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Abstract
We theoretically investigate basic properties of nonequilibrium steady states of
periodically-driven open quantum systems based on the full solution of the Maxwell–Bloch
equation. In a resonant driving condition, we find that the transverse relaxation, also known as
decoherence, significantly destructs the formation of Floquet states while the longitudinal
relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of
the nonequilibrium steady states, we demonstrate that Rabi splitting can be observed as long
as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that
Floquet states can be formed even under significant dissipation when the decoherence time is
substantially shorter than the cycle of driving, once the driving field strength becomes strong
enough. In an off-resonant condition, we demonstrate that the Floquet states can be realized
even in weak field regimes because the system is not excited and the decoherence mechanism
is not activated. Once the field strength becomes strong enough, the system can be excited by
multi-photon absorption and the decoherence process becomes active. As a result, the Floquet
states are significantly disturbed by the environment even in the off-resonant condition. Thus,
we show here that the suppression of energy transfer from light to matter is a key condition for
the realization of Floquet states in both on- and off-resonant conditions not only because it
prevents material damage but also because it contributes to preserving coherence.

Keywords: Floquet system, dissipation, decoherence

(Some figures may appear in colour only in the online journal)

1. Introduction

Nonlinear interactions of strong light with matter is an impor-
tant subject from both fundamental and technological points
of view and has been intensively investigated for a long
time [1–6]. Laser fields can directly couple with electrons in
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matter and induce nonequilibrium electron dynamics. Thus,
strong laser fields can be employed to control the electronic
properties and functionalities of materials [7–9]. In the ultra-
fast regime, light-induced electron dynamics in solids within
a sub-femtosecond time-scale have been intensively investi-
gated toward petahertz electronics [10–17]. In addition, strong
light may also couple with phonons in solids and renor-
malize electron–phonon coupling, triggering light-induced
superconductivity [18, 19]. In these light-induced phenomena,
target systems are actively driven by light. Therefore, substan-
tial energy transfer from light to matter is expected [20]. In
most cases, the systems of interest are not isolated but are
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coupled to their surrounding environment. Thus, a part of the
transferred energy is dissipated to the environment. Moreover,
through the interaction with the environment, coherence of
light-induced dynamics can be lost. Therefore, proper under-
standing of light-driven dynamics in a dissipative environ-
ment is indispensable toward realization of optical-control of
realistic systems.

Nonequilibrium dynamics of periodically-driven non-
dissipative systems has been intensively investigated with
the Floquet theory, and various interesting properties of
the driven systems have been discussed such as the emer-
gence of new topological states [21], and the dynamical
localization [22, 23], among others [24–27]. Theoretical
investigation of periodically-driven systems has been further
extended to dissipative systems, or namely, open quantum
systems [28–31], and the effects of the dissipative environ-
ment have been discussed in various aspects such as realiza-
tion of the Floquet–Gibbs state [32–35], the asymptotic states
under the memory-effect [36, 37], and topological properties
[38, 39]. Furthermore, experimental studies have been con-
ducted for strongly driven quantum systems [40–42], and
the Floquet–Bloch states have been experimentally observed
as the Rabi-splitting in the angular-resolved photo-electron
spectroscopy (PES) in extended systems [43]. Recently, the
light-induced anomalous Hall effect in graphene has been
experimentally observed [44], originating from population
effects on top of the realization of Floquet states subjected to
substantial dissipation [45, 46].

Optical-control of materials based on Floquet engineering
has been attracting great interest ranging from the realization
of new states of matter [21, 47, 48] to optical control of chi-
ral superconductors [27]. However, the realization of Floquet
states and the control of their population are highly nontrivial
tasks in a dissipative environment [49, 50]. In this work, we
theoretically investigate basic properties of periodically-driven
open quantum systems with the Maxwell–Bloch equation [51,
52], which may be the simplest model for driven open quan-
tum systems, and provide an insight into the realization of
Floquet states in such systems, addressing the following open
questions: which kind of relaxation mechanism affects the for-
mation of Floquet states, and which does not? How long is
coherence required to persist to realize Floquet states? Can
Floquet states be formed even under a significant dissipation,
e.g. when the relaxation time is shorter than a driving period?

The paper is organized as follows: in section 2 we first
describe the Maxwell–Bloch equation and several equiva-
lent descriptions of open quantum systems. Then, we intro-
duce basic quantities of nonequilibrium steady states, Floquet
fidelity and quasienergy spectrum, which will be investigated
in the following sections. In section 3 we investigate the prop-
erties of the nonequilibrium steady state in both resonant and
off-resonant conditions. Finally, our findings are summarized
in section 4.

2. Method

In this section, we describe theoretical methods to investigate
the basic properties of nonequilibrium steady states of open

quantum systems under periodic driving. First, we introduce
the Maxwell–Bloch equation, which is one of the simplest
models for driven open quantum systems. Then, we demon-
strate that the Maxwell–Bloch equation can be rewritten in
the form of the Lindblad equation, and thus it can be eval-
uated with the stochastic Schrödinger equation. Finally, we
introduce two quantities to study nonequilibrium steady states;
quasienergy spectrum of driven open quantum systems and
Floquet fidelity [45, 46].

2.1. Equation of motion of driven open quantum systems

In order to get a microscopic understanding of the nonequi-
librium dynamics of open quantum systems, we consider a
two-level driven system in a dissipative environment based
on the Maxwell–Bloch equation. For detailed analysis of the
nonequilibrium system, we further revisit equivalent descrip-
tions in different forms.

