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Abstract: Preclinical studies provided some important insights into the action of glucagon-like peptide 1
(GLP-1) in taste perception. This review examines the literature to uncover some molecular mechanisms
and connections between GLP-1 and the gustatory coding. Local GLP-1 production in the taste bud cells,
the expression of GLP-1 receptor on the adjacent nerves, a functional continuum in the perception of
sweet chemicals from the gut to the tongue and an identification of GLP-1 induced signaling pathways
in peripheral and central gustatory coding all strongly suggest that GLP-1 is involved in the taste
perception, especially sweet. However, the impact of GLP-1 based therapies on gustatory coding in
humans remains largely unaddressed. Based on the molecular background we encourage further
exploration of the tongue as a new treatment target for GLP-1 receptor agonists in clinical studies.
Given that pharmacological manipulation of gustatory coding may represent a new potential strategy
against obesity and diabetes, the topic is of utmost clinical relevance.
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1. Introduction

Hedonic feelings are parts of the paramount drive in mammalian physiological sys-
tems [1]. Food is certainly important in fulfilling this need. Palatable foods that make us
“feeling good” contain calorie-dense sweet and fat substances [2,3]. In environments where
such nutrients are readily available with little or no effort, we are not able to successfully
resist these dietary challenges [4,5]. Obesity and diabetes are persistently accelerating [6],
with almost half of United States’ (US) adults predicted to have obesity and about 34.4 million
predicted to have diabetes by 2030 [7]. They both represent global public health burdens due
to their epidemic occurrence and their association with adverse consequences. The current
strategies are obviously not able to counter the complex mechanisms underlying these global
epidemics. Considering that obesity is characterized as a condition of food intake above
the physiological needs of the body, we should make further efforts in understanding how
feeding behavior in obesity becomes dysfunctional and how to reverse it.

The gustatory system represents the first control port of quantitative and qualitative
characteristics of food that provides information about substances one considers to in-
gest [8,9]. It analyzes chemosensoric, orosensoric, and rewarding features of food [10]. The
taste perception is clearly related to food preference and food choice [4,5,11–13], but current
evidence about a role of taste perception in the development and persistence of obesity is
conflicting [14]. Alterations in metabolic status of individual can significantly affect taste
perception and the choice of food [11–13]. Overweight or obese subjects often have a dimin-
ished perception of sweet that may result in an increase ingestion of sweet-tasting agents
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to fulfill their need for sweet [15]. Moreover, an elevated desire for sweet nutrients has
been reported in people that are inclined to obesity [16]. Psychophysical studies provided
mixed evidence comparing obese and lean subjects, finding either increased or decreased
or no changes in taste perception [14].

As opposed to sight and hearing, coding of the taste is not a simple linear sensory signal
that can be easily associated with perceptual experience. Complexity of gustatory coding
requires progress in understanding and continues exploration [17,18]. The role of glucagon
like peptide 1 (GLP-1) in the gustatory coding deserves specific attention since GLP-1
receptor agonists (GLP 1-RAs) that are well established as antidiabetic and antiobesity
therapies might have a potential to modulate the taste perception.

GLP-1 is a hormone with many functions much beyond its classical role as an in-
cretin [19–21]. It has been discovered in pancreas, gut, brain regions, kidney, liver, muscles,
heart, and bone [21]. It reduces food intake by centrally mediated suppression of appetite
and to less extent via delay in gastric emptying [21]. The effects of GLP-1 on the food choice
mediated via the gustatory system has been largely unaddressed by clinical research [22].

GLP-1 activates GLP-1 receptor (GLP-1 R). The latest extensive validation of GLP-1 R
using the most specific and highly sensitive monoclonal antibody proposed a novel distribution
of GLP-1 R in non-human primate and human tissues [23]. The presence of GLP-1 R was
confirmed in pancreas, lung, heart, kidney and in doudenum. Lower expression of GLP-1
R was confirmed in stomach and in myenteric plexus neurons of the gut. No expression
occurred in the liver and the thyroid [23]. Surprisingly, the tongue has not been explored for
the presence of GLP-1 R, neither in human nor in primate species [23]. Moreover, it seems that
until nowadays, the tongue remains unaddressed as a potential target of GLP 1-RAs [21].

