inhibitor cross-diffusion, whose strength7

completely removes any constraint on the value of the diffusivity ratio necessary8

for the diffusive instability. The pattern forms independently on the choice of the9

coefficient d, whose magnitude only selects the relative phase of species: while large10

values of d produce in-phase patterns, small values of d determine the onset of11

out-of-phase configurations.12

Therefore, on the basis of the linear analysis, we identify three distinct regimes,13

characterized by increasing strengths of the inhibitor self-diffusion coefficient. The14

first regime (diffusion-dominated) is defined for small values of du: although the15

patterning process is regulated by the classical Turing mechanism, the presence of16

the cross-diffusion removes the differential diffusivity constraint and the formation17

of in-phase patterns is allowed also if the species diffuse at similar rates. For in-18

termediate values of du, one has the second (competition) regime, where one can19

have Turing patterns if the self-diffusion ratio is above the upper threshold d+c , or20

cross-diffusion patterns for values of d below the lower threshold d−c . Finally, large21

du corresponds to the third regime (cross-diffusion dominated), where strong cross-22

diffusion of the inhibitor determines the instability, no matter of the values of the23

random dispersal rates of the species.24

Remarkably, in a large region of the Turing space, the presence of cross-diffusion25

terms allows to obtain, with the same reaction kinetics, different phases of the26

species by only tuning the values of the self-diffusivities. This is a new result with27

respect to the Turing theory for two-species reaction-diffusion systems, by which28

the pattern phases are governed solely by the nature of the local interactions: reac-29

tion terms of the activator-inhibitor form originate only spatially overlapping (in-30

phase) patterns, while one needs a substrate-depleted-type reaction term to obtain31

mutually exclusive (out-of-phase) configurations. We have proved that including32

cross-diffusion in the model enables out-of-phase patterning in a simple two-species33

activator-inhibitor kinetics, without requiring multi-component systems [27]. We34

believe that this outcome could be used to model through activator-inhibitor sys-35

tems mutually exclusive patterns, such as those observed within a cell [25, 29], or36

for the design of reaction-diffusion systems with desired patterning features [55].37

Before concluding this Section, we briefly discuss the issue of the well-posedness38

of (1.1). The existence of global in time solutions to the FHN equations (1.1)39

has been addressed in [45], where, using the technique of contracting rectangles,40

the authors prove the global existence of solutions in the case β = a = 0 and41

in absence of the cross-diffusion terms (i.e. du = dv = 0). Following the same42

lines as in [45], it is straightforward to extend the results of [45] to the system43

where non-symmetric term are included in the kinetics (a, β 6= 0), observing that44

a contracting rectangle can be found for the system (1.1) with du = dv = 0 in45

the invariant domain u < 1/β. On the other hand, the presence of non-negative46

linear cross-diffusion terms makes the proof of the existence of globally defined47

solutions arduous and, in general reaction-diffusion systems, it has been achieved48

only when the reaction terms satisfy particular conditions, see [3, 43]. Indeed, the49
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kinetics in (1.1) does not verify the hypotheses of the theorems proved in [3, 43].1

However, in this paper we will address near-to-equilibrium dynamics, therefore the2

behavior of the solutions is determined by their asymptotic representation in terms3

of amplitude functions [33, 22]. Moreover, all the performed numerical simulations4

confirm that the solutions exist from the time of initial perturbations to the final5

pattern, remaining next to the equilibrium.6

The plan of the paper is the following. In Section 2, we classify the different7

dynamical regimes of the local FHN system and perform the linear stability analysis8

of the full system (1.1), so stating the conditions for the onset of Turing and cross-9

diffusion-induced (cross-Turing) instabilities. We also highlight the effect of the10

cross diffusion terms on the pattern forming mechanisms. In Section 3, we address11

the pattern selection problem and carry out the weakly nonlinear analysis. On one-12

and two-dimensional spatial domains, we derive the amplitude equations describing13

different bifurcation types and classify the stability of the corresponding steady14

states, leading to various spatial configurations. We also validate, through numerical15

simulations, the predictions of the linear analysis on the pattern phasing when16

nonlinearities are effective. Some conclusions are then drawn and directions for17

future work are given. Finally, for the reader’s convenience, we have inserted three18

appendices, where technical derivations of some results presented in the paper are19

reported.20

2. Linear Analysis. In this Section we shall investigate the conditions for the21

onset of a Turing instability for the system (1.1). To this end, we shall first consider22

the reaction term of (1.1). We define:23

f(u, v) = u(1− u2)− (1− βu)v , (2.1)

g(u, v) = ε (γu− v − a) , (2.2)

where 0 ≤ β < 1. The u-nullcline, namely the curve f(u, v) = 0, writes as:24

v(u) =
u(1− u2)

1− βu
. (2.3)

In what follows, we shall restrict ourselves to the invariant region of the phase-space25

(u, v) such that u < 1/β. We shall denote by m and M the points of the (u, v)-26

plane corresponding to the local minimum and maximum of (2.3), respectively (see27

Figs. 1(a)-1(c)). We shall call ‘inner branch’ of the u-nullcline the portion of the28

curve that lies between m and M , and ‘outer branches’ the two remaining parts.29

Depending on the values of the parameters β, γ and a, the local dynamics of the30

FHN system (1.1) admits one or three homogeneous steady states (h.s.s.). We shall31

denote by ‘inner equilibrium’ an equilibrium point that lies on the inner branch of32

the u-nullcline and by ‘outer equilibrium’ an equilibrium point that lies on one of33

the outer branches. Therefore, we consider the following classification of the system34

(1.1), as given in [20], according to the possible relative positions of the u- and35

v-nullclines:36

(i) monostable case (or oscillatory case), when the local system in (1.1) admits37

a unique inner stable h.s.s. for u < 1/β, see Fig.1(a).38

(ii) excitable case, when the local system in (1.1) has a unique outer stable h.s.s.39

for u < 1/β, see Fig.1(b).40

(iii) bistable case, when the local system in (1.1) admits three h.s.s. for u < 1/β,41

two stable and one unstable, see Fig.1(c).42
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Figure 1. Nullclines of the local FHN system (1.1) in the monos-
table, excitable and bistable regime. (a) The monostable case, with
ε = 1, a = −0.05, β = 0.1 and γ = 1.1. (b) The excitable case,
with ε = 1, a = −0.3, β = 0.1 and γ = 1.02. (c) The bistable case,
with ε = 1, a = 0, β = 0.5 and γ = 0.7. The labels m and M indi-
cate the minimum and the maximum of the u-nullcline (2.3). The
matrices give the signs of the derivatives fu, fv, gu, gv evaluated at
the equilibrium point.

In this paper we shall analyze the formation of stationary patterns for the FHN1

system (1.1) in the monostable regime (case (i) above), so that the nullclines are2

of the form shown in Fig.1(a). We derive the conditions on the parameters under3

which the system (1.1) admits the unique monostable equilibrium E∗ ≡ (u∗, v∗) in4

Appendix B.5

In the monostable regime, the signs of the partial derivatives fu, fv, gu, gv eval-6

uated at the stable equilibrium points (and shown in Fig.1(a)) allow to classify the7

local interaction between u and v as of the activator-inhibitor type [40]. In fact, in8

the neighborhood of the stable equilibrium one has gu > 0 and fv < 0, so that u, the9

activator, promotes the growth of v, while v, the inhibitor, suppresses the increase10

of u. Besides, being fu > 0, the u-species is self-activating, while, as gv < 0, the11

v-species is self-inhibiting.12

If we set w = (u− u∗, v − v∗)T , the linearization of the reaction terms of the13

system (1.1) in the neighborhood of E∗ reads:14

wt = Kw, where K =

(
εH −(1− βu∗)
εγ −ε

)
, (2.4)

with εH = 1 + βv∗ − 3u∗2. Recalling that u < 1/β, one has that 1− βu∗ > 0. The15

equilibrium E∗ is stable for the kinetics if the following two conditions hold:16

tr(K) = −ε+ εH < 0, (2.5)

det(K) = ε [−εH + (1− βu∗) γ] > 0. (2.6)

Let us discuss the sign of εH : upon differentiating the u-nullcline (2.3) with respect17

to u and evaluating all the quantities at the equilibrium E∗, one gets:18

v′(u∗) =
εH

1− βu∗
. (2.7)
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Given that 1− βu∗ > 0, the sign of εH coincides with the sign of v′ (u∗). Since E∗1

is on the inner branch of the u-nullcline, v′(u∗) > 0 and εH > 0. Therefore, from2

the expressions of tr(K) and det(K) given in (2.5)-(2.6), one easily derives that3

the equilibrium can undergo both a Hopf bifurcation, when εH = ε, or a pitchfork4

bifurcation, when εH = (1− βu∗) γ. Since in this paper we are interested in the5

emergence of stationary structures, in what follows we shall assume ε > εH , so6

avoiding the occurrence of oscillations. Moreover, to satisfy (2.6), we shall always7

impose the following condition on the system parameters: γ > εH
1−βu∗ .8

Let us now perform the Turing bifurcation analysis of the reaction-diffusion sys-9

tem (1.1), whose linearization in the neighborhood of E∗ is:10

∂w

∂t
= Lw, (2.8)

where:11

L = K +D∇2, D =

(
1 dv
du d

)
, (2.9)

and K is given in (2.4). To guarantee the well-posedness of the system (1.1) [48],12

hereafter we shall assume that:13

det(D) = d− dudv > 0. (2.10)

