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The Lr-Variational Integral

Francesco Tulone and Paul Musial

Abstract. We define the Lr-variational integral and we prove that it is
equivalent to the HKr-integral defined in 2004 by P. Musial and Y.
Sagher in the Studia Mathematica paper The Lr-Henstock–Kurzweil
integral. We prove also the continuity of Lr-variation function.
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1. History and Aim

At the beginning of the 1900s, Denjoy and Perron developed descriptive pro-
cesses for recovering a function from its derivative that solved known prob-
lems of classical Riemann and Lebesgue integrals. Many years later, an equiv-
alent constructive Riemann-type integral process was developed by Henstock
and Kurzweil. Both integration processes were generalized quite recently for
many different spaces (see [1,11] and [12]) solving the problem of recovering
Fourier coefficients in Haar, Walsh and Vilenkin systems (see [9,10,14,15]
and [16]). Many properties of these non-absolute integrals were investigated,
for example, the Hake property was studied with an abstract differential basis
in a topological spaces, in terms of variational measure and in Riesz spaces
(see [13,17] and [2]).

To establish pointwise estimates for solutions of elliptic partial differen-
tial equations, in 1961 Calderon and Zygmund introduced the Lr-derivative
(see [3]) and in 1968 L. Gordon described a Perron-type integral, the Pr-
integral, that recovers a function from its Lr-derivative (see [4]). In 2004,
Musial and Sagher extended the Pr-integral to the Lr-Henstock–Kurzweil in-
tegral, the HKr-integral, that recovers also a function from its Lr-derivative
(see [6]). Quite recently the integration by parts formula for the HKr-integral
was investigated by Musial and Tulone (see [7]) and the same authors de-
scribed a norm on the space of HKr-integrable functions and studied the
dual and completion of this space (see [8]).
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It is well known that the Henstock–Kurzweil integral is equivalent to
the variational integral (see [5]). In this paper, we define the Lr-variational
integral and we prove that it is equivalent to the HKr-integral.

2. Introduction

We will assume that r ≥ 1 and we will consider the case of the closed interval
[a, b].

Definition 2.1. A function f : [a, b] → R is Lr-variational integrable on [a, b]
if there exists a function F ∈ Lr [a, b] with the following property: for each
ε > 0 there exist a non-decreasing function φ defined on [a, b] and a gauge δ,
i.e., a positive function, defined on [a, b] such that φ (b) − φ (a) < ε and for
any δ-fine tagged interval (x, [c, d]), where [c, d] ⊆ [a, b] ,(

1
d − c

∫ d

c

|F (y) − F (x) − f (x) (y − x)|r dy

)1/r

< φ (d) − φ (c) . (2.1)

We will use the following definition given in [6]

Definition 2.2. A function f : [a, b] → R is Lr-Henstock–Kurzweil integrable
on [a, b] if there exists a function F ∈ Lr [a, b] so that for any ε > 0 there
exists a gauge δ so that for any finite collection of nonoverlapping δ-fine
tagged intervals

Q = {(xi, [ci, di]) , 1 ≤ i ≤ q} ,

we have
q∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f (xi) (y − xi)|r dy

)1/r

< ε.

By Theorem 5 in [6], the function F in the Definition 2.2 is unique up
to an additive constant, so we can state that for each x ∈ (a, b]

F (x) = (HKr)
∫ x

a

f.

We need the following definition in a later theorem.

Definition 2.3. Let F ∈ Lr [a, b]. For x ∈ [a, b] we say that F is Lr-continuous
at x if

lim
h→0

(
1
2h

∫ x+h

x−h

|F (y) − F (x)|r dy

)1/r

= 0.

If F is Lr-continuous for all x ∈ E, we say that F is Lr-continuous on
E.

The Henstock–Kurzweil integral primitive is continuous in the usual
sense. In [6] is proved an equivalent result for Lr-Henstock–Kurzweil indefi-
nite integral.