However, preclinical research provided some important evidence of the role of GLP-1
in the endocrinology of the tongue [2,24,25], that is not yet covered in the classical textbooks
of endocrinology. It was demonstrated that GLP-1 is synthesized locally in taste bud cells,
that GLP-1 R is expressed in the tongue, and that there exists functional continuum in
sweet sensing from the gut to the tongue.

To uncover some insights into the relationship between GLP-1 and taste perception
from molecular mechanisms to potential clinical implications, we decided to provide a
narrative review of this topic.

2. Search Methods and Results
2.1. Data Sources and Searches

We did a systemic search of PubMed database limited to English language without
limits on year of publication.

2.2. Study Selection

A search algorithm included terms glucagon-like peptide-1, glucagon-like peptide-1
receptor, gustatory signaling, gustatory coding, gustatory system, taste, taste sensitivity,
taste perception, sweet taste, tongue, taste buds, taste bud cells, taste bud morphology,
sweet taste receptors, gustometry.

2.3. Data Extraction

We screened all abstracts. Full articles were assessed if the information provided by
abstract suggested that the article is relevant for the topic. Data extraction was conducted
by all authors.

3. Discussion
3.1. Evolutionary Perspective

The viewpoint from evolutionary endocrinology is useful to elucidate non-canonical roles
of GLP-1. Most commonly, the evolution of ligand and its receptor either runs simultaneously
or the ligands arose before their receptors. However, the phylogeny for the glucagone like
hormones and their receptors seems to be different [26]. GLP-1 R arose first from glucagon
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receptor gene before the divergence of fish and mammals and then the fish has lost the gene
for a receptor orthologous to the mammalian GLP-1 R [27,28]. In fish, GLP-1 acts directly on
the liver causing the release of glucose into the blood like glucagon. Later, GLP-1 acquired
its incretin role only in mammals. This aspect indicates that tight interactions between
a ligand and receptor could evolve by recruitment of a ligand, previously constrained
for a different action into a new functional complex along the evolutionary timeline. The
functional complex of GLP-1/GLP-1 R within the taste bud might have evolved into its role
only after sweet taste took the most privileged position in the evolution of a discriminative
gustatory system in primates [26].

3.2. Gustatory Coding

To comprehend how GLP-1 regulates gustatory coding, it is necessary to understand
the physiology that underlies taste perception. Many of the cellular and molecular mecha-
nisms involved in taste recognition, have been elucidated in the last two decades. Presently
two major hypotheses describe on how taste information is processed [17]. In simplified
models, the peripheral taste system uses a segregated “labeled line” feed forward coding
scheme to proceed sensory information at least for the five perceptually distinct taste
modalities. By contrast, gustatory processing within the central nervous system (CNS) uses
“ensemble coding system” containing a broadly distributed multisensory, feed-forward
and backward combinatorial pattern across many populations of neurons, including a
plastic network that includes reward [10].

3.3. Gustatory Coding at the Periphery
3.3.1. Recognition of Taste Stimuli by Taste Bud Cells

Gustatory processing initiates in the tongue, where the chemoperception of taste is
triggered by nutrients after they come in contact with the receptors on the taste bud cells
(TBCs) [2,10,29]. Similarity in the anatomy of the taste buds across virtually all vertebrate
animals implies that taste bud anatomy may be central to their functioning [30]. Distinct
receptors are involved in recognition of different taste qualities including sweet, bitter, sour,
salty, and umami. A substantial line of evidence also supports the existence of a specific
receptors for orosensory perception of fat [18,31].

The TBCs from heterogenous cell populations [32] form onion shaped taste buds (TBs)
distributed among different papillae that are located in the tongue, soft palate, larynx, pharynx,
and epiglottis [10,30]. Taste buds contain about 100 TBCs that protrude perpendicular to the
surface in a parallel arrangement. Their apical side is oriented toward the taste pore, where
they contact with chemicals in the month [30,33]. They have been traditionally classified
into four subtypes groups, type I-IV, by their morphological characteristics [33]. Different
morphological features of TBCs correlate with their cytologic, ultrastructural and functional
characteristics. All TBs contain cells of all four subtypes [2,33].

Taste bud cell type I represents about 50% of the total number of TBCs. They support
the structure of TBc and are involved in several actions linked to their electrophysiological
and structural properties. Amiloride-sensitive sodium channel subunit located on their
surface enables a perception of low salt [34,35]. Membrane-bound enzyme adenosine
triphosphate (ATP)-ase degrades ATP released from the neighboring TBCs. Structurally,
TBC type I possess extensive lamellar processes that wrap around the other cell types
within the TB, which probably function to control the dissipation of signaling throughout
the TB and isolate fluctuations of the signals to specific areas of the TB [36,37].