2.1.1. Maxwell–Bloch equation. We first revisit the well-
established description of nonequilibrium dynamics of a two-
level system based on the Maxwell–Bloch equation [51],
which can be seen as the simplest form of the semiconduc-
tor Bloch equation and has been used to develop microscopic
insight into the driven dynamics of dissipative systems [52]. In
this work, we choose the simplest model of the open quantum
system in order to provide insight into the role of decoher-
ence in the formation of Floquet states without the intention to
address, now, a realistic system. Nevertheless, it is worth men-
tioning that the semiconductor Bloch equation with the simple
relaxation time approximation [53] has been widely employed
in studies on various phenomena of nonlinear light–matter
interactions such as the attosecond electron dynamics [54], the
high-order harmonic generation from solids [55, 56] and the
light-induced anomalous Hall effect [45]. Furthermore, it has
been demonstrated that the simple approximation already per-
forms excellently when compared to the experimental results.
Based on this fact, here we employ the simplest relaxation
time approximation in order to clarify the primary role of the
dissipation in driven quantum systems.

The time propagation of the system is described by the
following quantum master equation

d
dt
ρ(t) =

[H(t), ρ(t)]
i�

+ D̂ [ρ(t)] , (1)

where ρ(t) is the density matrix of the two-level system, H(t)
is the Hamiltonian, and D̂ [ρ(t)] is the relaxation operator. The
Hamiltonian of the two-level system is given by

H(t) =
Δ

2
σz + F0 sin(Ωt)σx , (2)

where σi are Pauli matrices, Δ is the gap of the two-level
system, F0 is the amplitude of an external field, and Ω is its
frequency.Furthermore, the dissipation operator is constructed
with the relaxation time approximation, where the relaxation
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is simply treated as simple exponential decays [53], as

D̂ [ρ(t)] =

⎛
⎜⎝−ρee(t)

T1
−ρeg(t)

T2

−ρge(t)
T2

−ρgg(t) − 1
T1

⎞
⎟⎠ , (3)

where ρi j(t) is a matrix element of the density matrix, 〈i|ρ(t)| j〉,
with the eigenbasis of the subsystem Hamiltonian, Δσz/2;
|g〉 = (0, 1)† corresponds to the ground state, while |e〉 =
(1, 0)† corresponds to the excited state. While the longitudinal
relaxation time T1 corresponds to the population decay con-
stant from the excited state |e〉 to the ground state |g〉, the trans-
verse relaxation time T2 corresponds to the decay constant for
coherence. Thus, in this work, we shall call T2 decoherence
time.

In this work, we consider nonequilibrium steady states
under continuous-wave driving shown in equation (2). It is
worth noting that such nonequilibrium steady states can be
fairly realized even by a laser pulse with finite pulse length
if the pulse length is sufficiently long [45].

2.1.2. Lindblad equation. To smoothly connect the
Maxwell–Bloch equation to the equivalent stochastic
Schrödinger equation approach [57, 58], which will be used
to introduce the quasienergy spectrum of the driven system
later, here we revisit the relation between the Maxwell–Bloch
equation and the Lindblad equation [57, 58]. Note that
the Lindblad equation can be derived from the quantum
Liouville equation within the Born–Markov approximation
and the rotating wave approximation [57, 58], and it is
equivalent to the semiconductor Bloch equation with the
relaxation time approximation as seen below. Thus, despite
the strong underlying approximations, the Lindblad equation
can show excellent performance in describing the strong-
field experiments [45, 54–56] as mentioned in the previous
subsection.

The quantum master equation (1) within the relaxation
time approximation (3) can be equivalently expressed in the
following Lindblad form

d
dt
ρ(t) =

[H(t), ρ(t)]
i�

+

2∑
α=1

γα

(
Lαρ(t)L†

α − 1
2

{
L†
αLα, ρ(t)

})
(4)

by employing the two Lindblad operators,

L1 = σx − iσy, (5)

L2 = −σz. (6)

here, the anticommutator is defined as {A, B} = AB + BA.
By introducing the relaxation time Ti with the scattering

rate γα in the Lindblad equation (4) as

1
T1

= γ1, (7)

1
T2

=
γ1

2
+ 2γ2, (8)

the Lindblad equation (4) with the Lindblad operators,
equations (5) and (6), can be rewritten as the Maxwell–Bloch

equation (1). Hence the Maxwell–Bloch equation can be seen
as a special form of the Lindblad equation.

Note that the Lindblad master equation (4) is invariant
under the arbitrary phase multiplication, Li → eiθLi. Neverthe-
less, we explicitly choose the form of the Lindblad operator,
especially for, L2 so that the environment scatters only the
excited state |e〉 but the ground state |g〉 is not scattered in
the following Stochastic approach. Preventing scattering of
the ground-state also avoids unphysical modification of the
quasienergy spectrum of the undriven system that would occur
otherwise.

2.1.3. Stochastic Schrödinger equation approach. The
Lindblad equation (4) for the density matrix propagation can
be equivalently described by a stochastic approach based on
non-Hermitian Schrödinger equation for the wavefunction
propagation [57, 58]. Therefore, the Maxwell–Bloch equation
can be equivalently evaluated with the stochastic Schrödinger
equation approach.

In this work, we will investigate the quasienergy spec-
trum of driven-dissipative systems. The quasienergy spectrum
is usually evaluated with a Green’s function or the time-
propagation of wavefunctions. In contrast, the evaluation of
the quasienergy spectrum from the density matrix is less com-
mon. Thus, in the next section, we develop a numerical scheme
to evaluate the quasienergy spectrum of driven-dissipative
systems with the stochastic Schrödinger equation. For this
purpose, we first revisit the stochastic approach here. To intro-
duce the wavefunction propagator, we rewrite the Lindblad
equation (4) as

d
dt
ρ(t) =

[Hc(t), ρ(t)]
i�

+

2∑
α=1

γαLαρ(t)L†
α (9)

with the conditional Hamiltonian defined as

Hc(t) ≡ H(t) − i�
2

2∑
α=1

γαL†
αLα. (10)

