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Abstract: Asthma is a chronic respiratory disease that can lead to exacerbations, defined as acute
episodes of worsening respiratory symptoms and lung function. Predicting the occurrence of these
exacerbations is an important goal in asthma management. The measurement of exhaled breath by
electronic nose (eNose) may allow for the monitoring of clinically unstable asthma and exacerbations.
However, data on its ability to perform this is lacking. We aimed to evaluate whether eNose could
identify patients that recently had asthma exacerbations. We performed a cross-sectional study,
measuring exhaled breath using the SpiroNose in adults with a physician-reported diagnosis of
asthma. Patients were randomly divided into a training (n = 252) and validation (n = 109) set. For
the analysis of eNose signals, principal component (PC) and linear discriminant analysis (LDA)
were performed. LDA, based on PC1-4, reliably discriminated between patients who had a recent
exacerbation from those who had not (training receiver operating characteristic (ROC)–area under
the curve (AUC) = 0.76,95% CI 0.69–0.82), (validation AUC = 0.76, 95% CI 0.64–0.87). Our study
showed that, exhaled breath analysis using eNose could accurately identify asthma patients who
recently had an exacerbation, and could indicate that asthma exacerbations have a specific exhaled
breath pattern detectable by eNose.

Keywords: exhaled breath; eNose; asthma; exacerbation

1. Introduction

Asthma is a common chronic disease that affects approximately 5% to 10% of the global
population with an increasing prevalence [1,2]. It is characterized by recurring respiratory
symptoms (e.g., wheeze, shortness of breath, chest tightness and cough) associated with
a variable and reversible airway inflammation [3]. Exacerbations, typically triggered by
external agents (e.g., viral airway infections, exposure to allergens, smoke, exercise or stress)
or poor adherence to medication [4,5], are acute episodes of worsening symptoms and lung
function. Depending on the severity, the management of asthma exacerbations requires an
increase of inhaler medication or a short-term course of additional oral corticosteroids [3,5].
They remain a key contributing factor to disease morbidity and increased health care
utilization, leading to significantly higher health care costs, decreased quality of life and in
severe cases, death [6–8]. The primary prevention of asthma exacerbations is therefore an
important treatment goal.

Considered now to be key in defining the severity of the disease, exacerbations and
their prevention is an important metric to measure the success of asthma treatments.
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Currently, biomarkers such as sputum eosinophils have shown some utility in monitoring
and assessing disease severity, but are not predictive, and are often complex and invasive [9].
Instead, past exacerbations remain the most important risk factor for future exacerbations
but can only indicate clinical instability [10]. Therefore, there remains an urgent need for
predictive biomarkers.

The analysis of metabolites in exhaled breath using an electronic nose (eNose) is a non-
invasive technique that shows promise. It detects patterns of volatile organic compounds
(VOCs) that may reflect (patho)physiological changes related to chronic airway inflamma-
tion [11]. Previous studies have shown its ability to discriminate between clinically stable
and unstable episodes of asthma, [12] and predict steroid responsiveness in patients [13].
Furthermore, eNose measurements were able to identify different phenotypes in patients
with severe asthma in a combined cohort of asthma and COPD patients [14,15], where they
also demonstrated an ability to detect recent exacerbations in COPD patients [14,15].

The analysis of breath profiles using a quick and non-invasive technique such as eNose,
may allow for the identification of asthma instability. However, to date, the supporting
data is limited. Consequently, assessing whether it is possible to detect a recent asthma
exacerbation using eNose would be an important first step in exploring its potential. We
hypothesized that asthma patients with a recent exacerbation display a different exhaled
breath profile compared to those without a recent exacerbation.

2. Results
2.1. Baseline Characteristics

In total 361 asthma patients were included in the analysis; 252 were randomly allo-
cated to the training dataset and 109 to the validation dataset. The number of patients
with exacerbations was 41 in the training set (16.3%) and 11 (10.1%) in the validation set.
Baseline patient characteristics of both the training and the validation dataset are shown in
Tables 1 and 2. Compared to patients without exacerbations, patients who had exacerba-
tions, reported an increased use of antibiotics for the worsening of respiratory symptoms
within the three months prior to eNose measurement (41.5% vs. 2.8%). In addition, mainte-
nance use of inhaled corticosteroids (ICS) was also higher in this group (90.2% vs. 70.1%).
Lung function values were similar across both groups, as was the percentage of patients
with atopy (70.1% in exacerbation group vs. 71.6% without exacerbation group). Other
clinical factors, such as reported asthma symptoms (based on the asthma control question-
naire (ACQ) score), age and BMI were also comparable. In the exacerbation group there
were no current smokers compared to 6.2% in the no exacerbation cohort, however the per-
centage of never-smokers was similar (63.4% and 69.7%), as was the number of pack-years
(4.8, IQR; 2.0–8.8 and 5.0, IQR; 2.0–8.0).