Taste bud cells type II are characterized as receptor cells of the TBs. They express specific
receptors and are narrowly tuned to recognition of sweet, umami and bitter stimuli [2,29].
Sweet and umami tastants are detected by heterodimeric G protein coupled receptors
(GPCR). Heterodimeric G protein coupled receptors comprise of a family of three recep-
tors from type 1 taste receptor family (TAS1R) including taste receptor type 1 member 1
(TAS1R1), taste receptor type 1 member 2 (TAS1R2), and taste receptor type 1 member
3 (TAS1R3). These proteins combine to form heterodimers that serve as the functional
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receptors. Heterodimeric receptors TAS1R1/TAS1R3 detect umami tastants [38–41]. Het-
erodimeric receptors of TAS1R2/TAS1R3 are activated by sweet chemicals [39–43]. Diverse
parts of TAS1R2/TAS1R3 subunits enable sensation of numerous sweet molecules in-
cluding glucose, fructose, galactose, sucrose, lactose, maltose, glycine, D-trypotophan,
some sweet proteins such as monellin and thaumatin and artificial sweeteners [41,44,45].
The TAS1R3 subunit which detects both umami and sweet chemicals responds also to
cyclamate, aspartame and neotame [44]. The TAS1R3 subunit is co-localized with alpha
gustucin, one of the important components in the signaling cascade [32]. The activation
of TAS1R2/TAS1R3 complex results in changes of intracellular Ca2+ levels [41,46]. An-
other cluster of GPCRs comprises of type 2 taste receptor (TAS2R) family with around 30
members. They sense bitter chemicals [47–49]. Each TBCs type II cell expresses specific
receptors of either TAS1R or TAS2R families and responds exclusively to either sweet and
umami or bitter nutrients (Figure 1). As opposed to sensation of low salt concentrations in
type I cells, high salt is also sensed by type II cells [50,51].

Taste bud cells type III form neuronal synapses with sensory afferent nerve fibers
in their close proximity. They are characterized as presynaptic cells. Like neurons, TBCs
type III contain voltage-gated Ca2+ channels and release neurotransmitters including
vesicular serotonin, acetylcholine, norepinephrine, and γ-aminobutyric acid (GABA) after
depolarization [52]. The majority of type III cells are serotonergic [24]. In addition to their
function in neurotransmission, TBCs type III are also involved in the sensation of sour
(acid) [50].

The average lifespan of TBCs type I-III is approximately 10–16 days [53] and whenever
they undergo apoptosis they are replenished from progenitor cells. The progenitor cells are
characterized as taste TBCs type IV at the base of the TBs [54,55]. They are non-polarized,
undifferentiated cells that were initially thought to be the exclusive progenitor cells [56]
However, it is no longer thought that the TBC stem cell niche is located solely at the base of
the TBs [53,57,58]. Sonic hedgehog protein (SHH) that regulates the differentiation of TBCs
is expressed also in some cells within TBs and even outside the TBs. [53,57,58]. Accordingly,
the term type IV cell is no longer uniformly used to describe a particular type of TBCs [2].

Taken together, the basic tastes may be discriminated with the receptor or electro-
physiological responses by distinct TBCs subpopulations dedicated to the perceptual taste
qualities [59–61]. The exclusive distribution of the TAS1R and TAS2R families on TBCs at
the most primary stage of stimulus processing create specific coding channels regarding
information about ligands that are calorically nutritive (sweet and umami), ligands that are
potentially toxic (bitter) and salty or sour.

3.3.2. Transduction of the Taste Signal within TBCs

Nutrient chemicals bind to the receptors on TBCs type II. The activation of the recep-
tors triggers downstream signaling from GPCRs to a phospholipase (PLC-beta2) and a
melastatin type-5 transient receptor potential cation channel (TRPM5) that is activated by a
1,4,5-trisphosphate (IP3). The induced cascade leads to increase in intracellular calcium [10].