Theorem 2.4. The function F in the definition of the Lr-Henstock–Kurzweil
is Lr-continuous on [a, b].
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Definition 2.5. Let Φ be a function defined on the subintervals of [a, b]. The
function Φ is superadditive if

Φ ([u, v]) + Φ ([v, w]) ≤ Φ([u,w]) ,

whenever a ≤ u < v < w ≤ b. The function Φ is continuous if for each
c ∈ (a, b),

lim
x→c−

Φ([x, c]) = 0 = lim
x→c+

Φ([c, x])

and

lim
x→b−

Φ([x, b]) = 0 = lim
x→a+

Φ([a, x]) .

Remark 2.6. Throughout this paper, if an interval function is said to be con-
tinuous, it is to be considered continuous in the sense of Definition 2.5.

Definition 2.7. Let δ be a gauge and let

P = {(xi, [ci, di]) , 1 ≤ i ≤ n}
be a δ-fine partition of [a, b]. Let

W (P) =
q∑

i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f (xi) (y − xi)|r dy

)1/r

. (2.2)

The main tool we need to get the Lr-variational integral is the following
definition of Lr-variation function.

Definition 2.8. For each subinterval [c, d] ⊆ [a, b] define

Φ ([c, d]) = Φ (F, δ, [c, d]) = sup {W (P)} , (2.3)

where the supremum is taken over all δ-fine partitions P of [c, d] .

Theorem 2.9. The function Φ is superadditive.

Proof. Let u, v and w be such that a ≤ u < v < w ≤ b and let ε > 0. If either
Φ ([u, v]) = ∞ or Φ ([v, w]) = ∞ then surely Φ ([u,w]) = ∞ and the assertion
holds. Otherwise let P1 be a partition of [u, v] such that W (P1) > Φ([u, v])−
ε and let P2 be a partition of [v, w] such that W (P2) > Φ([v, w]) − ε. Let
P = P1∪P2, and clearly W (P) = W (P1)+W (P2) . But W (P) ≤ Φ([u,w]) .
Therefore,

Φ ([u, v]) + Φ ([v, w]) − 2ε < W (P1) + W (P2) ≤ Φ([u,w]) .

�

Now we can prove the following theorem that extends Theorem 11.9 in
[5]
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3. Main Results

Theorem 3.1. A function f : [a, b] → R is Lr-Henstock–Kurzweil integrable
on [a, b] if and only if there exists a function F : [a, b] → R with the following
property: for each ε > 0 there exists a superadditive interval function Φ
defined on the subintervals of [a, b] and a gauge δ defined on [a, b] such that
Φ([a, b]) < ε and for any δ-fine tagged interval (x, [c, d]), where [c, d] ⊆ [a, b] ,(

1
d − c

∫ d

c

|F (y) − F (x) − f (x) (y − x)|r dy

)1/r

< Φ([c, d]) .

Proof. Suppose there exists a function F with the property stated in the
theorem. Let ε > 0 and choose Φ and δ according to the hypotheses. If
P := {(xi, [ci, di]) , 1 ≤ i ≤ n} is a δ-fine tagged partition of [a, b], then

n∑
i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f (xi) (y − xi)|r dy

)1/r

≤
n∑

i=1

Φ([ci, di]) ≤ Φ([a, b]) , < ε

and so f is Lr-Henstock–Kurzweil integrable on [a, b] .
Now suppose that f is Lr-Henstock–Kurzweil integrable on [a, b] and

let

F (x) = (HKr)
∫ x

a

f,

for each x ∈ (a, b]. Let ε > 0. By hypothesis, there exists a gauge δ on [a, b]
such that

n∑
i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f (xi) (y − xi)|r dy

)1/r

< ε/2,

whenever P is a δ-fine tagged partition of [a, b]. Let

P = {(xi, [ci, di]) , 1 ≤ i ≤ n}
and let W (P) be defined as in (2.2) and let Φ be defined on the subin-

tervals of [a, b] as in (2.3). By Theorem 2.9, Φ is superadditive. Also,

Φ ([a, b]) ≤ ε/2 < ε.