The time-evolution of the density matrix ρ(t) obeying the
Lindblad equation (4) can be obtained by propagating the non-
Hermitian Schrödinger equation, i�d/dt|ψ̃(t)〉 = Hc(t)|ψ̃(t)〉,
with stochastic quantum jumps that occur at a given time step.
The probability of the stochastic quantum jump is evaluated
from the norm of the wavefunction, 〈ψ̃(τ )|ψ̃(τ )〉. In practical
calculations, we employ the following algorithm. For simplic-
ity, here we assume that the initial density matrix ρ(0) is a pure
state: ρ(0) = |ψ̃(0)〉〈ψ̃(0)|.
(a) Set the initial wavefunction to the initial pure state |ψ̃(0)〉.
(b) Propagate the wavefunction |ψ̃(t)〉 by the non-Hermitian

conditional Hamiltonian Hc(t);

i�
d
dt
|ψ̃(t)〉 = Hc(t)|ψ̃(t)〉. (11)

(c) Perform quantum jump at t j + τ after time τ since the last
jump at t j with probability p = 〈ψ̃(t j + τ )|ψ̃(t j + τ )〉;
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|ψ̃(t j + τ )〉 �→ Lα|ψ̃(t j + τ )〉√
〈ψ̃(t j + τ )|ψ̃(t j + τ )〉

, (12)

where the index α is chosen with probability

pα =
γα〈ψ̃(t j + τ )|L†

αLα|ψ̃(t j + τ )〉∑
β

γβ〈ψ̃(t j + τ )|L†
βLβ |ψ̃(t j + τ )〉

. (13)

(d) Repeat the steps (b) and (c) until the simulation time t
reaches the final time of the simulation t f .

(e) Repeat the above stochastic procedures and evaluate the
density matrix as the statistical average from the stochas-
tic trajectories as

ρ(t) ≈
〈
|ψ̃(t)〉〈ψ̃(t)|
〈ψ̃(t)|ψ̃(t)〉

〉
average

. (14)

In the limit of large number of trajectories, it can be
demonstrated [57, 58] that the statistical average con-
verges to the solution of the Lindblad equation (4).

Note that the expectation value of an operator Â can be
evaluated as the statistical average of the corresponding expec-
tation value of the stochastic wavefunctions as

〈A〉 = Tr
[
Âρ(t)

]
≈ Tr

⎡
⎣Â

〈
|ψ̃(t)〉〈ψ̃(t)|
〈ψ̃(t)|ψ̃(t)〉

〉
average

⎤
⎦

=

〈
〈ψ̃(t)|Â|ψ̃(t)〉
〈ψ̃(t)|ψ̃(t)〉

〉
average

. (15)

2.2. Quasi-energy spectrum of driven open quantum
systems

Here, we introduce a computational scheme to evaluate a
quasienergy spectrum of driven systems. The scheme is
inspired by what is done in the modeling of PES, which is
widely used to investigate equilibrium quasiparticle energy
spectra as well as those of driven systems [26, 43, 59, 60].

First, we describe the method to compute the quasienergy
spectrum of closed driven systems. Later, we will extend
it to open quantum systems based on the above stochastic
Schrödinger equation approach. Here, we consider a two level
system described by the following Schrödinger equation,

i�
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉

=

[
Δ

2
σz + F(t)σx

]
|ψ(t)〉, (16)

where F(t) is a time-dependent external field. In order to
investigate the quasienergy spectrum of the driven system, we
introduce theoretical detector states, |ε〉, associated with each
detected energy ε. By embedding these theoretical detector
states into the original Hilbert space of the two-level system,

we reconstruct the Hamiltonian of the full system as

HE(t) = H(t) +
∫ ∞

−∞
dε|ε〉ε〈ε|+ v(t)

∫ ∞

−∞
dε
(
|ε〉〈i|+ |i〉〈ε|

)
,

(17)
where the first term is the original Hamiltonian of the system
that is being probed H(t), the second term is the Hamilto-
nian of the embedded detector states |ε〉, and the last term is
the interaction between the system of interest and the theo-
retical detector states via a probe field v(t). In the interaction
Hamiltonian, |i〉 denotes a state of the original system that we
would like to probe, and we set it to the ground state |i〉 = |g〉.
Furthermore,we employ the following form for the probe field,

v(t) = f (t) sin (ωt) , (18)

whereω is the driving frequency of the probe perturbation, and
f(t) is an envelope function. Assuming the probe field is weak
enough, the solution of the Schrödinger equation of the full
system, i�d/dt|ψE(t)〉 = HE(t)|ψE(t)〉 can be approximated by

|ψE(t)〉 ≈ |ψ(t)〉+
∫ ∞

−∞
dε c(ε, t)e−i ε

�
t|ε〉, (19)

where |ψ(t)〉 is the solution of the Schrödinger equation of
the original system, equation (16), and c(ε, t) is an expansion
coefficient of the theoretical detector state |ε〉. Employing the
rotating wave approximation, the equation of motion for the
coefficient c(ε, t) can be approximated as

ċ(ε, t) =
f (t)
2

〈i|ψ(t)〉ei ε−ω
�

t. (20)

Thus, the population of the detector state |ε〉 after the probe
perturbation v(t) can be evaluated as

npop(ε) := |c(ε, t = ∞)|2 =

∣∣∣∣
∫ ∞

−∞
dt

f (t)
2

〈i|ψ(t)〉ei ε−ω
�

t

∣∣∣∣
2

.

(21)
The population distribution at the detector reflects the
quasienergy structure of the closed quantum system described
by the Hamiltonian H(t) as the conventional PES does [26, 43,
59, 60].