The steady state solution E∗ undergoes a Turing bifurcation if it is stable with re-14

spect to spatially uniform perturbations and loses stability due to non-homogeneous15

perturbations. Namely, if we look for instability to perturbations proportional to16

cos (k · x), the linear stability analysis reduces to the following eigenvalue problem:17

λw =M(k2) w, (2.11)

where18

M(k2) = K − k2D, (2.12)

and k2 = k · k. Instability is possible if R(λ(k)) > 0 for some k 6= 0, where λ(k) is19

an eigenvalue of M(k2), namely a solution of the following dispersion relation:20

λ2 + g
(
k2
)
λ+ h

(
k2
)

= 0, (2.13)

with:21

h
(
k2
)

= det(M(k2)) = det(D)k4 + qk2 + det(K),

g
(
k2
)

= −tr(M(k2)) = k2tr(D)− tr(K), (2.14)

q = −(K11D22 +K22D11) +K12D21 +K21D12,

and Kij , Dij are the entries of the matrices K and D.22

Under the hypothesis that the equilibrium E∗ is stable for the kinetics, condition23

(2.5) holds so that the trace ofM(k2) is negative, i.e. g
(
k2
)
> 0 for all k. Therefore,24

Turing instability can occur only if, due to the presence of the diffusion terms, one25

of the eigenvalues of the matrix M(k2) crosses zero, namely if the curve h(k2) =26

det(M(k2)) assumes negative values for some k. Since h(k2) attains its minimum27

at:28

k2c = − q

2 det(D)
, (2.15)

the necessary conditions for yielding the Turing instability are the following [40]:29
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{
q < 0 , (2.16a)

q2 − 4 det(D) det(K) ≥ 0 . (2.16b)

Condition (2.16a) ensures that the minimum of h(k2) is attained at a positive1

value of k2. Imposing that the minimum value of h(k2) is negative, so having a2

finite bandwidth of unstable wavenumbers k2, one gets condition (2.16b). At the3

bifurcation, we require:4

q2 − 4 det(D) det(K) = 0 (2.17)

which, for fixed values of the other parameters, defines the critical values dc of the5

bifurcation parameter d. In what follows we shall express the above given conditions6

(2.16a)-(2.16b) in terms of the parameters of the original system (1.1).7

2.1. Conditions for diffusive instability. In this Subsection we shall derive the8

conditions for the onset of diffusive instabilities of the system (1.1), namely the9

conditions under which (2.10)-(2.16a)-(2.16b) are satisfied. We shall choose d as10

the bifurcation parameter.11

In absence of the cross-diffusion terms, the qualitative form of the nullclines in12

the neighborhood of a monostable equilibrium (see Figs.1(a)) allows for the onset13

of Turing patterns. In fact, the activator-inhibitor type of the interaction between14

the species (fv gu < 0), is supplemented by the condition fu gv < 0, being the15

activator u self-activating and the inhibitor v self-inhibiting. Such a local dynamics16

satisfies the necessary conditions for the classical diffusion-driven instability. We17

shall show that generalizing the FHN model so as to include cross-diffusion terms18

produces new phenomena, enlarges the parameter region where instability may19

grow and originates two classes of qualitatively different spatially non-homogeneous20

solutions. We shall also highlight separately the role of varying du and dv, showing21

that they have opposite influences on the width of the Turing region.22

Let us consider (2.16a) first. Expliciting q as defined in (2.15) in terms of the23

system parameters, yields:24

q = −εHd− (1− βu∗)du + ε(1 + γdv). (2.18)

When the equilibrium point E∗ of the reaction terms (2.1)-(2.2) lies on the inner25

branch of the u-nullcline, one has that εH > 0. If one defines:26

d̄ :=
1

εH
(ε(1 + γdv) + (βu∗ − 1)du), (2.19)

it is easily seen that q vanishes for d = d̄ and that condition (2.16a) is verified for27

d > d̄, namely d̄ is the threshold value of the bifurcation parameter d above which28

one gets a positive value of k2c . In the (du, d)-plane, for fixed dv, this corresponds29

to the region above the straight line d = d̄, see Figs.2(a)-2(b). Being 1 − βu∗ > 030

and εH > 0, the slope of d = d̄ is negative while the intercept Ic = ε(1 + γdv)/εH31

is positive (see Figs.2(a)-2(b)).32

For fixed dv, the quantity:33

δ(2)u :=
ε(1 + γdv)

1− βu∗
(2.20)

is the value of du that makes d̄ = 0. A necessary condition to have a non-negative34

threshold of d for instability is therefore that du ≥ δ(2)u .35
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Figure 2. Geometrical representation of the conditions for the
diffusive instability. (a)-(b) For two different choices of dv, the
dark gray regions in the (du, d)-plane delimited by the two straight
lines d = du dv (dashed line) and d = d̄ (dotted line) correspond to
the fulfillment of conditions (2.10)-(2.16a). The other parameters
are chosen as β = 0.1, a = 0.0001, γ = 1.02, ε = 2, so that E∗ =

(0.0051, 0.0051). (a) dv = 0.1, which gives δ
(2)
u = 2.2051, δ

(1)
u =

2.0045, Ic = 2.2030. (b) dv = 1, which gives δ
(2)
u = 4.0421, δ

(1)
u =

2.0201, Ic = 4.0382. (c)-(d) For two different values of dv, the
gray shaded areas represent the diffusive instability regions in the
(du, d)-plane, corresponding to the fulfillment of both (2.10)-(2.16a)
and (2.16b). The boundaries of the Turing region are d = dc,
or P (d) = 0, (solid line) and d = dudv (dashed line). (c) The
parameters are chosen as in (a). (d) The parameters are chosen as
in (b).

We now impose the well-posedness condition (2.10): the two straight lines d =1

dv du and d = d̄ expressing the marginality conditions of (2.10) and (2.16a), respec-2

tively, meet at the value du = δ
(1)
u , with δ

(1)
u given by:3

δ(1)u :=
ε(1 + γdv)

1− βu∗ + εHdv
. (2.21)

Hence, δ
(1)
u defines the abscissa of the lowest point of the region in the (du, d)-plane4

where one has both conditions (2.10) and (2.16a) verified. For fixed dv, this region5

is represented by:6 {
d > d̄ for du < δ

(1)
u

d > dv du for du ≥ δ(1)u
(2.22)
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which correspond to the area depicted in gray in Figs.2(a)-2(b). By inspection of1

(2.20)-(2.21), one easily verifies that δ
(1)
u ≤ δ

(2)
u for any non-negative dv, where2

equality holds for dv = 0. Upon increasing dv, the straight line d = d̄ is shifted3

upwards while the line d = dv du steepens, so that the intersection point moves up4

and, consequently, the width of the instability region is reduced (as it is also seen5

from the comparison of Figs.2(a)-2(b)).6

Once (2.10) and (2.16a) are satisfied, let us now enforce condition (2.16b), where7

equality gives the threshold values for d. Written in terms of the system parameters,8

(2.16b) is expressed by the following second degree inequality:9

P (d) := ε2H d
2 − 2d

(
ε2H d̄ + 2 det(K)

)
+ ε2H d̄

2 + 4 det(K)dudv ≥ 0. (2.23)

The criticality in (2.23) is expressed in the (du, d)-plane by a parabola (see Figs.2(c)-10

2(d)), whose symmetry axis has the same slope of the line d = d̄ (and is therefore11

negative) and whose intercept depends on dv. The discriminant ∆ of P (d) reads:12

∆ = 4 det(K)(det(K) + ε2H(d̄− dudv)). (2.24)

∆ may assume either sign or vanish, depending on the values of the system parame-13

ters. In fact, while E∗ is a stable equilibrium for the kinetics, by which det(K) > 0,14

in the region given by (2.22) one has:15 {
d̄ > dv du for du < δ

(1)
u ,

d̄ ≤ dv du for du ≥ δ(1)u .
(2.25)

To investigate the sign of ∆, we define the quantity:16

δ(3)u =
εH ε(1 + γdv) + det(K)

εH(1− βu∗ + εHdv)
, (2.26)

which is the value of du that makes ∆ = 0. It is easily shown that, being the17

equilibrium stable, δ
(1)
u < δ

(3)
u .18

We are now ready to derive the conditions under which (2.16b) is verified; we19

shall distinguish three different cases, depending on the value of the parameter du:20

i) du < δ
(1)
u (Diffusion-dominated regime)21

For du < δ
(1)
u , by (2.22)-(2.25), one has d ≥ d̄ > dv du. Therefore ∆ > 022

and the quadratic polynomial P (d) given by (2.23) admits two real roots, of23

whom the critical values for instability will be those that fall within the gray24

region depicted in Figs.2(a)-2(b), namely those that are greater than d̄. It is25

straightforward to prove that only one of the two positive roots of P (d), dc, is26

greater than d̄ (see also Figs.2(c)-2(d)), from which it follows that conditions27