Sweet chemicals sensed by GPCRs of TAS1R2/TAS1R3 by TBCs type II activate gust-
ducin (the taste G- protein) dissociation into subunits [46]. The activated subunits of gustducin
such as Gα and Gβγ activate phospholipase C β2 (Gβγ) resulting in generation of IP3 and
diacyglyerol (DAG). IP3 causes Ca2+ release from the endoplasmic reticulum. Ca2+ opens the
TRPM5 to Na+ influx. Increases in intracellular Na+ and Ca2+ end in cellular depolarization,
generation of action potential and secretion of ATP. Subsequently the released ATP stimulates
afferent neurons in close proximity to TBs [59,62–64] (Figure 1). The ATP that is released
from TBCs type II is degraded by membrane-bound enzyme ATPases on TBCs type I, which
generates ADP and prevents desensitization of ATP receptors on afferent fibers [10].
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Figure 1. Taste sensation signaling and glucagon-like peptide 1 (GLP-1). Legend: A sugar mole-
cule binds to heterodimeric G protein coupled receptor (GPCR) that consists of taste receptor type 
1 member 2 (TAS1R2) and taste receptor type 1 member 3 (TAS1R3). Downstream signaling ulti-
mately leads to release of ATP. Specifically, upon PLCβ2 activation IP3 as a second messenger is 
generated. IP3 releases intracellular Ca2+. Released Ca2+ gates transient receptor potential cation 
channel subfamily M member 5 (TRPM5), which results in cellular depolarization. The generated 
action potentials cause a release of ATP through voltage-gated calcium homeostasis modulator 1 
(CALMH1) that engages purinergic receptors for ATP on the sensory nerve fibers. Sensory nerve 
fibers convey information to higher order neurons in the Nucleus Tractus Solitarus (NTS). Adeno-
sine triphosphate (ATP) as a transmitter represents the major line of communication from TBC 
type II cells to the brain. In addition, when stimulated with sweet molecules, glucagon like peptide 
-1 (GLP- 1) is also immediately released from TBCs by vesicular mechanisms. GLP-1 activates 
GLP-1 receptor (GLP-1 R) on the adjacent gustatory nerves. It seems that GLP-1 acts as ancillary 
neurotransmitter in cooperation with ATP for maximal activation of nerve fibers that transmit 
gustatory code for the perception of sweet. 

Figure 1. Taste sensation signaling and glucagon-like peptide 1 (GLP-1). Legend: A sugar molecule
binds to heterodimeric G protein coupled receptor (GPCR) that consists of taste receptor type 1 member
2 (TAS1R2) and taste receptor type 1 member 3 (TAS1R3). Downstream signaling ultimately leads
to release of ATP. Specifically, upon PLCβ2 activation IP3 as a second messenger is generated. IP3
releases intracellular Ca2+. Released Ca2+ gates transient receptor potential cation channel subfamily
M member 5 (TRPM5), which results in cellular depolarization. The generated action potentials cause
a release of ATP through voltage-gated calcium homeostasis modulator 1 (CALMH1) that engages
purinergic receptors for ATP on the sensory nerve fibers. Sensory nerve fibers convey information
to higher order neurons in the Nucleus Tractus Solitarus (NTS). Adenosine triphosphate (ATP) as a
transmitter represents the major line of communication from TBC type II cells to the brain. In addition,
when stimulated with sweet molecules, glucagon like peptide -1 (GLP-1) is also immediately released
from TBCs by vesicular mechanisms. GLP-1 activates GLP-1 receptor (GLP-1 R) on the adjacent
gustatory nerves. It seems that GLP-1 acts as ancillary neurotransmitter in cooperation with ATP for
maximal activation of nerve fibers that transmit gustatory code for the perception of sweet.
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3.3.3. Transduction of the Taste Signal from the TBCs to Cranial Nerves

Several classes of narrowly tuned afferent fibers of intermediary neurons, chorda
tympani (CT) and glossopharyngeal (GL) nerve branching below TBs have been identified
as a part of a peripheral gustatory system [9]. ATP was recognized as a key neurotransmitter
and its purinergic receptor on the afferent fibers as a crucial component in taste coding at
the periphery [64] (Figure 1). ATP is required to transfer information about sweet, bitter,
and umami and likely salty and sour taste from TBCs to nerves [54,65] (Figure 1). Markedly
diminished response to all tastes where observed in the absence of the ATP receptors on
the afferent nerve fibers in genetically modified animal models [54].