Table 1. Baseline characteristics of the training dataset.

Total Training
Dataset Exacerbation No Exacerbation

n 252 41 211

Age (years), mean (SD) 48.3 (18.1) 51.3 (16.1) 47.7 (18.5)

Gender, male (n, %), 89 (35.3) 9 (22.0) 80 (38.0)

BMI (kg/m2), mean (SD) 27.4 (6.5) 26.7 (5.0) 27.5 (6.8)

Smoking
(never/ex/current), n 173/65/13 26/15/0 147/50/13

Pack-years, median (IQR) 5.0 (2.0–8.0) 4.8 (2.0–8.8) 5.0 (2.0–8.0)

Exacerbations *, n (%) 41 (16.3) 41 (100) 0 (0)

Previous AB use #, n (%) 23 (9.1) 17 (41.5) 6 (2.8)
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Table 1. Cont.

Total Training
Dataset Exacerbation No Exacerbation

FEV1 as % of predicted,
mean (SD) 88.4 (22.0) 88.4 (25.0) 87.2 (20.9)

Post-bronchodilator FEV1
as % of predicted,

mean (SD)
90.1 (20.0) 88.0 (19.7) 92.7 (20.0)

FEV1/FVC as % of
predicted, mean (SD) 86.7 (15.4) 87.8 (14.1) 86.7 (15.6)

Post-bronchodilator
FEV1/FVC as % of

predicted, mean (SD)
89.1 (14.6) 86.9 (14.5) 90.9 (14.4)

Blood eosinophils
(cells·µL−1), median (IQR) 0.21 (0.09–0.42) 0.24 (0.11–0.47) 0.21 (0.09–0.42)

Blood neutrophils
(cells·µL−1), median (IQR) 4.8 (3.5–6.0) 5.5 (4.3–7.5) 4.5 (3.4–6.2)

FeNO (ppb), median (IQR) 25.5 (15.0–41.0) 28.0 (17.5–39.5) 22.0 (13.0–47.5)

ACQ score, mean (SD) 1.8 (1.4) 1.8 (1.4) 1.7 (1.4)

ACQ-score > 1.5 (n, %) 130 (51.6) 23 (56.1) 98 (46.4)

Allergy †, yes, n (%) 183 (72.6) 29 (70.1) 151 (71.6)

Use of ICS, yes, n (%) 213 (84.5) 37 (90.2) 176 (70.1)

* Defined as OCS for acute worsening of respiratory symptoms < 3 months prior measurement. # Defined
as antibiotics for acute worsening of respiratory symptoms < 3 months prior measurement. † Self-reported.
FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity, FeNO: fraction of exhaled nitric oxide,
AB: antibiotics, ACQ: asthma control questionnaire and ICS: inhaled corticosteroids.

Table 2. Baseline characteristics of the validation database.

Total Validation
Dataset Exacerbation No Exacerbation

n 109 11 98

Age (years), mean (SD) 48.2 (16.2) 55.7 (17.1) 47.3 (15.9)

Gender, male (n, %), 40 (36.7) 5 (45.5) 35 (35.7)

BMI (kg/m2), mean (SD) 28.3 (6.0) 29.5 (7.1) 28.1 (5.9)

Smoking
(never/ex/current), n 85/14/10 10/1/0 75/13/10

Pack-years, median (IQR) 4.4 (2.5–8.5) 5.0 (5.0–5.0) 4.3 (2.3–8.8)

Exacerbations *, n (%) 11 (10.1) 11 (100) 0 (0)

Previous AB use #, n (%) 5 (4.6) 3 (27.3) 2 (2.0)

FEV1 as % of predicted,
mean (SD) 86.4 (21.0) 78.4 (25.7) 87.4 (20.3)

Post-bronchodilator FEV1
as % of predicted,

mean (SD)
89.8 (17.6) 81.4 (19.7) 91.2 (17.0)

FEV1/FVC as % of
predicted, mean (SD) 85.1 (14.9) 74.5 (24.0) 86.5 (13.0)

Post-bronchodilator
FEV1/FVC as % of

predicted, mean (SD)
87.0 (14.5) 75.5 (20.2) 88.9 (12.6)
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Table 2. Cont.