(2.10) and (2.16a)-(2.16b) will be verified for d ≥ dc. To find the root dc that28

lies above the threshold d̄, in P (d) we set d = d̄+ ξ. The resulting quadratic29

polinomial in ξ, given below by (2.27), admits only one real positive root ξ+.30

Thus, choosing du < δ
(1)
u , a Turing instability sets in for d ≥ dc = d̄+ ξ+.31

ii) δ
(1)
u ≤ du ≤ δ(3)u (Competition regime)32

In this case d̄ < dv du, so that, to satisfy (2.16a) and (2.10) we have to take33

d > dv du (see (2.22)). Being δ
(3)
u the threshold value of du that makes ∆ = 0,34

for du < δ
(3)
u we have ∆ > 0 so that the quadratic polynomial P (d) given35

by (2.23) still admits two real roots, say d−c and d+c . d−c and d+c will be the36

bifurcation values of d if they both lie above the straight line d = dvdu (see37
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Figs.2(c)-2(d)). It is straightforward to prove that this is the case: in fact,1

upon substituting d = dvdu + ξ in (2.23), the resulting quadratic equation2

in ξ, given below by (2.30), by the Descartes’ rule of signs admits the two3

roots ξ1, ξ2 with 0 < ξ1 < ξ2. Hence, choosing δ
(1)
u ≤ du ≤ δ

(3)
u , a diffusive4

instability sets in for dvdu < d ≤ d−c = dvdu + ξ1 and for d ≥ d+c = dvdu + ξ25

(see Figs.2(c)-2(d)).6

iii) du > δ
(3)
u (Cross-diffusion-dominated regime)7

In this region, being δ
(1)
u < δ

(3)
u < du, to satisfy (2.16a) and (2.10), we take8

d > dvdu. Moreover, the condition du > δ
(3)
u ensures that ∆ < 0 so that P (d)9

never vanishes (see Figs.2(c)-2(d)) and (2.16b) is always satisfied. Therefore,10

the diffusion-driven instability occurs for all d > dvdu that guarantee the11

well-posedness of the system (see Figs.2(c)-2(d)).12

Hence, we have proved the following:13

Theorem 2.1. Given the system (1.1), let εH > 0, and let E∗ = (u∗, v∗) be the14

unique inner h.s.s. of the system, stable against spatially homogeneous perturba-15

tions. Let β ≥ 0 be such that 1 − βu∗ > 0, and let d be the bifurcation parameter.16

Let d̄, δ
(1)
u and δ

(3)
u be given by (2.19), (2.21) and (2.26), respectively, then:17

i) if du < δ
(1)
u , the homogeneous equilibrium E∗ undergoes a bifurcation whenever18

d ≥ dc = d̄ + ξ+, where ξ+ is the positive root of the following quadratic19

polynomial:20

P1(ξ) = ε2Hξ
2 + 4 det(K)ξ − 4 det(K)(d̄− dudv). (2.27)

The critical wavenumber is given by:21

kc =

√
− qc

2 det(Dc)
, (2.28)

where:22

qc = −εHdc − (1− βu∗)du + ε(1 + γdv), and det(Dc) = dc − dudv; (2.29)

ii) if δ
(1)
u ≤ du ≤ δ

(3)
u , the homogeneous equilibrium E∗ undergoes a bifurcation

for

dvdu < d ≤ d−c = dvdu + ξ1 and for d ≥ d+c = dvdu + ξ2,

where 0 < ξ1 < ξ2 are the roots of the following polynomial:23

ε2Hξ
2− 2ξ

{[
ε2Hdv + εH(1− βu∗)

]
(δ(3)u − du) + det(K)

}
+ ε2H

(
d̄− dudv

)2
. (2.30)

At d = d±c the critical wavenumber is given by:24

k±c =

√
− q±c

2 det(D±c )
, (2.31)

where:25

q±c = −εHd±c −(1−βu∗)du+ε(1+γdv), and det(D±c ) = d±c −dudv; (2.32)
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iii) if du > δ
(3)
u , the homogeneous equilibrium E∗ undergoes a bifurcation for all1

d > dvdu. For every fixed value of du and d, the most unstable wavenumber2

is given by:3

k =

√
− q

2 det(D)
, (2.33)

where D and q are given in (2.10) and (2.18), respectively.4

2.2. Discussion. In the monostable case without cross-diffusion effects, the reac-5

tion kinetics of the FHN system allows for the onset of a Turing instability of the6

homogeneous steady state. The introduction of the cross-diffusion terms, as stated7

by Theorem 2.1, determines the existence of three different scenarios, each of whom,8

for a fixed value of dv, is characterized by the value of the inhibitor cross-diffusion9

du.10

The first regime, that we have called diffusion-dominated, corresponds to condi-11

tion i) of Theorem 2.1: fixing dv, if one chooses du small (in the sense indicated12

by i) of Theorem 2.1), a Turing instability can occur only for values of d greater13

then the threshold dc. Hence, the insurgence of patterns is determined by the clas-14

sical mechanism, subjected to the well-known constraint of a sufficiently large value15

of the ratio of the inhibitor/activator self-diffusion coefficients. Turing structures16

emerge where the u- and v-species are in-phase, as expected on the basis of the form17

of the linearized reaction kinetics. In the limit of vanishingly small values of du,18

one in fact recovers the known results obtained in absence of cross-diffusion. In this19

regime, the effect of the cross-diffusion is to lower the bifurcation value of d, that20

progressively reduces as du increases: as the inhibitor evades the activator, a larger21

self-diffusion coefficient of the activator is necessary to maintain the pattern with22

a net flux of activator from high density areas to less dense ones. The instability23

region is thus enlarged with respect to the classical case and Turing patterns can be24

observed also for d ≤ 1. Therefore, upon varying the cross-diffusion coefficient, the25

requirement of short-range activation/long-range inhibition is relaxed and one can26

get stationary structures also with equal diffusivities or in the presence of long-range27

activation/short-range inhibition.28

Fixing dv and increasing the value of the cross diffusion parameter du, as ex-29

pressed by condition ii) of Theorem 2.1, one has the second scenario, that we have30

called competition regime. Here the presence of the cross-diffusion terms generates31

the existence of a double bifurcation threshold, a phenomenon not prescribed by32

the classical Turing theory. In fact, in the interval δ
(1)
u ≤ du ≤ δ

(3)
u , one has two33

distinct regions of instability of the equilibrium: one above the upper branch of34

the parabola and one other below the lower branch (see Fig.3(a)). If the inhibitor35

self-diffusion is predominant, i.e. when d ≥ d+c , one has a Turing bifurcation that36

generates in-phase patterns where, as in the classical case, the activator peak is37

bigger than the inhibitor peak (see Fig.3(b)). As in the diffusion-dominated case,38

in above-threshold instabilities the effect of the inhibitor cross-diffusion term is to39

lower the bifurcation value, so allowing for pattern formation also for values of the40

diffusivity ratio less than unity. Conversely, for values of the self-diffusion ratio d41

below-threshold (i.e. when d ≤ d−c ), the diffusive instability mechanism is driven by42

the cross-term and one needs larger self-dispersal rate of the activator with respect43

to that of the inhibitor for the development of the pattern. With the inhibitor44

evading the activator, regions of high density of the activator correspond to low-45

density of the inhibitor, resulting in out-of-phase patterns (see Fig.3(c)). This can46
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be proved by the linear analysis as follows: the pattern grows along the unstable1

manifold associated to the positive eigenvalue of the linearized dynamics. The ex-2

plicit form of the corresponding eigenvector (given by formula (3.5) below) shows3

that the components of the eigenvector % have opposite signs, corresponding to4

out-of-phase spatial distribution of the species. The numerical simulations of the5

nonlinear system (1.1) performed on 1D and 2D spatial domains demonstrate that6

the phase relationship coming from the linear analysis are maintained also when7

the nonlinearities come into play, as shown in Figs.3-4-6 and in all the snapshots of8

the cross-Turing pattern shown in Section 3.9

It should be noted that, for a fixed value of du, the bifurcations occurring at10

d = d+c and d = d−c have, in general, different values of the critical mode, that we11

have denoted by k+c and k−c , respectively (see Fig.3(b)-3(c)). As one moves along12

the above and lower branch of the parabola, respectively, towards the point where13

du = δ
(3)
u , k+c and k−c converge to a unique value of the critical mode and, while14

the peaks of the activator do not change significantly their size as du is increased,15

the height of the inhibitor maxima progressively shrinks. At the tangency point16

of the parabola with the line du = δ
(3)
u , the pattern consists of localized regions of17

activator immersed in a uniform distribution of the inhibitor, corresponding to the18

value of the homogeneous equilibrium, see Fig.4.19

Finally, the third regime, that we have named cross-diffusion-dominated, is at-20

tained for further increased values of the cross diffusion parameter du, as expressed21

by condition iii) of Theorem 2.1. As du crosses the value δ
(3)
u , the instability occurs22

for all d satisfying the well-posedness condition. Therefore, for fixed du, the value23

of the self-diffusion coefficient d is irrelevant for the onset of the instability: there is24

no critical value of the bifurcation parameter and the instability sets in with fastest25

growing wavenumber given by (2.33). In this region, for fixed du, the effect of choos-26

ing different values of d determines the qualitative form of the pattern, discerning27

whether the patterns of the two species are in-phase (for high values of d), or out-28

of-phase (for small values of d). A quantitative threshold can be computed close to29

the line du = δ
(3)
u , where the linear theory prescribes the emergence of Turing or30

cross-Turing patterns, depending on choosing the parameters above or below the31

curve:32

d =
(1− βu∗)du + ε(γdv − 1)

