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ABSTRACT

Due to its role in many computer vision tasks, image matching has been subjected to an
active investigation by researchers, which has lead to better and more discriminant feature
descriptors and to more robust matching strategies, also thanks to the advent of the deep
learning and the increased computational power of the modern hardware. Despite of these
achievements, the keypoint extraction process at the base of the image matching pipeline
has not seen equivalent progresses. This paper presents HarrisZ+, an upgrade to the HarrisZ
corner detector, optimized to synergically take advance of the recent improvements of the
other steps of the image matching pipeline. HarrisZ+ does not only consists of a tuning of
the setup parameters, but introduces further refinements to the selection criteria delineated
by HarrisZ, so providing more, yet discriminative, keypoints, which are better distributed
on the image and with higher localization accuracy. The image matching pipeline including
HarrisZ+, together with the other modern components, obtained in different recent matching
benchmarks state-of-the-art results among the classic image matching pipelines. These results
are quite close to those obtained by the more recent fully deep end-to-end trainable approaches
and show that there is still a proper margin of improvement that can be granted by the research
in classic image matching methods.

1. Introduction
Image keypoint extraction has played a relevant role in

computer vision since the early days (Szeliski, 2021). A
keypoint is generally defined in a broad sense as a local
region on the image which can be correctly re-localized
and distinguished from others after a transformation of
the image, i.e. keypoints must be repeatable and discrim-
inable. The precision and the computational efficiency of
the keypoint localization, the sparseness of the keypoint
distribution over the images, and the kind of image trans-
formations the keypoint must tolerate generally depend
on the application purpose (Tuytelaars and Mikolajczyk,
2008).

With the increasing success of deep learning approaches
in replacing the handcrafted ones, keypoint extraction
more or less implicitly has been hidden within the lay-

∗∗Corresponding author: Tel.: +39-091-23891124
e-mail: fabio.bellavia@unipa.it (Fabio Bellavia)

ers of end-to-end trainable networks (Dusmanu et al.,
2019; Tian et al., 2020; DeTone et al., 2018; Sun et al.,
2021) or apparently removed (Truong et al., 2021). Nev-
ertheless, keypoint detectors as standalone building blocks
are still actively investigated and successfully used as the
base of modern and competitive image matching pipeline
for 3D reconstruction in sparse Structure-from-Motion
(SfM, Schönberger and Frahm (2016)) and Simultane-
ous Localization and Mapping (SLAM, Mur-Artal et al.
(2015)).

Although besieged by deep keypoint detectors, hand-
crafted detectors are still able to provide state-of-the-art
results in SfM and SLAM applications (Jin et al., 2020).
The keypoint extraction is the first step of 3D reconstruc-
tion pipeline. A crucial aspect in devising a better im-
age matching schema is to adapt the core detector to the
recent advancements obtained on the successive steps of
the pipeline. On one hand, recent local image descrip-
tors are become robust and able to cope with higher de-
grees of image deformations and noise (Mishchuk et al.,
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2017). On the other hand, the last matching strategies ex-
ploiting local spatial constraints (Bellavia, 2022) and those
based on the RANdom SAmple Consensus (RANSAC, Fis-
chler and Bolles (1981)) to exploit global model constraints
according to scene geometry (Cavalli et al., 2020), have
been shown to tolerate much better the presence of outlier
matches. Moreover, the increased computational power
offered by recent GPU allows to process in parallel more
keypoints and matches in a reasonable time depending on
the application. It is not a coincidence that the blob-like
Difference-of-Gaussian (DoG) keypoints of the Scale In-
variant Feature Transform (SIFT) detector (Lowe, 2004),
“unchained” to output more keypoints by an appropriate
removal of the setup thresholds, have achieved among the
best results in the previous Image Matching Challenge1

(IMC2020, Jin et al. (2020)).
This paper presents HarrisZ+, an upgrade to the corner-

based HarrisZ detector (Bellavia et al., 2011) for next-gen
image matching pipelines. The aim of HarrisZ+ is to pro-
vide more keypoints, better localized and distributed over
the image, yet characterized by high repeatability and dis-
criminability. Unlike the case of the unchained SIFT key-
points, HarrisZ+ does not only consists of a simple tuning
of the setup parameters so as to obtain more keypoints as
output, but introduces further refinements to the selection
criteria delineated by HarrisZ. According to the last Image
Matching Challenge2 (IMC2021) and SimLocMatch Image
Matching contest3, the image matching pipelines based on
HarrisZ+ obtain state-of-art results among the classic im-
age matching pipelines, closely following the more recent
fully deep end-to-end trainable approaches. This proves
that there is still a valuable margin of improvement to-
wards the research of classic image matching methods.

The rest of the paper is organized as follows: Sec. 2
presents the related work, Sec. 3 describes the proposed
HarrisZ+ updates after introducing the original HarrisZ
detector, and Sec. 4 reports the experimental evaluation.
Conclusion and future work are outlined in Sec. 5.