Total Training
Dataset Exacerbation No Exacerbation

Blood eosinophils
(cells·µL−1), median (IQR) 0.22 (0.10–0.40) 0.28 (0.12–0.47) 0.21 (0.10–0.40)

Blood neutrophils
(cells·µL−1), median (IQR) 4.6 (3.6–6.1) 5.6 (4.5–7.4) 4.5 (3.6–5.8)

FeNO (ppb), median (IQR) 25.0 (15.3–39.0) 34.5 (24.0–39.0) 24.5 (14.8–39.0)

ACQ score, mean (SD) 1.8 (1.2) 2.3 (1.2) 1.8 (1.2)

ACQ-score > 1.5 (n, %) 65 (59.6) 9 (81.8) 56 (57.1)

Allergy †, yes, n (%) 76 (69.7) 9 (81.8) 67 (68.4)

Use of ICS, yes, n (%) 95 (87.2) 10 (90.9) 85 (86.7)

* Defined as OCS for acute worsening of respiratory symptoms < 3 months prior measurement. # Defined
as antibiotics for acute worsening of respiratory symptoms < 3 months prior measurement. † Self-reported.
FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity, FeNO: fraction of exhaled nitric oxide,
AB: antibiotics, ACQ: asthma control questionnaire and ICS: inhaled corticosteroids.

2.2. Discriminant Analysis

Linear discriminant analysis (LDA) based on these relevant principal components
(PC) showed an ability for eNose sensor signals to discriminate between patients who had
had an exacerbation from those who had not (ROC-AUC = 0.78 (95%-CI: 0.72–0.84)). After
cross-validation, this resulted in a ROC-AUC = 0.76 (95%-CI: 0.69–0.82). A similar accuracy
was observed in the validation dataset (ROC-AUC = 0.76 (95%-CI: 0.64–0.87)), See Figure 1.
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2.3. Sensitivity Analysis

The ROC analysis was repeated while omitting patients with: (1) a recent history of
antibiotic use for acute worsening of respiratory symptoms; (2) current smokers at the time
of measuring or (3) those who did not use inhaled corticosteroids as maintenance treatment.
Similar results were seen for the discrimination in both the training and validation datasets
(ROC-AUC = 0.81, when omitting current smokers training ROC-AUC = 0.77 and when
only including patients on maintenance ICS training ROC-AUC = 0.83). All AUC results
can be found in Table 3.
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Table 3. Sensitivity analysis of the ability to discriminate between recent exacerbation and no-exacerbation in different
subpopulation.

Training AUC Cross-Validated AUC Validation AUC

All asthma patients (n = 361) 0.78 (0.72–0.84) 0.76 (0.70–0.83) 0.76 (0.64–0.87)

Without antibiotics users (n = 333) * 0.81 (0.75–0.87) 0.79 (0.72–0.85) 0.81 (0.70–0.92)

Without current smokers (n = 338) 0.77 (0.71–0.84) 0.75 (0.68–0.82) 0.74 (0.60–0.87)

Only with patients who use
maintenance ICS (n = 308) 0.83 (0.78–0.89) 0.81 (0.76–0.87) 0.84 (0.75–0.93)

* Defined as use of antibiotics for acute worsening of respiratory symptoms < 3 months prior measurement. AUC: area under the curve and
ICS: inhaled corticosteroids. Data is shown as AUC with 95% confidence interval.

3. Discussion

This study showed that the measurement of exhaled breath patterns by eNose could
accurately discriminate between asthma patients with a recent exacerbation and those
without. These results were validated and confirmed in a validation set. A sensitivity
analysis showed that despite recent use of antibiotics, smoking history or ICS use, the
discriminative accuracy was preserved. Our results suggest that there is a difference in
exhaled metabolites between asthma patients who have had a recent exacerbation in the
previous 3 months and those who have not. This might be of interest for the monitoring
of disease stability. To our knowledge, this is the first study that proved the ability of
exhaled breath patterns measured with eNose to detect recent asthma exacerbations in
adult patients.