Given that TBCs type II are not presynaptic cells and that TBCs type III as the classical
presynaptic cells do not release ATP [66,67] it remains challenging to understand how
the specificity of initial taste coding could be maintained across synapse. Additional
mechanisms including some ancillary neurotransmitters are likely involved to preserve the
accurate transmission of taste code from TBCs to nerve fibers [64].

3.3.4. Paracrine Signaling inside the Taste Buds

Paracrine signaling between TBCs plays an important ancillary role in further process-
ing of gustatory code during signal transmission from TBCs to nerves [68]. Such signaling
enriches the information about the quality and hedonic value of the stimulus [68].

Several peptide hormones from the gut are also identified in TBCs and are involved in the
gustatory coding. Glucagon-like peptide-1, glucagon, neuropeptide Y, cholecystokinin, and
vasoactive intestinal peptide were identified inside TBs. Each gut hormone and its cognate
receptor were restricted to subpopulations of TBCs and associated nerve fibers [11,24,69–73].

3.4. GLP-1 in the Taste Buds

GLP-1 is expressed in the two subsets of TAS1R3-immunopositive TBCs. In TBCs
type II, GLP-1 expression is restricted to around one quarter of TAS1R3 and gustucin
positive cells, whereas in type III cells it is restricted to some serotonin containing type III
cells [24,64,72] (Table 1).

Table 1. Summary of the GLP-1/GLP-1 R effects in the gustatory coding.

Location Production of GLP-1 Expression of GLP-1 R Role

TBC Type II Yes Yes Peripheral Gustatory Coding for sweet
and umami

TBC type III Yes Yes Peripheral Gustatory Coding for sour ?

Afferent Nerves in the tongue No Yes Transduction of the gustatory signal
from TBCs to Nucleus Tractus Solitarus

Nucleus Tractus Solitarus Yes (PPGN) Yes Central Gustatory Coding

Legend: GLP-1: Glucagon Like Peptide-1; GLP-1 R: Glucagon Like Peptide-1 Receptor; TBC: Taste Bud Cell; PPGN: PreProGlucagon Neurons.

Taste cells with locally produced GLP-1 express the enzyme prohormone convertase,
that is necessary for the cleavage of proglucagon to GLP-1. GLP-1 is most likely secreted from
TBCs by vesicles, although the strong evidence for such mechanism is lacking (Figure 1). The
amount of GLP-1 that is released form TBCs is limited, not detected in serum, and does not
cause systemic effects. Initially, it was believed that TBs do not express an enzyme DPP4 that
rapidly catabolizes active GLP-1 [24]. Later, DPP-4 immunoreactive cells localized in the rat
taste buds with significantly higher expression of DPP-4 mRNA in the rats with diabetes [74].

When sweet molecules had activated the receptors on TBCs, GLP-1 was immediately
released from TBCs [64]. Then GLP-1 activated GLP-1 R on adjacent S types of gustatory
nerve fibers and stimulated a large transient response [64] (Figure 1). Afterwards, in the
microenviroment around the taste bud, blood circulation likely provided enough local
DPP4 to inactivate GLP-1 from taste cells to limit signal duration [64].
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A deficiency of GLP-1 R in animal models demonstrated a clearly reduced sensitivity
to both calorie-containing (sucrose) and artificial (sucralose) sweeteners with no difference
in comparison to wild-type mice for bitter, salty, or sour [24]. In another study GLP1 R
knockout mice exhibited reduced taste sensitivity to both nutritive and artificial sweeteners,
but display hypersensitivity to sour tastant [24]. These two differential responses may
reflect the differential effects of GLP-1 secreted from subsets of Type II and Type III cells.
GLP-1 R–/– mice exhibited reduced nerve responses to sweet stimuli in the tongue [64].
Surprisingly, GLP-1 R–/– mice were much more sensitive to the umami stimulus, implying
that GLP-1 might impact sweet and umami taste responses in distinct ways [12,24]. The
effect of sweet taste stimuli was concentration dependent; higher concentrations of sweet
taste stimuli produced higher GLP-1 stimulation [64].

Sucrose, artificial sweeteners and umami stimuli elicit secretion of GLP-1 and NPY
from TBCs in mouse circumvallate papillae—an effect not present in TAS1R3 null mice [75].
Moreover, studies in both humans and mice have shown that long chain fatty acids increase
GLP-1 secretion from TBCs in addition to reinforcing the preference for sucrose in a GLP-1R
dependent manner, probably by interacting with GPR120 [18,76].