2. Related work
Corners and blobs are the two principal kinds of key-

points generally recognized in the literature (Szeliski,
2021), whose the Harris (Harris and Stephens, 1988) and
SIFT (Lowe, 2004) detectors may respectively represent
the most popular and effective extractors. Corners usually
tend to be identified with junctions and blobs with ho-
mogeneous image regions, but in practice this distinction
only holds for simple synthetic images and not for com-
plex, natural images. The Harris detector is based on the
filter response to a function of the eigenvalues of the auto-
correlation matrix of the image intensity gradient. Other
operators based on the autocorrelation matrix eigenvalues
have been proposed to extract corners (Förstner, 1986; Shi

1https://www.cs.ubc.ca/research/image-matching-challenge/2020/
2https://www.cs.ubc.ca/research/image-matching-challenge/
3https://simlocmatch.com/

and Tomasi, 1994), but the one defining the Harris corner
detector is maybe the most commonly employed. The Hes-
sian matrix has been also used to design keypoint detec-
tors according to its determinant (Beaudet, 1978). Differ-
ently from the Harris corner detector, the SIFT detector
is based on the filter response to DoG, as approximation
of the Laplacian of Gaussian (LoG), which corresponds
to the trace of the Hessian matrix. Filter-based detectors
are generally invariant to illumination changes since key-
points are selected as local maxima of the filter response.
Nevertheless, in practice, an absolute threshold on the fil-
ter response is generally set to suppress the detection of
spurious noise as keypoints, which can decrease detector
capability in case of low-contrast images. Pre-processing
the input image by contrast enhancement techniques can
be helpful in this situation (Lecca et al., 2020), notwith-
standing that noise gets enhanced too. Concerning the
robustness to geometric image transformations, in their
original definition, detectors are generally only rotational
invariant, while the scale depends on the filter windows
size. Multi-scale approaches have been devised to solve
scale issues, as well as to improve the robustness of the
detector to noise (Mikolajczyk and Schmid, 2004). The
Gaussian scale-space (Lindeberg, 1994) is generally em-
ployed for this aim, yet non-linear scale-space definitions
have been successfully applied too, as for the KAZE fea-
tures (Alcantarilla et al., 2012). The keypoint scale is gen-
erally selected according to the maximum filter response
among the scales, where the Laplacian filter is a common
choice. Additional robustness can be required in case of
severe viewpoint changes, which is generally achieved by
upgrading the scale and orientation associated with the
keypoint to a local affine transformation approximating
the unknown original perspective one. The affine trans-
formation can be obtained locally and iteratively (Mikola-
jczyk and Schmid, 2004), explicitly computing global syn-
thetic warps of the image (Morel and Yu, 2009), but also
by implicitly defining the keypoint filter response as a ten-
sor (Zhang and Sun, 2020). This geometric information
characterizes the region around the keypoint and is used
to generate the local image patch according to a reference
system upon which to compute the associated keypoint de-
scriptor. Recent state-of-the-art solutions based on deep
learning such as AffNet (Mishkin et al., 2018) only require
to provide the keypoint scale and location to get affine-
normalized patches.

Fast and efficient keypoint extraction may be required
by real-time applications on when processing a huge
amount of images. One of the two main approaches in
this sense is to discretize the kernel to allow a fast compu-
tation of the filter response thanks to the integral images.
This solution was originally employed by the Speeded-Up
Robust Feature (SURF) detector (Bay et al., 2008) as al-
ternative to SIFT. The other solution is to characterize the
keypoint according to a comparison of the keypoint central
pixel with respect to the other pixels in the local window.
The Features from Accelerated Segment Test (FAST) de-
tector (Rosten et al., 2010) is maybe the most known so-
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lution in this sense. In addition, FAST makes use of de-
cision trees to further speed-up the computation. Worth
to be mentioned among the handcrafted keypoint detector
is the Maximally Stable Extremal Region (MSER) detec-
tor (Matas et al., 2002), which extracts blob-like structures
that remain almost stable in a region growing process.