In several studies, the predictive properties of exhaled VOCs associated with asthma
exacerbations have been explored in children by analyzing gas chromatography coupled
with mass spectrometry (GC-MS) data [16–18]. A classification model consisting of seven
VOCs (three aldehydes, one cyclic alkane, one ketone, one aromatic VOC and one uniden-
tified VOC) was able to correctly predict up to 88% of asthma exacerbations, but the
accuracy decreased when the sample was collected further from when the exacerbation
first occurred [16]. In our study, exacerbations were defined based on the recent OCS
use for acute worsening in respiratory symptoms within the three months prior to eNose
measurement. However, it remains unclear what the correct timing on performing such
measurements should be and is likely that that VOC patterns during asthma exacerbations
vary at different time points. Moreover, our results are in line and strengthen a previous
study, in which breath profiles measured by eNose correctly classified clinically stable and
unstable episodes of asthma where unstable asthma was defined according to inhaled
steroid withdrawal [19].

A recent study, looking into the differences in exhaled breath patterns after a viral
challenge in asthma patients, found a detectable change in fluctuations in eNose signals
after viral infection. These changes appeared to commence before the expression of viral
symptoms [20]. Since viral infections can easily be one of the triggers for asthma exac-
erbations, this might suggest a potential role of exhaled breath analysis in prediction of
exacerbations.

The, hereby, presented results are in line with a similar study conducted by our group
in COPD patients. They demonstrated that eNose analysis was able to discriminate between
COPD patients who had experienced an exacerbation and those who had not. However,
the overall accuracy was better for COPD patients compared to asthma patients presented
in the current study (ROC-AUC in validation dataset = 0.98 vs. 0.76, respectively) [19].

These differences maybe attributable to several reasons; firstly, VOCs and consequently
exhaled breath patterns measured by eNose, could be different in asthma exacerbations
compared to COPD exacerbations due different pathologic triggers. It has been demon-
strated that allergen and viral exposure can trigger asthma exacerbations, while, bacterial
infections play less of a role [21]. For instance, the use of adjunctive antimicrobial treatment
for asthma exacerbations has been shown to lead to worse outcomes (longer hospitalization,
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increased hospital costs and risk of treatment failure) when compared to patients treated
only with when OCS [22]. Consequently, only COPD guidelines mention bacterial causes
and relate them to an increase in neutro- and eosinophilic inflammation [23,24]. Previous
eNose-studies suggest that the differences detected using eNose may reflect specific in-
flammatory processes related to different phenotypes in chronic airways diseases [15]. In
particular, exacerbations in asthma and COPD have been related to eosinophilia whereas
neutrophilia is more often only associated with COPD [25]. Furthermore, a previous study
found different eNose-driven clusters in asthma patients with differences according to
neutrophilia, eosinophilia and OCS use [26].

Another reason for the differences in accuracy maybe be related to the influence of
smoking exposure on exhaled breath patterns. Oxidative stress induced by exposure to
smoking is an important risk-factor for disease pathogenesis in COPD patients [27]. Asthma
patients with a smoking history of ≥10 pack-years were excluded from our analysis and
the proportion of non-smokers in our study is much higher than that of current smokers,
thus, in our asthma population the influence of oxidative stress is expected to be much
smaller. However, the sensitivity analyses in which current smokers were excluded did
not show large differences in accuracy. This supports previous results where smoking was
found not to be a confounding factor that affects eNose results [28].

In our study we found a differences in recent exposure to antibiotics for the treatment
of acute respiratory symptoms between the exacerbation and no-exacerbation groups.
Respiratory infections impact metabolism and exhaled breath VOCs that can result from
systemic effects [13], thus residual effects might be reflected in the eNose signals. VOCs
could also be a result of drug metabolism and reflect antibiotic drugs or OCS use, although
a clear distinction between exacerbations with or without respiratory infections is difficult
to quantify. Additionally, it has been suggested that eNose analysis could predict systemic
steroid responsiveness [29], therefore steroid use is expected to influence eNose signals.
Drug monitoring via exhaled breath is an emerging field [30], future research should focus
on disentangling the exacerbation itself from a possible residual medication effect.