2εγ − εHdu
du, (2.34)

as shown in Fig.3(a). If the parameters are chosen along the curve (2.34), only the33

u-species stabilizes on a periodic structure, while the v-species stays homogeneously34

distributed within the domain at the value of the homogeneous equilibrium.35

In all the three regimes, it is the inhibitor cross-diffusion du that is responsible36

for the occurrence of the phenomena above exposed: as stated by Theorem 2.1, the37

role played by the activator cross-diffusion dv is to regulate the thresholds at which38

transitions from one regime to another occur, and the bifurcation values of d. This39

can be seen as follows. When both the cross-diffusion term vanish, one recovers40

the classical Turing mechanism: the instability sets in along the half-line on the41

d-axis whose lowermost value is given by the intercept Ic of the straight line d = d̄42

evaluated for du = dv = 0. If one maintains du = 0 and increases dv, the intercept43

of the line d = d̄ moves upwards, so reducing the d-interval where the instability44

can grow. Instead, with dv = 0, the conditions (2.16a)-(2.10) are satisfied for all45

positive values of du in the region of the (du, d)-plane given by (2.22), where one46

can then impose (2.16b). It is therefore the presence of the inhibitor cross-term47
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Figure 3. The kinetics parameters are chosen as in Fig.2(a). (a)
The dark-gray and light-gray region indicate the presence of Turing
and cross-Turing patterns, respectively, separated by the dash-dot
curve expressed by (2.34). The dashed line marks the boundary
above which d > dudv. (b) Turing pattern obtained by the numer-
ical simulation of the system (1.1), with dv = 0.1, du = 2.0194 and
d = 0.32 > d+c = 0.3191 (so that k+c = 0.75), corresponding to the
point marked by an asterisk in (a). The profile of the activator
(inhibitor) is represented by a solid (dotted) line. (c) Cross-Turing
pattern obtained by the numerical simulation of the system (1.1)
with dv = 0.1, du = 2.0194 and d = 0.20423 < d−c = 0.20432 (so
that k−c = 2), corresponding to the point marked by a plus sign in
(a). The profile of the activator u (inhibitor v) is represented by a
solid (dotted) line.

that determines the existence of the three different regimes and the presence of the1

cross-diffusion-induced bifurcation. An increase of dv, for fixed du, induces a shrink2

of the instability region, as it can be seen also from the comparison of Figs.2(c)-(d):3

increasing dv in fact moves upwards the line d = d̄ and steepens the line d = dv du.4

On the other hand, for fixed dv, any increase in du ∈ (0, δ
(3)
u ] makes it larger the5

d-interval where one has instability. For du larger that δ
(3)
u , one then has instability6

for all the values of d that guarantee the well-posedness of the system.7

To conclude this Section, we remark that generalizing the diffusion matrix with8

the introduction of inhibitor cross-diffusion removes the requirement of short-range9

activation/long-range inhibition, allowing the formation of patterns when one has10

long-range activation/short-range inhibition and also for comparable values of the11

diffusion coefficients. Therefore, fixing all the parameters and varying the ratio of12

the two diffusivities gives rises to qualitatively different configurations (see Fig.3).13

Finally, the generalized diffusion matrix determines a noteworthy phenomenon:14

namely, the existence of zones in the parameter space where the instability may15

lead to spatially localization of the activator within a nearly uniform distribution16

of the inhibitor.17

3. Pattern selection problem and amplitude equations. In this Section we18

shall perform a weakly nonlinear analysis aimed at predicting the shape and the19

amplitude of the stationary patterns supported by the FHN system (1.1).20

The analysis in the monostable regime, in the symmetric case (β = a = 0) and21

without cross diffusion terms (du = dv = 0), has been carried out in [14]. Here,22
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Figure 4. (a)-(b)-(c) Turing patterns observed along the upper
branch of the bifurcation parabola. (d)-(e)-(f) Cross-Turing pat-
terns observed along the lower branch of the bifurcation parabola.
The parameters are chosen as in Fig.2(a). The profile of the ac-
tivator u (inhibitor v) is represented by a solid (dotted) line. (a)
du = 2.012 and d = 0.3398 > d+c = 0.3364, so that k+c = 0.7. (b)
du = 2.0198 and d = 0.3213 > d+c = 0.3181, so that k+c = 0.7568.
(c) du = 2.0385 and d = 0.2527 > d+c = 0.2553, so that k+c = 0.9.
(d) du = 2.0198 and d = 0.201689 < d−c = 0.2017, so that
k−c = 3. (e) du = 2.0194 and d = 0.2040 < d−c = 0.2044, so
that k−c = 1.9881. (f) du = 2.0385 and d = 0.2319 < d−c = 0.2324,
so that k−c = 1.07.

we shall include in our study symmetry-breaking (β 6= 0, a 6= 0) and cross-diffusion1

effects.2

3.1. One-dimensional domain. Let µ, defined by µ2 = |d−dc|/dc, be the control3

parameter that measures the distance from the bifurcation threshold. We shall4

consider the following asymptotic expansions for w, t and d:5

w = µw1 + µ2w2 + µ3w3 + . . . , (3.1)

t = t+ µT1 + µ2T2 + . . . , (3.2)

d = dc + µd(1) + µ2d(2) + µ3d(3) . . . , (3.3)

where d(i) > 0, i = 1, 2, . . . for Turing bifurcation and d(i) < 0, i = 1, 2, . . . for the6

cross-diffusion bifurcation. Substituting the above expressions (3.1)-(3.3) into the7

system (1.1) and collecting the terms at each order in µ, we find a sequence of equa-8

tions for the coefficients wi. At O(µ) we obtain the following linear homogeneous9

problem:10

Lcw1 = 0, (3.4)
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where Lc is the linear operator in (2.9) evaluated at d = dc. On a one-dimensional1

domain, the solution of (3.4) satisfying the Neumann boundary conditions is:2

w1 = A(T1, T2, . . . )% cos(kcx),

% =

(
1
M

)
∈ Ker(K − k2cDc), M =

εH − k2c
1− βu∗ + k2cdv

,
(3.5)

where A is an unknown amplitude and kc is defined in (2.15).3

The problem at O(µ2) reads as:4

Lcw2 = F, (3.6)

where F, whose explicit expression is given in (C.1), automatically satisfies the5

Fredholm alternative; thus the solution w2 can be easily computed.6

In order to solve the problem Lcw3 = G at O(µ3), the compatibility condition7

must be imposed, which leads to the following Stuart-Landau equation for the8

amplitude A:9

dA

dT2
= σA− LA3, (3.7)

where σ > 0 and the Landau coefficient L are computed in terms of the parameters10

of the FHN system (1.1). The details of the procedure leading to Eq.(3.7) and the11

explicit expressions of σ > 0 and L are given in Appendix C. In the above equation12

(3.7), the sign of L characterizes the bifurcation, discerning between a supercritical13

and a subcritical transition. If the system parameters are chosen in such a way14

that L is positive, then the bifurcation is supercritical: past the threshold, Eq.(3.7)15

admits two symmetric stable steady states that provide the amplitude of the emerg-16

ing pattern. Besides, the transition from the stable homogeneous equilibrium to the17

periodic-in-space stable solution is continuous as the bifurcation parameter crosses18

the threshold. Instead, if L is negative, the transition is subcritical: in this case,19

as the homogeneous equilibrium loses stability, one has an abrupt jump to the pat-20

terned state that remains stable when the bifurcation parameter is restored. In this21

case, past the threshold, Eq.(3.7) does not admit any stable solution and, therefore,22

is not able to capture the amplitude of the resulting pattern. In the subcritical case,23

the analytical approximation of the emerging solution then requires that one pushes24

the asymptotic expansion up to higher orders, see [15, 12]. The explicit analysis of25

the sign of L given by (C.6) as a function of all the system parameters is extremely26

difficult. We have therefore numerically computed L and shown the corresponding27

results in Fig.5.28

In Fig.5(a) the black, gray and dark gray regions correspond to cross-Turing29

subcritical bifurcation, cross-Turing supercritical bifurcation and Turing supercrit-30

ical bifurcation, respectively. We observe that, for a fixed value of dv, the Turing31

bifurcation is always supercritical while the cross-diffusion patterns may arise as a32

consequence of either a sub- or a super-critical transition, depending on the value33

of du. Namely, the cross-diffusion pattern is subcritical for values of du slightly34

above the threshold δ
(1)
u and for small values of the self-diffusivities ratio d. In the35

subcritical region, in fact, although the inhibitor cross-diffusion coefficient is big36

enough to excite the instability, the high value of the activator self-diffusion coeffi-37

cient locally stabilizes the homogeneous equilibrium. Therefore, a perturbation of38

sufficiently large amplitude is required for the settlement of a far-from-equilibrium39

pattern. As the value of du increases, the destabilizing effect of the cross-diffusion40
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Figure 5. (a) Bifurcation diagram of the system (1.1) in the
(du, d)-plane as given by the WNL theory. The black, gray and
dark gray regions correspond to cross-Turing subcritical bifurca-
tion, cross-Turing supercritical bifurcation and Turing supercriti-
cal bifurcation, respectively. The dashed line marks the boundary
above which d > dudv. The dash-dot curve, expressed by (2.34),
that separates Turing from cross-Turing patterns is also reported.
The parameters are chosen as in Fig.2. (b) Turing instability for
d ≥ d+c : graph of the coefficient L of the amplitude equation (3.7)
versus du for different choices of dv. The kinetic parameter are
chosen as in (a). (c) Cross-Turing instability for d ≤ d−c : graph
of the coefficient L of the amplitude equation (3.7) versus du for
different choices of dv. The kinetic parameter are chosen as in (a).

on the homogeneous state progressively grows allowing for a supercritical transition.1