With the partial exception of FAST, machine learning
has intervened into the keypoint detector design only re-
cently. After some initial attempts (Verdie et al., 2015),
excluding the deep Key.Net detector (Barroso-Laguna
et al., 2019) which employs both handcrafted and learned
filter layers, deep detectors only appeared as components
of end-to-end image matching architectures. The struc-
ture of deep detectors generally combine in order convo-
lutional and max pooling layers followed by non-linear ac-
tivation functions, which strongly resemble the structure
of filter-based handcrafted detectors, with respectively a
filter definition, the local maxima selection of its response
and a thresholding on them. The Learned Invariant Fea-
ture Transform (LIFT) network (Yi et al., 2016) is the first
example of a complete end-to-end deep image matching ar-
chitecture. Due to its complexity, LIFT cannot be trained
as a whole from scratch and the training process requires
handcrafted keypoints as bootstrap. An alternative solu-
tion was proposed in SuperPoint (DeTone et al., 2018),
where the training process becomes self-supervised thanks
to a pre-training phase with synthetic images and the ho-
mographic adaptation. Unlike LIFT which is patch-based,
SuperPoint relies on a fully convolutional network to pro-
cess the whole image as input. The Detect-and-Describe
(D2-Net, Dusmanu et al. (2019)) and the Describe-to-
Detect (D2D, Tian et al. (2020)) networks are other end-
to-end local feature architectures, which operate in a dif-
ferent way to the standard computational flow where it is
the descriptor that must be adapted to the keypoint detec-
tor. Specifically, D2-Net defines dense feature maps that
simultaneously serve to derive the keypoints and their de-
scriptors, while in D2D keypoints must be adapted to the
information content of the descriptors. The DIScrete Key-
points (DISK) network (Tyszkiewicz et al., 2020) leverages
the principles of reinforcement learning to ease the com-
plexity of the end-to-end training caused by the sparse-
ness of the keypoints and achieved state-of-the-art results.
More recently, the integration of the keypoint spatial con-
straints into the network design has greatly improved the
final matching output. This has been done implementing
attentional graph neural networks in SuperGlue (Sarlin
et al., 2019), using coarse-to-fine schemas with the Local
Feature TRasformer (LoFTR, Sun et al. (2021)), or con-
sidering dense descriptor approaches not employing any
sort of keypoints (Truong et al., 2021).

3. HarrisZ+

3.1. From HarrisZ
The original HarrisZ (Bellavia et al., 2011) extracts cor-

ners from an image, represented as a matrix I ∈ R
m×n,

at different scales of the Gaussian scale-space. Defining

the horizontal and vertical gradient derivatives of I as
the image convolution with the central difference kernel
K = [−1 0 1], i.e.

Ix = I ∗ K, and Iy = I ∗ K⊤ (1)

where ∗ indicates the convolution, the scale-space deriva-
tives are defined as (Mikolajczyk and Schmid, 2004)

Iσ,x = Gσ ∗ Ix and Iσ,y = Gσ ∗ Iy (2)

where σ denotes the differentiation scale which identifies
the current working scale and Gσ is a Gaussian kernel with
mean zero and standard deviation σ. Unlike the standard
Harris corner detector (Harris and Stephens, 1988), before
computing the autocorrelation matrix both the scale-space
derivatives get enhanced by a pixel-wise multiplication ac-
cording to a smoothed raw edge mask Mσ

Eσ,x = Iσ,x Mσ and Eσ,y = Iσ,y Mσ (3)

where Mσ is computed from the gradient magnitude

Iσ,m =
(

I2
σ,x + I2

σ,y

)
1
2 (4)

by globally threshold on the mean Iσ,m computed on the
whole Iσ,m, i.e.

Mσ = Gσ ∗ V
(

Iσ,m > Iσ,m
)

(5)

whereV(·) is the indicator function. The enhanced deriva-
tives decrease the noise while strengthening the edges ac-
cording to the working scale σ, providing a sort of non-
linear scale-space. The autocorrelation matrix at the pixel
x is then computed as

µσ(x) =

[

Gsσ ∗ E2
σ,x(x) Gsσ ∗ Eσ,x(x) Eσ,y(x)

Gsσ ∗ Eσ,x(x) Eσ,y(x) Gsσ ∗ E2
σ,y(x)

]

(6)

where sσ defines the integration scale, i.e. the window
size of the filter, on the basis of the differentiation scale
σ and the constant s = 2

1
2 . Actually, in the computation

of the corner filter response Hσ, only the determinant Dσ
and the trace Tσ of µσ are involved, respectively equal to
the product and the sum of the eigenvalues of µσ. These
can be directly computed by simple pixel-wise operations
on Gaussian-smoothed maps as

Dσ = (Gsσ ∗ E2
σ,x)(Gsσ ∗ E2

σ,y) − (Gsσ ∗ (Eσ,xEσ,y))2 (7)
Tσ = (Gsσ ∗ E2

σ,x) + (Gsσ ∗ E2
σ,y) (8)

In the original definition given by Harris and Stephens, the
corner filter response is given by

H̃σ = Dσ − c T 2
σ (9)

where c is a user-given coefficient. The HarrisZ filter re-
sponse Hσ replaces c with an implicit adaptive reformu-
lation according to the z-score normalization Z(·) acting
globally on the whole image

Hσ = Z(Dσ) −Z(T 2
σ) (10)
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where
Z(Q) =