We further extend this numerical PES scheme to open quan-
tum systems. Inspired by a fact that the expectation value
of an observable can be evaluated as the ensemble average
of stochastic trajectories with equation (15), we evaluate the
quasienergy spectrum of open quantum systems as the ensem-
ble average of the spectrum of each trajectory. In practice, the
population of the detector states in the case of open quantum
systems is computed as the statistical average of stochastic
trajectories,

npop(ε) =

〈∣∣∣∣∣∣
∫ ∞

−∞
dt

f (t)
2

〈i|ψ̃(t)〉√
〈ψ̃(t)|ψ̃(t)〉

ei ε−ω
�

t

∣∣∣∣∣∣
2〉

average

. (22)

Assuming the quasienergy structure is mapped to the pop-
ulation distribution of the detector states, npop(ε), by a single
photon absorption with the energy of�ω, the quasienergy spec-
trum AQ(Eq) as a function of energy Eq can be evaluated as
AQ(Eq) ∼ npop(Eq + �ω).
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2.3. Floquet fidelity

Here, we introduce a measure to quantify the similarity of
nonequilibrium steady states under periodic driving fields and
the corresponding Floquet states. We shall call it Floquet
fidelity [45, 46].

Floquet states |ψF,a(t)〉 are defined as solutions of the
time-dependent Schrödinger equation with a time-periodic
Hamiltonian, id/dt|ψF,a(t)〉 = H(t)|ψF,a(t)〉, with the following
form:

|ψF,a(t)〉 = e−i
εF,a
�

t|uF,a(t)〉, (23)

where |uF,a(t)〉 has the same time-period as the Hamiltonian,
H(t), and εF,a is the Floquet quasienergy. As Floquet states
are defined as the solutions of the time-dependent Schrödinger
equation, they are not necessarily solutions of the quan-
tum master equation (1). Nevertheless, nonequilibrium steady
states of open quantum systems may show some signatures
based on the corresponding Floquet states under certain con-
ditions [32–34].

To introduce the Floquet fidelity, we first consider the eigen-
value decomposition of the density matrix in a nonequilibrium
steady state as,

ρ(t) =
∑

a

λa(t)|NOa(t)〉〈NOa(t)|, (24)

where λa(t) is an eigenvalue and |NOa(t)〉 is the cor-
responding eigenvector. Since the density matrix of the
nonequilibrium steady state has the time-periodicity of the
Hamiltonian, ρ(t) = ρ(t + 2π/Ω), the eigenvalues and the
eigenvectors may have the same periodicity, λa(t) = λa(t +
2π/Ω) and |NOa(t)〉 = |NOa(t + 2π/Ω)〉. These eigenvectors
of the one-body reduced density matrix are known as natu-
ral orbitals [61], and the eigenvalues can be interpreted as
their occupations. By construction of the natural orbitals, the
expectation value of an observable Â can be evaluated as the
sum of the expectation value of each natural orbital with the
occupation weight as

〈A〉 = Tr
{

Âρ(t)
}

=
∑

a

λa(t)〈NOa(t)|Â|NOa(t)〉. (25)

Therefore, the natural orbitals can be seen as very accurate
representative single-particle states of the system. Based on
this fact, we quantify the similarity of the nonequilibrium
steady state and the Floquet states by the similarity of the
corresponding natural orbitals and the Floquet states.

In practice, to define the similarity, we first introduce a
Floquet fidelity matrix F [45] whose matrix elements Fi j are
defined as the cycle average of the squared overlap of the ith
natural orbital and the jth Floquet state as

Fi j =
1
T

∫ T

0
dt|〈NOi(t)|ψF, j(t)〉|2, (26)

where T is the time-period of the Hamiltonian, T = 2π/Ω.
Then, the Floquet fidelity SF is defined as the absolute value
of the determinant of the Floquet fidelity matrix, SF = |detF|.

Figure 1. Population dynamics of the driven two-level system with
dissipation under resonant driving (�Ω = Δ) with different field
strength F0. The relaxation times, T1 and T2, are set to 30�/Δ.

The Floquet fidelity takes the maximum value of one only if
all the natural orbitals have identical Floquet states. Therefore,
if the Floquet fidelity is one, the Floquet states diagonalize the
density matrix. In general, 0 � SF � 1.

3. Results

3.1. Resonant driving

We first investigate the nonequilibrium steady state of the two-
level system under periodic driving in the resonant condition,
�Ω = Δ. To realize the nonequilibrium steady state, we per-
form sufficiently long real-time propagation by solving the
Maxwell–Bloch equation (1). Here, the initial condition is set
to the ground state, ρ(t = 0) = |g〉〈g|.

Figure 1 shows the population of the excited state, ρee(t) =
〈e|ρ(t)|e〉, of the two-level system as a function of time for dif-
ferent field strength, F0. Here, both the relaxation times, T1

and T2, are set to 30�/Δ in order to investigate the dynamics
under a relatively weak-relaxation condition, T1, T2 � �/Δ.
At the initial time (t = 0), the excited population is zero as
the initial state is set to the ground state |g〉. As seen from
the figure, the excited population ρee(t) asymptotically reaches
dynamics, which has the same time-periodicity as the external
field T, in the long propagation limit for each field strength.
In contrast, one sees that oscillatory features that have longer
periodicity than T are observed in the stronger field cases,
and the periods of the oscillation depend on the field strength.
The period of the oscillatory feature is close to that of the Rabi
oscillation, TR = 2π/ΩR, where ΩR is the Rabi frequency,
ΩR = F0/�. Thus, these oscillatory features can be understood
as the Rabi oscillation with damping due to the dissipation.
We note that, as seen from figure 1, the timescale of approach-
ing the steady state does not significantly depend on the field
strength, F0. Because the lower bound of T1 is determined by
T2 as T1 � T2/2, T1 cannot be the relevant timescale indepen-
dently. Thus, the relevant timescale of approaching the steady
state is approximately determined by the decoherence time, T2.
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Figure 2. Floquet fidelity of nonequilibrium steady states in the
resonant driving condition, �Ω = Δ. The results with different
relaxation conditions are shown as functions of applied field
strength F0. The secondary x-axis shows the corresponding Rabi
cycle, TR = 2π/ΩR with the Rabi frequency ΩR = F0/�.