The strengths of the current study are the relatively large sample size and the heteroge-
neous population of the asthma cohort, which has been recruited from centers of primary,
secondary and tertiary care, reflecting a real-life asthma population. The use of (internal-)
cross-validation and splitting our dataset to allow validation of the training discriminant
model in a separate dataset, support the validity of the obtained results. Furthermore,
current results are in line with our previous similar study in a COPD population, however
with lower accuracy.

This study has several limitations; defining exacerbations is challenging. It is possible
that the definition used for exacerbations in our study (current or previous treatment
with OCS for acute worsening of respiratory symptoms) is not really representative of all
patients with exacerbations even though, in most clinical trials, exacerbations are defined
as a significant deterioration of asthma signaled by the need for a systemic corticosteroid
course (≥3 days) and/or hospitalization for asthma and/or emergency room attendance for
asthma [31–33]. In our data, we do not have information regarding the use of short acting
bronchodilators as rescue medication and/or the necessity of hospital admissions, as stated
in international guidelines [4], therefore we used a similar approach in defining asthma
exacerbations as has been used in several previous studies [34]. Misclassification may have
occurred, most probably leading to underestimation of the outcome. In addition, we were
not able to exclude whether some of the patients received OCS for reasons other than an
asthma exacerbation. However, Pont et al. [35] determined the reliability of identifying
asthma exacerbation episodes based on asthma medications in the general practice, in
particular, one of the definitions of asthma exacerbation was related to the assumption of
OCS use for a short-time period.

Another limitation of our study is related to the lack of information regarding the
timing of the exacerbations. In the current study patients only reported whether they used
OCS for worsening of respiratory symptoms within 3 months prior measurement (yes/no)
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and information on specific timing was not available. We know from previous studies [36],
that past exacerbations, in particular, those that require OCS, are predictors for future
exacerbations. Therefore, exhaled VOCs in regard to the time of the exacerbation should
be topic of future (longitudinal) studies. Additionally, our study information about the
occurrence of exacerbations was patient-reported. Therefore, it could have been subjected
to recall bias. However, considering that our definition of exacerbation was within a short
time frame (< 3 months) and the potential severity of symptoms often associated with an
exacerbation, it is likely that recall bias was limited. Furthermore, previous studies used a
similar, self-reported definition of exacerbation [36,37].

A further limitation is that eNose identifies breath patterns, therefore a mixture of
VOCs, rather than specific volatile compounds. Nonetheless, this makes eNose breath
profiles identifiable as a pattern of biomarkers mostly focused on giving a particular proba-
bility of the presence/absence of a clinical condition [38]. Specific VOCs can be analyzed
with methods such as gas chromatography mass spectrometry (GC-MS), which can be
useful for identifying specific target VOCs and linking them to possible pathophysiological
pathways [39]. However, this technique is significantly more labor-intensive and requires
highly trained personnel.

Our findings support future studies with more emphasis on the timing of the ex-
acerbations and the relation of fluctuations of exhaled VOCs to (in)stability of asthma
patients. Differences in, for example, diet and comorbidities could influence exhaled breath
composition, and due to these (probably still unknown) confounding signals it will be
difficult to achieve a high enough accuracy in diagnosing. Patterns that diverge from
baseline measurements could indicate instability and with this study we show that eNose
measurements are indeed able to detect possible changes related to exacerbations. eNose
is a non-invasive and easy to use technique, that could be beneficial for future patient
monitoring. It could be used for assessing treatment efficacy or as an early-warning for the
onset of exacerbations, enabling timely treatment. Furthermore, as past exacerbations are a
risk factor for future exacerbations in patients with asthma, our results suggest a role in
identifying patients at risk of future exacerbations and optimizing treatment.

4. Materials and Methods
4.1. Population

This was an exploratory cross-sectional study and data was retrieved between De-
cember 2015 and January 2017 from the multicenter BreathCloud database, which contains
exhaled breath and clinical data of patients with respiratory diseases (asthma, COPD,
lung cancer) and healthy controls [15,19,28,40,41]. BreathCloud data was collected during
routine outpatient visits in primary, secondary and tertiary care centers. The medical
ethical review board of Amsterdam UMC, location AMC provided a waiver for ethical
approval due to the non-invasive nature of the measurement, nonetheless written informed
consent was obtained from each participant before enrolment. In this study we included
adult (>18 years) participants with a physician diagnosis of asthma. Participants with a
diagnosis of COPD and/or lung cancer, smokers or ex-smokers with ≥10 packyears and
participants who were currently using antibiotics for acute respiratory symptoms were
excluded before analysis.