Q − Q

ςQ

(11)

being Q a generic image with mean Q and standard devia-
tion ςQ. According to the statistical properties of Hσ con-
sidering the whole input image I, a pixel x can be roughly
classified as a flat region if Hσ(x) is almost 0, or otherwise
as an edge or as a corner if Hσ(x) is respectively lower or
higher than 0. Moreover, a corner must lie onto the edge
mask Mσ. These two conditions can be coded as the binary
mask Cσ

Cσ = V(Hσ > 0)V(Mσ > 0.31) (12)
where multiplication is intended pixel-wise and the 0.31
value is introduced to take into account the current scale
in the binarization of Mσ, whose formal derivation can be
found in the original manuscript. The binary mask Cσ
provides the initial set of corner candidates according to
the input image instead of requiring a user-defined thresh-
old which generally needs to be adjusted according to the
input, as happens for the original Harris detector. Cσ pro-
vides a sort of implicit adaptive contrast enhancement of
the input image since both Hσ and Mσ rely on global statis-
tics for their definitions. Note that recent state-of-the-art
deep architectures use masks to filter keypoints with the
aim of removing disturbing elements of the scene such as
sky or people2.

Finally, corners corresponding to Cσ are selected so that
only local maxima on Hσ will survive. Differently from the
standard multi-scale approach employed for instance in the
Harris-affine detector, where the convolution kernels are
maintained fixed while the image is down-scaled, HarrisZ
keeps the input image size fixed while increasing the kernel
size, as for SURF (Bay et al., 2008), in order to increase
the detector accuracy. The final set of keypoints for the
scale σ is selected by sorting first the Cσ pixel locations
according to the decreasing values of Hσ and then, in or-
der, greedily removing a candidate keypoint if its distance
from the already selected keypoints is less than ⌈3σ⌉. This
strategy can resemble in some aspect the Adaptive Non-
Maximal Suppression (ANMS, Brown et al. (2005)).

Keypoint localization precision is then increased with
parabolic sub-pixel precision on Hσ. The entire process is
repeated for different scales

σ ∈ {2 i
2 : 3 ≤ i ≤ 8} (13)

Corners are filtered one last time according to the ratio
of the corresponding autocorrelation matrix eigenvalues,
which must be higher than 0.75 to further exclude acci-
dental detected edges. Finally, corners are considered al-
together among the different scales and sorted first by the
decreasing scale values index i and then by Hσ if the max-
imum number of allowed output keypoints is exceeded.

3.2. To HarrisZ+

HarrisZ+ differs from the original HarrisZ by the fine
tuning of the parameters in combination with fine imple-

mentation changes: the devil is in the details. These up-
dates are strongly related to the advances introduced in
the successive steps of the matching pipeline, each one
leading to state-of-the-art improvements. In particular:

i AffNet (Mishkin et al., 2018) provides a better patch
normalization than the canonical one of SIFT, which
gives only the scale4, and it also performs better
with respect to the affine transformation estimated by
the autocorrelation matrix (Mikolajczyk and Schmid,
2004).

ii The last version of HardNet (Pultar, 2020) provides a
more discriminant and robust keypoint descriptor than
SIFT.

iii Blob matching strategy with the inclusion of spa-
tial constraints based on the Delaunay Triangulation
Matching (DTM, Bellavia (2022)) retains more cor-
rect matches while discarding wrong matches better
than the simple Nearest Neighbour Ratio (NNR) strat-
egy (Lowe, 2004).

iv Filtering matches by multiple local RANSAC has
proven to be useful in removing wrong matches with
the Adaptive Locally-Affine Matching (AdaLAM, Cav-
alli et al. (2020)).

v The Degenerate SAmple Consensus (Degen-
SAC, (Chum et al., 2005)) checks for degenerate
model configurations in RANSAC and obtains better
results than the standalone RANSAC.

Furthermore, the computational power and memory avail-
ability of recent hardware greatly increased in the last
decade. On this basis, HarrisZ+ adds incrementally the
following updates and upgrades with respect to HarrisZ:

1. In the original HarrisZ, keypoints are scored first by
their decreasing scale indexes i and then by Hσ so as
to extract the most robust keypoint since higher scales
imply wider patch support regions. Nevertheless, the
keypoint localization accuracy at high scales degrades.
The potential loss in the discriminative power of the
local keypoint can be compensated by the choice of
a better keypoint descriptor, so HarrisZ+ scores key-
points first by Hσ and then by the decreasing scale in-
dex i. Furthermore, the First Geometric Inconsistent
Nearest Neighbor (FGINN, Mishkin et al. (2015)) is
employed instead of NNR for matching, since FGINN
can handle better Jin et al. (2020) than NNR matches
in case of spatially close keypoints, which are pro-
moted by the new keypoint ranking. Specifically, if
a keypoint k1 on an image I1 matches with a key-
point k2 on the other image I2, this means that their
descriptor distance is the minimum d among the dis-
tances of remaining keypoints in I2 with k1. In order
to filter out unreliable matches, NNR normalizes d by
the minimum distance d′ between k1 and the remain-
ing keypoints in I2 excluding k2 and thresholds this

4patch orientation is not taken into account since only almost
aligned images are considered, see Sec.4
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ratio at a value typically in [0.8, 0.95]. This greatly
increases precision among the tentative matches, but
often reduces recall by filtering out correct matches.
FGINN restricts the minimum d′ only to keypoints far
more than 10 px with respect to k2, so closely detected
points do not hurt each others.