The sign of the Landau coefficient L appearing in (3.7) as a function of du and for2

different values of dv is shown in Figs.5(b)-5(c) for the Turing and cross-Turing case,3

respectively: the graphs confirms that, as dv varies, the Turing bifurcation remains4

supercritical while the cross-diffusion pattern can be super-critical or subcritical,5

depending on the choice of the cross-diffusion coefficients.6

From the above analysis, one can suitably predict the emerging solution of the7

system (1.1) on a one-dimensional domain as follows:8

Asymptotic solution in the neighborhood of a monostable equilibrium:9

Given the system (1.1), let E∗ = (u∗, v∗) be the unique h.s.s. of the system.10

Let E∗ be stable against spatially homogeneous perturbations and let E∗ undergo a11

diffusive bifurcation at d = dc. If:12

i) the distance from the bifurcation value is small enough such that kc is the only13

unstable mode admitted by the boundary conditions;14

ii) the coefficient L of the Stuart-Landau equation (3.7) is positive, i.e. the bi-15

furcation is supercritical;16

then the asymptotic solution of the system (1.1) on a one dimensional domain [0, L]17

is:18

w = µA∞% cos(kcx) +O(µ2), (3.8)

where A∞ is the stable steady state of the equation (3.7) and % is defined in (3.5).19

Formula (3.8) yields the asymptotic form of the pattern in the two cases of20

diffusive instabilities at a monostable equilibrium stated in Theorem 2.1, namely21

in the Turing and in the cross-Turing case, the only difference in the asymptotic22
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analysis being the choice of the sign of the coefficients d(i) appearing in (3.3). We1

do not report any numerical simulation of the pattern on one-dimensional domains2

as predicted by (3.8) as the case of rolls will be treated and illustrated below on3

two-dimensional domains.4

To conclude this Subsection, we recall the fact that, if the bifurcation is subcrit-5

ical, higher orders of the asymptotic expansion (3.1)-(3.3) need to be computed in6

order to capture the value of the saturated amplitude.7

3.2. Two-dimensional domain. On a two-dimensional rectangular domain Ω ≡8

[0, Lx]× [0, Ly], the solution to the linearized system (2.8) satisfying the Neumann9

boundary conditions has the following form:10

w =
∑
m,n∈N

fmne
λ(k2mn)t cos(φx) cos(ψy), (3.9)

with:11

φ =
mπ

Lx
, ψ =

nπ

Ly
, m, n ∈ N, (3.10)

where fmn are the Fourier coefficients of the initial conditions and λ are the eigen-12

values computed using the dispersion relation (2.13). The corresponding critical13

wavenumber kc, computed as in (2.15), must satisfy the following condition:14

k2c = φ2 + ψ2, (3.11)

where φ and ψ are defined as in (3.10). In what follows, we will assume that there15

exists only one unstable wavenumber kc admitted by the boundary conditions in16

the spatial domain Ω. The diffusive bifurcation is regular or degenerate depending17

on the existence of one or two mode pairs of integers (m,n) satisfying conditions18

(3.10)-(3.11), respectively. The WNL analysis will predict the emerging solution of19

the original system (1.1) as formulated below.20

CASE 1 (Regular):21

Asymptotic solution at a regular diffusive bifurcation in the neighbor-22

hood of a monostable equilibrium.23

Given the system (1.1), let E∗ = (u∗, v∗) be the monostable h.s.s. of the system.24

Let E∗ be stable against spatially homogeneous perturbations and let E∗ undergo a25

diffusive bifurcation at d = dc. If:26

i) the distance µ from the bifurcation value is small enough such that kc is the27

only unstable wavenumber admitted by the boundary conditions;28

ii) in the rectangular domain Ω ≡ [0, Lx]× [0, Ly] there exists only one mode pair29

of integers (m,n) defined as in (3.10) and satisfying condition (3.11);30

iii) the coefficient L of the Stuart-Landau equation as in (3.7) is positive, i.e. the31

bifurcation is supercritical;32

then the asymptotic solution of the system (1.1) on the rectangular domain Ω is:33

w = µA∞% cos(φx) cos(ψy) +O(µ2), (3.12)

where A∞ is the stable steady state of the equation (3.7), % is given in (3.5), φ and34

ψ are defined as in (3.10)-(3.11).35

In what follows we shall provide some numerical simulations that illustrate the36

patterns arising close to the cross-Turing bifurcation threshold on two-dimensional37

spatial domains. All the numerical simulations of system (1.1) reported in this Sec-38

tion are obtained using a second-order Runge- Kutta time-stepping scheme with39
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dt = 10−2 and, for space discretization, a Fourier spectral scheme with 256 × 2561

modes. The initial conditions are a random perturbation of the homogeneous equi-2

librium state of order 10−4. We have assumed that the solution has attained3

a stationary state (and reported the corresponding spatial configuration) when4

maxi,j |w(i, j, t(end))−w(i, j, t(end− 1))| < 10−7.5

According to Theorem 2.1, when the parameters are chosen in the competition6

regime (δ
(1)
u ≤ du ≤ δ(3)u ), the homogeneous equilibrium may undergo to a Turing or7

to a cross-Turing bifurcation, depending on the value of the bifurcation parameter d.8

In Fig.6 we show the solution of the system (1.1) when the monostable equilibrium9

loses stability through a regular cross-Turing bifurcation at d = d−c = 0.2198.10

The parameters are chosen so that the hypotheses of Theorem 2.1 (competition11

regime and cross-Turing bifurcation) and the conditions i) − iii) of Case 1 are12

satisfied. In the square domain [0, 4
√

2π/kc]× [0, 4
√

2π/kc], the only unstable mode13

k−c ≈ 1.2356 admitted by the boundary conditions corresponds to the unique mode14

pairs (m,n) = (4, 4) satisfying the condition (3.11). The emerging cross-Turing15

pattern is well approximated by (3.12) with A∞ = 0.4866, unique stable equilibrium16

of the Stuart-Landau equation (3.7). The spectra of the numerical solution of17

the system (1.1), reported in Fig.6(b)-6(d), show the agreement with the expected18

solution, being (4, 4) the couple of modes with higher amplitude. The mode pairs19

(8, 0) and (0, 8) are sub-harmonics which can be predicted at order ε2.20

We do not show the simulation reproducing the Turing pattern, obtained for21

the same parameter values of Fig.6 except d, leading, close to d = d+c , to in-phase22

spatially periodic species concentration with a different value of k2c .23

We conclude the study of the diffusive instability at a regular bifurcation showing24

in Fig.7 a numerical simulation of a subcritical case. We recall that, in the case of a25

subcritical transition, the asymptotic procedure developed here does not apply since,26

to predict shape and amplitude of the emerging structures, one should push the27

analysis to higher orders (see details in [12]). Indeed, for the parameter set chosen28

in Fig.7, the linear analysis yields k−c ≈ 2.4495 as the most unstable wavenumber,29

that corresponds to the unique couple of integers (m,n) = (2, 2) satisfying the30

condition (3.11). Instead, the spectra of the stationary configurations emerging31

from a random perturbation of the homogeneous equilibrium reveal the presence of32

several different modes, whose amplitude is comparable with the one of (2, 2).33

CASE 2 (Mixed-mode):34

Asymptotic solution at a degenerate diffusive bifurcation in the neigh-35

borhood of a monostable equilibrium, non-resonant case.36

Given the system (1.1), let E∗ = (u∗, v∗) be the monostable h.s.s. of the system.37

Let E∗ be stable against spatially homogeneous perturbations and let E∗ undergo a38

diffusive bifurcation at d = dc. If:39

i) the distance µ from the bifurcation value is small enough such that kc is the40

only unstable wavenumber admitted by the boundary conditions;41

ii) in the rectangular domain Ω ≡ [0, Lx]× [0, Ly] there exists two mode pairs of42

integers (mi, ni), i = 1, 2 defined as in (3.10) and satisfying condition (3.11);43

iii) the following non-resonance conditions hold:44

φi + φj 6= φj or ψi − ψj 6= ψj ,
and

φi − φj 6= φj or ψi + ψj 6= ψj ,

φi =
miπ

Lx
, ψi =

niπ

Ly
,

where
i, j = 1, 2, i 6= j;

(3.13)
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Cross-Turing stationary pattern supported by the sys-
tem (1.1) at a regular bifurcation. The parameters are chosen as
β = 0.1, γ = 1.02, ε = 2, a = 0.0001, so that E∗ = (0.0051, 0.0051)
and du = 2.035, dv = 0.1 and d = 0.2176 < d−c ≈ 0.2198. In the

square domain [0, 4
√

2π/kc] × [0, 4
√

2π/kc] the Turing bifurcation
is regular: the critical wavenumber kc ≈ 1.2356 corresponds to
the unique couple of modes (m,n) = (4, 4) satisfying the condition
(3.11). (a)-(b) Initial condition assigned as a small random pertur-
bation of the homogeneous equilibrium. (b)-(c) Numerical solution
of the system (1.1) computed via spectral methods. (d)-(e) Spec-
trum of the solution.

iv) the following amplitudes system:1

dA1

dT2
= σ1A1 − L1A

3
1 + Ω1A1A

2
2

dA2

dT2
= σ2A2 − L2A

3
2 + Ω2A

2
1A2

(3.14)
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(a) (b)

(c) (d)

Figure 7. Cross-Turing stationary subcritical pattern supported
by the system (1.1) at a regular bifurcation. The parameters of the
reaction term are chosen as in Fig.6 and dv = 0.1, du = 2.0151,
d = 0.2024 < d−c ≈ 0.2026. In the square domain [0, π] × [0,