In summary, the production of GLP-1 in taste cells, the presence of the GLP-1 R on
adjunct nerve fibers and the results from knockout animal experiments strongly suggest that
GLP-1 signaling acts locally in taste buds and can affect taste function [12]. It likely acts as
ancillary neurotransmitter in cooperation with ATP that is required for maximal activation
of sweet nerve fibers [64]. Such signaling conveys information about the perceptual quality
of the nutrients from the very first place of interaction of food with the individual organism.

3.5. Continuum of Sweet Sensation from the Gut to the Tongue

The local production of gut hormones in the TBCs demonstrates functional similarities
along alimentary canal. GLP-1 and GLP-1 R are distributed from the tongue to the gut. Such
distribution enables a continuous functional analysis and regulation of ingestion, digestion,
absorption, and metabolic fate of the nutritive food. From molecular perspective, the sweet
sensation in the tongue shares many characteristics with the sensation of sweet in the gut
epitellium. [18]. Like in the tongue, glucose activates the release of GLP-1 from the gut epitel-
lium upon its binding to the receptor. Several molecular mechanisms in the gut have been
identified for this release, the classic two being closure of ATP-sensitive potassium channels
and sodium-coupled glucose uptake by sodium/glucose transporters (SGLTs) [21,77]. Key
part of sweet receptor TAS1R has been identified in many gut cells including K-cells, L-cells,
K/L enteroendocrine cells, brush, and X/A-like cells of the stomach [78]. Like in the TBs,
TAS1Rs components of GPCRs on the gut cells act as intestinal glucose sensors that lead to
glucose-stimulated GLP-1 release. TAS1R2/TAS1R3 heterodimers and α-gustducin are also
present in gut K/L-cells that express both GLP-1 and gastric inhibitory polypeptide, as well
as in L-cells that express GLP-1 and GLP-2 [79–81]. The magnitude of the role of intestinal
TAS1R in glucose-stimulated GLP-1 secretion in the gut remains debatable. Mice lacking
α-gustducin as a part of TAS1R on type II TBCs, had clearly reduced glucose-mediated GLP-1
release from the gut [79]. Moreover, TAS1Rs regulate expression of SGLT-1 protein that is
crucial for transport of sugars from the intestinal lumen into enterocytes. Mice deficient
for either α-gustducin or TAS1R3 are not able to upregulate expression of SGLT-1 in the
intestine when carbohydrates entering the small gut [2,80]. Upon receptor-recognition of
monosaccharides and other carbohydrates on the gut epitellium, voltage-dependent Ca2+

channels open and influx of Ca2+ triggers release of GLP-1 into the circulation by vesicular
exocytosis, just as in the TBs [21,82].

3.6. Central Taste Coding

Previous reviews yielded extensive insights into the central neural coding of gustatory
information [2,9,10,17,83]. Here we only briefly discuss the central taste coding without
elaborating on all the complexities.
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3.6.1. Taste Coding in the Brainstem and Thalamus

Nerve fibers of the facial, glossopharyngeal and vagus cranial nerves that transmit
taste information from the tongue project from their specific cranial nerve ganglia to the
medulla, in the nucleus tractus solitarus (NTS) [10]. Nucleus tractus solitarus converges
fibers from all three cranial nerves from the tongue with efferent and afferent autonomic
fibers of the vagus from the gut and with somatosensory afferent fibers from the trigeminal
nerve [10].

The rodent and primate taste system at this level differ. In rodents, NTS afferent
fibers convey taste information to gustatory centers of the parabrachial nucleus (PBN)
in the pons that synapse with neurons in the thalamus. At or just above the PBN, one-
third of the ascending nerve fibers carrying taste perception from the tongue cross and
ascend bilaterally to the thalamic taste area allowing bilateral taste representation in the
brain [84]. In primates, axons from the NTS bypass the PBN and project directly to the
ventral posterior medial nucleus of the thalamus.