2. For ranking keypoints in the case where a constraint
on their maximum number has been imposed, a strat-
egy inspired by the greedy local maxima selection of
Sec. 3.1 is employed to better distribute the corners
over the images, avoiding image regions with clusters
of keypoints which can reasonably be associated to
the same true corners. If the input image is of size
m × n px and a constraint of having no more than k

keypoints is imposed, the minimum required distance
q between two keypoints is set as the diameter of a
circle with area mn

k/2
, i.e.

q = (23mn)
1
2 /πk (14)

Keypoints are then sorted as indicated above, and
the greedy local maxima selection using q as distance
threshold is performed. If less than k keypoints sur-
vive, the process is repeated again on the discarded
keypoints. Notice that only roughly k

2
keypoints are

expected to be selected in the first iteration, so it
is more likely that in the second iteration some key-
points close to those found in the first iteration will
be chosen. According to preliminary evaluations, this
strategy leads to better matching results, probably
due to the fact of allowing to some extent closer key-
point, which generally have some variation within
their descriptors, introduces a further chance to match
the right descriptors.

3. The scale index i for σ in Eq. 13 is set to 0 ≤ i ≤ 4.
The original scale index range 3 ≤ i ≤ 8 was chosen
to limit to about 2000 keypoints or less the detector
output for common input image resolution (1024×768
px), but also to extract the most robust keypoints,
since higher scales imply wider patch support regions,
but at the expense of the keypoint localization accu-
racy. The new range can extract more than 8000 key-
points, which according to recent evaluations greatly
increase the matching power (Jin et al., 2020). More-
over, at finer scale the keypoint localization accuracy
is improved. Again, the potential loss in the of dis-
criminative power of the patches is compensated by
the choice a better keypoint descriptor.

4. For color images, the original HarrisZ detector uses
the common approach of performing a grayscale con-
version of the input using only the luminance chan-
nel (Gonzalez and Woods, 2008). Another popular
choice for graylevel conversion is the use of the value
channel of the HSV decomposition, corresponding to
take the maximum value over the RGB channels. This
further grayscale conversion can highlight different
image structures, including edges. According to this
observation, the edge mask Mσ in Eq. 5 is computed

from further enhanced gradient derivatives I⋆x and I⋆y
of I which take into account both the luminance L

and value V channels in the grayscale conversion of
the input image I. Specifically, the base horizontal
derivatives of L and V are computed as for Eq. 1

Lx = L ∗ K and Vx = V ∗ K (15)

so that the maximum absolute gradient value at each
pixel location x is chosen

I⋆x (x) =

{

Lx(x) if |Lx(x)| > |Vx(x)|
Vx(x) otherwise (16)

and likewise for I⋆y from the vertical derivatives Ly and
Vy. As shown in Fig. 1, I⋆x and I⋆y produce a better
edge mask Mσ but, according to our preliminary ex-
periments, they should not be used for computing the
filter response Hσ since they lead to worse results.

(a) I (b) M√
2

differences

Fig. 1: Computation of the mask Mσ for a color image I. Mask
portions retained in any case are in yellow, while mask regions con-
sidered only with or without the integration of the HSV value channel
are respectively in green and red (see text for details, best viewed in
color and zoomed in).

5. In the actual setup, keypoint patches at scale in-
dex i = 0 will get a support region of 25 × 25 px,
while HardNet descriptor input patches are 32 × 32

px (Mishchuk et al., 2017). Upsampling would be
required in this case, which can introduce noise and
spurious details affecting the descriptor robustness.
In order to avoid patch upsampling, the final scale as-
sociated to the keypoints extracted at i = 0 at the end
of the computation is replaced with the scale value as-
sociated to i = 1, which provides 35 × 35 px patches.
Patch downsampling does not negatively affect the
HardNet descriptor.

6. As keypoints for i = 0, 1 get the same final scale σ,
i.e. both scale indexes output 35×35 px patches, local
maxima on their union is considering following again
the greedy approach with a distance of 1 px. This
avoids almost-duplicated keypoint patches.