√
2π]

the most unstable mode kc ≈ 2.4495 corresponds to the unique
couple of integers (m,n) = (2, 2) satisfying the condition (3.11).
The simulation reveals that several modes, other than the critical
one, are excited. (a)-(c) Numerical solution of the system (1.1)
computed using spectral methods and assigning as initial condition
a small random perturbation of the homogeneous equilibrium. (b)-
(d) Spectrum of the solution.

admits at least one stable equilibrium. The coefficients of the system (3.14)1

are computed in terms of the parameters of the system (1.1) through the WNL2

analysis [16];3

then the asymptotic solution of the system (1.1) on a two-dimensional rectangular4

domain Ω approximated at the leading order is:5

w = µ% (A1∞ cos(φ1x) cos(ψ1y) +A2∞ cos(φ2x) cos(ψ2y)) +O(µ2), (3.15)

where (A1∞, A2∞) is a stable steady state of the system (3.14), % is given in (3.5),6

φi and ψi, i = 1, 2 are defined as in (3.10)-(3.11).7

The details of the analysis leading to the system (3.14) and the study of the8

stability of the corresponding equilibria are similar to what has been done in [15]9

and we will not report them.10
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(a) (b)

(c) (d)

Figure 8. Cross-Turing stationary mixed-mode pattern sup-
ported by the system (1.1) when the monostable equilibrium loses
stability via a degerate bifurcation and non-resonance conditions
(3.13) hold. The parameters of the reaction term are chosen as in
Fig.6 and du = 2.035 and dv = 0.1, d = 0.219 < d−c ≈ 0.2198.
In the rectangular domain [0, 8π/kc] × [0, 8π/kc] the most unsta-
ble mode kc ≈ 1.2356 corresponds to the two couples of integers
(m1, n1) = (0, 8) and (m2, n2) = (8, 0) satisfying the condition
(3.11). (a)-(c) Numerical solution of the system (1.1) computed us-
ing spectral methods and assigning as initial condition a small ran-
dom perturbation of the homogeneous equilibrium. (b)-(d) Spec-
trum of the solution.

A representative cross-Turing mixed-mode pattern of (1.1), as given by (3.15),1

is shown in Fig.8, where the system parameters are chosen so that the hypotheses2

of Theorem 2.1 (competition regime, namely δ
(1)
u ≤ du ≤ δ

(3)
u , and cross-Turing3

bifurcation) and the conditions i) − iv) of Case 2 are satisfied. With the chosen4

parameter set, there exist the two mode pairs (8, 0) and (0, 8) satisfying the condi-5

tions (3.11) in the square domain [0, 8πkc ]× [0, 8πkc ]. The expected solution, computed6

as in (3.15), is the following superposition of orthogonal stripes:7

w = µ% (A1∞ cos(kcx) +A2∞ cos(kcy)) +O(µ2), (3.16)
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with (A1∞, A2∞) ≈ (0.3641, 0.3641), unique stable equilibrium of the amplitude1

system (3.14). The expression (3.16) approximates, at the leading order, the so-2

lution of the full system (1.1). The mode (8, 8) appearing in the spectrum of the3

solutions is a subharmonic mode which could be predicted at O(µ2).4

CASE 3 (Resonant):5

Asymptotic solution at a degenerate Turing bifurcation in the neighbor-6

hood of a monostable equilibrium, resonant case.7

Given the system (1.1), let E∗ = (u∗, v∗) be the monostable h.s.s. of the system.8

Let E∗ be stable against spatially homogeneous perturbations and let E∗ undergo a9

diffusive bifurcation at d = dc. If:10

i) the distance µ from the bifurcation value is small enough such that kc is the11

only unstable wavenumber admitted by the boundary conditions;12

ii) in the rectangular domain Ω ≡ [0, Lx] × [0, Ly] there exist two mode pairs of13

integers (mi, ni), i = 1, 2 defined as in (3.10) and satisfying condition (3.11);14

iii) the following resonance conditions hold:15

φi + φj = φj and ψi − ψj = ψj ,
or

φi − φj = φj and ψi + ψj = ψj ,

φi =
miπ

Lx
, ψi =

niπ

Ly
,

where
i, j = 1, 2, i 6= j;

(3.17)

iv) the following amplitudes system:16

dA1

dT
= σ1A1 − L1A1A2 + Ω1A

3
1 + Φ1A1A

2
2

dA2

dT
= σ2A2 − L2A

2
1 + Ω2A

3
2 + Φ2A

2
1A2

(3.18)

admits at least one stable equilibrium. The coefficients of the system (3.18)17

are computed in terms of the parameters of the system (1.1) through a WNL18

analysis at O(ε3) [16].19

Then the emerging solution of the system (1.1) on a two-dimensional rectangular20

domain Ω approximated at the leading order is:21

w = µ% (A1∞ cos(φ1x) cos(ψ1y) +A2∞ cos(φ2x) cos(ψ2y)) +O(µ2), (3.19)

where (A1∞, A2∞) is a stable state of the system (3.18), % is given in (3.5), φi and22

ψi are defined as in (3.10)-(3.11).23

Due to the resonant conditions (3.17), the solution (3.19) describes rolls (when24

A1∞ = 0 and A2∞ 6= 0) or hexagons (when both A1∞ and A2∞ are non-zero),25

see [16] for details. In Fig.9 we report the bifurcation diagram of the amplitude26

system (3.18) when the control parameter d is close to the cross-Turing bifurcation27

threshold d−c . As the control parameter decreases, the homogeneous steady state28

loses stability at the primary bifurcation point, labeled by Bp, where two subcritical29

branches of equilibria, denoted by H±u , bifurcate: the two branches, corresponding30

to hexagons patterns of the FHN system (1.1), have opposite values of A1 and the31

same (negative) value of A2. At the onset, the hexagons H±u arise unstable and32

gain stability in two saddle-node bifurcations that take place for a common value of33

d (greater than d−c ), where the two stable branches of hexagons H±s originate. In34

the interval between d−c and the saddle-node bifurcation value, one has bistability35
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Figure 9. Resonant degenerate cross-Turing bifurcation: bifurca-
tion diagrams of the amplitude system (3.18). The parameters of
the reaction term in (1.1) are chosen as in Fig.6 and du = 2.035 and
dv = 0.1, d−c ≈ 0.2198. A solid red (dashed black) line represents
stable (unstable) branches of stationary equlibria. The branches
labeled by H±s represent stable hexagons of the FHN system (1.1)
that bifurcate subcritically from the homogeneous equilibrium at
the point Bp. A pair of rolls of (1.1) bifurcates at Bp in a saddle-
node bifurcation so leading, on the left of Bp, to coexistence of
stable rolls and hexagons. (a) Bifurcation diagram of A1. (b) Bi-
furcation diagram of A2.
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Figure 10. Resonant degenerate cross-Turing bifurcation: phase
space diagrams of the amplitude system (3.18). (a) The parame-
ters are chosen as in Fig.9 with d = d−c + 0.0002 = 0.22. The coor-
dinates of equilibrium points are H±s = (±0.0801882,−0.061473)
(stable), H±u = (±0.00185716,−0.00094344) (unstable). (b) The
parameters are chosen as in Fig.9 with d = d−c − 0.0008 = 0.219.
The coordinates of equilibrium points are R+

s = (0, 0.02246) (sta-
ble), R−u = (0,−0.02246) (unstable), H±s = (±0.088722,−0.06956)
(stable), H±u = (±0.003852, 0.008295) (unstable).

of the hexagons H±s with the homogeneous steady state: the corresponding phase-1

space diagram of the amplitude system (3.17) for d = d−c + 0.0002 is reported2
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in Fig.10(a), where the unstable points representing H±u are also depicted. At1

the point Bp, where the homogeneous equilibrium loses stability, a pair of rolls,2

denoted by R+
s and R−u , respectively, branch off out of a saddle-node bifurcation.3

The roll branches R+
s (stable) and R−u (unstable) have both zero component along4

A1 and opposite values of A2. Therefore, if the bifurcation parameter is chosen5

on the left of the point Bp, one has bistability of the roll R+
s with the hexagons6

H±s : the corresponding phase-space diagram of the amplitude system (3.17) for7

d = d−c − 0.008 is shown in Fig.10(b), where the unstable points representing H±u8

and R−u are also plotted. Moreover, in Figs.11-12, we show the snapshots of the9

cross-Turing hexagons and rolls, respectively, obtained for d = d−c − 0.008 and for10

two different choices of the initial condition. Namely, for the chosen parameter set,11

if the initial values of the amplitudes are chosen so that the corresponding point lies12

in the basin of attraction of H+
s , one gets the asymptotic hexagonal cross-Turing13

pattern shown in Fig.11; if the initial amplitudes are picked within the attraction14

basin of R+
s , the solution evolves towards the stationary cross-Turing roll showed15

in Fig.12.16

4. Conclusions. In this paper we have investigated the process of pattern forma-17

tion driven by linear cross-diffusion in a FHN-type model in the monostable regime.18