Now we turn to studying the basic properties of the
nonequilibrium steady state, employing the Floquet fidelity,
SF. Figure 2 shows the computed Floquet fidelity of the
nonequilibrium steady state as a function of driving field
strength F0. The results with different relaxation conditions
are shown in the figure. The general feature is that, while the
Floquet fidelity SF becomes zero in the weak field limit, SF

asymptotically reaches unity in the strong field limit. This fact
indicates that the Floquet states are significantly destroyed by
the dissipation in the weak field regime. In contrast, in the
strong field regime, the contribution from the external driving
field overcomes the dissipation effect, and the Floquet states
are stabilized.

In figure 2, squares (purple), up-pointing triangles (red),
and circles (green) show the computed Floquet fidelity SF

with the same longitudinal relaxation time T1 = 30�/Δ but
with different decoherence time T2. Comparing these results,
one sees that the Floquet fidelity becomes smaller when the
decoherence time T2 becomes shorter. This fact indicates that
the coherence plays an important role to form the Floquet
states, and the decoherence is a source of the destruction of
the Floquet states. In contrast, in figure 2, up-pointing trian-
gles (red) and down-pointing triangles (blue) show the Floquet
fidelity with the same decoherence time T2 = 30�/Δ but dif-
ferent longitudinal relaxation time T1. Despite the significant
difference of the longitudinal relaxation time T1, the numerics
provide almost identical Floquet fidelities for all the investi-
gated field strengths. This fact clearly demonstrates that the
population relaxation does not directly affect the formation of
Floquet states but it only affects the population of the formed
dressed states. Therefore, the decoherence time T2 is the only
significant parameter for the realization of the Floquet states,
at least in the presently discussed Maxwell–Bloch equation.

Next we study the quasienergy spectrum of the driven
open quantum system, computed by the stochastic trajectory
approach, equation (22), employing a sin2 envelope for the
probe field f(t) with the total duration of 200π�/Δ, which is

Figure 3. Quasienergy spectrum computed by equation (22) under
resonant driving (�Ω = Δ). The results for different driving field
strengths are shown. Here, we set both the longitudinal and
transverse relaxation times to T1 = T2 = 30�/Δ. Note the
maximum value of the spectral density are normalized to one for
each field strength.

100 optical cycles of the pump field in the resonant condition,
�Ω = Δ.

Figure 3 shows the spectral density as a function of
quasienergy Eq, which is defined by the difference of the
photon-energy of the probe field �ω and the energy of the
detector state ε, Eq = ε− �ω. Here, the relaxation times, T1

and T2, are set to 30�/Δ. The results computed with different
field strength F0 are compared in figure 3. The result with-
out the driving field (black solid line) shows a peak at −Δ/2,
which is the single-particle energy of the ground state |g〉.
Because the quantum jump process in the stochastic approach
with the Lindblad operators, equations (5) and (6), does not
affect the ground state, |g〉, the linewidth of the ground state
spectrum is solely caused by the bandwidth of the probe
pulse. When a driving field is applied, the quasienergy peak
is broadened (red-dashed line) because the dissipative mech-
anism is activated by the photo-excitation. Once the applied
field strength becomes strong enough, the quasienergy peak
is split into two peaks, reflecting the well-known Rabi split-
ting (see green-dotted and blue-dash–dot lines). These results
demonstrate that signatures of Floquet states are disturbed by
dissipation, and they can be evident only when the driving
field strength is strong enough to overcome the dissipation
contribution.

Let us now take a closer look at the role of the decoherence
in the formation of Floquet states. For this purpose, we com-
pute the quasienergy spectrum while also changing the deco-
herence time, T2. Figure 4 shows the computed quasienergy
spectra with equation (22). In these calculations, the longi-
tudinal relaxation time is fixed to T1 = 30�/Δ, and the field
strength is fixed to F0 = 0.2Δ. The period of the correspond-
ing Rabi flopping is TR = 2π/F0 ≈ 30�/Δ. The red-solid line
in figure 4 shows the result with the decoherence time T2 of
30�/Δ, which is almost identical to the period of the Rabi
oscillation TR, but it clearly shows the double peak structure
of the Rabi splitting, where the corresponding Rabi splitting
energy is �ΩR = F0 = 0.2Δ. The green-dashed line shows the
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Figure 4. Quasienergy spectrum computed by equation (22) under
resonant driving (�Ω = Δ). The results for different decoherence
time T2 are shown. Here, we set the longitudinal relaxation time T1
to 30�/Δ, and the field strength F0 to 0.2Δ.

result with T2 = 10�/Δ, which is almost one third of the Rabi
cycle TR. The result clearly demonstrates that the key feature
of Floquet states, namely Rabi-splitting, is still fairly visible
even though the decoherence time is substantially shorter than
the Rabi cycle (T2 < TR). However, if the decoherence time
T2 is further halved and is set to T2 = 5�/Δ, the double-peak
structure disappears (blue-dotted line). This fact indicates that
the coherence should survive for, at least, one third of the
period of the Rabi oscillation in order to fairly observe the
Rabi splitting. Interestingly, by comparing the red-solid line
and the blue-dotted line in figure 4, one can clearly see that the
disappearance of the double-peak structure originates from not
only the line-broadening but also the collapse of the gap. This
fact further implies that the formation of the Floquet states are
significantly disturbed due to loss of coherence.