7. Before being processed as described in Sec. 3.1, the
input image for scales with indexes i = 0, 1 is doubled
using Lanczos interpolation so as the scale value σ
to reflect the image size adjustment. Extracted key-
points are then reported back to the original reference
system by halving the coordinate and scale values.
This modification aims at introducing sub-pixel qual-
ity details and hence to finer characterizing keypoints,
also under the observation that discretized Gaussian
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kernels with standard deviations around 1 pixel for
practical purposes provide basically the same convo-
lution output (σ = 1, 1.4 px for i = 0, 1). Besides
Lanczos, the bilinear and bicubic interpolations were
considered, but they provided worse results.

Figure 2 shows the differences between HarrisZ and
HarrisZ+, underling the relations between scales and lo-
calization accuracy, as well as the different distribution of
the corners on the image.

H
ar

ris
Z

H
ar

ris
Z+

Fig. 2: Comparison between HarrisZ and HarrisZ+ on example im-
ages, for each keypoint the ellipses associated to the affine transfor-
mation determined by µσ is shown in green (see text for details, best
viewed in color and zoomed in).

4. Evaluation
4.1. Setup

The evaluation relies on the IMC and SimLocMatch con-
tests.

The IMC benchmark (Jin et al., 2020) evaluates
HarrisZ+ as the upstream module of the image matching
pipeline steps i-v described in Sec. 3.2, considering the
camera pose error obtained on different scenes. In detail,
the error is defined in terms of the mean Average Accuracy
(mAA), which takes into account the error achieved at the
end of the matching pipeline after the stereo or multiview
camera pose estimation. mAA is computed by integrat-
ing the maximum angular error between the rotation and
translation vectors of the final estimated fundamental ma-
trix up to a threshold of 10◦ for each tested image pairs of
the scene. For this aim, reliable pseudo ground-truths ob-
tained by supersets of the image sequences are employed.
mAA correlates well with the matching score, but not with
repeatability, as the latter is sensitive to the number of
keypoints and does not generally agree with the desired
and expected results. The IMC benchmark datasets are
Phototourism, PragueParks and GoogleUrban, all made
up of real images and including validation and test sets.
Overall, the complexity from one dataset to another is
increasing: each Phototourism scene consists of a main
large-scale foreground object almost taken in frontal po-
sition, PragueParks includes small-scale scenes with mul-
tiple complex objects and higher camera pose variations,
and GoogleUrban presents challenge middle-scale urban
scene environments with a low level of image overlap. The

test sets of the IMC datasets contain respectively 10, 3
and 17 image sequences. Except GoogleUrban, where each
image sequence contains 64 or 75 images, other datasets
include 100 images for each sequence. Besides the three
Phototourism validation sequences employed to check and
adjust HarrisZ+ steps, the other validation sets were only
used to setup the best DegenSAC threshold and not to fine
tune any network parameter in the pipeline, unlike other
competitors. Lastly, following the IMC protocol, evalua-
tion is done by restricting the maximum number of allowed
keypoints to 2048 (2K) and 8000 (8K).

Differently from IMC, the SimLocMatch benchmark re-
lies on rendered images from synthetic scenes. In this way
not only the poses are available for validating the results,
but also the exact depth maps so that the evaluation can
be directly focused on matches instead of using indirectly
the camera pose estimation. The SimLocMatch dataset
includes seven scenes representing man-made outdoor and
indoor environments for a total of about 10000 images,
with different simulated lighting conditions. In the evalu-
ation, matches from roughly 80000 image pairs are checked
and, unlike IMC, these include negative image pairs, i.e.
with no matches between the images. As evaluation crite-
rion, the SimLocMatch benchmark considers the matching
score and the number of wrong matches per image pair,
respectively having higher and lower values in the case of
better methods.

Notice that both benchmarks only consider almost up-
right images, i.e. with no relevant relative rotation, which
is the most common user application scenario and rep-
resents the standard training data for deep architecture.
As rotation invariance decrease matchability, the former
is disabled for a fair comparison in all methods.

The Matlab code for both HarrisZ and HarrisZ+ cor-
ner detectors is freely available to download, as well as
the full image matching pipeline implementation5 which
makes use of the code available from the respective au-
thors or through the Kornia library (Riba et al., 2020).
4.2. Results

Table 1 shows the results on the IMC2021 Phototourism
validation set obtained by incrementally incorporating the
additions presented in Sec. 3.2 to get HarrisZ+ from Har-
risZ, the final HarrisZ+ corresponds to the last row. For
this evaluation, the successive steps of the pipeline con-
sider the AffNet for patch extraction, HardNet8 for com-
puting the descriptors and DegenSAC to estimate the pose
(listed as i, ii and v in Sec. 3.2). Spatial local filtering
(iii and iv) is excluded to better evaluate the keypoint
extraction process. This “ablation study” only considers
the stereo setup, excluding multiview pose optimization
by bundle adjustment with COLMAP (Schönberger and
Frahm, 2016). Each addition from HarrisZ can be applied
independently with moderate improvements, however only
when taken altogether the proposed changes get an over-
all significant gain. Specifically, according to the results,

5https://sites.google.com/view/fbellavia/
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better localized keypoints provided by lower scales (listed
as 1 and 3 in Sec. 3.2) are more critical in 8K setup. On
the contrary, when the keypoint budget is reduced to 2K,
providing an uniform distribution of keypoints among the
image (2) becomes relevant. The remaining extensions (4-
7) serve mainly as refinements and although each of them
only introduces relatively small improvements, the final
mAA increase globally of roughly 0.1 and 0.05 respectively
for the 2K and 8K setups.