Finally, by the definition of Φ, if (x, [c, d]) is a δ-fine tagged interval such
that [c, d] ⊆ [a, b] ,(

1
d − c

∫ d

c

|F (y) − F (x) − f (x) (y − x)|r dy

)1/r

< Φ([c, d]) .

This completes the proof. �

Theorem 3.2. A function f : [a, b] → is Lr-Henstock–Kurzweil integrable on
[a, b] if and only if f is Lr-variational integrable on [a, b] .



MJOM The Lr-Variational Integral Page 5 of 10    96 

Proof. Suppose first that f is Lr-variational integrable on [a, b] . Let ε >
0 and let F , δ and φ satisfy the conditions in Definition 2.1. If P =
{(xi, [ci, di]) , 1 ≤ i ≤ n} is a δ-fine tagged partition of [a, b], then

n∑
i=1

(
1

di − ci

∫ di

ci

|F (y) − F (xi) − f (xi) (y − xi)|r dy

)1/r

≤
n∑

i=1

(φ (di) − φ (ci)) = φ (b) − φ (a) < ε

and so f is Lr-Henstock–Kurzweil integrable on [a, b] and

(HKr)
∫ b

a

f = F (b) − F (a) .

Now suppose that f is Lr-Henstock–Kurzweil integrable on [a, b] and
that for each x ∈ (a, b],

F (x) = (HKr)
∫ x

a

f.

Let ε > 0. By Theorem 3.1 there exists a superadditive interval function
Φ defined on [a, b] such that Φ ([a, b]) < ε and(

1
d − c

∫ d

c

|F (y) − F (x) − f (x) (y − x)|r dy

)1/r

< Φ([c, d]) ,

whenever (x, [c, d]) is a δ-fine tagged interval such that [c, d] ⊆ [a, b].
Define φ : [a, b] → R by φ (a) = 0 and φ (x) = Φ ([a, x]) for all x ∈ (a, b]. If
a ≤ c < d ≤ b, then

φ (d) − φ (c) = Φ ([a, d]) − Φ([a, c]) ≥ Φ([c, d]) ≥ 0

and so φ is non-decreasing. In addition,

φ (b) − φ (a) = Φ ([a, b]) < ε.

Suppose that (x, [c, d]) is a δ-fine tagged interval such that [c, d] ⊆ [a, b].
Then, (

1
d − c

∫ d

c

|F (y) − F (x) − f (x) (y − x)|r dy

)1/r

≤ Φ([c, d]) ≤ φ (d) − φ (c) .

Hence, the function f is Lr-variational integrable on [a, b] . This com-
pletes the proof. �

Corollary 3.3. If f is Lr-variational integrable on [a, b], then the function F
which satisfies the conditions of Definition 2.1 is unique up to an additive
constant.

We now prove the continuity of the interval function Φ.
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Proposition 3.4. Let f be Lr-variational integrable on [a, b] and let F be a
function that satisfies (2.1). Let δ be a gauge, Φ = Φ(δ, F ) be as in (2.3),
and assume that Φ([a, b]) is finite. Then, Φ is continuous.

Proof. We will prove that limx→c−Φ([x, c]) = 0 for each c ∈ (a, b]; the proof
for right-handed limits is similar. Suppose by way of contradiction that
limx→c−Φ([x, c]) either fails to exist or exists and is not equal to zero. Since
Φ is nonnegative, there exists η > 0 such that lim supx→c− Φ([x, c]) > η. Let
us see that for every ξ ∈ [a, c) , Φ([ξ, c]) > η. Fix ξ, there exists ξ < ζ < c
such that Φ ([ζ, c]) > η. Since Φ is superadditive, we have that

Φ ([ξ, c]) ≥ Φ([ξ, ζ]) + Φ ([ζ, c]) ≥ Φ([ζ, c]) > η.

Consequently, for each ξ ∈ [a, c) , there exists Pξ, a δ-fine tagged parti-
tion of [ξ, c] such that W (Pξ) > η.