Next, we explore the role of the dissipation in the nonequi-
librium steady state based on an analysis of the microscopic
energy flow. Figure 5 schematically shows the energy flow
among the external driver (external field), the subsystem, and
the bath. As seen from the figure, we consider two kinds of
energy flow, Pext(t) and Pdis(t): Pext(t) is the energy flow from
the external field to the subsystem, and Pdis(t) is that from the
environment (dissipation) to the subsystem. The energy flow
from the external field to the subsystem Pext can be evaluated
with Joule heating (see appendix A for details) as

Pext(t) = Tr

{
1
i�

[
Δ

2
σz, H(t)

]
ρ(t)

}

=
ΔF0

�
sin(Ωt) Tr {σyρ(t)} . (27)

Because of the total energy conservation law, the energy
change of the subsystem has to be identical to the sum of the
energy transfer as

d
dt

Es(t) = Pext(t) + Pdis(t), (28)

Figure 5. Schematic diagram of the energy flow among the external
driver (external field), the subsystem, and the bath. Two kinds of
energy flow exist: one is the flow from the external driver to the
subsystem Pext, and the other is that from the bath to the subsystem
Pdis.

Figure 6. Energy flow in the nonequilibrium steady state among the
subsystem, the external driver and the environment under resonant
driving (�Ω = Δ) as a function of time. The results for different
field strengths are shown: (a) F0 = 0.01Δ, (b) F0 = 0.50Δ, and (c)
F0 = 1.00Δ.

where Es(t) is the energy of the subsystem, Es(t) =
Tr {Δσzρ(t)} /2. Based on this fact, we redefine Pdis(t) as

Pdis(t) ≡
d
dt

Es(t) − Pext(t). (29)

Figure 6 shows the energy flow in the nonequilibrium
steady state as a function of time for different field strengths
F0. Here, we set both the relaxation times, T1 and T2, to
30�/Δ. As seen from figure 6(a), the energy flow from the
light to the subsystem Pext(t) (green-dashed line) is always
positive while that from the environment to the subsystem
Pdis(t) (blue-dotted line) is always negative. Therefore, the
transferred energy from the external field does not return to
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the external driver but it is completely dissipated by the envi-
ronment in the weak field regime. Hence, the energy exchange
between the subsystem and the external driver is significantly
disturbed by the dissipation, and the formation of Floquet
states is prevented. As shown in figure 6(b), once the field
strength becomes substantially strong (F0 = 0.5Δ), the energy
flow Pext(t) shows a negative value around a certain time. The
corresponding Floquet fidelity SF for this field strength is about
0.9 (see figure 2). This fact indicates that the transferred energy
from the external driver to the subsystem is not completely dis-
sipated to the environment, but a part of the transferred energy
is returned to the external driver. Thus, the energy exchange
between the subsystem and the external driver becomes pos-
sible, and the corresponding Floquet states are fairly formed.
As shown in figure 6(c), once the field strength becomes
very strong (F0 = Δ), the energy flow Pext(t) becomes dom-
inant, compared with the dissipation Pdis(t), and almost all of
the transferred energy from the external driver to the subsys-
tem returns back to the driver. As a result, the corresponding
Floquet fidelity SF becomes almost unity (see figure 2), and the
Floquet states are almost perfectly realized.

To comprehensively study the role of T1 and T2, we further
repeated the energy flow analysis with different relaxation con-
ditions (see appendix B for details). As a result, we found that
the qualitative behavior of the energy flow does not depend
on T1 while it can be affected by T2. This fact further indi-
cates that the longitudinal relaxation characterized by T1 does
not disturb the energy exchange between the subsystem and
the external driver, and it does not disturb the formation of
Floquet states. In contrast, the decoherence characterized by
T2 can disturb the energy exchange and the formation of
Floquet states.

Based on the above analysis, the energy exchange between
the system and the driving field is expected to play an impor-
tant role to realize the Floquet state as well as the photo-
dressed states. These results may further indicate a possibility
to stabilize Floquet states by tuning the energy exchange with
additional controlling fields such as a secondary laser field. A
possibility of stabilization of Floquet states with multi-color
laser fields will be investigated in future work based on these
findings.

At the end of this subsection, we investigate the nonequi-
librium steady state under the significant decoherence, where
the decoherence time is substantially shorter than the cycle of
external driving. Thus, the coherence does not survive even for
the single period of the driving field. Under such significant
decoherence, can Floquet states be still realized? To address
this question, we investigate the nonequilibrium steady state
by setting T1 to 30�/Δ and T2 to Tcycle/2, which is half the
cycle of the external driving.

Figure 7 shows the computed Floquet fidelity as a function
of the driving field strength F0. In the weak field limit, the
Floquet fidelity becomes zero, indicating that the Floquet state
is significantly disturbed by the decoherence. In contrast, the
Floquet fidelity asymptotically reaches one in the strong field
regime, indicating that the decoherence effect is overcome by

Figure 7. Floquet fidelity as a function of the field strength F0 in the
resonantly driving condition, �Ω = Δ. Here, we set the driving
frequency Ω to Δ/�, the longitudinal relaxation time T1 to 30�/Δ,
the decoherence time T2 to the half cycle of the driving Tcycle/2.

the strong driving field, and the Floquet states are stabilized.
This result clearly demonstrates that Floquet states can be real-
ized with a sufficiently strong driving field even under the
influence of significant decoherence, where the coherence is
lost before the single-cycle of the external driving field.

3.2. Off-resonance

Here, we investigate the nonequilibrium steady state in an
off-resonant condition. For this purpose, we set the driv-
ing frequency Ω of the field to one third of the gap of the
system, Δ/3�. This is nothing other than the three-photon
resonance condition. Note that the three-photon absorption
process is the lowest order nonlinear photo-excitation in the
present model because the even-photon absorption processes,
including the two-photon absorption, are forbidden by the
symmetry of the Hamiltonian. In this subsection, we further
set both the relaxation times, T1 and T2, to 30�/Δ.