Table 1: Incremental additions towards HarrisZ+ and corresponding
mAA@10◦ on IMC2021 Phototourism validation set. The # column
refers to the last change described in Sec. 3.1 sequentially included
from the original HarrisZ, the final HarrisZ+ corresponds to the last
row (see text for details)

Incremental additions # mAA@10◦

2K 8K
Original HarrisZ - 0.4619 0.5980
Hσ ranking + FGINN 1 0.4955 0.6209
Uniform distribution of corners 2 0.5335 0.6203
Scale indexes i = 0, ..., 4 3 0.5410 0.6422
Color image mask Mσ 4 0.5390 0.6515
Output scale σ adjustment for i = 0 5 0.5493 0.6520
Duplicates removal for i = 0, 1 6 0.5636 0.6522
Doubling input image size for i = 0, 1 7 0.5681 0.6565

Table 2 reports the full mAA results for both the stereo
and multiview setups of the last IMC2021, which adds two
further datasets with respect to the Phototourism one pre-
sented in the previous IMC2020. The HarrisZ+ pipeline
including also blob matching plus DTM spatial filtering
(iii in Sec. 3.2) with or without AdaLAM (iv) is evaluated.
All the pipelines include DegenSAC (v) as final step, fol-
lowed by bundle adjustment in case of the multiview setup.
The standard upright SIFT matching is included for ref-
erence, while the pipeline that replaces HarrisZ+ with the
unchained SIFT, i.e. the DoG detector, obtained results
among the state-of-the-art in the previous IMC2020 to-
gether with DISK. The remaining entries obtained the
best results in IMC2021 and employ in addition learned
matching strategies. Among the non-learned matching
approaches, the pipelines including HarrisZ+ provide the
best results on each dataset with the exception of Photo-
tourism, were results are almost aligned, with some advan-
tages of DISK on the 2K keypoint restriction. Among the
compared handcrafted keypoint detectors, HarrisZ+ ob-
tains the best results followed by DoG and then SIFT,
implying the goodness of the proposed approach, while
adding spatial filtering to the pipeline seems to only im-
prove the results in the multiview setup. Excluding the
GoogleUrban dataset and the Phototourism stereo setup,
when comparing the pipelines based on HarrisZ+ with re-
spect to the best ones relying on learned matching strate-
gies, results are quite comparable. The performance dif-
ferences are mostly noticeable within the most challenging
GoogleUrban dataset, and are probably due to the ability
of these architectures to employ, more or less implicitly,
a coarse-to-fine image matching strategy, missing in other
approaches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
number of wrong matches / number of correct matches

0.3

0.4

0.5

M
at

ch
in

g 
sc
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e

(SuperPoint + DISK) + SuperGlue
LoFTR
HarrisZ+  + AffNet + HardNet8
 + Blob + DTM + AdaLAM + DegenSAC
SuperPoint + SuperGlue + DegenSAC
COTR + DegenSAC
PDC-Net
HarrisZ+  + AffNet + HardNet8 + DegenSAC
DoG + AffNet + HardNet8 + AdaLAM + DegenSAC
COTR
D2-Net
Upright SIFT

Fig. 3: SimLocMatch evaluation results (see text for details, best
viewed in color and zoomed in).

Figure 3 reports the SimLocMatch results. HarrisZ+
and DoG are limited to 8K keypoints, while the COrre-
spondence TRansformer (COTR, Jiang et al. (2021)) and
the Probabilistic Dense Correspondence Network (PDC-
Net, Truong et al. (2021)) are included for complete-
ness. Confirming the IMC2021 results, HarriZ+ pipeline
completed with spatial local match filtering is the only
pipeline able to obtain results very close to those of the
approaches employing matching networks based on trans-
formers, i.e. LoFTR and (SuperPoint and Disk) + Super-
Glue. In particular, it can be noted that besides achieving
a high matching score, also the number of wrongly output
matches, normalized by the number of inliers for visual-
ization purposes, is low for HarrisZ+.

Concerning running times, non-optimized HarrisZ+
Matlab code requires on average one second to run on
a Intel i9-10900K system with 64 GB RAM and no GPU
in case of images with resolutions going from 640 × 480

to 1900 × 1200 px, which is roughly five times the origi-
nal HarrisZ runtime. The bottleneck is the doubled image
size for the first two scale indexes. Moreover, HarrisZ+
keypoint uniform ranking is a global process performed at
the end of the computation, which can strongly accentu-
ate the computational times in case of a high number of
candidate keypoints, as for high-textured images. Never-
theless, these running times are still reasonable for off-line
applications.