We have proved that the presence of linear cross-diffusion terms enlarges the Tur-19

ing space, allowing for pattern formation also when the diffusivity ratio is less than20

unity. Besides, for sufficiently high values of the inhibitor cross-diffusion, it also21

modifies the classical Turing mechanism, determining the formation of out-of-phase22

stationary patterns that bifurcate from the homogeneous equilibrium when the dif-23

fusivity ratio is below a given threshold. Finally, very large values of the inhibitor24

cross-diffusion determine the existence of a different regime, where the pattern forms25

independently of the self-diffusivity ratio, whose value discerns between the settle-26

ment of in-phase versus out-of-phase stationary structures.27

Several questions remain to be addressed: for example, it would be interesting to28

investigate how the presence of cross-diffusion terms changes the pattern-forming29

properties of the FHN system in the excitable regime. It is, in fact, well known30

that, in absence of cross-diffusion, the excitable kinetics of the FHN system prohibits31

diffusion-driven instability. We believe that the presence of cross-terms could induce32

new phenomena of biological interest in the description of excitable systems.33

Another relevant study pertains the introduction of cross-diffusion term in the34

FHN system in the bistable regime, namely when the reaction kinetics admits two35

stable steady states. In absence of cross-diffusion, the analysis in the neighborhood36

of the codimension-2 Turing-pitchfork bifurcation point presented in [39, 38] al-37

lows to capture the large amplitude patterns arising next to the nascent bistability.38

Besides, when the distance from the Turing-pitchfork codimension-2 equilibrium39

increases, the nonlinear interaction between the Turing patterns emerging close to40

each of the two steady states, may give rise to the formation of superlattices and41

more complex patterns [7, 1, 2]. We believe that the cross-diffusion terms could42

facilitate the formation of such structures and produce interesting developments.43

Since the FHN system (1.1) also exhibits Hopf instability, we plan to investi-44

gate and predict the oscillating behavior next to the codimension-2 Turing-Hopf45

bifurcation point, as in [13].46

Finally, we will consider the hyperbolic FHN model in order to analyze how cross-47

terms modify the mechanisms underlying propagation phenomena [4, 5, 59, 58].48
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Figure 11. Resonant degenerate cross-Turing bifurcation: sta-
tionary hexagonal pattern supported by the system (1.1) when
resonance conditions (3.17) hold. The parameters are chosen as
in Fig.9 with d = d−c − 0.0008 = 0.219. In the rectangular do-

main [0, 8π/kc]× [0, 8
√

3π/kc] the most unstable mode kc ≈ 0.8625
corresponds to the two couples of integers (m1, n1) = (4, 12) and
(m2, n2) = (8, 0) satisfying the condition (3.11). (a)-(c) Numerical
solution of the system (1.1) computed using spectral methods. The
initial condition is chosen of the form (3.19), where (A1∞, A2∞) is
in the basin of attraction of the stable equilibrium point H+

s . (b)-
(d) Spectrum of the solution.

Appendix A. Derivation of the FHN system (2.1)-(2.2) from a predator-1

prey model. In this Appendix we shall prove that the FHN kinetics of the type2

given in (2.1)-(2.2) can be derived from the following prey-predator model:3

dx

dτ
= F (x, y) = x(1− x)− x

x+ h
y , (A.1)

dx

dτ
= G(x, y) = k

x

x+ h
y −my, (A.2)

which describes the dynamics of an aquatic ecosystem, see [35] and references4

therein. The model (A.1)-(A.2) is a two-species (phytoplankton-zooplankton) sys-5

tem with a logistic local growth of the prey x and a Holling-type II functional6

response of the predator y. The system is here presented in non-dimensional form7

(as derived in [35]), so that in the prey equation three parameters are set equal to8

unity, namely the prey growth rate, the prey carrying capacity and the attack rate9
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Figure 12. Resonant degenerate cross-Turing bifurcation: sta-
tionary roll pattern supported by the system (1.1) when resonance
conditions (3.17) hold. The parameters and the domain are cho-
sen as in Fig.11. The initial condition is chosen of the form (3.19),
where (A1∞, A2∞) is in the basin of attraction of the stable equilib-
rium point R+

s = (0, 0.02246) and (m,n) = (8, 0). (a)-(c) Numer-
ical solution of the system (1.1) computed via spectral methods.
(b)-(d) Spectrum of the solution.

(i.e. the parameter in front of the predation term). In (A.1)-(A.2) the parameter1

h measures the half-saturation density of the prey, m is the mortality rate of the2

predator and k is the coefficient of food utilization. In what follows we shall show3

that the FHN kinetics (2.1)-(2.2) can be interpreted as the reaction terms of a dy-4

namical system that describes the time evolution of the deviations of the species5

densities (x, y) of (A.1)-(A.2) from the coexistence equilibrium point.6

The coordinates of the coexistence equilibrium of (A.1)-(A.2), C ≡ (x∗, y∗), are7

given by:8

x∗ =
rh

1− r
, y∗ = (1− x∗)(h+ x∗), with r =

m

k
. (A.3)

The point C is biologically meaningful (i.e. x∗ > 0 and y∗ > 0) and stable if the9

following conditions hold:10

0 < r < 1 and
1− r
1 + r

< h <
1− r
r

. (A.4)
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In the neighborhood of the equilibrium C, one can expand the functions F and G1

as follows:2

F (x, y) ' x∗

x∗ + h

(
1 + h

r + 1

r − 1

)
(x− x∗)− x∗

x∗ + h
(y − y∗) (A.5)

+

(
−1 +

h(1− x∗)
(x∗ + h)2

)
(x− x∗)2 − h

2(x∗ + h)2
(x− x∗)(y − y∗)

−h(1− x∗)
(x∗ + h)3

(x− x∗)3 +
h

3(x∗ + h)3
(x− x∗)2(y − y∗)

+higher order terms; (A.6)

G(x, y) ' hk
(1− x∗)
(x∗ + h)2

(x− x∗) + higher order terms,

where (x − x∗), (y − y∗) measure the small deviations of the populations from the3

coexistence equilibrium. Our aim is now to suitably rescale the variables in such a4

way to derive the canonical FHN system. Upon defining:5

X = x− x∗ + α1, Y = y − y∗ + α2, (A.7)

through a lengthy but straightforward calculation, one can find α1 and α2 such that6

the system (A.1)-(A.2) reduces to:7

dX

dτ
= F (X,Y ) = c1X + c2X

3 + c3Y + c4XY + c5X
2Y , (A.8)

dY

dτ
= G(X,Y ) = c6X + c7, (A.9)

where the coefficients ci, i = 1, . . . , 7 have cumbersome expressions in terms of8

α1, α2 and of the parameters h, k and r, and they will be not reported here. Notice9

that F (X,Y ) in (A.8) presents the same functional form of f(u, v) in (2.1), except10

for the presence of the term c5X
2Y . Since (A.8)-(A.9) describes a prey-predator11

dynamics, provided that c4, c5 < 0, the term c5X
2Y models a predation of higher12

order with respect to the term c4XY . Therefore, the corresponding term in (2.1),13

proportional to u2v, has been neglected. In the function G(X,Y ) given in (A.9),14

the linear term in Y is missing: this means that the Y -nullcline of the system (A.8)-15

(A.9) is a vertical line. In (2.2) we have chosen to generalize the functional form of16

the v-nullcline so to let it have a variable slope.17

A general discussion of the signs of the coefficients ci, i = 1, . . . , 7 in terms of the18

system parameters h, k and r is an arduous task. Here we just report their values19

choosing the same parameter set h = 0.4, r = 0.3, k = 2 as in the experiments given20

in [35] (and in the references therein):21

c1 = 0.0769, c2 = −10.6575, c3 = −0.3012,

c4 = −1.2167, c6 = 1.16, c7 = 0.0011.
(A.10)

Rescaling the variables as follows:22

t = c1τ, u =

√
−c2
c1
X, v = −c3

c1

√
−c2
c1
Y, (A.11)
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the system (A.8)-(A.9), neglecting the cubic term X2Y , assumes the following1

canonical form:2

du

dt
= u(1− u2)− v(1− β̃u), (A.12)

dv

dt
= γ̃u− ã, (A.13)

where:3

β̃ = −0.3431, γ̃ = 59.0827, ã = −0.6596. (A.14)

Therefore, in the system (A.12)-(A.13) u and v represent the (rescaled) deviations4

of the prey and the predator species, respectively, from the coexistence equilibrium5

point and, hence, are not forced to assume non-negative values. Notice that the6

equilibrium (u∗, v∗) ≡ (−0.0112,−0.0112) of the system (A.12)-(A.13) is such that7

u∗, v∗ < 0.8

The reaction kinetics (2.1)-(2.2) studied in the paper generalizes (A.12)-(A.13) in9

that the v-nullcline is a linearly increasing function of u with variable slope.10

We stress the fact that our interest is in the relative roles played by the kinetics11

and cross-diffusion terms regarding the pattern formation mechanisms. For this12

reason, we have chosen a canonical, prototypical form of a simple, cubic reaction13

term whose linearized kinetics would have the signs given in Fig.1(a) of the paper.14

In this respect, modifications of the proposed reaction term that do not alter the15

signs of the linearized matrix, although they will produce quantitative differences,16

they would not change the pattern formation mechanism highlighted in our study.17

Appendix B. The monostable equilibrium. In this Appendix we shall derive18

the conditions under which the system (1.1) admits a unique monostable equilib-19

rium.20

The homogeneous steady states of the FHN system (1.1) are the solutions of the21

following system:22 {
u(1− u2)− (1− βu)v = 0
γu− v − a = 0

⇒
{
u3 − βγu2 + (aβ + γ − 1)u− a = 0
v = γu− a .