Figure 8(a) shows the computed Floquet fidelity SF as a
function of field strength F0. In the weak field regime, the
Floquet fidelity is close to one, indicating that the Floquet
states are almost perfectly realized. This behavior is qual-
itatively different from that in the resonant condition (see
figure 2): in the resonant condition, the Floquet fidelity is
almost zero in the weak field regime. The qualitative difference
of the two conditions can be explained by the photo-induced
population transfer [45, 46]: while the dissipation mechanism
is activated in the resonant condition because the excited state
is populated by the resonant excitation, it is not activated in the
off-resonant condition because the population transfer cannot
occur due to the energy gap. Once the field strength becomes
substantially strong, the Floquet fidelity becomes small, indi-
cating that the Floquet states are disturbed by the dissipa-
tion. Then, when the field strength becomes even stronger,
the Floquet fidelity approaches to one again. To elucidate the
mechanism of the temporal reduction of the Floquet fidelity
in figure 8(a), we evaluate Floquet quasienergies based on the
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Figure 8. (a) Floquet fidelity as a function of the field strength F0
for off-resonant driving at �Ω = Δ/3. Here, we set both the
relaxation times, T1 and T2, to 30�/Δ. (b) Floquet quasienergy
spectrum as a function of the field strength F0 for off-resonant
driving. The reduction of the Floquet fidelity and the splitting of the
quasienergy spectrum observed for F0/Δ = 0.96 is due to the fact
that for this particular driving strength the gap in the quasienergy
spectrum equals five times the driving frequency such that
multi-photon absorption is possible.

Fourier decomposition of the Floquet states,

|ψF,a(t)〉 =
∑

m

e−i
εa,m
�

t|ua,m〉, (30)

where εa,m is the replicated Floquet-quasienergy defined as
εa,m = εa + m�Ω, and |ua,m〉 is the corresponding Fourier
component.

Figure 8(b) shows the computed Floquet quasienergy εa,m

as a function of the applied field strength, F0. The false color
shows the norm of the corresponding state, 〈ua,m|ua,m〉. In the
weak field limit, the states have the bare gap of Δ. As the
field strength increases, the gap becomes larger due to the
dynamical Stark effect. When the field strength F0 is close to
Δ, the gap between the dominantly populated states reaches
5Δ/3, which is identical to five times the photon-energy of the
applied field, �Ω = Δ/3. Therefore, the five-photon absorp-
tion process is expected to occur around this field strength.
Indeed, the Floquet quasienergy spectrum in figure 8(b) clearly
shows the energy splitting around this field strength. Evi-
dently, the Floquet fidelity SF is sharply reduced around this
five-photon absorption regime, comparing figures 8(a) and
(b). Therefore, the destruction of the Floquet states can be
understood as the activation of the dissipative mechanism
through multi-photon processes. Importantly, the three-photon
absorption process, which is the lowest possible multi-photon
absorption process does not have a substantial impact on the

activation of the dissipation because it is significantly sup-
pressed by the band-gap renormalization due to the dynamical
Stark effect.

The above finding indicates that the population transfer has
a significant impact in the disappearance of the Floquet states
even in the off-resonant condition.

4. Summary

In this work, we investigated some basic properties of nonequi-
librium steady states driven by periodic driving fields under
the influence of dissipation. We employed the Maxwell–Bloch
equation [51, 52] and equivalent formulations in order to eval-
uate the Floquet fidelity SF and the quasienergy spectrum of
the nonequilibrium steady state.

First, we investigated the properties of the nonequilibrium
steady state in the resonant driving condition. In the weak
field strength limit, the Floquet fidelity approaches zero. This
fact indicates that the Floquet states are significantly destroyed
by the system–environment interaction that is triggered by
the photoexcited population ρee(t) = 〈e|ρ(t)|e〉. When the field
strength becomes substantial, the Floquet fidelity monotoni-
cally increases and asymptotically approaches one, reflecting
that the nonequilibrium steady states are perfectly described by
the Floquet states. This behavior can be understood in terms
of the competition of the driving field contribution and the
dissipation contribution.

To elucidate the detailed roles of the dissipation, we evalu-
ated the Floquet fidelity by varying the relaxation times, T1 and
T2. As a result, we found that the longitudinal relaxation time
T1 does not have a direct impact on the formation of Floquet
states while the transverse relaxation time (decoherence time)
T2 has a significant impact on the formation and the destruc-
tion of Floquet states. These results indicate that the coherence
plays an important role in the formation of Floquet states and it
has to survive for a relevant timescale to realize Floquet states.

Then, employing the stochastic wavefunction approach,
we investigate the quasienergy structure of the nonequilib-
rium steady state in the resonant condition. Consistently with
the above Floquet fidelity analysis, the quasienergy spec-
trum shows the Rabi-splitting once the applied field strength
becomes strong enough. To elucidate the role of the decoher-
ence in the formation of the Floquet features, we computed
the energy spectrum by varying the decoherence time T2 (see
figure 4). As a result, we found that the decoherence destructs
the feature of the Floquet states in the energy spectrum by
causing the collapse of the gap of the Rabi splitting.

Next, we studied the nonequilibrium steady state under the
influence of the significant decoherence in order to address the
following question: can Floquet states be formed even if the
coherence is annihilated before the optical cycle? As a result
of the analysis, we demonstrated that the Floquet states can
indeed be formed even under the significant decoherence once
the field strength becomes strong enough (see figure 7).

Finally, we investigated the Floquet fidelity in the off-
resonant condition, where the photon-energy of the driving
field is set to the one third of the gap, �Ω = Δ/3. In the off-
resonant condition, the Floquet fidelity becomes almost one
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in the weak field regime in contrast to the resonant condition.
This result indicates that the Floquet states are well formed
in the off-resonant weak field regime because the photo-
excitation is forbidden by the gap and the dissipation contribu-
tion is not activated. Furthermore, we found that the Floquet
fidelity can be substantially reduced once the multi-photon
excitation becomes relevant because the photo-excitation fur-
ther triggers the dissipation mechanism and the Floquet states
are disturbed by the system–environment interaction.