We now prove that we can make the following three assumptions about
Px :

1. Px contains at least two tagged intervals,
2. c is a tag of Px, and
3. the interval containing c is arbitrarily small.

Fix x and ε > 0. Choose y ∈ (max (x, c − ε) , c). By Cousin’s Lemma
there exists Q, a δ-fine tagged partition of [x, y]. Define Px = Q ∪ Py. We
then have

W (Px) = W (Q) + W (Py) ≥ W (Py) > η.

If c is the tag of its interval, then Px has the desired properties.
Now suppose that c is not the tag of its interval. Let s and t be such

that (t, [s, c]) is the tagged interval which contains c. It is possible that s = t
but we assume that t < c.

It suffices to show that

lim
u→c−

W ({(t, [s, u]) , (c, [u, c])}) = W ({(t, [s, c])}) .

Note that

W ({(t, [s, u]) , (c, [u, c])})

=
(

1
u − s

∫ u

s

|F (y) − F (t) − f (t) (y − t)|r dy

)1/r

+
(

1
c − u

∫ c

u

|F (y) − F (c) − f (c) (y − c)|r dy

)1/r

.
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Using Minkowski’s inequality, we have(
1

c − u

∫ c

u

|F (y) − F (c) − f (c) (y − c)|r dy

)1/r

=
(

1
c − u

)1/r (∫ c

u

|F (y) − F (c) − f (c) (y − c)|r dy

)1/r

≤
(

1
c − u

)1/r (∫ c

u

|F (y) − F (c)|r dy

)1/r

+
(

1
c − u

)1/r (∫ c

u

|f (c) (y − c)|r dy

)1/r

≤
(

1
c − u

∫ c

u

|F (y) − F (c)|r dy

)1/r

+ |f (c)|
(

1
c − u

)1/r (∫ c

u

|(c − u)|r dy

)1/r

=
(

1
c − u

∫ c

u

|F (y) − F (c)|r dy

)1/r

+ |f (c)| (c − u) .

By Theorem 2.4 the function F is Lr-continuous at each point of [a, b],
and so we have that

lim
u→c−

(
1

c − u

∫ c

u

|F (y) − F (c) − f (c) (y − c)|r dy

)1/r

≤ lim
u→c−

[(
1

c − u

∫ c

u

|F (y) − F (c)|r dy

)1/r

+ |f (c)| (c − u)

]
= 0.(3.1)

We also have that

lim
u→c−

(
1

u − s

∫ u

s

|F (y) − F (t) − f (t) (y − t)|r dy

)1/r

=
(

1
c − s

∫ c

s

|F (y) − F (t) − f (t) (y − t)|r dy

)1/r

.

It follows that

lim
u→c−

W ({(t, [s, u]) , (c, [u, c])})

= lim
u→c−

W ({(t, [s, u])}) = W ({(t, [s, c])}) .

We now prove the proposition. Set x1 = a and write

Px1 = Q1 ∪ (c, [x2, c])
Px2 = Q2 ∪ (c, [x3, c])

...
Pxk

= Qk ∪ (c, [xk+1, c]) .

By the result proved above, we may assume that for each k, c−xk < 1/k
and, therefore, that xk → c.
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For each n, the collection

P ′
n =

n⋃
k=1

Qk

is a δ-fine tagged partition of [a, xn+1]. Hence,

W (P ′
n) =

n∑
k=1

W (Qk) ≤ Φ([a, xn+1]) ≤ Φ([a, b]) < ∞.

This shows that the series
∞∑

k=1

W (Qk)

converges and hence

lim
k→∞

W (Qk) = 0.

We then have for each k,

η < W (Pxk
)

= W (Qk) +

(
1

c − xk+1

∫ c

xk+1

|F (y) − F (c) − f (c) (y − c)|r dy

)1/r

.

By (3.1), the term on the right goes to zero; therefore, the entire right
side of the equality goes to zero. This contradiction completes the proof.

�
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