3.6.2. Taste Coding in the Primary Gustatory Cortex

In both rodents and primates, thalamic afferents terminate at the primary gustatory
cortex (GC) in the anterior insula of the temporal lobe, where taste coding can further
be distinguished [85]. Gustatory cortex differentiates the subtleties of salty, sweet, sour,
bitter, and umami. This brain area also integrates other multisensoric modalities including
thermal, mechanical, visceral, and nociceptive stimuli [85–87]. Individual response of GC
neurons to tastants are either selective to tastens or more broadly tuned. Optical imaging
in animal studies identified four distinctive spatial patterns representing sweet, bitter, salty,
and sour taste modalities, but no region was clearly specific to a single modality [88,89].
Similarly, functional imaging and electrophysiology studies in humans showed distinctive
spatial patterns for five taste modalities as well as overlapping broad distribution of taste-
responsive neurons found throughout insular cortex with no spatial organization [85,90].
The central responses to tastants has been topographically represented with different
neuroimaging studies including calcium-imaging studies of single neurons and ultra-
high resolution functional magnetic resonance imaging that enable one of the highest
topographical resolution at a finer scale [10,90].

Projections of gustatory neurons then extend also to the amygdala and onwards to the
lateral hypothalamus and mesolimbic reward system such as nucleus accumbens and ventral
tegmental area [84]. At that level hedonic value is added to the taste information [91,92].
Depending on the concentration, bitter and sour chemosensations are generally experienced
as unpleasurable, whereas sweet and salty tastes are pleasurable [91,92].

3.6.3. Taste Coding in the Secondary Gustatory Cortex

Central gustatory pathways further dynamically interact in feed-forward and top-
down pathways that are widely distributed among several brain areas [10]. Primary GC
neurons project reciprocally back to the pons and forward to the primary somatosensory
cortex and to the secondary taste brain area in orbitofrontolateral cortex (OFC) [10].

The OFC is recognized as the secondary taste cortex because it has direct projections
from the primary GC. It lies in close proximity to the primary olfactory piriform cortex.
The neurons in this area receive convergent gustatory, olfactory as well as visual and
somatosensory signals. They regulate food selection, predict reward, and imprint the
reward value [93]. The response depends also on the previous experience and internal
metabolic state of individuals; for instance, when food is eaten to satiety it becomes less
rewarding, without changing the taste of the food itself [92]. Neurons from OFC further
extend to the prefrontal cortex. Prefrontal cortex encodes the reward value and the reward’s
forthcoming behavioral response at the highest level of regulation [10,94].
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3.6.4. GLP-1 Signaling in the Central Taste Coding

Nucleus tractus solitarus acts as an important relay station that integrates peripheral
gustatory signals and transmits them further to dedicated brain areas. GLP-1 is expressed
locally in the PreProGlucagon Neurons in NTS [19] (Table 1). Animal studies demonstrated
that direct central administration of GLP-1 elicited a conditioned taste aversion to sweet
nutrients [19], what suggests that there might be some direct impact of centrally produced
GLP-1 on the gustatory coding. Furthermore, GLP-1 released from the gut cells interacts
with NTS via the vagus nerve, which in turn activate neurons in NTS and might indirectly
contribute to central gustatory coding [19]. Similarly, neural signals elicited by GLP-1
from the tongue may also contribute to this reflex pathway because these signals are also
transmitted to NTS via the chorda tympani and GL nerves [64].

Altogether, central gustatory processing contains a multisensory, distributed, feed-
forward and backward, plastic network that includes reward. The central responses depend
also on individual metabolic state and previous experiences [10]. Potential direct action of
GLP-1 on taste modulation in the central gustatory system via NTS has been demonstrated
in animal models.

4. Conclusions

In summary, GLP-1 is locally produced in TRCs type II and III. GLP-1 R is expressed
on adjacent taste nerve fibers in the tongue. The action of GLP-1 was identified also in
central gustatory coding. Consistent with this, we provided evidence about the role of
GLP-1 in gustatory coding, mostly based on preclinical studies. This characterized the
tongue as a potential new target for therapeutic manipulation with GLP-1 RAs.

The field should initiate the collaboration of endocrinologists, diabetologists, ear, nose,
and throat (ENT) specialists, neuroscientists, and nutritionists to further explore GLP-1 in
taste perception of humans. Since consumption of calorie dense palatable foods is highly
pertinent to the onset and maintenance of obesity and diabetes, the potential modulation of
taste sensitivity and food preference with GLP-1 based therapies is of important clinical rele-
vance. Exploring the potential possibilities to modulate gustatory coding by pharmacological
manipulation remains one of an intriguing clinical challenge.
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