As final consideration, classical modular pipeline de-
sign, as that HarrisZ+ was designed for, can still of-
fer practical advantages with respect to modern end-to-
end deep design for specific applications in terms com-
putational cost or tuning. Adding rotation invariance
to the HarrisZ+ pipeline only requires to simply plug
OriNet (Mishkin et al., 2018) or similar modules before
AffNet, while both SuperGlue and LoFTR would require
retraining and maybe to add some layers. In any case
retrain of a whole end-to-end matching network needs a
more expensive system configuration than that mentioned
above (with the inclusion of a consumer-grade GPU). On
this system, HarrisZ+ pipeline was also tested to work with
high resolution images up to 9000× 6732 px, such those of
aerial photogrammetric surveys, while LoFTR was unable
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Table 2: mAA@10◦ results on IMC2021 (see text for details).

Method Phototourism PragueParks GoogleUrban Total
2K 8K 2K 8K 2K 8K 2K 8K

St
er

eo
HarrisZ+ + AffNet + HardNet8 0.4753 0.5578 0.6358 0.7368 0.3252 0.3567 0.4788 0.5504
+ Blob + DTM 0.4449 0.5515 0.6176 0.7387 0.2981 0.3343 0.4535 0.5415
+ Blob + DTM + AdaLAM 0.4369 0.5521 0.5918 0.7423 0.2963 0.3327 0.4417 0.5424
Upright SIFT 0.3827 0.5122 0.4136 0.5369 0.2542 0.2693 0.3501 0.4394
DoG + AffNet + HardNet8 n/a 0.5573 n/a 0.5977 n/a 0.3009 n/a 0.4853
DISK 0.5121 0.5583 0.4589 0.5622 0.2763 0.3295 0.4157 0.4833
LoFTR n/a 0.6090 n/a 0.7546 n/a 0.4060 n/a 0.5898
(SuperPoint and DISK) + SuperGlue n/a 0.6397 n/a 0.8070 n/a 0.4395 n/a 0.6285

M
ul

tiv
ie

w

HarrisZ+ + AffNet + HardNet8 0.6786 0.7367 0.4676 0.4729 0.1602 0.2025 0.4354 0.4707
+ Blob + DTM 0.7046 0.7606 0.4583 0.4843 0.1625 0.2060 0.4418 0.4836
+ Blob + DTM + AdaLAM 0.7132 0.7580 0.4618 0.4711 0.1521 0.2084 0.4423 0.4791
Upright SIFT 0.5545 0.6850 0.3608 0.4810 0.0520 0.0902 0.3224 0.4187
DoG + AffNet + HardNet8 n/a 0.7269 n/a 0.4670 n/a 0.1643 n/a 0.4527
DISK 0.7296 0.7445 0.4357 0.4590 0.1275 0.1833 0.4309 0.4623
LoFTR n/a 0.7610 n/a 0.4712 n/a 0.3023 n/a 0.5115
(SuperPoint and DISK) + SuperGlue n/a 0.7857 n/a 0.4988 n/a 0.3374 n/a 0.5406

to process 2000 × 1500 px input images on a consumer-
grade PC either on GPU or CPU.
5. Conclusions and future work

This paper presents HarrisZ+ corner detector as an
upgrade of HarrisZ to be employed with next-gen im-
age matching pipeline. By introducing several changes,
which by themselves only slightly affect the final output,
HarrisZ+ is able to achieve state-of-the-art results among
handcrafted keypoint detectors, providing the basis of
competitive image pipelines with respect to the recent end-
to-end deep architectures exploiting coarse-to-fine match-
ing strategies thorough transformers. The key idea that
guided the HarrisZ+ design is the need of a synergic op-
timization between the different modules of the pipeline
to globally improve the final results, so as to compensate
weakness and boost strength points of the whole pipeline.

It is also authors’ opinion that research on classical
matching methods is still appropriate and effective de-
spite of the overwhelming presence of deep methods. As
a further contribution of this paper, on one hand the re-
sults achieved through HarrisZ+ shows that there is still a
worthwhile margin of improvement in classic research di-
rection, and on the other hand the gained insight during
the development can be employed in turn to design better
deep networks as well as to provide more valid training
data.

Future work will includes the introduction of hand-
crafted a coarse-to-fine matching at the end of the pipeline
with further optimizations of HarrisZ+ to better adapt to
these changes and to improve the computational efficiency,
investigations about the possibility to apply HarrisZ+-like
selection to DoG keypoints and about using HarrisZ+ key-
points with deep matching architectures based on trans-
formers, such as SuperGlue.
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