(B.1)
The first equation of the system (B.1) is the following cubic polynomial:23

u3 + bu2 + cu+ d = 0, (B.2)

where b = −βγ, c = aβ + γ − 1 and d = −a. Let us first compute its real solution.24

Putting u = y − b/3, the equation (B.2) reads:25

y3 + py + q = 0, (B.3)

with p = c− b2/3 and q = b3/27− bc/3 + d.26

Defining y1, y2 ∈ C such that:27 {
y = y1 + y2
p = −3y1y2

(B.4)

the equation (B.3) reduces to:28

y31 + py + qy32 = −q. (B.5)

Therefore y1 and y2 are the solutions of the following system:29 {
y31 + y32 = −q
y1y2 = −p3

⇒
{
y31 + y32 = −q
y31y

3
2 = −p

3

27

, (B.6)
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or, equivalently, y31 and y32 are the solutions of the following quadratic equation:1

z2 + qz − p3

27
= 0. (B.7)

The following two cases can be distinguished:2

i) q2

4 + p3

27 ≥ 0.3

The solutions of the equation (B.7):4

z± = −q
2
±
√
q2

4
+
p3

27
(B.8)

are real. Setting y31 = z+ and y32 = z−, we obtain the solution ỹ ∈ R of the5

equation (B.3):6

ỹ = y1 + y2 = 3
√
z+ + 3

√
z−. (B.9)

ii) q2

4 + p3

27 < 0.7

The solutions (B.8) are complex, in particular z+ = |z+|eiθ and z− = z̄+ =8

|z+|e−iθ. Setting y31 = z+ and y32 = z−, we obtain the following complex9

roots:10

y
(k)
1 = 3

√
|z+|ei(

θ+2kπ
3 ) and y

(k)
2 = 3

√
|z+|ei(

−θ+2kπ
3 ), k = 0, 1, 2. (B.10)

The real solution of the equation (B.3) can be therefore computed as follows:11

12

ỹ = y
(0)
1 + y

(0)
2 = 3

√
|z+|

(
ei
θ
3 + e−i

θ
3

)
= 3
√
|z+| cos

(
θ

3

)
. (B.11)

Thus, the real root of the equation (B.2) is given by:13

u∗ = ỹ − b

3
, (B.12)

with ỹ computed as in (B.9) and (B.11) in case i) and ii), respectively. By the14

system (B.1) we obtain that E∗ ≡ (u∗, v∗), with v∗ = γu∗ − a is an equilibrium of15

the FHN system.16

In the monostable case the equilibrium E∗ must be the unique equilibrium for17

u < 1/β, and it must be on the inner branch of the u-nullcline (see definition in18

Section 2). The existence of the unique equilibrium E∗ is ensured by imposing that19

the equation (B.2), or equivalently the equation (B.3), admits only one real root.20

Let us write the equation (B.3) as follows:21

(y − ỹ)B(y) = 0, with B(y) = y2 + ỹy + p+ ỹ2. (B.13)

The equation (B.3) admits only one real root if the discriminant of the polynomial22

B(y) is negative, which reads:23

p+ 3ỹ2 > 0. (B.14)

Moreover, since E∗ should be an inner equilibrium, the following condition on24

the slope of the u-nullcline (2.3) at the equilibrium must apply:25

v′(u∗) =
εH

1− βu∗
> 0, with εH = 1 + βv∗ − 3u∗2. (B.15)

Being 1− βu∗ > 0, the condition (B.15) is satisfied if:26

εH > 0. (B.16)

Therefore, the FHN system (1.1) is in the monostable case if the parameters a, β27

and γ are chosen such that the conditions (B.14) and (B.16) hold.28
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Appendix C. The amplitude equation in 1D domain. In this Section we1

shall give the details of the derivation of the amplitude equations (3.7). The source2

term F of the linear problem (3.6) at O(ε2) reads:3

F =
∂w1

∂T1
+

 3w1(1)2u∗ − βw1(1)w1(2)

−d(1) ∂
2w1(2)

∂x2

 , (C.1)

where w1(i), i = 1, 2 is the i−th entry of the vector w1. Once substituted the4

solution (3.5) in (C.1), the Fredholm alternative is automatically satisfied putting5

d(1) = 0 and T1 = 0. The second order coefficient of the expansion in (3.1) for w6

can be therefore computed as follows:7

w2 = A2
∑
i=0,2

w2i cos (ikcx)), (C.2)

where the vectors w2i are the solutions of the following linear systems:8

Kw20 =
1

2

(
3u∗ − βM

0

)
, (K − 4k2cD

c)w20 =
1

2

(
3u∗ − βM

0

)
. (C.3)

The problem at O(ε3) reads as follows:9

Lb
c

w3 = G, (C.4a)

where10

G =

(
dA

dT
%+AG

(1)
1 +A3G

(3)
1

)
cos(kcx) +A3G3 cos(3kcx) , (C.4b)

and11

G
(1)
1 =

(
0

d(2)k2cM

)
,

G
(3)
1 =

(
G

(3)
1 (1)
0

)
,

G3 =

(
1

4
+ 3u∗w22(1)− β

2
(Mw22(1) + w22(2))

0

)
.

where12

G
(3)
1 (1) =

3

4
+3u∗(2w20(1)+w22(1))− β

2
(Mw22(1)+w22(2)+2Mw20(1)+2w20(2))

The solvability condition for the equation (C.4a) leads to the amplitude equation13

(3.7) for A(T ), where the expressions of the coefficients σ and L are given by:14

σ = −< G
(1)
1 ,ψ >

< %,ψ >
, L =

< G
(3)
1 ,ψ >

< %,ψ >
, (C.6)

with:15

ψ =

(
1
M∗

)
, M∗ =

k2c − εH
εγ − k2cdu

.
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[5] G. Consolo, C. Currò and G. Valenti, Supercritical and subcritical Turing pattern formation in10

a hyperbolic vegetation model for flat arid environments, Physica D: Nonlinear Phenomena,11

398 (2019), 141–163.12

[6] A. De Wit, Spatial Patterns and Spatiotemporal Dynamics in Chemical Systems, 435–513,13

John Wiley & Sons, Ltd, 2007.14

[7] G. Dewel, M. Bachir, P. Borckmans and S. Métens, Superlattice structures and quasipatterns15

in bistable systems, Comptes Rendus de l’Academie de Sciences - Serie IIb: Mecanique, 32916

(2001), 411–416.17

[8] G. Dewel, S. Métens, M. Hilali, P. Borckmans and C. B. Price, Resonant patterns through18

coupling with a zero mode, Phys. Rev. Lett., 74 (1995), 4647–4650.19

[9] X. Diego, L. Marcon, P. Müller and J. Sharpe, Key features of Turing systems are determined20

purely by network topology, Physical Review X, 8 (2018), 021071.21

[10] E. Dulos, J. Boissonade, J. Perraud, B. Rudovics and P. Kepper, Chemical morphogenesis:22

Turing patterns in an experimental chemical system, Acta biotheoretica, 44 (1996), 249–61.23

[11] R. FitzHugh, Thresholds and plateaus in the Hodgkin-Huxley nerve equations., The Journal24

of general physiology, 43 (1960), 867–896.25

[12] G. Gambino, M. Lombardo, S. Lupo and M. Sammartino, Super-critical and sub-critical26

bifurcations in a reaction-diffusion Schnakenberg model with linear cross-diffusion, Ricerche27

di Matematica, 65 (2016), 449–467.28

[13] G. Gambino, M. Lombardo, S. Lupo and M. Sammartino, Turing–Hopf bifurcation in the29

Schnakenberg model with cross-diffusion, submitted.30

[14] G. Gambino, M. Lombardo, G. Rubino and M. Sammartino, Pattern selection in the 2D31

Fitzhugh-Nagumo model, Ricerche di Matematica, 68 (2019), 535–549.32

[15] G. Gambino, M. Lombardo and M. Sammartino, Turing instability and traveling fronts for33

a nonlinear reaction–diffusion system with cross–diffusion, Mathematics and Computers in34

Simulation, 82 (2012), 1112 – 1132.35

[16] G. Gambino, M. Lombardo and M. Sammartino, Pattern formation driven by cross-diffusion36

in a 2D domain, Nonlinear Analysis: Real World Applications, 14 (2013), 1755–1779.37

[17] G. Gambino, M. Lombardo and M. Sammartino, Cross-diffusion-induced subharmonic spatial38

resonances in a predator-prey system, Physical Review E, 97 (2018), 012220.39

[18] X. Gao, L. Dong, H. Wang, H. Zhang, Y. Liu, W. Liu, W. Fan and Y. Pan, Three-dimensional40

patterns in dielectric barrier discharge with ”h” shaped gas gap, Physics of Plasmas, 2341

(2016), 083526.42

[19] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972),43

30–39.44

[20] A. Hagberg and E. Meron, Pattern formation in non-gradient reaction-diffusion systems: The45

effects of front bifurcations, Nonlinearity, 7 (1994), 805–835.46

[21] R. Han and B. Dai, Spatiotemporal pattern formation and selection induced by nonlinear47

cross-diffusion in a toxic-phytoplankton-zooplankton model with Allee effect, Nonlinear Anal-48

ysis: Real World Applications, 45 (2019), 822–853.49

[22] M. Haragus and G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-50

dimensional dynamical systems, Universitext, Springer-Verlag London, Ltd., London; EDP51

Sciences, Les Ulis, 2011.52

[23] B. Henry and S. Wearne, Existence of Turing instabilities in a two-species fractional reaction-53

diffusion system, SIAM Journal on Applied Mathematics, 62 (2002), 870–887.54
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