The above findings clearly demonstrate that photo-
excitation effects can significantly affect the formation of
Floquet states because the excess energy of excited sys-
tems can be dissipated to its environment through the sys-
tem–environment interaction, which further destructs the
coherence of the field driven dynamics. Therefore, one can
expect that the Floquet states may be stabilized by reducing the
effective energy dissipation to the environment with additional
external driving fields. For example, one may realize the sta-
bilized Floquet states with multi-color laser fields; one color
mainly drives the Floquet states, and the other colors stabi-
lize them by renormalizing the energy dissipation. This is also
known as optical-control of coherence through the control of
dissipation, and it may further introduce additional degree of
freedoms in the Floquet engineering and the optical-control
itself.
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Appendix A. Energy transfer from external fields
to quantum systems

Here, we revisit the energy transfer from an external field to
the quantum two-level system. To purely evaluate the energy
exchange between the external field and the quantum sys-
tem, we disregard the dissipation and assume that the dynam-
ical system is described by the following quantum Liouville
equation

d
dt
ρ(t) =

[H(t), ρ(t)]
i�

, (A1)

with the 2 × 2 Hamiltonian matrix

H(t) =
Δ

2
σz + F0 sin(Ωt)σx. (A2)

The energy of the quantum system is defined with the
unperturbed Hamiltonian Δσz/2 as

Ẽs(t) = Tr

{
Δ

2
σzρ(t)

}
. (A3)

Figure 9. Energy flow in the nonequilibrium steady state among the
subsystem, the external driver and the environment under resonant
driving (�Ω = Δ) as a function of time. Here, T1 is set to 300�/Δ
and T2 is set to 30�/Δ. The results for different field strength are
shown: (a) F0 = 0.01Δ, (b) F0 = 0.50Δ, and (c) F0 = 1.00Δ.

Thus the energy change of the subsystem by the external field
is evaluated as

Pext(t) ≡
d
dt

Ẽs(t)

= Tr

{
1
i�

[
Δ

2
σz, H(t)

]
ρ(t)

}

=
ΔF0

�
sin(Ωt) Tr {σyρ(t)} . (A4)

This is nothing but the energy gain of the subsystem purely
from the external field, and it is introduced as Pext(t) in
equation (27).

In the main text, we further define the energy flow from the
environment as the difference between the total energy change
dEs(t)/dt and the pure external-field contribution Pext(t) in
equation (28).

Appendix B. Energy exchange analysis with
several relaxation conditions

For a comprehensive study, we repeat the energy flow analysis
shown in figure 6 with different relaxation conditions. Note
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Figure 10. Energy flow in the nonequilibrium steady state among
the subsystem, the external driver and the environment under
resonant driving (�Ω = Δ) as a function of time. Here, T1 is set to
30�/Δ and T2 is set to 10�/Δ. The results for different field
strength are shown: (a) F0 = 0.01Δ, (b) F0 = 0.50Δ, and (c)
F0 = 1.00Δ.

that, in the analysis of figure 6, the relaxation times, T1 and
T2, are set to 30�/Δ.

First, we investigate the effect of the longitudinal relax-
ation time T1 in the energy flow. For this purpose, we set T1 to
300�/Δ, which is ten times larger than the original analysis in
figure 6, while fixing T2 to the original value, 30�/Δ. Figure 9
shows the computed energy flow with different field strength.
Comparing figure 9 with figure 6, one sees that the qualita-
tive behavior of the energy flow in the two relaxation condi-
tions does not change despite the significant difference of the
longitudinal relaxation time, T1. Therefore T1 does not affect
the energy exchange between the subsystem and the external
driver.

Next, we investigate the effect of the transverse relax-
ation time T2 in the energy flow. For this purpose, we set
T2 to 10�/Δ, which is three times shorter than the original
analysis in figure 6, while fixing T1 to the original value,
30�/Δ. Figure 10 shows the computed energy flow with dif-
ferent field strength. In the weak field regime (F0 = 0.01Δ),
figures 10(a) and 6(a) do not show the qualitative difference
because all the transferred energy to the system is dissipated
and no energy returns to the external driver. In contrast, by
comparing figures 10(b) and 6(b), one can clearly see that the

larger ratio of the transferred energy is dissipated in the case
of the stronger decoherence (T2 = 10�/Δ) compared with the
weaker decoherence (T2 = 30�/Δ). Therefore T2 can directly
affect the energy exchange between the subsystem and the
external driver.

Based on the above findings, we conclude that the longitu-
dinal relaxation with T1 does not affect the energy exchange
between the subsystem and the external driver while the trans-
verse relaxation with T2 can significantly affect the energy
exchange. This conclusion may be counterintuitive because
the longitudinal relaxation with T1 directly links the energy
dissipation while the transverse relaxation with T2 does not
change the subsystem energy when the subsystem is undriven
(F0 = 0). The apparent inconsistency can be explained by
the efficiency of the energy return to the external driver with
coherent driving: if the subsystem keeps the perfect coherence
(T2 = ∞), the subsystem shows the Rabi flopping, realizing
the perfect energy exchange as all the transferred energy to
the subsystem returns to the external driver. However, once the
coherent dynamics is disturbed by the decoherence, the perfect
Rabi flopping is destroyed and all the transferred energy can-
not return to the driver anymore. In this regard, the efficiency
of the energy return is affected by the decoherence. Since the
subsystem is connected to the bath, the unreturned energy is
simply dissipated to the bath. This scenario can explain the
apparent inconsistency of the energy dissipation and the relax-
ation times, T1 and T2, further indicating the significance of
the preservation of coherence in the driven dynamics to realize
Floquet states.
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