4.2. Outcomes

Recent exacerbations were defined as an acute worsening of respiratory symptoms,
which required the use of oral corticosteroids anytime during 3 months prior to or during
the eNose measurement [34].

4.3. Exhaled Breath Analysis

Volatile organic compounds in exhaled breath were measured with the SpiroNose
(Amsterdam UMC, Amsterdam, the Netherlands). This eNose uses different cross-reactive
metal oxide semiconducting sensors (MOS), grouped in eight arrays of three or four sensors;
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four arrays are used for measuring exhaled breath and four arrays are used to measure
ambient air VOCs. The sensor material, mostly composed of Tin dioxide (SnO2), is printed
on electrodes using an alumina substrate and those sensors (Figaro Engineering Inc., Osaka,
Japan) have been selected for their good stability and performance [42]. In total seven dif-
ferent sensors are used, and they have (cross-reactive) high sensitivity to VOCs, ammonia,
H2S, butane, propane, methane, hydrogen, ethanol, trimethylamine, methylmercaptan
and solvent vapors in the 1–10.000 ppm range. The sensors are heated and acquire semi-
conducting characteristics as a result. Signals are derived from changes in resistance (and
therefore conductance) in the sensors due to interactions with oxidizing/reducing gases.

The study (exhalation) maneuver existed of five tidal breaths followed by a single full
inspiration, a 5 s breath hold and a slow maximal expiration to residual volume. Sensor
data was captured in real-time and directly stored on the BreathCloud server (Figure 2).
Pre-processing of sensor signal data has been described previously [14] and consisted
of advanced signal processing where the Eigen frequencies were removed, the signals
were passed through a Butterworth filter and linear trends were removed. Ambient air
correction was based on cross correlation and alveolar gradient calculation and quality
control of sensor stability was verified monthly by using a test gas (Lindegas). Sensor
values were normalized to the most stable sensor (sensor 2) and the subsequent sensor
peak value and the ratio between sensor peak and breath-hold trough (13 variables in total)
were used for further (statistical) analysis.
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4.4. Statistical Analysis

Statistical analyses was performed in R studio (Rstudio Inc., Boston, MA, USA) using R
version 4.0.5 (The R Foundation for Statistical Computing, Vienna, Austria, with packages:
tidyverse, caret, pROC and MASS). Between groups comparison used independent t-tests,
Wilcoxon rank-sum tests, and Pearson’s chi-squared tests as appropriate with a significance
level p < 0.05. Multiple group comparisons (>2 groups) used one-way ANOVA, Kruskall–
Wallis or Chi-squared tests as appropriate.

The included asthma patients were divided into a training (70%) and validation
(30%) dataset, similar to a previous similar study [19]. To cope with cross-reactivity of the
sensors, and thus multicollinearity of the sensor signals, the sensor signals in the training
dataset were reconstructed into their principal components (PC). These PCs, if their Eigen
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value was ≥1.0 [43] were then used in a linear discriminant analysis (LDA). The resulting
discriminant scores were used to create receiver-operating-characteristic (ROC) curves
and calculate the area under the curve (AUC) to assess the ability to discriminate between
patients who exacerbated and those who did not. Leave-one-out cross-validation verified
internal validity and AUC confidence intervals were calculated with 10,000 bootstrap
iterations. The external validity was assessed with the validation dataset and used the
rotation matrix standardization parameters of the training PCs to calculate validation
sensor signal principal components. The training LDA model was then used to calculate
discriminant scores based on validation PCs and these scores were subsequently used to
create ROC curves and calculate AUCs.

4.5. Sensitivity Analysis

Variables that differ between the exacerbation and no exacerbation groups and are
expected to have a potential influence on eNose sensor signals were used in extra sensitivity
analysis. To assess the effect of these variables on the outcome, the ROC analyses were
repeated while omitting study participants with these characteristics from the analysis.

5. Conclusions

Exhaled breath analysis by eNose can accurately discriminate between asthma patients
who have experienced an exacerbation and were treated with OCS during the previous
3 months and those who did not. The current study suggests that asthma patients during
or after a recent exacerbation have a specific exhaled molecular ‘breathprint’ that can be
detected, thus suggesting a role in monitoring disease control and (in)stability for these
patients.
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